RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Changa Maris Evgen'evich

Statistics Math-Net.Ru
Total publications: 13
Scientific articles: 12
Cited articles: 7
Citations in Math-Net.Ru: 23
Presentations: 21

Number of views:
This page:1395
Abstract pages:4642
Full texts:2352
References:229
E-mail:

http://www.mathnet.ru/eng/person12523
List of publications on Google Scholar
http://zbmath.org/authors/?q=ai:changa.m-e
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=688130

Publications in Math-Net.Ru
1. A problem involving integers all of whose prime divisors belong to given arithmetic progressions
M. E. Changa
Uspekhi Mat. Nauk, 71:4(430) (2016),  191–192
2. On the Quantity of Numbers of Special Form Depending on the Parity of the Number of Their Different Prime Divisors
M. E. Changa
Mat. Zametki, 97:6 (2015),  930–935
3. The method of trigonometric sums
M. E. Changa
Lekts. Kursy NOC, 13 (2009),  3–46
4. Method of complex integration
M. E. Changa
Lekts. Kursy NOC, 2 (2006),  3–56
5. On sums of multiplicative functions over numbers all of whose prime divisors belong to given arithmetic progressions
M. E. Changa
Izv. RAN. Ser. Mat., 69:2 (2005),  205–220
6. On a function-theoretic inequality
M. E. Changa
Uspekhi Mat. Nauk, 60:3(363) (2005),  181–182
7. Lower Bounds for the Riemann Zeta Function on the Critical Line
M. E. Changa
Mat. Zametki, 76:6 (2004),  922–927
8. On Zeros of Real Trigonometric Sums
M. E. Changa
Mat. Zametki, 76:5 (2004),  792–797
9. Numbers whose prime divisors lie in special intervals
M. E. Changa
Izv. RAN. Ser. Mat., 67:4 (2003),  213–224
10. Primes in Special Intervals and Additive Problems with Such Numbers
M. E. Changa
Mat. Zametki, 73:3 (2003),  423–436
11. On the number of primes yielding square-free sums with given numbers
M. E. Changa
Uspekhi Mat. Nauk, 58:3(351) (2003),  197–198
12. Summation of multiplicative functions
M. E. Changa
Uspekhi Mat. Nauk, 57:6(348) (2002),  197–198

13. Scientific Achievements of Anatolii Alekseevich Karatsuba
S. A. Gritsenko, E. A. Karatsuba, M. A. Korolev, I. S. Rezvyakova, D. I. Tolev, M. E. Changa
Sovrem. Probl. Mat., 16 (2012),  7–30

Presentations in Math-Net.Ru
1. Круговой метод. Лекция 9

April 27, 2017 18:00   
2. Круговой метод. Лекция 8

April 20, 2017 18:00   
3. Круговой метод. Лекция 7

April 13, 2017 18:00   
4. Круговой метод. Лекция 6

April 6, 2017 18:00   
5. Круговой метод. Лекция 5

March 30, 2017 18:00   
6. Круговой метод. Лекция 4

March 23, 2017 18:00   
7. Круговой метод. Лекция 3

March 16, 2017 18:00   
8. Круговой метод. Лекция 2

March 9, 2017 18:00   
9. Круговой метод. Лекция 1

February 16, 2017 18:00   
10. The sieve method. Lecture 11
M. E. Changa course "The sieve method", spring semester 2015/2016
April 28, 2016 18:00   
11. The sieve method. Lecture 10
M. E. Changa course "The sieve method", spring semester 2015/2016
April 21, 2016 18:00   
12. The sieve method. Lecture 9
M. E. Changa course "The sieve method", spring semester 2015/2016
April 14, 2016 18:00   
13. The sieve method. Lecture 8
M. E. Changa course "The sieve method", spring semester 2015/2016
April 7, 2016 18:00   
14. The sieve method. Lecture 7
M. E. Changa course "The sieve method", spring semester 2015/2016
March 31, 2016   
15. The sieve method. Lecture 6
M. E. Changa course "The sieve method", spring semester 2015/2016
March 24, 2016 18:00   
16. The sieve method. Lecture 5
M. E. Changa course "The sieve method", spring semester 2015/2016
March 17, 2016 18:00   
17. The sieve method. Lecture 4
M. E. Changa course "The sieve method", spring semester 2015/2016
March 10, 2016   
18. The sieve method. Lecture 3
M. E. Changa course "The sieve method", spring semester 2015/2016
March 3, 2016 18:00   
19. The sieve method. Lecture 2
M. E. Changa course "The sieve method", spring semester 2015/2016
February 25, 2016 18:00
20. The sieve method. Lecture 1
M. E. Changa course "The sieve method", spring semester 2015/2016
February 18, 2016 18:00   
21. On the integers whose number of prime factors belongs to given class of residues
Conference to the Memory of Anatoly Alekseevitch Karatsuba on Number theory and Applications
January 29, 2016 17:00   

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017