RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Katanaev Mikhail Orionovich

Total publications: 59
Scientific articles: 59
in MathSciNet: 42
in zbMATH: 28
in Web of Science: 46
in Scopus: 45
Cited articles: 43
Citations in Math-Net.Ru: 95
Citations in MathSciNet: 40
Citations in Web of Science: 795
Citations in Scopus: 789
Presentations: 39

Number of views:
This page:3758
Abstract pages:3833
Full texts:1664
References:383
Katanaev Mikhail Orionovich
Head Scientist Researcher
Doctor of physico-mathematical sciences (1995)
Speciality: 01.01.03 (Mathematical physics)
Birth date: 7.02.1954
Phone: +7 (499) 135 14 49
Fax: +7 (499) 135 05 55
E-mail:
Keywords: differential geometry, gravity models, geometric theory of defects.
UDC: 514.762, 514.764, 517.958, 531.51
MSC: 53b30, 53b50, 53c20, 53c25, 53c50, 53c80, 74b99, 83c15, 83c40, 83c80

Subject:

Integrable two-dimensional gravity model is proposed (with I. V. Volovich). Conformal block method for construction of global solutions in gravity is developed for arbitrary two-dimensional metrics admitting one Killing vector field. Geometric theory of defects (dislocations and disclinations) in elastic media is proposed (with I. V. Volovich). The media with defects is shown to correspond to Riemann–Cartan manifold. Torsion and curvature tensors are interpreted as the surface densities of Burgers and Frank vectors, respectively. Full classification of global solutions to vacuum Einstein equations with cosmological constant is given under the assumptions that four-dimensional space-time is a product of two surfaces and the metric has a block diagonal form (with T. Klosch and W. Kummer). The found pseudo-riemannian manifolds include solutions describing black holes, worm holes, cosmic strings, domain walls of curvature singularities.

Biography

Graduated from Faculty of Theoretical and Experimental Physics of Moscow State Engineering Physical Institute (department of Theoretical Nuclear Physics). Ph.D. obtained in 1985 at Steklov Mathematical Institute. D.Sci. degree obtained in 1995 at Steklov Mathematical Institute. Published more than 40 papers.

   
Main publications:
  1. M. O. Katanaev, Geometrical methods in mathematical physics, Manuscript in Russian. Extended version of lectures delivered at the Academic Educational Center at Steklov Mathematical Institute during seven semesters, 2016 , xvi+1570 pp., arXiv: 1311.0733v3
  2. M. O. Katanaev, “Geometric theory of defects”, Phys. Usp., 48:7 (2005), 675–701  mathnet  crossref  crossref  adsnasa  isi  elib  elib  scopus
  3. M. O. Katanaev, “Effective action for scalar fields in two-dimensional gravity”, Ann. Physics, 296:1 (2002), 1–50 , arXiv: gr-qc/0101033  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  4. M. O. Katanaev, I. V. Volovich, “Theory of defects in solids and three-dimensional gravity”, Ann. Physics, 216:1 (1992), 1–28  crossref  mathscinet  zmath  adsnasa  isi  scopus
  5. M. O. Katanaev, I. V. Volovich, “String model with dynamical geometry and torsion”, Phys. Lett. B, 175:4 (1986), 413–416 , arXiv: hep-th/0209014  crossref  mathscinet  adsnasa  isi  elib  scopus

http://www.mathnet.ru/eng/person17481
http://scholar.google.com/citations?user=uQ8Gfj0AAAAJ&hl=en
http://zbmath.org/authors/?q=ai:katanaev.michael-o
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=192626
http://elibrary.ru/author_items.asp?authorid=4629
http://orcid.org/0000-0002-7223-1073
http://www.researcherid.com/rid/K-2943-2013
http://www.scopus.com/authid/detail.url?authorId=6602082277
https://www.researchgate.net/profile/Mikhail_Katanaev
http://arxiv.org/a/http://arxiv.org/a/katanaev_m_1
inSPIRE personal page (High Energy Physics (HEP) information system)

Full list of publications:
| by years | by types | by times cited | scientific publications | common list |



   2017
1. M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections”, Theoret. and Math. Phys., 191:2 (2017), 661–668  mathnet  crossref  crossref  mathscinet  isi  elib  scopus
2. M. O. Katanaev, “Normal coordinates in affine geometry”, Physics and mathematics, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 1, Kazan University, Kazan, 2017, 47–63  mathnet  isi  elib

   2016
3. M. O. Katanaev, Geometrical methods in mathematical physics, Manuscript in Russian. Extended version of lectures delivered at the Academic Educational Center at Steklov Mathematical Institute during seven semesters, 2016 , xvi+1570 pp., arXiv: 1311.0733v3
4. M. O. Katanaev, “Rotational elastic waves in a cylindrical waveguide with wedge dislocation”, J. Phys. A, 49:8 (2016), 85202 , 8 pp.  mathnet  crossref  isi  elib  scopus
5. M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe”, Phys. Usp., 59:7 (2016), 689–700  mathnet  crossref  crossref  isi  elib  scopus

   2015
6. M. O. Katanaev, Geometrical methods in mathematical physics. Applications in quantum mechanics. Part 2, Lekts. Kursy NOC, 26, Steklov Math. Institute of RAS, Moscow, 2015 , 186 pp.  mathnet  mathnet  crossref  elib
7. M. O. Katanaev, Geometrical methods in mathematical physics. Applications in quantum mechanics. Part 1, Lekts. Kursy NOC, 25, Steklov Math. Institute of RAS, Moscow, 2015 , 176 pp.  mathnet  mathnet  crossref  elib
8. M. O. Katanaev, “Rotational elastic waves in double wall tube”, Phys. Lett. A, 379:24–25 (2015), 1544–1548 , arXiv: 1503.01759  mathnet  crossref  mathscinet  isi (cited: 1)  elib  scopus (cited: 1)
9. M. O. Katanaev, “Lorentz Invariant Vacuum Solutions in General Relativity”, Proc. Steklov Inst. Math., 290 (2015), 138–142  mathnet  crossref  crossref  isi (cited: 2)  elib  elib  scopus (cited: 1)
10. M. O. Katanaev, “On homogeneous and isotropic universe”, Mod. Phys. Lett. A, 30:34 (2015), 1550186 , 5 pp., arXiv: 1511.00991  mathnet (cited: 1)  crossref  mathscinet  isi (cited: 1)  elib  scopus (cited: 1)

   2014
11. M. O. Katanaev, “Passing the Einstein–Rosen bridge”, Mod. Phys. Lett. A, 29:17 (2014), 1450090 , 7 pp., arXiv: 1310.7390  mathnet  crossref  mathscinet  zmath  isi  scopus

   2013
12. M. O. Katanaev, “Point massive particle in general relativity”, Gen. Rel. Grav., 45:10 (2013), 1861–1875 , arXiv: 1207.3481  mathnet  crossref  mathscinet  zmath  isi (cited: 7)  elib (cited: 6)  scopus (cited: 6)

   2012
13. M. O. Katanaev, I. G. Mannanov, “Wedge dislocations, three-dimensional gravity, and the Riemann–Hilbert problem”, Phys. Part. Nucl., 43 (2012), 639–643  mathnet  crossref  isi  elib  scopus
14. M. O. Katanaev, I. G. Mannanov, “Wedge dislocations and three-dimensional gravity”, p-Adic Numb. Ultramet. Anal. Appl., 4:1 (2012), 5–19  mathnet  crossref  crossref  mathscinet  zmath  scopus

   2011
15. M. O. Katanaev, “Simple proof of the adiabatic theorem”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 1(22) (2011), 99–107  mathnet  crossref  rsci  elib
16. M. O. Katanaev, “Adiabatic theorem for finite dimensional quantum mechanical systems”, Russian Phys. J., 2011, no. 3, 342–353 , arXiv: 0909.0370  crossref  mathscinet  adsnasa  isi  elib (cited: 3)  elib (cited: 3)  scopus (cited: 2)
17. M. O. Katanaev, “On geometric interpretation of the Aharonov–Bohm effect”, Russian Phys. J., 54:5 (2011), 507–514  crossref  mathscinet  adsnasa  isi (cited: 1)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)
18. M. O. Katanaev, “O geometricheskoi interpretatsii fazy Berri”, Izvestiya vuzov. Fizika, 2011, no. 10, 26–35 , arXiv: 1212.1782  mathnet  mathscinet  zmath  adsnasa  elib; M. O. Katanaev, “On geometric interpretation of the Berry phase”, Russian Phys. J., 54:10 (2012), 1082–1092 , arXiv: 1212.1782  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)

   2010
19. M. O. Katanaev, “Global solutions in gravity. Euclidean signature”, Fundamental interactions, eds. D. Grumiller, A. Rebhan, D. Vassilevich, World Sci. Publ., Hackensack, NJ, 2010, 249–266 , arXiv: 0808.1559  mathscinet (cited: 1)  zmath  adsnasa
20. G. de Berredo-Peixoto, M. O. Katanaev, E. Konstantinova, I. Shapiro, “Schrodinger equation in the space with cylindrical geometric defect and possible application to multi-wall nanotubes”, Nuovo Cimento, B125 (2010), 915–931 , arXiv: 1010.2913  crossref  isi (cited: 2)  scopus (cited: 3)
21. M. O. Katanaev, “Torsion and Burgers vector of a tube dislocation”, 10th Hellenic School and Workshops on Elementary Particle Physics and Gravity (Corfu, Greece, 8–12 Sep 2010), PoS CNCFG, 2010, 022 , 7 pp.

   2009
22. G. de Berredo-Peixoto, M. O. Katanaev, “Tube dislocations in gravity”, J. Math. Phys., 50 (2009), 042501 , 23 pp., arXiv: 0810.0243  crossref  mathscinet (cited: 1)  zmath  adsnasa  isi (cited: 5)  scopus (cited: 7)

   2008
23. M. O. Katanaev, “Akusticheskie fonony v gidrodinamike i metrika Shvartsshilda”, Problemy sovremennoi teoreticheskoi fiziki, K 60-letiyu I. L. Bukhbindera, Tomskii gos. pedagogicheskii un-t, 2008, 208–215

   2007
24. G. de Berredo-Peixoto, M. O. Katanaev, “Inside the BTZ black hole”, Phys. Rev. D, 75:2 (2007), 024004 , 13 pp., arXiv: gr-qc/0611143  crossref  mathscinet (cited: 1)  adsnasa  isi (cited: 3)  scopus (cited: 3)

   2006
25. M. O. Katanaev, “Polynomial form of the Hilbert–Einstein action”, Gen. Relativity Gravitation, 38:8 (2006), 1233–1240 , arXiv: gr-qc/0507026  crossref  mathscinet  zmath  adsnasa  isi (cited: 2)  elib (cited: 3)  scopus (cited: 3)
26. M. O. Katanaev, “Polynomial Hamiltonian form of general relativity”, Theoret. and Math. Phys., 148:3 (2006), 1264–1294  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)  elib (cited: 3)  elib (cited: 3)  scopus (cited: 3)

   2005
27. M. O. Katanaev, “Geometric theory of defects”, Phys. Usp., 48:7 (2005), 675–701  mathnet  crossref  crossref  adsnasa  isi (cited: 35)  elib (cited: 34)  elib (cited: 34)  scopus (cited: 39)
28. M. O. Katanaev, “Introduction to the geometric theory of defects”, Proceedings of 3rd Summer School in Modern Mathematical Physics (Zlatibor, Serbia and Montenegro, 20–31 Aug 2004), eds. B. Dragovich, IFTP, Belgrade, 2005, 65–73

   2004
29. M. O. Katanaev, “One-Dimensional Topologically Nontrivial Solutions in the Skyrme Model”, Theoret. and Math. Phys., 138:2 (2004), 163–176  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 7)  elib (cited: 9)  scopus (cited: 9)

   2003
30. M. O. Katanaev, “Wedge Dislocation in the Geometric Theory of Defects”, Theoret. and Math. Phys., 135:2 (2003), 733–744  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 18)  elib (cited: 19)  scopus (cited: 20)

   2002
31. M. O. Katanaev, “Effective action for scalar fields in two-dimensional gravity”, Ann. Physics, 296:1 (2002), 1–50 , arXiv: gr-qc/0101033  crossref  mathscinet (cited: 2)  zmath  adsnasa  isi (cited: 12)  elib (cited: 13)  scopus (cited: 13)

   2000
32. M. O. Katanaev, “Global solutions in gravity”, Constrained dynamics and quantum gravity (Villasimius, 1999), Nuclear Phys. B Proc. Suppl., 88, 2000, 233–236 , arXiv: gr-qc/9912039  crossref  mathscinet (cited: 1)  adsnasa  isi (cited: 5)  elib (cited: 6)  scopus (cited: 6)
33. M. O. Katanaev, “Global Solutions in Gravity. Lorentzian Signature”, Proc. Steklov Inst. Math., 228 (2000), 158–183  mathnet  mathscinet  zmath

   1999
34. M. O. Katanaev, Klösch, W. Kummer, “Global properties of warped solutions in general relativity”, Ann. Physics, 276:2 (1999), 191–222 , arXiv: gr-qc/9807079  crossref  mathscinet (cited: 5)  zmath  adsnasa  isi (cited: 18)  elib (cited: 19)  scopus (cited: 22)
35. M. O. Katanaev, I. V. Volovich, “Scattering on dislocations and cosmic strings in the geometric theory of defects”, Ann. Physics, 271:2 (1999), 203–232 , arXiv: gr-qc/9801081  crossref  mathscinet (cited: 1)  zmath  adsnasa  isi (cited: 26)  elib (cited: 28)  scopus (cited: 31)

   1998
36. M. F. Ertl, M. O. Katanaev, W. Kummer, “Generalized supergravity in two dimensions”, Nuclear Phys. B, 530:1-2 (1998), 457–486 , arXiv: hep-th/9710051  crossref  mathscinet (cited: 1)  zmath  adsnasa  isi (cited: 5)  elib (cited: 6)  scopus (cited: 6)

   1997
37. M. O. Katanaev, W. Kummer, H. Liebl, “On the completeness of the black hole singularity in 2D dilaton theories”, Nuclear Phys. B, 486:1-2 (1997), 353–370 , arXiv: gr-qc/9602040  crossref  mathscinet (cited: 2)  zmath  adsnasa  isi (cited: 48)  elib (cited: 52)  scopus (cited: 53)
38. M. O. Katanaev, “Euclidean two-dimensional gravity with torsion”, J. Math. Phys., 38:2 (1997), 946–980  crossref  mathscinet  zmath  adsnasa  isi (cited: 8)  elib (cited: 7)  scopus (cited: 8)

   1996
39. M. O. Katanaev, W. Kummer, H. Liebl, “Geometric interpretation and classification of global solutions in generalized dilaton gravity”, Phys. Rev. D (3), 53:10 (1996), 5609–5618 , arXiv: gr-qc/9511009  crossref  mathscinet (cited: 1)  adsnasa  isi (cited: 39)  elib (cited: 42)  scopus (cited: 42)

   1994
40. M. O. Katanaev, “Canonical quantization of the string with dynamical geometry and anomaly free nontrivial string in two dimensions”, Nuclear Phys. B, 416:2 (1994), 563–605 , arXiv: hep-th/0101168  crossref  mathscinet (cited: 1)  zmath  adsnasa  isi (cited: 15)  scopus (cited: 12)

   1993
41. M. O. Katanaev, “New constraints in dynamical torsion theory”, Gen. Relativity Gravitation, 25:4 (1993), 349–359 , arXiv: gr-qc/0101053  crossref  mathscinet (cited: 2)  zmath  adsnasa  isi (cited: 6)  elib (cited: 4)  scopus (cited: 6)
42. M. O. Katanaev, “All universal coverings of two-dimensional gravity with torsion”, J. Math. Phys., 34:2 (1993), 700–736  crossref  mathscinet (cited: 1)  zmath  adsnasa  isi (cited: 28)  scopus (cited: 23)

   1992
43. M. O. Katanaev, I. V. Volovich, “Theory of defects in solids and three-dimensional gravity”, Ann. Physics, 216:1 (1992), 1–28  crossref  mathscinet (cited: 14)  zmath  adsnasa  isi (cited: 235)  scopus (cited: 245)

   1991
44. M. O. Katanaev, “Conformal invariance, extremals, and geodesics in two-dimensional gravity with torsion”, J. Math. Phys., 32:9 (1991), 2483–2496  crossref  mathscinet  adsnasa  isi (cited: 30)  scopus (cited: 24)

   1990
45. M. O. Katanaev, “Complete integrability of two-dimensional gravity with dynamical torsion”, J. Math. Phys., 31:4 (1990), 882–891  crossref  mathscinet  zmath  adsnasa  isi (cited: 35)  scopus (cited: 28)
46. M. O. Katanaev, I. V. Volovich, “Two-dimensional gravity with dynamical torsion and strings”, Ann. Physics, 197:1 (1990), 1–32  crossref  mathscinet (cited: 2)  zmath  adsnasa  isi (cited: 83)  elib (cited: 27)  scopus (cited: 60)

   1989
47. M. O. Katanaev, “A new integrable model: two-dimensional gravity with dynamical torsion”, Soviet Phys. Dokl., 34:11 (1989), 982–983 (1990)  mathnet  mathscinet  adsnasa  adsnasa
48. M. O. Katanaev, “String with dynamical geometry. Hamiltonian analysis in conformal gauge”, Theoret. and Math. Phys., 80:2 (1989), 838–848  mathnet  crossref  mathscinet  adsnasa  isi (cited: 4)  scopus (cited: 5)

   1988
49. M. O. Katanaev, “Nonrelativistic string”, Soviet J. Nuclear Phys., 48:1 (1988), 296–298

   1987
50. M. O. Katanaev, “Kinetic part of dynamical torsion theory”, Theoret. and Math. Phys., 72:1 (1987), 735–741  mathnet  crossref  zmath  adsnasa  isi (cited: 1)  scopus (cited: 2)
51. M. O. Katanaev, “Largescale limit of dynamical torsion theory”, Sov. Phys. J., 30:5 (1987), 392–396  crossref  scopus

   1986
52. I. V. Volovich, M. O. Katanaev, “Quantum strings with a dynamic geometry”, JETP Lett., 43:5 (1986), 267–269  mathscinet  adsnasa  isi (cited: 3)
53. M. O. Katanaev, I. V. Volovich, “String model with dynamical geometry and torsion”, Phys. Lett. B, 175:4 (1986), 413–416 , arXiv: hep-th/0209014  crossref  mathscinet (cited: 2)  adsnasa  isi (cited: 83)  elib (cited: 50)  scopus (cited: 77)
54. M. O. Katanaev, “Dynamical torsion and the problem of the indefinite metric in the general theory of relativity”, Soviet J. Nuclear Phys., 43:3 (1986), 490–491  mathscinet  isi
55. I. V. Volovich, M. O. Katanaev, “Scalar fields and dynamical torsion in Kaluza–Klein theories”, Theoret. and Math. Phys., 66:1 (1986), 53–60  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)  scopus (cited: 3)

   1985
56. M. O. Katanayev, I. V. Volovich, “Higgs fields in Kaluza-Klein theory with dynamical torsion”, Phys. Lett. B, 156:5-6 (1985), 327–330  crossref  mathscinet  adsnasa  isi (cited: 15)  elib  scopus (cited: 15)
57. M. O. Katanaev, “Kinetic term for the Lorentz connection”, Theoret. and Math. Phys., 65:1 (1985), 1043–1050  mathnet  crossref  mathscinet  zmath  adsnasa  isi  scopus (cited: 1)

   1983
58. M. O. Katanaev, “Linear connection in theories of Kaluza–Klein type”, Theoret. and Math. Phys., 56:2 (1983), 795–798  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)  scopus (cited: 1)
59. M. O. Katanaev, “Gauge theory for the Poincaré group”, Theoret. and Math. Phys., 54:3 (1983), 248–252  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 6)  scopus (cited: 6)

Presentations in Math-Net.Ru
1. Chern-Simons term in the geometric theory of defects
Steklov Mathematical Institute Seminar
November 17, 2016 16:00   
2. Chern-Simons term in the geometric theory of defects
Scientific session of the Steklov Mathematical Institute of RAS dedicated to the results of 2016
November 16, 2016 11:15   
3. Chern-Simons term in the geometric theory of defects
New Trends in Mathematical and Theoretical Physics
October 5, 2016 12:00   
4. On homogeneous and isotropic universe
The third Russian-Chinese conference on complex analysis, algebra, algebraic geometry and mathematical physics
May 12, 2016 15:50   
5. Общая теория относительности. Лекция 12

May 6, 2016 18:00   
6. Общая теория относительности. Лекция 11

April 29, 2016 18:00   
7. Общая теория относительности. Лекция 10

April 22, 2016 18:00   
8. Общая теория относительности. Лекция 9

April 15, 2016 18:00   
9. Общая теория относительности. Лекция 8

April 8, 2016 18:00   
10. Общая теория относительности. Лекция 7

April 1, 2016 18:00   
11. Общая теория относительности. Лекция 6

March 25, 2016 18:00   
12. Общая теория относительности. Лекция 5

March 18, 2016 18:00   
13. Общая теория относительности. Лекция 4

March 11, 2016 18:00   
14. Общая теория относительности. Лекция 3

March 4, 2016 18:00   
15. Общая теория относительности. Лекция 2

February 26, 2016 18:00   
16. Общая теория относительности. Лекция 1

February 19, 2016 18:00   
17. Лекция 12. Рассеяние фононов на клиновых дислокациях. Цилиндрическая дислокация
Special course "General relativity and the geometric theory of defects", 2015
May 22, 2015 18:00   
18. Лекция 11. Фиксирование калибровки. Параллельные клиновые дислокации. Конформные отображения
Special course "General relativity and the geometric theory of defects", 2015
May 15, 2015 18:00   
19. General relativity and the geometric theory of defects. Lecture 10
Special course "General relativity and the geometric theory of defects", 2015
April 24, 2015 18:00   
20. General relativity and the geometric theory of defects. Lecture 9
Special course "General relativity and the geometric theory of defects", 2015
April 17, 2015 18:00   
21. General relativity and the geometric theory of defects. Lecture 8
Special course "General relativity and the geometric theory of defects", 2015
April 10, 2015 18:00   
22. General relativity and the geometric theory of defects. Lecture 7
Special course "General relativity and the geometric theory of defects", 2015
April 3, 2015 18:00   
23. General relativity and the geometric theory of defects. Lecture 6
Special course "General relativity and the geometric theory of defects", 2015
March 27, 2015 18:00   
24. General relativity and the geometric theory of defects. Lecture 5
Special course "General relativity and the geometric theory of defects", 2015
March 20, 2015 18:00   
25. General relativity and the geometric theory of defects. Lecture 4
Special course "General relativity and the geometric theory of defects", 2015
March 13, 2015 18:00   
26. General relativity and the geometric theory of defects. Lecture 3
Special course "General relativity and the geometric theory of defects", 2015
March 6, 2015 18:00   
27. General relativity and the geometric theory of defects. Lecture 2
Special course "General relativity and the geometric theory of defects", 2015
February 27, 2015 18:00   
28. General relativity and the geometric theory of defects. Lecture 1
Special course "General relativity and the geometric theory of defects", 2015
February 20, 2015 18:00   
29. Point massive particle in General Relativity
Random geometry and physics
September 8, 2014 15:20   
30. The gravitational field of a point particle
Fourth international conference "Mathematical Physics and Its Applications"
September 1, 2014 10:30
31. Проход по мосту Эйнштейна–Розена
Seminar of the Department of Mathematical Physics, Steklov Mathematical Institute of RAS
February 13, 2014 11:00
32. Точечная массивная частица в общей теории относительности
Conference "Mathematical Physics. Vladimirov-90" dedicated to the 90th anniversary of academician V. S. Vladimirov
November 15, 2013 14:30   
33. Точечная массивная частица в общей теории относительности
Seminar of the Department of Theoretical Physics, Steklov Mathematical Institute of RAS
January 16, 2013 14:00
34. Точечная массивная частица в общей теории относительности
Seminar of the Department of Theoretical Physics, Steklov Mathematical Institute of RAS
December 12, 2012 14:00
35. Точечная массивная частица в общей теории относительности
Seminar of the Department of Mathematical Physics, Steklov Mathematical Institute of RAS
October 11, 2012 11:00
36. Адиабатическая теорема и геометрическая интерпретация фазы Берри и эффекта Ааронова–Бома
Seminar of the Department of Mathematical Physics, Steklov Mathematical Institute of RAS
February 4, 2010 11:00
37. О геометрической интерпретации фазы Берри и эффекта Ааронова–Бома
Seminar of the Department of Mathematical Physics, Steklov Mathematical Institute of RAS
October 1, 2009 11:00
38. Two-dimensional gravity. Integrability of equations of motion
Seminar of the Department of Theoretical Physics, Steklov Mathematical Institute of RAS
April 5, 2006
39. Geometric theory of defects
Steklov Mathematical Institute Seminar
May 27, 2004 16:00   

Books in Math-Net.Ru
  1. M. O. Katanaev, Geometrical methods in mathematical physics. Applications in quantum mechanics. Part 1, Lekts. Kursy NOC, 25, 2015, 176 с.
    http://mi.mathnet.ru/book1603
  2. M. O. Katanaev, Geometrical methods in mathematical physics. Applications in quantum mechanics. Part 2, Lekts. Kursy NOC, 26, 2015, 186 с.
    http://mi.mathnet.ru/book1604

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017