RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Bolotin Sergey Vladimirovich

Total publications: 86 (81)
in MathSciNet: 80 (77)
in zbMATH: 65 (63)
in Web of Science: 38 (35)
in Scopus: 44 (43)
Cited articles: 71
Citations in Math-Net.Ru: 47
Citations in MathSciNet (by Sep 2017): 464
Citations in Web of Science: 272
Citations in Scopus: 375
Presentations: 7

Number of views:
This page:4348
Abstract pages:4196
Full texts:684
References:289
Corresponding member of RAS
Professor
Doctor of physico-mathematical sciences
E-mail: ,
Keywords: Hamiltonian system, variational methods.
UDC: 531.01, 517.974

Subject:

Dynamical systems of classical mechanics.

   
Main publications:
  1. Bolotin S., “Second species periodic orbits of the elliptic 3 body problem”, Celestial Mech. Dynam. Astronom., 93:1-4 (2006), 343–371  crossref  mathscinet  adsnasa
  2. Bolotin S., “Symbolic dynamics of almost collision orbits and skew products of symplectic maps”, Nonlinearity, 19:9 (2006), 2041–2063  crossref  mathscinet  zmath  adsnasa
  3. Bolotin S., Negrini P., Shilnikov Lemma for a nondegenerate critical manifold of a Hamiltonian system, In preparation
  4. Bolotin S. V., MacKay R. S., “Periodic and chaotic trajectories of the second species for the $n$-centre problem”, Celestial Mech. Dynam. Astronom., 77:1 (2000), 49–75  crossref  mathscinet  zmath  adsnasa
  5. Bolotin S. V., Treschev D. V., “Hill's formula”, Uspekhi Mat. Nauk, 65:2 (2010), 3–70  mathnet  mathscinet  zmath; English transl.: Russian Math. Surveys, 65:2 (2010), 191–257  crossref  mathscinet  zmath  adsnasa

http://www.mathnet.ru/eng/person22874
List of publications on Google Scholar
http://zbmath.org/authors/?q=ai:bolotin.sergey-v|bolotin.sergej-v
https://mathscinet.ams.org/mathscinet/MRAuthorID/198814
http://elibrary.ru/author_items.asp?authorid=6415
http://www.researcherid.com/rid/Q-3646-2016
http://www.scopus.com/authid/detail.url?authorId=57189615367
https://www.researchgate.net/profile/S_Bolotin

Full list of publications:
| by years | by types | by times cited | scientific publications | common list |



   2018
1. S. V. Bolotin, Uspekhi Mat. Nauk, 73 (2018)  mathnet  crossref  elib

   2017
2. Sergey V. Bolotin, “Degenerate Billiards in Celestial Mechanics”, Regul. Chaotic Dyn., 22:1 (2017), 27–53  mathnet  crossref  mathscinet  isi  scopus
3. S. V. Bolotin, V. V. Kozlov, “Topological approach to the generalized $n$-centre problem”, Russian Math. Surveys, 72:3 (2017), 451–478  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 1)  elib  scopus
4. S. V. Bolotin, V. V. Kozlov, “Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom”, Izv. Math., 81:4 (2017), 671–687  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 2)  elib  elib  scopus (cited: 1)

   2016
5. S. V. Bolotin, “Degenerate billiards”, Proc. Steklov Inst. Math., 295 (2016), 45–62  mathnet  crossref  crossref  mathscinet  isi (cited: 3)  elib  scopus (cited: 3)

   2015
6. S. V. Bolotin, V. V. Kozlov, “Calculus of variations in the large, existence of trajectories in a domain with boundary, and Whitney's inverted pendulum problem”, Izv. Math., 79:5 (2015), 894–901  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 2)  elib  elib  scopus (cited: 2)
7. S. V. Bolotin, D. V. Treschev, “The anti-integrable limit”, Russian Math. Surveys, 70:6 (2015), 975–1030  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 10)  elib  scopus (cited: 7)

   2014
8. S. Bolotin, P. H. Rabinowitz, “Hybrid mountain pass homoclinic solutions of a class of semilinear elliptic PDEs”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 103–128  mathnet  crossref  mathscinet (cited: 5)  zmath  isi (cited: 5)  scopus (cited: 5)

   2013
9. S. Bolotin, P. Negrini, “Variational approach to second species periodic solutions of Poincaré three-body problem”, Discrete Contin. Dyn. Syst., 33:3 (2013), 1009–1032 , arXiv: 1104.2288  mathnet  crossref  mathscinet (cited: 3)  zmath  isi (cited: 6)  elib (cited: 3)  scopus (cited: 6)
10. S. V. Bolotin, T. V. Popova, “On the motion of a mechanical system inside a rolling ball”, Regul. Chaotic Dyn., 18:1-2 (2013), 159–165  mathnet (cited: 8)  crossref  mathscinet (cited: 7)  zmath  zmath  isi (cited: 7)  elib (cited: 9)  scopus (cited: 7)
11. S. Bolotin, P. Negrini, “Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system”, Regul. Chaotic Dyn., 18:6 (2013), 774–800  mathnet (cited: 3)  crossref  mathscinet (cited: 1)  zmath  isi (cited: 3)  elib (cited: 1)  scopus (cited: 3)
12. Sergey V. Bolotin, Tatiana V. Popova, “On the motion of a mechanical system inside a rolling ball”, Nelin. Dinam., 9:1 (2013), 51–58  mathnet

   2012
13. S. V. Bolotin, “Zadacha optimalnogo upravleniya kacheniem shara s rotorami”, Nelineinaya dinam., 8:4 (2012), 837–852  mathnet  elib (cited: 1)
14. S. V. Bolotin, “The problem of optimal control of a Chaplygin ball by internal rotors”, Regul. Chaotic Dyn., 17:6 (2012), 559–570  mathnet (cited: 4)  crossref  mathscinet (cited: 3)  zmath  isi (cited: 5)  elib (cited: 4)  scopus (cited: 5)

   2011
15. S. Bolotin, P. H. Rabinowitz, “A note on hybrid heteroclinic solutions for a class of semilinear elliptic PDEs”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 22:2 (2011), 151–160  crossref  mathscinet (cited: 1)  zmath  isi (cited: 1)

   2010
16. S. V. Bolotin, D. V. Treschev, “Hill's formula”, Russian Math. Surveys, 65:2 (2010), 191–257  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 8)  elib (cited: 5)  elib (cited: 5)  scopus (cited: 7)
17. S. V. Bolotin, A. A. Gonchar, S. P. Konovalov, E. F. Mishchenko, Yu. S. Osipov, V. A. Sadovnichii, A. G. Sergeev, Ya. V. Tatarinov, D. V. Treschev, L. D. Faddeev, “Valerii Vasil'evich Kozlov has turned 60 years old”, Russian Math. Surveys, 65:2 (2010), 389–395  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
18. S. V. Bolotin, A. V. Borisov, A. A. Kilin, I. S. Mamaev, D. V. Treschev, “Valery Vasilievich Kozlov on his 60th birthday”, Regul. Chaotic Dyn., 15:4-5 (2010), 419–424  crossref  mathscinet  zmath  isi
19. A. V. Borisov, S. V. Bolotin, A. A. Kilin, I. S. Mamaev, D. V. Treschev, “Valery V. Kozlov: On the sixtieth birthday”, Nelin. Dinam., 6:3 (2010), 461–488  mathnet  elib
20. S. V. Bolotin, A. V. Karapetyan, E. I. Kugushev, D. V. Treschev, Teoreticheskaya mekhanika, Izd-vo «Akademiya», Moskva, 2010 , 432 pp.

   2007
21. S. Bolotin, P. H. Rabinowitz, “On the multiplicity of periodic solutions of mountain pass type for a class of semilinear PDE's”, J. Fixed Point Theory Appl., 2:2 (2007), 313–331  crossref  mathscinet (cited: 5)  zmath  isi (cited: 4)  elib (cited: 5)  scopus (cited: 5)

   2006
22. S. Bolotin, “Symbolic dynamics of almost collision orbits and skew products of symplectic maps”, Nonlinearity, 19:9 (2006), 2041–2063  crossref  mathscinet (cited: 7)  zmath  adsnasa  isi (cited: 9)  elib (cited: 5)  scopus (cited: 9)
23. S. Bolotin, R. S. MacKay, “Nonplanar second species periodic and chaotic trajectories for the circular restricted three-body problem”, Celestial Mech. Dynam. Astronom., 94:4 (2006), 433–449  crossref  mathscinet (cited: 4)  zmath  adsnasa  isi (cited: 10)  elib (cited: 9)  scopus (cited: 11)
24. S. Bolotin, P. H. Rabinowitz, “A note on heteroclinic solutions of mountain pass type for a class of nonlinear elliptic PDE's”, Contributions to nonlinear analysis, Progr. Nonlinear Differential Equations Appl., 66, Birkhäuser, Basel, 2006, 105–114  crossref  mathscinet (cited: 6)  zmath
25. S. Bolotin, “Shadowing chains of collision orbits”, Discrete Contin. Dyn. Syst., 14:2 (2006), 235–260  crossref  mathscinet (cited: 6)  zmath  elib (cited: 7)  scopus (cited: 12)

   2005
26. S. Bolotin, “Shadowing chains of collision orbits for the elliptic 3-body problem”, SPT 2004 – Symmetry and perturbation theory, World Sci. Publ., Hackensack, NJ, 2005, 51–58  crossref  mathscinet (cited: 1)  zmath
27. S. Bolotin, “Second species periodic orbits of the elliptic 3 body problem”, Celestial Mech. Dynam. Astronom., 93:1-4 (2005), 343–371  crossref  mathscinet (cited: 5)  zmath  adsnasa  isi (cited: 6)  elib (cited: 5)  scopus (cited: 9)

   2004
28. S. Bolotin, A. Delshams, R. Ramírez-Ros, “Persistence of homoclinic orbits for billiards and twist maps”, Nonlinearity, 17:4 (2004), 1153–1177  crossref  mathscinet (cited: 6)  zmath  adsnasa  isi (cited: 6)  elib (cited: 5)  scopus (cited: 6)

   2003
29. M. L. Bertotti, S. V. Bolotin, “Chaotic trajectories for natural systems on a torus”, Discrete Contin. Dyn. Syst., 9:5 (2003), 1343–1357  crossref  mathscinet (cited: 2)  zmath  elib (cited: 1)  scopus (cited: 2)
30. S. V. Bolotin, P. Negrini, “Chaotic behavior in the 3-center problem”, J. Differential Equations, 190:2 (2003), 539–558  crossref  mathscinet (cited: 4)  zmath  isi (cited: 8)  scopus (cited: 9)
31. S. V. Bolotin, R. S. MacKay, “Isochronous oscillations”, Localization and energy transfer in nonlinear systems, eds. L. Vazquez, R. S. MacKay, M.-P. Zorzano, World Sci., 2003, 217–224  crossref

   2002
32. S. Bolotin, A. Delshams, Yu. Fedorov, R. Ramírez-Ros, “Bi-asymptotic billiard orbits inside perturbed ellipsoids”, Progress in nonlinear science (Nizhny Novgorod, 2001), v. 1, RAS, Inst. Appl. Phys., Nizhniĭ Novgorod, 2002, 48–62  mathscinet (cited: 1)
33. S. V. Bolotin, P. H. Rabinowitz, “Some geometrical conditions for the existence of chaotic geodesics on a torus”, Ergodic Theory Dynam. Systems, 22:5 (2002), 1407–1428  crossref  mathscinet (cited: 3)  zmath  isi (cited: 3)  elib (cited: 2)  scopus (cited: 4)
34. S. Bolotin, P. Negrini, “Global regularization for the $n$-center problem on a manifold”, Discrete Contin. Dyn. Syst., 8:4 (2002), 873–892  crossref  mathscinet (cited: 5)  zmath  elib (cited: 2)  scopus (cited: 7)

   2001
35. S. V. Bolotin, “Symbolic dynamics near minimal hyperbolic invariant tori of Lagrangian systems”, Nonlinearity, 14:5 (2001), 1123–1140  crossref  mathscinet (cited: 5)  zmath  adsnasa  isi (cited: 7)  elib (cited: 7)  scopus (cited: 7)
36. S. V. Bolotin, P. Negrini, “Regularization and topological entropy for the spatial $n$-center problem”, Ergodic Theory Dynam. Systems, 21:2 (2001), 383–399  crossref  mathscinet (cited: 8)  zmath  elib  scopus (cited: 13)

   2000
37. M. L. Bertotti, S. V. Bolotin, “Kinetic energy and Lyapunov stability of equilibria of natural Lagrangian systems”, International Conference on Differential Equations (Berlin, 1999), v. 1, 2, World Sci. Publ., River Edge, NJ, 2000, 1155–1157  mathscinet  zmath
38. S. V. Bolotin, R. S. Mackay, “Periodic and chaotic trajectories of the second species for the $n$-centre problem”, Celestial Mech. Dynam. Astronom., 77:1 (2000), 49–75  crossref  mathscinet (cited: 12)  zmath  adsnasa  isi (cited: 25)  elib (cited: 20)  scopus (cited: 25)
39. S. V. Bolotin, D. V. Treschev, “Remarks on the definition of hyperbolic tori of Hamiltonian systems”, Regul. Chaotic Dyn., 5:4 (2000), 401–412  crossref  mathscinet (cited: 18)  zmath  elib (cited: 27)  scopus (cited: 27)
40. S. V. Bolotin, “Infinite number of homoclinic orbits to hyperbolic invariant tori of Hamiltonian systems”, Regul. Chaotic Dyn., 5:2 (2000), 139–156  crossref  mathscinet (cited: 8)  zmath  elib (cited: 9)  scopus (cited: 10)
41. M. L. Bertotti, S. V. Bolotin, “On the influence of the kinetic energy on the stability of equilibria of natural Lagrangian systems”, Arch. Ration. Mech. Anal., 152:1 (2000), 65–79  crossref  mathscinet (cited: 2)  zmath  isi (cited: 1)  elib (cited: 3)  scopus (cited: 3)

   1999
42. S. V. Bolotin, “Heteroclinic chains of skew product Hamiltonian systems”, Hamiltonian systems with three or more degrees of freedom (S'Agaró, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533, Kluwer Acad. Publ., Dordrecht, 1999, 13–25  mathscinet (cited: 1)  zmath  isi (cited: 11)
43. S. V. Bolotin, P. H. Rabinowitz, “Minimal heteroclinic geodesics for the $n$-torus”, Calc. Var. Partial Differential Equations, 9:2 (1999), 125–139  crossref  mathscinet (cited: 3)  zmath  isi (cited: 3)  scopus (cited: 3)
44. S. Bolotin, D. Treschev, “Unbounded growth of energy in nonautonomous Hamiltonian systems”, Nonlinearity, 12:2 (1999), 365–388  crossref  mathscinet (cited: 33)  zmath  adsnasa  isi (cited: 47)  elib (cited: 30)  scopus (cited: 43)

   1998
45. M. L. Bertotti, S. V. Bolotin, “Doubly asymptotic trajectories of Lagrangian systems in homogeneous force fields”, Ann. Mat. Pura Appl. (4), 174 (1998), 253–275  crossref  mathscinet (cited: 4)  zmath  elib (cited: 5)  scopus (cited: 6)
46. S. V. Bolotin, P. H. Rabinowitz, “Heteroclinic geodesics for a class of manifolds with symmetry”, Regul. Chaotic Dyn., 3:4 (1998), 49–62  crossref  mathscinet (cited: 4)  zmath  elib (cited: 4)  scopus (cited: 4)
47. S. V. Bolotin, “Connecting orbits of Hamiltonian systems”, Nonlinear functional analysis and applications to differential equations (Trieste, 1997), World Sci. Publ., River Edge, NJ, 1998, 36–59  mathscinet  zmath
48. S. V. Bolotin, P. H. Rabinowitz, “A variational construction of chaotic trajectories for a Hamiltonian system on a torus”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1:3 (1998), 541–570  mathscinet (cited: 12)  zmath
49. M. L. Bertotti, S. V. Bolotin, “Homoclinic solutions of almost periodic Hamiltonian systems”, International Conference on Differential Equations (Lisboa, 1995), World Sci. Publ., River Edge, NJ, 1998, 272–276  mathscinet  zmath
50. S. V. Bolotin, P. H. Rabinowitz, “A variational construction of chaotic trajectories for a reversible Hamiltonian system”, J. Differential Equations, 148:2 (1998), 364–387  crossref  mathscinet (cited: 19)  zmath  isi (cited: 21)  elib (cited: 17)  scopus (cited: 24)

   1997
51. S. Bolotin, P. Negrini, “A variational criterion for nonintegrability”, Russian J. Math. Phys., 5:4 (1997), 415–436  mathscinet (cited: 10)  zmath  isi (cited: 6)  elib (cited: 13)  scopus (cited: 15)
52. M. L. Bertotti, S. V. Bolotin, “Doubly asymptotic trajectories of Lagrangian systems and a problem by Kirchhoff”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 8:2 (1997), 93–100  mathscinet (cited: 1)  zmath  scopus (cited: 1)
53. S. Bolotin, R. MacKay, “Multibump orbits near the anti-integrable limit for Lagrangian systems”, Nonlinearity, 10:5 (1997), 1015–1029  crossref  mathscinet (cited: 17)  zmath  adsnasa  isi (cited: 25)  elib (cited: 23)  scopus (cited: 24)
54. S. Bolotin, “Homoclinic trajectories of invariant sets of Hamiltonian systems”, NoDEA Nonlinear Differential Equations Appl., 4:3 (1997), 359–389  crossref  mathscinet (cited: 7)  zmath

   1995
55. S. V. Bolotin, “On supports of minimal invariant measures of Hamiltonian systems”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1995, no. 6, 38–45  mathscinet  zmath
56. S. Bolotin, “Homoclinic trajectories of time dependent Hamiltonian systems”, Variational and local methods in the study of Hamiltonian systems (Trieste, 1994), World Sci. Publ., River Edge, NJ, 1995, 1–16  mathscinet (cited: 1)  zmath
57. S. V. Bolotin, “Invariant sets of Hamiltonian systems and variational methods”, Proceedings of the International Congress of Mathematicians (Zürich, 1994), v. 1, 2, Birkhäuser, Basel, 1995, 1169–1178  crossref  mathscinet (cited: 1)  zmath
58. S. V. Bolotin, V. V. Kozlov, “Symmetry fields of geodesic flows”, Russian J. Math. Phys., 3:3 (1995), 279–295  mathscinet (cited: 2)  zmath
59. S. Bolotin, P. Negrini, “Asymptotic solutions of Lagrangian systems with gyroscopic forces”, NoDEA Nonlinear Differential Equations Appl., 2:4 (1995), 417–444  crossref  mathscinet (cited: 2)  zmath  elib  scopus (cited: 5)
60. M. L. Bertotti, S. V. Bolotin, “A variational approach for homoclinics in almost periodic Hamiltonian systems”, Comm. Appl. Nonlinear Anal., 2:4 (1995), 43–57  mathscinet (cited: 4)  zmath
61. S. V. Bolotin, “Homoclinic orbits in invariant tori of Hamiltonian systems”, Dynamical systems in classical mechanics, Amer. Math. Soc. Transl. Ser. 2, 168, Amer. Math. Soc., Providence, RI, 1995, 21–90  mathscinet (cited: 34)
62. M. L. Bertotti, S. V. Bolotin, “Homoclinic solutions of quasiperiodic Lagrangian systems”, Differential Integral Equations, 8:7 (1995), 1733–1760  mathscinet (cited: 2)  zmath

   1994
63. S. Bolotin, “Variational criteria for nonintegrability and chaos in Hamiltonian systems”, Hamiltonian mechanics (Toruń, 1993), NATO Adv. Sci. Inst. Ser. B Phys., 331, Plenum, New York, 1994, 173–179  mathscinet (cited: 9)

   1993
64. S. V. Bolotin, P. Negrini, “Asimptoticheskie traektorii giroskopicheskikh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1993, no. 6, 66–75  mathscinet (cited: 1)  zmath
65. S. V. Bolotin, “Homoclinic orbits of geodesic flows on surfaces”, Russian J. Math. Phys., 1:3 (1993), 275–288  mathscinet (cited: 4)  zmath

   1992
66. S. V. Bolotin, “Dvoyakoasimptoticheskie traektorii minimalnykh geodezicheskikh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1992, no. 1, 92–96  mathscinet
67. S. V. Bolotin, “Homoclinic trajectories to minimal tori of Lagrangian systems”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1992, no. 6, 34–41  mathscinet (cited: 1)
68. S. V. Bolotin, “Variational methods for constructing chaotic motions in the dynamics of a rigid body”, J. Appl. Math. Mech., 56:2 (1992), 198–205  crossref  mathscinet  zmath  isi (cited: 2)  scopus (cited: 3)
69. S. V. Bolotin, “Integrable billiards on surfaces of constant curvature”, Math. Notes, 51:2 (1992), 117–123  mathnet  crossref  mathscinet  zmath  isi (cited: 10)  elib (cited: 2)  scopus (cited: 8)
70. S. V. Bolotin, “Letter to the editors: “Variational methods for constructing chaotic motions in the dynamics of a rigid body””, J. Appl. Math. Mech., 56:6 (1992), 959  crossref  mathscinet  isi  scopus

   1990
71. S. V. Bolotin, “Motions that are doubly asymptotic to invariant tori in the theory of the perturbations of Hamiltonian systems”, J. Appl. Math. Mech., 54:3 (1990), 412–417  crossref  mathscinet  zmath  isi (cited: 1)  scopus (cited: 1)
72. S. V. Bolotin, “Integriruemye bilyardy Birkgofa”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1990, no. 2, 33–36  mathscinet (cited: 7)
73. S. V. Bolotin, “Dvoyakoasimptoticheskie traektorii i usloviya integriruemo sti gamiltonovykh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1990, no. 1, 55–63  mathscinet (cited: 3)  zmath  adsnasa

   1988
74. S. V. Bolotin, “O pervykh integralakh sistem s uprugimi otrazheniyami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1988, no. 6, 42–45  mathscinet (cited: 3)  zmath
75. S. V. Bolotin, “Ob opredelitele Khilla periodicheskoi traektorii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1988, no. 3, 30–34  mathscinet (cited: 5)  zmath  adsnasa

   1987
76. S. V. Bolotin, “Periodic solutions of systems with gyroscopic forces”, J. Appl. Math. Mech., 51:4 (1987), 535–537  crossref  mathscinet  zmath  isi  scopus (cited: 2)

   1986
77. S. V. Bolotin, “The splitting of asymptotic surfaces”, Geometriya, differentsialnye uravneniya i mekhanika (Moskva, 1985), Izd-vo MGU, M., 1986, 52–53  mathscinet
78. S. V. Bolotin, “Zamechanie o metode Rausa i gipoteze Gertsa”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1986, no. 5, 51–53  mathscinet (cited: 2)  zmath
79. S. V. Bolotin, “Uslovie neintegriruemosti po Liuvillyu gamiltonovykh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1986, no. 3, 58–64  mathscinet

   1984
80. S. V. Bolotin, “The effect of singularities of the potential energy on the integrability of mechanical systems”, J. Appl. Math. Mech., 48:3 (1984), 255–260  crossref  mathscinet  isi (cited: 2)  scopus (cited: 6)
81. S. V. Bolotin, “O pervykh integralakh sistem s giroskopicheskimi silami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1984, no. 6, 75–82  mathscinet (cited: 7)  zmath  adsnasa
82. S. V. Bolotin, “Neintegriruemost zadachi $n$ tsentrov pri $n>2$”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1984, no. 3, 65–68  mathscinet (cited: 16)

   1983
83. S. V. Bolotin, “Suschestvovanie gomoklinicheskikh dvizhenii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1983, no. 6, 98–103  mathscinet (cited: 20)  zmath

   1980
84. V. V. Kozlov, S. V. Bolotin, “Ob asimptoticheskikh resheniyakh uravnenii dinamiki”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1980, no. 4, 84–89  mathscinet (cited: 10)  zmath  adsnasa

   1978
85. S. V. Bolotin, V. V. Kozlov, “Libration in systems with many degrees of freedom”, J. Appl. Math. Mech., 42:2 (1978), 256–261  crossref  mathscinet  zmath  isi (cited: 12)  scopus (cited: 25)
86. S. V. Bolotin, “Libratsionnye dvizheniya naturalnykh dinamicheskikh si stem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1978, no. 6, 72–77  mathscinet (cited: 38)  zmath  adsnasa

Presentations in Math-Net.Ru
1. Integrability of Hamiltonian systems with singular potentials
V. V. Kozlov, S. V. Bolotin
Scientific session of the Steklov Mathematical Institute of RAS dedicated to the results of 2017
November 29, 2017 10:30   
2. Сингулярности потенциала и интегрируемость в гамильтоновых системах с двумя степенями свободы
S. V. Bolotin
Seminar of the Department of Mechanics
January 30, 2017 12:00
3. Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system
S. V. Bolotin
International Conference on Differential Equations and Dynamical Systems
July 5, 2014 16:50
4. Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system
S. V. Bolotin
Globus Seminar
June 5, 2014 15:40   
5. Symbolic dynamics of almost collision orbits in the three-body problem
S. V. Bolotin
Steklov Mathematical Institute Seminar
October 16, 2008 16:00   
6. Символическая динамика орбит задачи 3-х тел, близких к столкновениям
S. V. Bolotin
Meetings of the Moscow Mathematical Society
October 31, 2006
7. Орбиты, близкие к столкновениям в задаче трех тел
S. V. Bolotin
Seminar of the Department of Differential Equations, Steklov Mathematical Institute of RAS
April 20, 2005

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018