Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Afanasyev, Valeriy Ivanovich

Total publications: 70 (67)
in MathSciNet: 44 (44)
in zbMATH: 34 (34)
in Web of Science: 33 (33)
in Scopus: 39 (39)
Cited articles: 42
Citations in Math-Net.Ru: 160
Citations in MathSciNet: 198
Citations in Web of Science: 250
Citations in Scopus: 297
Presentations: 24

Number of views:
This page:6890
Abstract pages:12798
Full texts:4103
References:1066
Afanasyev, Valeriy Ivanovich
Associate professor
Doctor of physico-mathematical sciences (2000)
Speciality: 01.01.05 (Probability theory and mathematical statistics)
Birth date: 5.11.1952
E-mail: ,
Keywords: invariance principles, Brownian excursion, Galton-Watson process.
UDC: 519.21, 519.2

Subject:

Branching processes, random walks.

   
Main publications:
  1. Afanasev V. I., Sluchainye bluzhdaniya i vetvyaschiesya protsessy, Lektsionnye kursy NOTs, 6, MIAN, 2007  mathnet
  2. Afanasev V. I., “Zakon arksinusa dlya vetvyaschikhsya protsessov v sluchainoi srede i protsessov Galtona–Vatsona”, Teoriya veroyatnostei i ee primeneniya, 51:3 (2006), 449–464  mathnet  mathscinet  zmath
  3. Afanasev V. I., “Predelnye teoremy dlya promezhutochno dokriticheskogo i strogo dokriticheskogo vetvyaschikhsya protsessov v sluchainoi srede”, Diskretnaya matematika, 13:1 (2001), 132–157  mathnet  mathscinet  zmath

http://www.mathnet.ru/eng/person26245
List of publications on Google Scholar
https://zbmath.org/authors/?q=ai:afanasev.v-i
https://mathscinet.ams.org/mathscinet/MRAuthorID/240514
https://elibrary.ru/author_items.asp?authorid=12606
http://www.researcherid.com/rid/Q-5041-2016
https://www.scopus.com/authid/detail.url?authorId=7003547624

Full list of publications:
| scientific publications | by years | by types | by times cited in WoS | by times cited in Scopus | common list |



   2022
1. V. I. Afanasyev, Branching Processes and Related Issues, Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin, Trudy MIAN, 316, Steklov Math. Inst., Moscow, 2022 (to appear)  mathnet
2. Vetvyaschiesya protsessy i smezhnye voprosy, Sbornik statei. K 75-letiyu so dnya rozhdeniya Andreya Mikhailovicha Zubkova i 70-letiyu so dnya rozhdeniya Vladimira Alekseevicha Vatutina, Trudy MIAN, 316, ed. V. I. Afanasev, V. G. Mikhailov, E. E. Dyakonova, MIAN, M., 2022  mathnet
3. V. I. Afanasyev, V. G. Mikhailov, E. E. D'yakonova, Branching Processes and Related Issues, Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin, Trudy Mat. Inst. Steklova, 316, Steklov Math. Inst., Moscow, 2022 (to appear)  mathnet
4. V. I. Afanasyev, V. G. Mikhailov, E. E. D'yakonova, Branching Processes and Related Issues, Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin, Trudy Mat. Inst. Steklova, 316, Steklov Math. Inst., Moscow, 2022 (to appear)  mathnet

   2021
5. V. I. Afanasyev, “Local time of a stopped random walk and the Galton-Watson branching process”, The 5th International Workshop on Branching Processes and their Applications. Book of Abstracts (Badajoz, Spain, April 6-22, 2021), eds. Miguel Gonzalez and Ines M. del Puerto, University of Extremadura, Badajoz, Spain, 2021, 30
6. V. I. Afanasyev, “A critical branching process with immigration in random environment”, Stoch. Proc. Appl., 139 (2021), 110-138  mathnet  crossref  isi  scopus
7. V. I. Afanasyev, “Limit theorems for a strongly supercritical branching process with immigration in random environment”, Stochastics and Quality Control, De Gruyter, 2021 (to appear)
8. V. I. Afanasyev, “A conditional functional limit theorem for a decomposable branching process”, Operator Theory and Harmonic Analysis. OTHA 2020, Part II – Probability-Analytical Models, Methods and Applications, Springer Proc. Math. Statist., 358, Springer, 2021, 1–18  mathnet  crossref  scopus

   2020
9. V. I. Afanasyev, “On the Times of Attaining High Levels by a Random Walk in a Random Environment”, Theory Probab. Appl., 65:3 (2020), 359–374  mathnet  crossref  crossref  mathscinet  isi  elib  scopus (cited: 1)
10. V. I. Afanasev, “Funktsionalnye predelnye teoremy dlya razlozhimykh vetvyaschikhsya protsessov s dvumya tipami chastits”, Tezisy dokladov, predstavlennykh na Chetvertoi mezhdunarodnoi konferentsii po stokhasticheskim metodam, Teoriya veroyatnostei i ee primenenie, 65:1 (2020), 151-201  mathnet (cited: 2)  crossref
11. V. I. Afanasyev, “A critical branching process with immigration in random environment”, Proceedings of the 5th International Conference on Stochastic Methods (Russia, Moscow, November 23-27, 2020), Peoples Friendship University of Russia, Moscow, 2020, 11-15

   2019
12. V. I. Afanasev, “Granichnye zadachi dlya sluchainogo bluzhdaniya v sluchainoi srede”, Tezisy dokladov, predstavlennykh na Tretei Mezhdunarodnoi konferentsii po stokhasticheskim metodam, Teoriya veroyatnostei i ee primenenie, 64:1 (2019), 151-204  mathnet (cited: 1)  crossref  mathscinet

   2021
13. V. I. Afanasyev, “Two-sided problem for the random walk with bounded maximal increment”, Discrete Math. Appl., 31:2 (2021), 79–89  mathnet  crossref  crossref  mathscinet  isi  elib  scopus

   2020
14. V. I. Afanasyev, “Functional limit theorem for the local time of stopped random walk”, Discrete Math. Appl., 30:3 (2020), 147–157  mathnet  crossref  crossref  mathscinet  isi  elib  scopus

   2018
15. V. I. Afanasyev, “A Functional Limit Theorem for Decomposable Branching Processes with Two Particle Types”, Math. Notes, 103:3 (2018), 337–347  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 3)  elib  scopus (cited: 3)

   2019
16. V. I. Afanasyev, “Two-boundary problem for a random walk in a random environment”, Theory Probab. Appl., 63:3 (2019), 339–350  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 3)  elib  scopus (cited: 2)

   2017
17. V. I. Afanasyev, Review of Applied and Industrial Mathematics, 24:4 (2017), 312–313  mathnet  elib

   2019
18. V. I. Afanasyev, “Convergence to the local time of Brownian meander”, Discrete Math. Appl., 29:3 (2019), 149–158  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib  scopus (cited: 2)

   2017
19. V. I. Afanasyev, “On the time of attaining a high level by a transient random walk in a random environment”, Theory Probab. Appl., 61:2 (2017), 178–207  mathnet  crossref  crossref  mathscinet  isi (cited: 5)  elib  elib  scopus (cited: 4)

   2016
20. V. I. Afanasyev, “On a decomposable branching process with two types of particles”, Proc. Steklov Inst. Math., 294 (2016), 1–12  mathnet  crossref  crossref  mathscinet  isi (cited: 7)  elib  elib  scopus (cited: 6)

   2017
21. V. I. Afanasyev, “Functional limit theorem for a stopped random walk attaining a high level”, Discrete Math. Appl., 27:5 (2017), 269–276  mathnet  crossref  crossref  mathscinet  isi  elib  elib  scopus (cited: 1)

   2018
22. V. I. Afanasyev, “On the non-recurrent random walk in a random environment”, Discrete Math. Appl., 28:3 (2018), 139–156  mathnet  crossref  crossref  mathscinet  isi (cited: 4)  elib  scopus (cited: 3)

   2016
23. V. I. Afanasev, “About time of reaching a high level by a random walk in a random environment”, Modern problems in theoretical and applied probability (Sovremennye problemy teoreticheskoi i prikladnoi veroyatnosti): sbornik materialov VI Mezhdunarodnoi konferentsii (Novosibirsk, 22–25 avgusta 2016 g.), eds. Tarasenko A.S., Redaktsionno-izdatelskii tsentr NGU, 630090, Novosibirsk-90, ul. Pirogova, 2, 2016, 11–12
24. V. I. Afanasyev, Review of Applied and Industrial Mathematics, 23:4 (2016), 326–327  mathnet
25. V. I. Afanasyev, “Functional limit theorems for the decomposable branching process with two types of particles”, Discrete Math. Appl., 26:2 (2016), 71–88  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 8)  elib  elib  scopus (cited: 6)

   2015
26. V. I. Afanasyev, “On subcritical branching processes in random environment”, III Workshop on Branching Processes and their Applications. Book of Abstracts (Badajoz, Spain, April 7-10, 2015), eds. Miguel Gonzalez, University of Extremadura, Badajoz, Spain, 2015, 38–38

   2014
27. V. I. Afanasyev, Ch. Böinghoff, G. Kersting, and V. A. Vatutin, “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. H. Poincaré Probab. Statist., 50:2 (2014), 602–627 , arXiv: 1108.2127  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 17)  elib (cited: 4)  scopus (cited: 17)
28. V. I. Afanasyev, “Functional limit theorems for high-level subcritical branching processes in random environment”, Discrete Math. Appl., 24:5 (2014), 257–272  mathnet  crossref  crossref  mathscinet  elib  elib  scopus (cited: 1)
29. V. I. Afanasyev, “On the time of attaining a high level by a transient random walk in random environment”, XVI-th International Summer Conference on Probability and Statistics (ISCPS-2014). Abstracts (Pomorie, Bulgaria, 21–28 June 2014), eds. N. M. Yanev, Bulgarian Academy of Sciences, Sofia, 2014, 4–5
30. V. I. Afanasyev, “High level subcritical branching processes in a random environment”, XXXII International Seminar on Stability Problems for Stochastic Models. Book of Abstracts (Trondheim, Norway, 16–21 June 2014), eds. V. Yu. Korolev and S.Ya. Shorgin, Institute of informatics problems, RAS, Moscow, 2014, 5–6  mathscinet
31. V. I. Afanasyev, Review of Applied and Industrial Mathematics, 21:4 (2014), 327–328  mathnet

   2013
32. V. I. Afanasyev, “High Level Subcritical Branching Processes in a Random Environment”, Proc. Steklov Inst. Math., 282 (2013), 4–14  mathnet  crossref  crossref  mathscinet  isi (cited: 3)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 2)
33. V. I. Afanasyev, “Branching processes with immigration in random environment”, Abstracts of the 29-th European Meeting of Statisticians (Budapest, Hungary, 20–25 July 2013), eds. Laszlo Markus and Vilmos Prokaj, Haxel, 2013, 25–26
34. V. I. Afanasyev, “Random walk in random environment conditioned to be positive: limit theorem for maximum”, 7-th International Workshop on Simulation. Book of abstracts (Rimini, Italy, 21–25 May 2013), Quaderni di Dipartimento. Serie Ricerche, 3, eds. Mariagiulia Matteucci, University of Bologna, Bologna, Italy, 2013, 25-26

   2014
35. V. I. Afanasyev, “Conditional limit theorem for maximum of random walk in a random environment”, Theory Probab. Appl., 58:4 (2014), 525–545  mathnet  crossref  crossref  mathscinet  isi (cited: 6)  elib  elib  scopus (cited: 6)

   2012
36. V. I. Afanasyev, C. Boinghoff, G. Kersting, V. A. Vatutin,, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732  mathnet  crossref  mathscinet  zmath  isi (cited: 31)  elib (cited: 11)  scopus (cited: 34)

   2013
37. V. I. Afanasyev, “About time of reaching a high level by a random walk in a random environment”, Theory Probab. Appl., 57:4 (2013), 547–567  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 9)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 8)

   2011
38. V. I. Afanasev, “Vetvyaschiisya protsess v sluchainoi srede, nachinayuschiisya s bolshogo chisla chastits”, Dvenadtsatyi Vserossiiskii simpozium po prikladnoi i promyshlennoi matematike (Sochi-Adler, 1–8 oktyabrya 2011 g.), Obozrenie prikl. i promyshl. matem., 18, no. 3, 2011, 410–410
39. V. I. Afanasyev, “Invariance principle for the critical Galton–Watson process attaining a high level”, Theory Probab. Appl., 55:4 (2011), 559–574  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus (cited: 1)
40. V. I. Afanasyev, “Brownian high jump”, Theory Probab. Appl., 55:2 (2011), 183–197  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 4)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 3)

   2010
41. V. I. Afanasyev, “New invariance principles for critical branching process in random environment”, Advances in data analysis, Stat. Ind. Technol., Birkhäuser Boston, Boston, MA, 2010, 105–115  crossref  mathscinet  isi (cited: 1)
42. V. I. Afanasyev, “Invariance Principle for the Critical Branching Process in a Random Environment Attaining a High Level”, Theory Probab. Appl., 54:1 (2010), 1–13  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 5)  elib (cited: 3)  elib (cited: 3)  scopus (cited: 4)

   2008
43. V. I. Afanasev, “O globalnykh kharakteristikakh kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Devyatyi Vserossiiskii simpozium po prikladnoi i promyshlennoi matematike (Kislovodsk, 01–08 maya 2008 g.), Obozrenie prikl. i promyshl. matem., 15, no. 4, 2008, 692–693  elib

   2007
44. V. I. Afanasyev, Random walks and branching processes, Lekts. Kursy NOC, 6, Steklov Math. Inst., RAS, Moscow, 2007 , 188 pp.  mathnet  crossref  crossref  zmath  elib

   2008
45. V. I. Afanasyev, “Galton–Watson processes attaining a high level”, Theory Probab. Appl., 52:3 (2008), 509–515  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)

   2007
46. V. I. Afanasev, A. A. Bobodzhanov, V. G. Krupin, Kurs vysshei matematiki. Teoriya veroyatnostei. Lektsii i praktikum, eds. I. M. Petrushko, Lan, Sankt-Peterburg, Moskva, Krasnodar, 2007 , 352 pp.
47. V. I. Afanasyev, “Arcsine law for branching processes in a random environment and Galton–Watson processes”, Theory Probab. Appl., 51:3 (2007), 401–414  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 4)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 3)

   2005
48. V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Functional limit theorems for strongly subcritical branching processes in random environment”, Stochastic Process. Appl., 115:10 (2005), 1658–1676  crossref  mathscinet  zmath  isi (cited: 26)  elib (cited: 25)  scopus (cited: 26)
49. V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673  crossref  mathscinet  zmath  isi (cited: 82)  elib (cited: 55)  scopus (cited: 84)
50. V. I. Afanasyev, “On a conditional invariance principle for a critical Galton–Watson branching process”, Discrete Math. Appl., 15:1 (2005), 17–32  mathnet  crossref  crossref  mathscinet  zmath  elib  scopus (cited: 2)

   2004
51. V. I. Afanasyev, “On the ratio between the maximal and total numbers of individuals in a critical branching process in a random environment”, Theory Probab. Appl., 48:3 (2004), 384–399  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib  scopus (cited: 2)

   2003
52. V. I. Afanasev, “Ob usloviyakh sovpadeniya mnozhestv nevyrozhdeniya i estestvennogo rosta dlya vetvyaschikhsya protsessov v izmenyayuscheisya i sluchainoi sredakh”, Vestnik MEI, 2003, no. 6, 94–105

   2001
53. V. I. Afanasyev, “On the maximum of a subcritical branching process in a random environment”, Stochastic Process. Appl., 93:1 (2001), 87–107  crossref  mathscinet  zmath  isi (cited: 7)  elib (cited: 5)  scopus (cited: 7)
54. V. I. Afanasyev, “A functional limit theorem for a critical branching process in a random environment”, Discrete Math. Appl., 11:6 (2001), 587–606  mathnet  crossref  mathscinet  zmath  scopus (cited: 4)
55. V. I. Afanasyev, “Limit theorems for an intermediately subcritical and a strongly subcritical branching process in a random environment”, Discrete Math. Appl., 11:2 (2001), 105–131  mathnet  crossref  mathscinet  zmath  scopus (cited: 8)
56. V. I. Afanasev, O. V. Zimina, A. I. Kirillov, I. M. Petrushko, T. A. Salnikova, Vysshaya matematika. Spetsialnye razdely, eds. A. I. Kirillov, FIZMATLIT, Moskva, 2001 , 400 pp.

   2000
57. V. I. Afanasyev, “On the time of attaining a maximum by a critical branching process in a random environment and by a stopped random walk”, Discrete Math. Appl., 10:3 (2000), 243–264  mathnet  crossref  mathscinet  zmath  scopus (cited: 2)

   1999
58. V. I. Afanasyev, “On the time of reaching a fixed level by a critical branching process in a random environment”, Discrete Math. Appl., 9:6 (1999), 627–643  mathnet  crossref  mathscinet  zmath  scopus (cited: 8)
59. V. I. Afanasyev, “On the maximum of a critical branching process in a random environment”, Discrete Math. Appl., 9:3 (1999), 267–284  mathnet  crossref  mathscinet  zmath  scopus (cited: 17)

   1998
60. V. I. Afanasyev, “A functional limit theorem for the logarithm of a moderately subcritical branching process in a random environment”, Discrete Math. Appl., 8:4 (1998), 421–438  mathnet  crossref  mathscinet  zmath  scopus (cited: 1)
61. V. I. Afanasyev, “Limit theorems for a moderately subcritical branching process in a random environment”, Discrete Math. Appl., 8:1 (1998), 35–52  mathnet  crossref  mathscinet  zmath  scopus (cited: 14)

   1997
62. V. I. Afanasyev, “A new limit theorem for a critical branching process in a random environment”, Discrete Math. Appl., 7:5 (1997), 497–513  mathnet  crossref  mathscinet  zmath  scopus (cited: 14)

   1993
63. V. I. Afanasyev, “A limit theorem for a critical branching process in a random environment”, Diskr. Mat., 5:1 (1993), 45–58  mathnet  mathscinet  zmath

   1991
64. V. I. Afanasyev, “On the probability of the first passage into a fixed state for a random walk on a half-line”, Diskr. Mat., 3:1 (1991), 61–67  mathnet  mathscinet  zmath

   1990
65. V. I. Afanasyev, “A conditional limit theorem for additive functionals of a random walk”, Theory Probab. Appl., 35:2 (1990), 330–336  mathnet  crossref  mathscinet  zmath  isi (cited: 1)
66. V. I. Afanasyev, “On a maximum of a transient random walk in random environment”, Theory Probab. Appl., 35:2 (1990), 205–215  mathnet  crossref  mathscinet  zmath  isi (cited: 13)
67. V. I. Afanasyev, “Local time of a random walk up to the first passage to the semiaxis”, Math. Notes, 48:6 (1990), 1173–1177  mathnet  crossref  mathscinet  zmath  isi  scopus

   1987
68. V. I. Afanasyev, “Mean value of a function of a random walk up to the time of the first passage to the semiaxis”, Math. Notes, 42:6 (1987), 992–996  mathnet  crossref  mathscinet  zmath  isi  scopus

   1986
69. V. I. Afanas'ev, “On functions of a random walk up to the hitting the negative half-axis”, Theory Probab. Appl., 31:4 (1986), 683–687  mathnet  crossref  mathscinet  zmath  isi (cited: 3)

   1979
70. V. I. Afanas'ev, “A conditional random walk with a negative drift”, Theory Probab. Appl., 24:1 (1979), 192–199  mathnet  crossref  mathscinet  zmath  isi (cited: 3)

Presentations in Math-Net.Ru
1. Local times of conditional random walks and Galton-Watson branching processes
Valeriy Afanasyev
International Conference "Theory of Probability and Its Applications: P. L. Chebyshev – 200" (The 6th International Conference on Stochastic Methods)
May 20, 2021 18:30   
2. Лекция 14. Функциональная предельная теорема для схемы серий о сходимости к процессу Пуассона
V. I. Afanasyev
Convergence of Random Processes
December 8, 2020 13:00
3. Лекция 13. Существование конструктивной модификации процесса Пуассона
V. I. Afanasyev
Convergence of Random Processes
December 1, 2020 13:00
4. Лекция 12. Фундаментальная теорема Колмогорова о максимуме отклонения выборочной функции распределения от истинной
V. I. Afanasyev
Convergence of Random Processes
November 24, 2020 13:00
5. Лекция 11. Функциональная предельная теорема для отклонения выборочной функции распределения от истинной
V. I. Afanasyev
Convergence of Random Processes
November 17, 2020 13:00
6. Лекция 10. Принцип инвариантности Лиггетта
V. I. Afanasyev
Convergence of Random Processes
November 10, 2020 13:00
7. Лекция 9. Броуновский мост
V. I. Afanasyev
Convergence of Random Processes
November 3, 2020 13:00
8. Лекция 8. Приложения принципа инвариантности Донскера-Прохорова
V. I. Afanasyev
Convergence of Random Processes
October 27, 2020 13:00
9. Лекция 7. Принцип инвариантности Донскера-Прохорова
V. I. Afanasyev
Convergence of Random Processes
October 20, 2020 13:00
10. Лекция 6. Условия сходимости по распределению случайных процессов с траекториями без разрывов второго рода
V. I. Afanasyev
Convergence of Random Processes
October 13, 2020 13:00
11. Лекция 5. Условия сходимости по распределению случайных процессов с непрерывными траекториями
V. I. Afanasyev
Convergence of Random Processes
October 6, 2020 13:00
12. Лекция 4. Свойства сходимости по распределению
V. I. Afanasyev
Convergence of Random Processes
September 29, 2020 13:00
13. Лекция 3. Сходимость по распределению. Теорема Александрова
V. I. Afanasyev
Convergence of Random Processes
September 22, 2020 13:00
14. Лекция 2. Теорема Колмогорова о существовании непрерывной модификации
V. I. Afanasyev
Convergence of Random Processes
September 15, 2020 13:00
15. Лекция 1. Понятие случайного процесса и его распределение
V. I. Afanasyev
Convergence of Random Processes
September 8, 2020 13:00
16. Критический ветвящийся процесс с иммиграцией в случайной среде
V. I. Afanasyev
Seminar by Department of Discrete Mathematic, Steklov Mathematical Institute of RAS
November 12, 2019 15:00
17. Conditional distributions of the moment of the exit of a random walk in a random environment
V. I. Afanasyev
Scientific session of the Steklov Mathematical Institute of RAS dedicated to the results of 2018
November 21, 2018 15:15   
18. Functional limit theorems for a decomposable branching process
V. I. Afanasyev
Conference «Contemporary Mathematics and its applications» dedicated to the results of research supported by the Russian Science Foundation grant 14-50-00005
November 19, 2018 15:30   
19. Functional limit theorems for branching processes in random environment
V. I. Afanasyev
Steklov Mathematical Institute Seminar
April 25, 2013 16:00   
20. Ветвящийся процесс с иммигрантами в случайной среде
V. I. Afanasyev
Seminar by Department of Discrete Mathematic, Steklov Mathematical Institute of RAS
May 29, 2012 16:00
21. О времени достижения высокого уровня случайным блужданием в случайной среде
V. I. Afanasyev
Seminar by Department of Discrete Mathematic, Steklov Mathematical Institute of RAS
April 24, 2012 16:00
22. Случайные блуждания и ветвящиеся процессы
V. I. Afanasyev
Principle Seminar of the Department of Probability Theory, Moscow State University
November 28, 2007 16:45
23. Об условных принципах инвариантности для случайных блужданий
V. I. Afanasyev
Seminar by Department of Discrete Mathematic, Steklov Mathematical Institute of RAS
April 11, 2006
24. Закон арксинуса для ветвящихся процессов в случайной среде и для процессов Гальтона–Ватсона
V. I. Afanasyev
Seminar by Department of Discrete Mathematic, Steklov Mathematical Institute of RAS
March 29, 2005

Books in Math-Net.Ru
  1. Branching Processes and Related Issues, Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin, Trudy Mat. Inst. Steklova, 316, ed. V. I. Afanasyev, V. G. Mikhailov, E. E. D'yakonova, 2022
    http://mi.mathnet.ru/book1875
  2. V. I. Afanas'ev, Random walks and branching processes, Lekts. Kursy NOC, 6, 2007, 188 с.
    http://mi.mathnet.ru/book648

Organisations
 
Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021