quantum cryptography, quantum information, quantum computations, quantum information theory, coding
Subject:
Quantum cryptography
Main publications:
D. A. Kronberg, S. N. Molotkov, “Dvukhparametricheskaya kvantovaya kriptografiya na vremennykh sdvigakh, ustoichivaya k atake s rasschepleniem po chislu fotonov”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 136:4 (2009), 650–683
D. A. Kronberg, “A simple coherent attack and practical security of differential phase shift quantum cryptography”, Laser Physics, 24 (2014), 025202
D. A. Kronberg, S. N. Molotkov, “Dvoistvennost kvantovykh kanalov svyazi i kollektivnaya ataka priem-pereposyl na kvantovoe raspredelenie klyuchei s differentsialno-fazovym kodirovaniem”, Pisma v ZhETF, 100:4 (2014), 305–311
D. A. Kronberg, S. N. Molotkov, “Kvantovaya skhema dlya optimalnogo podslushivaniya kvantovogo raspredeleniya klyuchei s fazovo-vremennym kodirovaniem”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 138:1 (2010), 33–66
A. S. Avanesov, D. A. Kronberg, “Coherent-state quantum cryptography using pseudorandom number generators”, Quantum Electronics, 49:10 (2019), 974–981
2.
D. A. Kronberg, A. S. Nikolaeva, Y. V. Kurochkin, A. K. Fedorov, Quantum soft filtering for the improved security analysis of the coherent one-way QKD protocol, 2019 , 6 pp., arXiv: 1910.06167
3.
D. A. Kronberg, “Coherence of quantum ensemble as a dual to uncertainty for a single observable”, Lobachevskii J. Math., 40:10 (2019), 1507–1515
2018
4.
A. S. Avanesov, D. A. Kronberg, A. N. Pechen, “Active beam splitting attack applied to differential phase shift quantum key distribution protocol”, P-Adic Numbers Ultrametric Anal. Appl., 10:3 (2018), 222–232 , arXiv: 1910.08339 (cited: 1) (cited: 2)
5.
D. A. Kronberg, Yu. V. Kurochkin, “Role of intensity fluctuations in quantum cryptography with coherent states”, Quantum Electron., 48:9 (2018), 843–848 (cited: 1) (cited: 1)
2017
6.
D. A. Kronberg, E. O. Kiktenko, A. K. Fedorov, Yu. V. Kurochkin, “Analysis of coherent quantum cryptography protocol vulnerability to an active beam-splitting attack”, Quantrum Electron., 47:2 (2017), 163–168 (cited: 1) (cited: 2)
7.
D. A. Kronberg, “New methods of error correction in quantum cryptography using low-density parity-check codes”, Matem. vopr. kriptogr., 8:2 (2017), 77–86 (cited: 1)
2014
8.
D. A. Kronberg, S. N. Molotkov, “Duality of quantum communication channels and a collective intercept-resend attack on quantum key distribution with differential phase shift”, JETP Letters, 100:4 (2014), 279–284 (cited: 2) (cited: 1) (cited: 1) (cited: 2)
9.
D. A. Kronberg, S. N. Molotkov, “On a beam splitter attack and soft filtering of coherent states in differential phase shift quantum cryptography”, Journal of Experimental and Theoretical Physics, 118:1 (2014), 1–10 (cited: 3) (cited: 2)
10.
D. A. Kronberg, “A simple coherent attack and practical security of differential phase shift quantum cryptography”, Laser Physics, 24:2 (2014), 025202 , 4 pp. (cited: 2) (cited: 2)
2011
11.
D. A. Kronberg, “Rasshirenie oblasti sekretnosti protokola kvantovogo raspredeleniya klyuchei s fazovo-vremennym kodirovaniem”, Sbornik statei molodykh uchenykh fakulteta VMK MGU, Izdatelskii otdel fakulteta VMK MGU, 2011, 69–82
D. A. Kronberg, S. N. Molotkov, “Enhancement of the robustness of phase-time quantum cryptography by block error correction”, JETP Letters, 92:7 (2010), 490–495
16.
D. A. Kronberg, S. N. Molotkov, “Quantum scheme for an optimal attack on quantum key distribution protocol BB84”, Bulletin of the Russian Academy of Sciences: Physics, 74:7 (2010), 912–918 (cited: 1)
17.
D. A. Kronberg, S. N. Molotkov, “Quantum circuit for optimal eavesdropping in quantum key distribution using phase-time coding”, Journal of Experimental and Theoretical Physics, 111:1 (2010), 27–56 (cited: 3) (cited: 2)
2009
18.
D. A. Kronberg, S. N. Molotkov, “Quantum key distribution in a single-photon regime with nonorthogonal basis states”, JETP Letters, 89:7 (2009), 370–376 (cited: 1) (cited: 1)
19.
D.A. Kronberg, S.N.Molotkov, “Security of a two-parameter quantum cryptography system using time-shifted states against photon-number splitting attacks”, Journal of Experimental and Theoretical Physics, 109:4 (2009), 557–584 (cited: 10) (cited: 6)