RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Qi Feng

Total publications: 200 (200)
in MathSciNet: 82 (82)
in zbMATH: 63 (63)
in Web of Science: 66 (66)
in Scopus: 69 (69)
Cited articles: 89
Citations in Web of Science: 753
Citations in Scopus: 754

Number of views:
This page:1254
Abstract pages:154
Full texts:45
References:98
Professor
Doctor of Science
E-mail:
Website: https://qifeng618.wordpress.com
Keywords: Logarithmically completely monotonic functions.

Subject:

Analytic Combinatorics. Analytic Number Theory. Special Functions. Mathematical Inequalities

   
Main publications:
  1. Feng Qi, “Pólya type integral inequalities: origin, variants, proofs, refinements, generalizations, equivalences, and applications”, Mathematical Inequalities & Applications, 18:1 (2015), 1–38
  2. Feng Qi, “Bounds for the ratio of two gamma functions”, Journal of Inequalities and Applications, 2010:Article ID 493058 (2010), 84 pages
  3. Feng Qi, “Integral representations and properties of Stirling numbers of the first kind”, Journal of Number Theory, 133:7 (2013), 2307–2319
  4. Feng Qi, “Integral representations and complete monotonicity related to the remainder of Burnside's formula for the gamma function”, Journal of Computational and Applied Mathematics, 268 (2014), 155–167
  5. Feng Qi, “An integral representation, complete monotonicity, and inequalities of Cauchy numbers of the second kind”, Journal of Number Theory, 144 (2014), 244–255

http://www.mathnet.ru/eng/person77149
http://scholar.google.com/citations?user=Q-wGSBYAAAAJ&hl=en
http://zbmath.org/authors/?q=ai:qi.feng

Full list of publications:
| by years | by types | by times cited | by times cited in WoS | by times cited in Scopus | scientific publications | common list |



   2018
1. Qi Feng, “An improper integral, the beta function, the Wallis ratio, and the Catalan numbers”, Probl. anal. Issues Anal., 7(25):1 (2018), 104–115  mathnet  crossref

   2015
2. Feng Qi, “Complete monotonicity of a function involving the tri- and tetra-gamma functions”, Proceedings of the Jangjeon Mathematical Society, 18:2 (2015), 253–264  crossref  scopus (cited: 4)
3. Feng Qi, “Derivatives of tangent function and tangent numbers”, Applied Mathematics and Computation, 268 (2015), 844–858  crossref  isi (cited: 23)  scopus (cited: 20)
4. Feng Qi, “Pólya type integral inequalities: origin, variants, proofs, refinements, generalizations, equivalences, and applications”, Mathematical Inequalities & Applications, 18:1 (2015), 1–38  crossref  mathscinet (cited: 2)  zmath  isi (cited: 1)  scopus (cited: 1)
5. Feng Qi, “Properties of modified Bessel functions and completely monotonic degrees of differences between exponential and trigamma functions”, Mathematical Inequalities & Applications, 18:2 (2015), 493–518  crossref  mathscinet (cited: 4)  isi (cited: 14)  scopus (cited: 12)
6. Feng Qi, Dae San Kim, Tae-Kyun Kim, and Dmitry V. Dolgy, “Multiple-poly-Bernoulli polynomials of the second kind”, Advanced Studies in Contemporary Mathematics, 25:1 (2015), 1–7  crossref  zmath  isi  scopus (cited: 4)
7. Feng Qi and Wen-Hui Li, “A logarithmically completely monotonic function involving the ratio of gamma functions”, Journal of Applied Analysis and Computation, 5:4 (2015), 626–634  crossref  isi (cited: 18)  scopus (cited: 15)
8. Feng Qi and Cristinel Mortici, “Some best approximation formulas and inequalities for the Wallis ratio”, Applied Mathematics and Computation, 253 (2015), 363–368  crossref  mathscinet (cited: 4)  isi (cited: 14)  scopus (cited: 12)
9. Feng Qi and Xiao-Jing Zhang, “An integral representation, some inequalities, and complete monotonicity of the Bernoulli numbers of the second kind”, Bulletin of the Korean Mathematical Society, 52:3 (2015), 987–998  crossref  isi (cited: 14)  scopus (cited: 13)
10. Feng Qi, Xiao-Jing Zhang, and Wen-Hui Li, “An elementary proof of the weighted geometric mean being a Bernstein function”, University Politehnica of Bucharest Scientific Bulletin Series A—Applied Mathematics and Physics, 77:1 (2015), 35–38  mathscinet (cited: 1)  isi (cited: 8)
11. Feng Qi and Miao-Miao Zheng, “Explicit expressions for a family of the Bell polynomials and applications”, Applied Mathematics and Computation, 258 (2015), 597–607  crossref  mathscinet (cited: 2)  isi (cited: 17)  scopus (cited: 15)
12. Ling Chun and Feng Qi, “Inequalities of Simpson type for functions whose third derivatives are extended $s$-convex functions and applications to means”, Journal of Computational Analysis and Applications, 19:3 (2015), 555–569  mathscinet  isi (cited: 3)
13. Bai-Ni Guo and Feng Qi, “A new explicit formula for the Bernoulli and Genocchi numbers in terms of the Stirling numbers”, Global Journal of Mathematical Analysis, 3:1 (2015), 33–36  crossref  mathscinet (cited: 13)
14. Bai-Ni Guo and Feng Qi, “An explicit formula for Bernoulli numbers in terms of Stirling numbers of the second kind”, Journal of Analysis & Number Theory, 3:1 (2015), 27–30  crossref
15. Bai-Ni Guo and Feng Qi, “Logarithmically complete monotonicity of a power-exponential function involving the logarithmic and psi functions”, Global Journal of Mathematical Analysis, 3:2 (2015), 77–80  crossref
16. Bai-Ni Guo and Feng Qi, “On the increasing monotonicity of a sequence originating from computation of the probability of intersecting between a plane couple and a convex body”, Turkish Journal of Analysis and Number Theory, 3:1 (2015), 21–23  crossref
17. Bai-Ni Guo and Feng Qi, “On the Wallis formula”, International Journal of Analysis and Applications, 8:1 (2015), 30–38  isi (cited: 7)  scopus (cited: 2)
18. Bai-Ni Guo, Feng Qi, and Qiu-Ming Luo, “The additivity of polygamma functions”, Filomat, 29:5 (2015), 1063–1066  crossref  isi (cited: 2)  scopus (cited: 2)
19. Bai-Ni Guo, Feng Qi, Jiao-Lian Zhao, and Qiu-Ming Luo, “Sharp inequalities for polygamma functions”, Mathematica Slovaca, 65:1 (2015), 103–120  crossref  mathscinet (cited: 1)  zmath  isi (cited: 11)
20. Xu-Yang Guo, Feng Qi, and Bo-Yan Xi, “Some new Hermite–Hadamard type inequalities for geometrically quasi-convex functions on co-ordinates”, Journal of Nonlinear Science and Applications, 8:5 (2015), 740–749  isi (cited: 4)  scopus (cited: 4)
21. Chun-Fu Wei and Feng Qi, “Several closed expressions for the Euler numbers”, Journal of Inequalities and Applications, 2015 (2015), 219 , 8 pp.  crossref  mathscinet (cited: 2)  zmath  isi (cited: 18)  scopus (cited: 21)
22. Bo-Yan Xi and Feng Qi, “Inequalities of Hermite–Hadamard type for extended $s$-convex functions and applications to means”, Journal of Nonlinear and Convex Analysis, 16:5 (2015), 873–890  zmath  isi (cited: 19)  scopus (cited: 16)
23. Hong-Ping Yin and Feng Qi, “Hermite–Hadamard type inequalities for the product of $(\alpha,m)$-convex functions”, Journal of Nonlinear Science and Applications, 8:3 (2015), 231–236  mathscinet  zmath  isi (cited: 3)  scopus (cited: 3)
24. Dmitry V. Dolgy, Taekyun Kim, Feng Qi, and Jong Jin Seo, “A note on three variable symmetric identities for modified $q$-Bernoulli polynomials arising from bosonic $p$-adic integral on $\mathbb{Z}_p$”, Applied Mathematical Sciences, 9:92 (2015), 4575–4582  crossref  scopus
25. Dmitry V. Dolgy, Taekyun Kim, Feng Qi, and Jong Jin Seo, “A note on three variable symmetric identities for $q$-Euler polynomials arising from fermionic $p$-adic integral on $\mathbb{Z}_p$”, Applied Mathematical Sciences, 9:77 (2015), 3819–3826  crossref  scopus
26. Ai-Ping Ji, Tian-Yu Zhang, and Feng Qi, “Integral inequalities of Hermite–Hadamard type for $(\alpha,m)$-GA-convex functions”, Journal of Computational Analysis and Applications, 18:2 (2015), 255–265  mathscinet  zmath  isi (cited: 1)
27. Lei-Lei Wang, Bo-Yan Xi, and Feng Qi, “On $\alpha$-locally doubly diagonally dominant matrices”, University Politehnica of Bucharest Scientific Bulletin Series A—Applied Mathematics and Physics, 77:2 (2015), 163–172  isi
28. Shu-Hong Wang, Bo-Yan Xi, and Feng Qi, “Some integral inequalities in terms of supremum norms of $n$-time differentiable functions”, Mathematical Science Letters, 4:3 (2015), 1–6  crossref
29. Hong-Ping Yin, Huan-Nan Shi, and Feng Qi, “On Schur $m$-power convexity for ratios of some means”, Journal of Mathematical Inequalities, 9:1 (2015), 145–153  crossref  mathscinet  zmath  isi (cited: 5)  scopus (cited: 4)
30. Feng Qi, “Diagonal recurrence relations for the Stirling numbers of the first kind”, Contributions to Discrete Mathematics, 10 (2015)
31. Feng Qi and Bai-Ni Guo, “Remarks on complete monotonicity of a function involving the gamma function”, Problemy Analiza-Issues of Analysis, 3 (22):1 (2015)
32. Feng Qi and Wen-Hui Li, “Integral representations and properties of some functions involving the logarithmic function”, Filomat, 29 (2015)
33. Feng Qi, Tian-Yu Zhang, and Bo-Yan Xi, “Integral inequalities of Hermite–Hadamard type for functions whose first derivatives are of convexity”, Ukrainian Mathematical Journal, 67:4 (2015)
34. Bai-Ni Guo and Feng Qi, “Six proofs for an identity of the Lah numbers”, Online Journal of Analytic Combinatorics, 10 (2015) , 5 pp.  mathscinet (cited: 1)  zmath
35. Xu-Yang Guo, Feng Qi, and Bo-Yan Xi, “Some new Hermite–Hadamard type inequalities for differentiable co-ordinated convex functions”, Cogent Mathematics, 2015
36. Wei-Dong Jiang and Feng Qi, “A double inequality for the combination of Toader mean and the arithmetic mean in terms of the contraharmonic mean”, Publications de l'Institut Mathématique (Beograd), 98 (112) (2015)
37. Wei-Dong Jiang and Feng Qi, “Sharp bounds for the Neuman-Sándor mean in terms of the power and contraharmonic means”, Cogent Mathematics, 2015, no. 2, 995951 , 7 pp.  crossref
38. Cristinel Mortici and Feng Qi, “Asymptotic formulas and inequalities for the gamma function in terms of the tri-gamma function”, Results in Mathematics, 67:3-4 (2015), 395–402  crossref  mathscinet  zmath  isi (cited: 7)  scopus (cited: 6)
39. Jü Hua, Bo-Yan Xi, and Feng Qi, “Some new inequalities of Simpson type for strongly $s$-convex functions”, Afrika Matematika, 26 (2015)  crossref  zmath  scopus (cited: 2)
40. Muhammad Aslam Noor, Khalida Inayat Noor, Muhammad Uzair Awan, and Feng Qi, “Hermite–Hadamard type inequalities for logarithmically $h$-preinvex functions”, Cogent Mathematics, 2015, no. 2, 1035856 , 10 pp.  crossref  mathscinet
41. Feng Qi, A double inequality for ratios of the Bernoulli numbers, ResearchGate Dataset, 2015  crossref
42. Feng Qi, A logarithmically completely monotonic function involving the gamma function and originating from the Catalan numbers, ResearchGate Research, 2015  crossref
43. Feng Qi, On sum of the Lah numbers and zeros of the Kummer confluent hypergeometric function, ResearchGate Research, 2015  crossref
44. Feng Qi, Some inequalities for the Bell numbers, ResearchGate Technical Report, 2015  crossref
45. Feng Qi and Robin J. Chapman, Two closed forms for the Bernoulli polynomials, 2015 , arXiv: 1506.02137
46. Feng Qi and Bai-Ni Guo, Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function, ResearchGate Technical Report, 2015  crossref
47. Feng Qi and Bai-Ni Guo, Remarks on complete monotonicity of a function involving the gamma function, ResearchGate Dataset, 2015  crossref
48. Feng Qi, Fang-Fang Liu, and Xiao-Ting Shi, Comments on two completely monotonic functions involving the $q$-trigamma function, ResearchGate Dataset, 2015  crossref
49. Feng Qi and Cristinel Mortici, Some inequalities for the trigamma function in terms of the digamma function, 2015 , arXiv: 1503.03020
50. Feng Qi, Cristinel Mortici, and Bai-Ni Guo, Some properties of a sequence arising from computation of the intersecting probability between a plane couple and a convex body, ResearchGate Research, 2015  crossref
51. Feng Qi, Xiao-Ting Shi, and Fang-Fang Liu, Expansions of the exponential and the logarithm of expansions and applications, ResearchGate Research, 2015  crossref
52. Feng Qi, Xiao-Ting Shi, and Fang-Fang Liu, Several identities involving the falling and rising factorials and the Cauchy, Lah, and Stirling numbers, ResearchGate Research, 2015  crossref
53. Feng Qi, Xiao-Ting Shi, Fang-Fang Liu, and Zhen-Hang Yang, A double inequality for an integral mean in terms of the exponential and logarithmic means, ResearchGate Research, 2015  crossref
54. Feng Qi and Chun-Fu Wei, Several closed expressions for the Euler numbers, ResearchGate Technical Report, 2015  crossref
55. Bai-Ni Guo and Feng Qi, Explicit formulas for special values of the Bell polynomials of the second kind and the Euler numbers, ResearchGate Technical Report, 2015  crossref
56. Bai-Ni Guo and Feng Qi, Logarithmically complete monotonicity of a power-exponential function involving the logarithmic and psi functions, ResearchGate Technical Report, 2015  crossref
57. Bai-Ni Guo and Feng Qi, On inequalities for the exponential and logarithmic functions and means, ResearchGate Technical Report, 2015  crossref
58. Bai-Ni Guo and Feng Qi, Some inequalities and absolute monotonicity for modified Bessel functions of the first kind, ResearchGate Research, 2015  crossref
59. Xiao-Ting Shi, Fang-Fang Liu, and Feng Qi, An integral representation of the Catalan numbers, ResearchGate Research, 2015  crossref
60. Bo-Yan Xi and Feng Qi, Some integral inequalities of Hermite–Hadamard type for $s$-logarithmically convex functions, ResearchGate Dataset, 2015  crossref
61. Bo-Yan Xi, Shu-Ping Bai, and Feng Qi, Some new inequalities of Hermite–Hadamard type for $(\alpha,m_1)$-$(s,m_2)$-convex functions on co-ordinates, ResearchGate Dataset, 2015  crossref
62. Qi Feng, N. Guo, “Remarks on complete monotonicity of a function involving the Gamma function”, Probl. anal. Issues Anal., 4(22):1 (2015), 66–72  mathnet  crossref  elib
63. B.-Ya. Xi, F. Qi, “Integral inequalities of Hermite – Hadamard type for $((\alpha,m), \log)$-convex functions on co–ordinates”, Probl. anal. Issues Anal., 4(22):2 (2015), 73–92  mathnet  crossref  elib

   2014
64. Feng Qi, “A completely monotonic function related to the $q$-trigamma function”, University Politehnica of Bucharest Scientific Bulletin Series A—Applied Mathematics and Physics, 76:1 (2014), 107–114  mathscinet (cited: 4)  isi (cited: 7)
65. Feng Qi, “Absolute monotonicity of a function involving the exponential function”, Global Journal of Mathematical Analysis, 2:3 (2014), 184–203  crossref
66. Feng Qi, “An integral representation, complete monotonicity, and inequalities of Cauchy numbers of the second kind”, Journal of Number Theory, 144 (2014), 244–255  crossref  mathscinet (cited: 8)  zmath  isi (cited: 15)  scopus (cited: 14)
67. Feng Qi, “Bounds for the ratio of two gamma functions: from Gautschi's and Kershaw's inequalities to complete monotonicity”, Turkish Journal of Analysis and Number Theory, 2:5 (2014), 152–164  crossref
68. Feng Qi, “Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind”, Filomat, 28:2 (2014), 319–327  crossref  isi (cited: 24)  scopus (cited: 25)
69. Feng Qi, “Integral representations and complete monotonicity related to the remainder of Burnside's formula for the gamma function”, Journal of Computational and Applied Mathematics, 268 (2014), 155–167  crossref  mathscinet (cited: 2)  zmath  isi (cited: 17)  scopus (cited: 15)
70. Feng Qi and Bai-Ni Guo, “Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers”, Analysis—International mathematical journal of analysis and its applications, 34:3 (2014), 311–317  crossref  mathscinet (cited: 3)
71. Feng Qi, Muhammad Amer Latif, Wen-Hui Li, and Sabir Hussain, “Some integral inequalities of Hermite–Hadamard type for functions whose $n$-times derivatives are $(\alpha,m)$-convex”, Turkish Journal of Analysis and Number Theory, 2:4 (2014), 140–146  crossref
72. Feng Qi and Wen-Hui Li, “A unified proof of several inequalities and some new inequalities involving Neuman-Sándor mean”, Miskolc Mathematical Notes, 15:2 (2014), 665–675  mathscinet (cited: 1)  zmath  isi (cited: 5)  scopus (cited: 5)
73. Feng Qi and Qiu-Ming Luo, “Complete monotonicity of a function involving the gamma function and applications”, Periodica Mathematica Hungarica, 69:2 (2014), 159–169  crossref  mathscinet (cited: 3)  zmath  isi (cited: 8)  scopus (cited: 7)
74. Feng Qi and Shu-Hong Wang, “Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions”, Global Journal of Mathematical Analysis, 2:3 (2014), 91–97  crossref
75. Feng Qi and Bo-Yan Xi, “Some Hermite–Hadamard type inequalities for geometrically quasi-convex functions”, Proceedings of the Indian Academy of Sciences (Mathematical Sciences), 124:3 (2014), 333–342  crossref  mathscinet  isi (cited: 7)  scopus (cited: 5)
76. Feng Qi and Xiao-Jing Zhang, “Complete monotonicity of a difference between the exponential and trigamma functions”, Journal of the Korea Society of Mathematical Education Series B: The Pure and Applied Mathematics, 21:2 (2014), 141–145  crossref  mathscinet (cited: 2)  zmath
77. Feng Qi, Xiao-Jing Zhang, and Wen-Hui Li, “An integral representation for the weighted geometric mean and its applications”, Acta Mathematica Sinica-English Series, 30:1 (2014), 61–68  crossref  mathscinet (cited: 2)  zmath  isi (cited: 18)  scopus (cited: 14)
78. Feng Qi, Xiao-Jing Zhang, and Wen-Hui Li, “Lévy-Khintchine representation of the geometric mean of many positive numbers and applications”, Mathematical Inequalities & Applications, 17:2 (2014), 719–729  crossref  mathscinet (cited: 1)  zmath  isi (cited: 17)  scopus (cited: 13)
79. Feng Qi, Xiao-Jing Zhang, and Wen-Hui Li, “Lévy-Khintchine representations of the weighted geometric mean and the logarithmic mean”, Mediterranean Journal of Mathematics, 11:2 (2014), 315–327  crossref  mathscinet (cited: 2)  zmath  isi (cited: 18)  scopus (cited: 14)
80. Feng Qi and Miao-Miao Zheng, “Absolute monotonicity of functions related to estimates of first eigenvalue of Laplace operator on Riemannian manifolds”, International Journal of Analysis and Applications, 6:2 (2014), 123–131
81. Bai-Ni Guo and Feng Qi, “Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers”, Analysis—International mathematical journal of analysis and its applications, 34:2 (2014), 187–193  crossref  mathscinet (cited: 4)  zmath
82. Bai-Ni Guo and Feng Qi, “An explicit formula for Bell numbers in terms of Stirling numbers and hypergeometric functions”, Global Journal of Mathematical Analysis, 2:4 (2014), 243–248  crossref
83. Bai-Ni Guo and Feng Qi, “Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind”, Journal of Computational and Applied Mathematics, 272 (2014), 251–257  crossref  mathscinet (cited: 4)  zmath  isi (cited: 18)  scopus (cited: 16)
84. Bai-Ni Guo and Feng Qi, “Sharp inequalities for the psi function and harmonic numbers”, Analysis—International mathematical journal of analysis and its applications, 34:2 (2014), 201–208  crossref  mathscinet (cited: 14)  zmath
85. Bai-Ni Guo and Feng Qi, “Some identities and an explicit formula for Bernoulli and Stirling numbers”, Journal of Computational and Applied Mathematics, 255 (2014), 568–579  crossref  mathscinet (cited: 10)  zmath  isi (cited: 28)  scopus (cited: 29)
86. Bai-Ni Guo and Feng Qi, “Some integral representations and properties of Lah numbers”, Journal for Algebra and Number Theory Academia, 4:3 (2014), 77–87
87. Yun Hua and Feng Qi, “A double inequality for bounding Toader mean by the centroidal mean”, Proceedings of the Indian Academy of Sciences (Mathematical Sciences), 124:4 (2014), 527–531  crossref  mathscinet (cited: 3)  zmath  isi (cited: 10)  scopus (cited: 12)
88. Yun Hua and Feng Qi, “The best bounds for Toader mean in terms of the centroidal and arithmetic means”, Filomat, 28:4 (2014), 775–780  crossref  isi (cited: 15)  scopus (cited: 17)
89. Wei-Dong Jiang and Feng Qi, “Sharp bounds for Neuman-Sándor's mean in terms of the root-mean-square”, Periodica Mathematica Hungarica, 69:2 (2014), 134–138  crossref  mathscinet (cited: 2)  zmath  isi (cited: 3)  scopus (cited: 3)
90. Valmir Krasniqi and Feng Qi, “Complete monotonicity of a function involving the $p$-psi function and alternative proofs”, Global Journal of Mathematical Analysis, 2:3 (2014), 204–208  crossref
91. Shu-Hong Wang and Feng Qi, “Hermite–Hadamard type inequalities for $n$-times differentiable and preinvex functions”, Journal of Inequalities and Applications, 2014 (2014), 49 , 9 pp.  crossref  mathscinet (cited: 2)  zmath  isi (cited: 9)  scopus (cited: 11)
92. Ying Wu, Feng Qi, and Huan-Nan Shi, “Schur-harmonic convexity for differences of some special means in two variables”, Journal of Mathematical Inequalities, 8:2 (2014), 321–330  crossref  mathscinet  zmath  isi (cited: 3)  scopus (cited: 3)
93. Bo-Yan Xi and Feng Qi, “Hermite–Hadamard type inequalities for geometrically $r$-convex functions”, Studia Scientiarum Mathematicarum Hungarica, 51:4 (2014), 530–546  crossref  mathscinet (cited: 1)  zmath  isi (cited: 12)  scopus (cited: 7)
94. Bo-Yan Xi and Feng Qi, “Some inequalities of Qi type for double integrals”, Journal of the Egyptian Mathematical Society, 22:3 (2014), 337–340  crossref  mathscinet (cited: 1)  zmath
95. Bo-Yan Xi and Feng Qi, “Some new inequalities of Qi type for definite integrals”, International Journal of Analysis and Applications, 5:1 (2014), 20–26
96. Li Yin and Feng Qi, “Some inequalities for complete elliptic integrals”, Applied Mathematics E-Notes, 14 (2014), 192–199  mathscinet (cited: 2)
97. Tian-Yu Zhang and Feng Qi, “Integral inequalities of Hermite–Hadamard type for $m$-AH convex functions”, Turkish Journal of Analysis and Number Theory, 2:3 (2014), 60–64  crossref
98. Jü Hua, Bo-Yan Xi, and Feng Qi, “Hermite–Hadamard type inequalities for geometric-arithmetically $s$-convex functions”, Communications of the Korean Mathematical Society, 29:1 (2014), 51–63  crossref  zmath  scopus (cited: 7)
99. Jü Hua, Bo-Yan Xi, and Feng Qi, “Inequalities of Hermite–Hadamard type involving an $s$-convex function with applications”, Applied Mathematics and Computation, 246 (2014), 752–760  crossref  mathscinet  isi (cited: 9)  scopus (cited: 8)
100. Wei-Dong Jiang, Qiu-Ming Luo, and Feng Qi, “Refinements and sharpening of some Huygens and Wilker type inequalities”, Turkish Journal of Analysis and Number Theory, 2:4 (2014), 134–139  crossref
101. Wei-Dong Jiang, Da-Wei Niu, and Feng Qi, “Some inequalities of Hermite–Hadamard type for $r$-$\varphi$-preinvex functions”, Tamkang Journal of Mathematics, 45:1 (2014), 31–38  crossref  mathscinet  zmath  scopus (cited: 6)
102. Da-Wei Niu, Yue-Jin Zhang, and Feng Qi, “A double inequality for the harmonic number in terms of the hyperbolic cosine”, Turkish Journal of Analysis and Number Theory, 2:6 (2014), 223–225  crossref
103. De-Ping Shi, Bo-Yan Xi, and Feng Qi, “Hermite–Hadamard type inequalities for $(m,h_1,h_2)$-convex functions via Riemann–Liouville fractional integrals”, Turkish Journal of Analysis and Number Theory, 2:1 (2014), 22–27  crossref
104. De-Ping Shi, Bo-Yan Xi, and Feng Qi, “Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals of $(\alpha,m)$-convex functions”, Fractional Differential Calculus, 4:2 (2014), 33–43  crossref  mathscinet
105. Ye Shuang, Yan Wang, and Feng Qi, “Some inequalities of Hermite–Hadamard type for functions whose third derivatives are $(\alpha,m)$-convex”, Journal of Computational Analysis and Applications, 17:2 (2014), 272–279  mathscinet (cited: 3)  zmath  isi (cited: 7)  scopus (cited: 8)
106. Lei-Lei Wang, Bo-Yan Xi, and Feng Qi, “Necessary and sufficient conditions for identifying strictly geometrically $\alpha$-bidiagonally dominant matrices”, University Politehnica of Bucharest Scientific Bulletin Series A—Applied Mathematics and Physics, 76:4 (2014), 57–66  mathscinet  isi
107. Yan Wang, Bo-Yan Xi, and Feng Qi, “Hermite–Hadamard type integral inequalities when the power of the absolute value of the first derivative of the integrand is preinvex”, Le Matematiche, 69:1 (2014), 89–96  crossref  mathscinet (cited: 2)
108. Yan Wang, Miao-Miao Zheng, and Feng Qi, “Integral inequalities of Hermite–Hadamard type for functions whose derivatives are $(\alpha,m)$-preinvex”, Journal of Inequalities and Applications, 2014 (2014), 97 , 10 pp.  crossref  mathscinet (cited: 1)  isi (cited: 3)  scopus (cited: 10)
109. Bo-Yan Xi, Jü Hua, and Feng Qi, “Hermite–Hadamard type inequalities for extended $s$-convex functions on the co-ordinates in a rectangle”, Journal of Applied Analysis, 20:1 (2014), 29–39  crossref  mathscinet (cited: 4)  zmath  scopus (cited: 15)
110. Bo-Yan Xi, Shu-Hong Wang, and Feng Qi, “Properties and inequalities for the $h$- and $(h,m)$-logarithmically convex functions”, Creative Mathematics and Informatics, 23:1 (2014), 123–130  mathscinet (cited: 1)  zmath
111. Bo-Yan Xi, Shu-Hong Wang, and Feng Qi, “Some inequalities for $(h,m)$-convex functions”, Journal of Inequalities and Applications, 2014 (2014), 100 , 12 pp.  crossref  mathscinet  isi (cited: 2)  scopus (cited: 3)
112. Li Yin, Li-Guo Huang, and Feng Qi, “Some inequalities for the generalized trigonometric and hyperbolic functions”, Turkish Journal of Analysis and Number Theory, 2:3 (2014), 96–101  crossref  mathscinet (cited: 1)
113. Feng Qi, Qiu-Ming Luo, and Bai-Ni Guo, “The function $(b^x-a^x)/x$: Ratio's properties”, Analytic Number Theory, Approximation Theory, and Special Functions, eds. G. V. Milovanović and M. Th. Rassias, Springer, 2014, 485–494  crossref  mathscinet (cited: 3)  scopus (cited: 8)
114. Bai-Ni Guo and Feng Qi, “A class of completely monotonic functions involving the gamma and polygamma functions”, Cogent Mathematics, 2014, no. 1, 982896 , 8 pp.  crossref
115. Feng Qi, A double inequality for ratios of Bernoulli numbers, ResearchGate Dataset, 2014  crossref
116. Feng Qi, A recurrence formula, some inequalities, and monotonicity related to Stirling numbers of the second kind, 2014 , arXiv: 1402.2040
117. Feng Qi, An explicit formula for Bell numbers in terms of Stirling numbers and hypergeometric functions, 2014 , arXiv: 1402.2361
118. Feng Qi, An explicit formula for Bernoulli numbers in terms of Stirling numbers of the second kind, 2014 , arXiv: 1401.4255
119. Feng Qi, An explicit formula for computing Bell numbers in terms of Lah and Stirling numbers, 2014 , arXiv: 1401.1625
120. Feng Qi, An explicit formula for computing Bernoulli numbers of the second kind in terms of Stirling numbers of the first kind, 2014 , arXiv: 1401.4934
121. Feng Qi, An integral representation, complete monotonicity, and inequalities of Cauchy numbers of the second kind, 2014 , arXiv: 1402.2358
122. Feng Qi, An interesting identity of Lah numbers, 2014 , arXiv: 1402.2035
123. Feng Qi, Integral representations and complete monotonicity related to the remainder of Burnside's formula for the gamma function, 2014 , arXiv: 1403.0278
124. Feng Qi and Wen-Hui Li, Integral representations and properties of some functions involving the logarithmic function, ResearchGate Dataset, 2014  crossref
125. Feng Qi and Miao-Miao Zheng, Explicit expressions for a family of Bell polynomials and derivatives of some functions, 2014 , arXiv: 1404.6734
126. Bai-Ni Guo and Feng Qi, A new explicit formula for Bernoulli and Genocchi numbers in terms of Stirling numbers, 2014 , arXiv: 1407.7726
127. Bai-Ni Guo and Feng Qi, Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers, 2014 , arXiv: 1401.4257
128. Bai-Ni Guo and Feng Qi, On the increasing monotonicity of a sequence, ResearchGate Dataset, 2014  crossref
129. Bai-Ni Guo and Feng Qi, Some integral representations and properties of Lah numbers, 2014 , arXiv: 1402.2367
130. Yun Hua and Feng Qi, A double inequality for bounding Toader mean by the centroidal mean, 2014 , arXiv: 1402.5020
131. Wei-Dong Jiang and Feng Qi, Bounds for the combination of Toader mean and the arithmetic mean in terms of the contraharmonic mean, 2014 , arXiv: 1402.4561
132. Bo-Yan Xi and Feng Qi, Inequalities of Hermite–Hadamard type for extended $s$-convex functions and applications to means, 2014 , arXiv: 1406.5409
133. Bai-Ni Guo, István Mező, and Feng Qi, An explicit formula for Bernoulli polynomials in terms of $r$-Stirling numbers of the second kind, 2014 , arXiv: 1402.2340

   2013
134. Feng Qi, “Integral representations and properties of Stirling numbers of the first kind”, Journal of Number Theory, 133:7 (2013), 2307–2319  crossref  mathscinet (cited: 10)  zmath  isi (cited: 26)  scopus (cited: 26)
135. Feng Qi, “Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities”, Filomat, 27:4 (2013), 601–604  crossref  mathscinet (cited: 1)  zmath  isi (cited: 14)  scopus (cited: 13)
136. Feng Qi and Christian Berg, “Complete monotonicity of a difference between the exponential and trigamma functions and properties related to a modified Bessel function”, Mediterranean Journal of Mathematics, 10:4 (2013), 1685–1696  crossref  mathscinet (cited: 7)  zmath  isi (cited: 16)  scopus (cited: 16)
137. Feng Qi, Pietro Cerone, and Sever S. Dragomir, “Complete monotonicity of a function involving the divided difference of psi functions”, Bulletin of the Australian Mathematical Society, 88:2 (2013), 309–319  crossref  mathscinet (cited: 5)  zmath  isi (cited: 10)  scopus (cited: 11)
138. Feng Qi and Qiu-Ming Luo, “Bounds for the ratio of two gamma functions: from Wendel's asymptotic relation to Elezović-Giordano-Pečarić's theorem”, Journal of Inequalities and Applications, 2013 (2013), 542 , 20 pp.  crossref  isi (cited: 7)  scopus (cited: 29)
139. Feng Qi, Qiu-Ming Luo, and Bai-Ni Guo, “Complete monotonicity of a function involving the divided difference of digamma functions”, Science China Mathematics, 56:11 (2013), 2315–2325  crossref  mathscinet (cited: 8)  zmath  isi (cited: 21)  scopus (cited: 21)
140. Feng Qi and Bo-Yan Xi, “Some integral inequalities of Simpson type for GA-$\varepsilon$-convex functions”, Georgian Mathematical Journal, 20:4 (2013), 775–788  crossref  mathscinet (cited: 4)  zmath  isi (cited: 25)  scopus (cited: 32)
141. Rui-Fang Bai, Feng Qi, and Bo-Yan Xi, “Hermite–Hadamard type inequalities for the $m$- and $(\alpha,m)$-logarithmically convex functions”, Filomat, 27:1 (2013), 1–7  crossref  mathscinet (cited: 15)  zmath  isi (cited: 56)  scopus (cited: 67)
142. Shu-Ping Bai and Feng Qi, “Some inequalities for $(s_1,m_1)$-$(s_2,m_2)$-convex functions on the co-ordinates”, Global Journal of Mathematical Analysis, 1:1 (2013), 22–28  crossref
143. Ling Chun and Feng Qi, “Integral inequalities of Hermite–Hadamard type for functions whose third derivatives are convex”, Journal of Inequalities and Applications, 2013 (2013), 451 , 10 pp.  crossref  mathscinet (cited: 7)  isi (cited: 13)  scopus (cited: 10)
144. Bai-Ni Guo and Feng Qi, “Monotonicity and logarithmic convexity relating to the volume of the unit ball”, Optimization Letters, 7:6 (2013), 1139–1153  crossref  mathscinet (cited: 8)  zmath  isi (cited: 6)  scopus (cited: 7)
145. Bai-Ni Guo and Feng Qi, “Refinements of lower bounds for polygamma functions”, Proceedings of the American Mathematical Society, 141:3 (2013), 1007–1015  crossref  mathscinet (cited: 9)  zmath  isi (cited: 14)  scopus (cited: 14)
146. Yun Hua and Feng Qi, “Sharp inequalities between the hyperbolic cosine function and the sine and cosine functions”, Pakistan Journal of Statistics, 29:3 (2013), 315–321  mathscinet  isi (cited: 1)  scopus (cited: 1)
147. Wen-Hui Li and Feng Qi, “Some Hermite–Hadamard type inequalities for functions whose $n$-th derivatives are $(\alpha,m)$-convex”, Filomat, 27:8 (2013), 1575–1582  crossref  mathscinet (cited: 7)  zmath  isi (cited: 11)  scopus (cited: 8)
148. Wen-Hui Li, Feng Qi, and Bai-Ni Guo, “On proofs for monotonicity of a function involving the psi and exponential functions”, Analysis—International mathematical journal of analysis and its applications, 33:1 (2013), 45–50  crossref  mathscinet (cited: 4)  zmath  scopus (cited: 3)
149. Muhammad Aslam Noor, Feng Qi, and Muhammad Uzair Awan, “Some Hermite–Hadamard type inequalities for $\log$-$h$-convex functions”, Analysis—International mathematical journal of analysis and its applications, 33:4 (2013), 367–375  crossref  mathscinet  zmath
150. Shu-Hong Wang and Feng Qi, “Inequalities of Hermite–Hadamard type for convex functions which are $n$-times differentiable”, Mathematical Inequalities & Applications, 16:4 (2013), 1269–1278  crossref  mathscinet (cited: 1)  zmath  isi (cited: 4)  scopus (cited: 5)
151. Bo-Yan Xi and Feng Qi, “Convergence, monotonicity, and inequalities of sequences involving continued powers”, Analysis—International mathematical journal of analysis and its applications, 33:3 (2013), 235–242  crossref  mathscinet  zmath
152. Bo-Yan Xi and Feng Qi, “Hermite–Hadamard type inequalities for functions whose derivatives are of convexities”, Nonlinear Functional Analysis and Applications, 18:2 (2013), 163–176  zmath
153. Bo-Yan Xi and Feng Qi, “Integral inequalities of Simpson type for logarithmically convex functions”, Advanced Studies in Contemporary Mathematics, 23:4 (2013), 559–566  mathscinet  zmath  scopus (cited: 6)
154. Bo-Yan Xi and Feng Qi, “Some Hermite–Hadamard type inequalities for differentiable convex functions and applications”, Hacettepe Journal of Mathematics and Statistics, 42:3 (2013), 243–257  mathscinet (cited: 11)  zmath  isi (cited: 33)
155. Bo-Yan Xi and Feng Qi, “Some inequalities of Hermite–Hadamard type for $h$-convex functions”, Advances in Inequalities and Applications, 2:1 (2013), 1–15
156. Li Yin and Feng Qi, “Some integral inequalities on time scales”, Results in Mathematics, 64:3 (2013), 371–381  crossref  mathscinet (cited: 1)  zmath  isi (cited: 2)  scopus (cited: 5)
157. Serkan Araci, Mehmet Açikgöz, and Feng Qi, “On the $q$-Genocchi numbers and polynomials with weight zero and their applications”, Nonlinear Functional Analysis and Applications, 18:2 (2013), 193–203  zmath
158. Bai-Ni Guo, Qiu-Ming Luo, and Feng Qi, “Sharpening and generalizations of Shafer-Fink's double inequality for the arc sine function”, Filomat, 27:2 (2013), 261–265  crossref  mathscinet (cited: 6)  zmath  isi (cited: 16)  scopus (cited: 14)
159. Bai-Ni Guo, Jiao-Lian Zhao, and Feng Qi, “A completely monotonic function involving the tri- and tetra-gamma functions”, Mathematica Slovaca, 63:3 (2013), 469–478  crossref  mathscinet (cited: 3)  zmath  isi (cited: 6)  scopus (cited: 6)
160. Senlin Guo, Jian-Guo Xu, and Feng Qi, “Some exact constants for the approximation of the quantity in the Wallis' formula”, Journal of Inequalities and Applications, 2013 (2013), 67 , 7 pp.  crossref  mathscinet (cited: 3)  zmath  isi (cited: 15)  scopus (cited: 13)
161. Ye Shuang, Hong-Ping Yin, and Feng Qi, “Hermite–Hadamard type integral inequalities for geometric-arithmetically $s$-convex functions”, Analysis—International mathematical journal of analysis and its applications, 33:2 (2013), 197–208  crossref  mathscinet (cited: 12)
162. Yan Sun, Hai-Tao Yang, and Feng Qi, “Some inequalities for multiple integrals on the $n$-dimensional ellipsoid, spherical shell, and ball”, Abstract and Applied Analysis, 2013 (2013), 904721 , 8 pp.  crossref  mathscinet (cited: 1)  zmath  isi  scopus (cited: 1)
163. Yan Wang, Shu-Hong Wang, and Feng Qi, “Simpson type integral inequalities in which the power of the absolute value of the first derivative of the integrand is $s$-preinvex”, Facta Universitatis, Series Mathematics and Informatics, 28:2 (2013), 151–159  mathscinet (cited: 3)  zmath
164. Bo-Yan Xi, Yan Wang, and Feng Qi, “Some integral inequalities of Hermite–Hadamard type for extended $(s,m)$-convex functions”, Transylvanian Journal of Mathematics and Mechanics, 5:1 (2013), 69–84  mathscinet (cited: 7)  zmath
165. Li Yin, Da-Wei Niu, and Feng Qi, “Some new integral inequalities”, Tamkang Journal of Mathematics, 44:3 (2013), 279–288  crossref  mathscinet  zmath  scopus
166. Tian-Yu Zhang, Ai-Ping Ji, and Feng Qi, “Integral inequalities of Hermite–Hadamard type for harmonically quasi-convex functions”, Proceedings of the Jangjeon Mathematical Society, 16:3 (2013), 399–407  mathscinet (cited: 3)
167. Tian-Yu Zhang, Ai-Ping Ji, and Feng Qi, “Some inequalities of Hermite–Hadamard type for GA-convex functions with applications to means”, Le Matematiche, 68:1 (2013), 229–239  crossref  mathscinet (cited: 9)  zmath
168. Bo Zhang, Bo-Yan Xi, and Feng Qi, “Some properties and inequalities for $h$-geometrically convex functions”, Journal of Classical Analysis, 3:2 (2013), 101–108  crossref  mathscinet (cited: 1)
169. Wei-Dong Jiang, Miao-Kun Wang, Yu-Ming Chu, Yue-Ping Jiang, and Feng Qi, “Convexity of the generalized sine function and the generalized hyperbolic sine function”, Journal of Approximation Theory, 174 (2013), 1–9  crossref  mathscinet (cited: 5)  zmath  isi (cited: 12)  scopus (cited: 14)
170. Serkan Araci, Mehmet Açikgöz, Feng Qi, and Hassan Jolany, “A note on the modified $q$-Genocchi numbers and polynomials with weight $(\alpha,\beta)$”, Fasciculi Mathematici, 51 (2013), 21–32  mathscinet
171. Bai-Ni Guo, Qiu-Ming Luo, and Feng Qi,, “Monotonicity results and inequalities for the inverse hyperbolic sine function”, Journal of Inequalities and Applications, 2013 (2013), 536 , 6 pp.  crossref  mathscinet  zmath  isi (cited: 1)  scopus (cited: 1)
172. Feng Qi, A completely monotonic function involving the gamma and tri-gamma functions, 2013 , arXiv: 1307.5407
173. Feng Qi, A recurrence formula for the first kind Stirling numbers, 2013 , arXiv: 1310.5920
174. Feng Qi, An integral representation and properties of Bernoulli numbers of the second kind, 2013 , arXiv: 1301.7181
175. Feng Qi, Completely monotonic degree of a function involving the tri- and tetra-gamma functions, 2013 , arXiv: 1301.0154
176. Feng Qi, Complete monotonicity of a family of functions involving the tri- and tetra-gamma functions, 2013 , arXiv: 1301.0156
177. Feng Qi, Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind, 2013 , arXiv: 1301.6845
178. Feng Qi, Explicit formulas for computing Euler polynomials in terms of the second kind Stirling numbers, 2013 , arXiv: 1310.5921
179. Feng Qi, Properties of modified Bessel functions and completely monotonic degrees of differences between exponential and trigamma functions, 2013 , arXiv: 1302.6731
180. Feng Qi, Some completely monotonic functions involving the $q$-tri-gamma and $q$-tetra-gamma functions with applications, 2013 , arXiv: 1301.0155
181. Feng Qi, Serkan Araci, and Mehmet Açikgöz, Extended fermionic $p$-adic integrals on $\mathbb{Z}_p$, 2013 , arXiv: 1312.2040
182. Feng Qi and Cristinel Mortici, Some best approximation formulas and inequalities for Wallis ratio, 2013 , arXiv: 1312.3782
183. Feng Qi and Wen-Hui Li, A logarithmically completely monotonic function involving the ratio of two gamma functions and originating from the coding gain, 2013 , arXiv: 1303.1877
184. Feng Qi and Wen-Hui Li, Integral representations and properties of some functions involving the logarithmic function, 2013 , arXiv: 1305.4083
185. Feng Qi, Tian-Yu Zhang, and Bo-Yan Xi, Hermite–Hadamard type integral inequalities for functions whose first derivatives are of convexity, 2013 , arXiv: 1305.5933
186. Feng Qi and Xiao-Jing Zhang, An integral representation, some inequalities, and complete monotonicity of Bernoulli numbers of the second kind, 2013 , arXiv: 1301.6425
187. Feng Qi and Xiao-Jing Zhang, Complete monotonicity of a difference between the exponential and trigamma functions, 2013 , arXiv: 1303.1582
188. Feng Qi, Xiao-Jing Zhang, and Wen-Hui Li, A new proof of the geometric-arithmetic mean inequality by Cauchy's integral formula, 2013 , arXiv: 1301.6432
189. Feng Qi, Xiao-Jing Zhang, and Wen-Hui Li, Integral representations of the weighted geometric mean and the logarithmic mean, 2013 , arXiv: 1303.3122
190. Feng Qi, Xiao-Jing Zhang, and Wen-Hui Li, Some Bernstein functions and integral representations concerning harmonic and geometric means, 2013 , arXiv: 1301.6430
191. Feng Qi, Xiao-Jing Zhang, and Wen-Hui Li, The geometric mean is a Bernstein function, 2013 , arXiv: 1301.6848
192. Yun Hua and Feng Qi, The best bounds for Toader mean in terms of the centroidal and arithmetic means, 2013 , arXiv: 1303.2451
193. Wei-Dong Jiang and Feng Qi, Geometric convexity of the generalized sine and the generalized hyperbolic sine, 2013 , arXiv: 1301.3264
194. Wei-Dong Jiang and Feng Qi, Sharp bounds for Neuman-Sándor's mean in terms of the root-mean-square, 2013 , arXiv: 1301.3267
195. Wei-Dong Jiang and Feng Qi, Sharp bounds in terms of the power of the contra-harmonic mean for Neuman-Sándor mean, 2013 , arXiv: 1301.3554
196. Wen-Hui Li and Feng Qi, A unified proof of inequalities and some new inequalities involving Neuman-Sándor mean, 2013 , arXiv: 1312.3500
197. Wen-Hui Li and Feng Qi, Hermite–Hadamard type inequalities of functions whose derivatives of $n$-th order are $(\alpha,m)$-convex, 2013 , arXiv: 1308.2948
198. Cristinel Mortici and Feng Qi, Asymptotic formulas and inequalities for gamma function in terms of tri-gamma function, 2013 , arXiv: 1312.5881
199. Li Yin and Feng Qi, Some inequalities for complete elliptic integrals, 2013 , arXiv: 1301.4385
200. Ai-Ping Ji, Tian-Yu Zhang, and Feng Qi, Integral inequalities of Hermite–Hadamard type for $(\alpha,m)$-GA-convex functions, 2013 , arXiv: 1306.0852

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018