RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Sheinman Oleg Karlovich

Total publications: 55
Scientific articles: 49
in MathSciNet: 48
in zbMATH: 39
in Web of Science: 30
in Scopus: 30
Cited articles: 35
Citations in Math-Net.Ru: 158
Citations in MathSciNet (by Sep 2017): 145
Citations in Web of Science: 136
Citations in Scopus: 147
Presentations: 23

Number of views:
This page:2051
Abstract pages:7044
Full texts:1635
References:787
Doctor of physico-mathematical sciences (2007)
Speciality: 01.01.04 (Geometry and topology)
Birth date: 9.06.1949
E-mail:
Website: http://www.mi.ras.ru/~sheinman
Keywords: Lie algebras, representations, Riemann surfaces, moduli spaces, conformal field theory, integrable systems.
   
Main publications:
  1. O. K. Sheinman, Current algebras on Riemann surfaces, De Gruyter Expositions in Mathematics, 58, Walter de Gruyter GmbH & Co, Berlin–Boston, 2012 , 150 pp.  crossref  mathscinet
  2. O. K. Sheinman, “Duality in some discrete minimization problems”, Russian Math. Surveys, 33:2 (1978), 251–252  mathnet  crossref  mathscinet  zmath  adsnasa

http://www.mathnet.ru/eng/person9016
List of publications on Google Scholar
http://zbmath.org/authors/?q=ai:sheinman.oleg-k
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=201393
http://elibrary.ru/author_items.asp?authorid=7841
http://www.researcherid.com/rid/Q-4145-2016
http://www.scopus.com/authid/detail.url?authorId=6603235446

Full list of publications:
| by years | by types | by times cited | scientific publications | common list |



   2017
1. O .K. Sheinman, “Matrichnye divizory na rimanovykh poverkhnostyakh i algebry operatorov Laksa”, Trudy Moskovskogo matematicheskogo obschestva, 78:1, K 80-letiyu E.B.Vinberga (2017), 129–144 , arXiv: 1701.01807
2. O. K. Sheinman, “Almost graded current algebras on the symmetric square of a curve”, Russian Math. Surveys, 72:2 (2017), 384–386  mathnet  crossref  crossref  mathscinet  isi  elib  scopus

   2016
3. O. K. Sheinman, “Lax operator algebras and gradings on semisimple Lie algebras”, Transform. Groups, 21:1 (2016), 181–196 , First online: September, 2015, arXiv: 1406.5017  mathnet (cited: 3)  crossref  mathscinet (cited: 2)  zmath  isi (cited: 3)  elib (cited: 1)  scopus
4. O. K. Sheinman, “Lax operator algebras and integrable systems”, Russian Math. Surveys, 71:1 (2016), 109–156  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib  elib  scopus
5. O. K. Sheinman, “Lax operator algebras and Lax equations”, after series of authors talks at Southeastern Lie Theory Workshop, College of Charleston, Charlestone, SC, USA, December 16–18, 2012, algebras, Lie superalgebras, vertex algebras and related topics, Proc. Sympos. Pure Math., 92, eds. K. C. Misra, D. K. Nakano, B. J. Parshall, Amer. Math. Soc., Providence, RI, 2016, 221–246 http://bookstore.ams.org/pspum-92/  mathscinet
6. O. K. Sheinman, Modern problems of mathematics, mechanics, and mathematical physics. Part II, Collected papers, Tr. Mat. Inst. Steklova, 294, MAIK Nauka/Interperiodica, Moscow, 2016, 325–327  mathnet  crossref  mathscinet  elib

   2015
7. O. K. Sheinman, “Lax operators algebras and gradings on semisimple Lie algebras”, Dokl. Math., 91:2 (2015), 160–162  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 4)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 2)
8. O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras”, Theoret. and Math. Phys., 185:3 (2015), 1816–1831  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 3)  elib  scopus (cited: 3)
9. O. K. Sheinman, “Semisimple Lie Algebras and Hamiltonian Theory of Finite-Dimensional Lax Equations with Spectral Parameter on a Riemann Surface”, Proc. Steklov Inst. Math., 290 (2015), 178–188  mathnet  crossref  crossref  isi (cited: 2)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)
10. Oleg K. Sheinman, “Global current algebras and localization on Riemann surfaces”, Mosc. Math. J., 15:4 (2015), 833–846  mathnet (cited: 1)  mathscinet  zmath  isi (cited: 1)  elib

   2014
11. O. K. Sheinman, “Lax operator algebras of type $G_2$”, Dokl. Math., 89:2 (2014), 151–153  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 6)  elib (cited: 3)  elib (cited: 3)  scopus (cited: 3)
12. O. K. Sheinman, “Lax operator algebras of type $G_2$”, Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov's Seminar 2012–2014, Advances in the Mathematical Sciences, Amer. Math. Soc. Transl. Ser. 2, 234, eds. V. M. Buchstaber, B. A. Dubrovin, I. M. Krichever, Amer. Math. Soc., Providence, RI, 2014, 373–392 , arXiv: 1304.2510  crossref  mathscinet (cited: 1)
13. N. N. Andreev, V. M. Buchstaber, A. I. Garber, V. V. Kozlov, S. P. Konovalov, A. A. Mal'tsev, Yu. V. Nesterenko, S. P. Novikov, A. N. Parshin, I. Kh. Sabitov, A. L. Semenov, A. G. Sergeev, O. K. Sheinman, M. I. Shtogrin, E. V. Shchepin, “Nikolai Petrovich Dolbilin (on his 70th birthday)”, Russian Math. Surveys, 69:1 (2014), 181–182  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib

   2013
14. O. K. Sheinman, “Lax equations and the Knizhnik–Zamolodchikov connection”, Geometric Methods in Physics, XXX Workshop, Białowieża, Poland, 2011, Trends in Mathematics, Springer, Basel, 2013, 405–413 , arXiv: 1009.4706  mathnet  crossref  mathscinet  zmath  scopus (cited: 1)

   2012
15. O. K. Sheinman, Current algebras on Riemann surfaces, De Gruyter Expositions in Mathematics, 58, Walter de Gruyter GmbH & Co, Berlin–Boston, 2012 , 150 pp.  crossref  mathscinet (cited: 8)

   2011
16. O. K. Sheinman, “Lax operator algebras and Hamiltonian integrable hierarchies”, Russian Math. Surveys, 66:1 (2011), 145–171  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 2)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 2)

   2010
17. V. M. Buchstaber, L. O. Chekhov, S. Yu. Dobrokhotov, S. M. Gusein-Zade, Yu. S. Ilyashenko, S. M. Natanzon, S. P. Novikov, G. I. Olshanski, A. K. Pogrebkov, O. K. Sheinman, S. B. Shlosman, M. A. Tsfasman, “Igor Krichever”, Mosc. Math. J., 10:4 (2010), 833–834  mathnet

   2009
18. V. Buchstaber, S. Gusein-Zade, Yu. Ilyashenko, V. Kozlov, S. Natanzon, O. Sheinman, A. Sossinsky, D. Treschev, M. Tsfasman, “Armen Sergeev”, Mosc. Math. J., 9:2 (2009), 439–440  mathnet  mathscinet

   2008
19. O. K. Sheinman, “On certain current algebras related to finite-zone integration”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 271–284  mathscinet (cited: 2)  zmath
20. M. Schlichenmaier, O. K. Sheinman, “Central extensions of Lax operator algebras”, Russian Math. Surveys, 63:4 (2008), 727–766  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 4)  elib (cited: 6)  elib (cited: 6)  scopus (cited: 7)
21. O. K. Sheinman, “Lax Operator Algebras and Integrable Hierarchies”, Proc. Steklov Inst. Math., 263 (2008), 204–213  mathnet  crossref  mathscinet  zmath  zmath  isi (cited: 1)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)
22. S. M. Gusein-Zade, Yu. S. Ilyashenko, G. A. Kabatiansky, S. K. Lando, A. G. Sergeev, O. K. Sheinman, O. V. Schwarzman, M. A. Tsfasman, È. B. Vinberg, “Sergey Natanzon”, Mosc. Math. J., 8:4 (2008), 843–844  mathnet  isi

   2007
23. I. M. Krichever, O. K. Sheinman, “Lax Operator Algebras”, Funct. Anal. Appl., 41:4 (2007), 284–294  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 12)  elib (cited: 12)  scopus (cited: 10)
24. O. K. Sheinman, “Algebry Krichevera–Novikova, ikh predstavleniya i prilozheniya v geometrii i matematicheskoi fizike”, Sovr. probl. matem., 10, MIAN, M., 2007, 3–140 , 142 pp.  mathnet (cited: 1)  mathnet  crossref  zmath; O. K. Sheinman, “Krichever–Novikov algebras, their representations and applications in geometry and mathematical physics”, Proc. Steklov Inst. Math., 274, suppl. 1 (2011), 85–161  crossref  zmath  isi  elib  scopus

   2005
25. O. K. Sheinman, “Krichever–Novikov algebras and their representations”, Noncommutative geometry and representation theory in mathematical physics, Contemp. Math., 391, Amer. Math. Soc., Providence, RI, 2005, 313–321  crossref  mathscinet (cited: 2)  zmath
26. O. K. Sheinman, “Highest weight representations of Krichever–Novikov algebras and integrable systems”, Russian Math. Surveys, 60:2 (2005), 370–372  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)
27. O. K. Sheinman, “Projective Flat Connections on Moduli Spaces of Riemann Surfaces and the Knizhnik–Zamolodchikov Equations”, Proc. Steklov Inst. Math., 251 (2005), 293–304  mathnet  mathscinet  zmath

   2004
28. O. K. Sheinman, “Affine Krichever-Novikov algebras, their representations and applications”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 297–316  mathscinet (cited: 9)  zmath
29. M. Schlichenmaier, O. K. Sheinman, “Knizhnik–Zamolodchikov equations for positive genus and Krichever–Novikov algebras”, Russian Math. Surveys, 59:4 (2004), 737–770  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 10)  elib (cited: 10)  scopus (cited: 12)
30. O. K. Sheinman, Osnovy teorii predstavlenii, MTsNMO, M., 2004 , 64 pp.; O. K. Sheinman, Basic representation theory, MCCME, Moscow, 2005
31. I. M. Paramonova, O. K. Sheinman, Zadachi seminara “Algebry Li i ikh prilozheniya”, MTsNMO, M., 2004 , 48 pp.

   2003
32. O. K. Sheĭnman, “Second-orde Casimirs for the affine Krichever-Novikov algebras $\widehat{\mathfrak{gl}}\sb{g,2}$ and $\widehat{\mathfrak{sl}}\sb{g,2}$”, Fundamental mathematics today, MCCME, Moscow, 2003, 372–404  mathscinet
33. V. M. Buchstaber, Yu. S. Ilyashenko, I. M. Krichever, O. K. Sheinman, A. B. Sossinski, M. A. Tsfasman, “Sergey Petrovich Novikov”, Mosc. Math. J., 3:4 (2003), 1206–1208  mathnet  mathscinet

   2001
34. O. K. Sheinman, “The Fermion Model of Representations of Affine Krichever–Novikov Algebras”, Funct. Anal. Appl., 35:3 (2001), 209–219  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 5)  elib  scopus (cited: 4)
35. O. K. Sheinman, “Second order Casimirs for the affine Krichever–Novikov algebras $\widehat{\mathfrak{gl}}_{g,2}$ and $\widehat{\mathfrak{sl}}_{g,2}$”, Mosc. Math. J., 1:4 (2001), 605–628  mathnet (cited: 8)  mathscinet (cited: 5)  zmath
36. O. K. Sheinman, “Second-order Casimir operators for the affine Krichever–Novikov algebras $\widehat{\mathfrak{gl}}_{g,2}$ and $\widehat{\mathfrak{sl}}_{g,2}$”, Russian Math. Surveys, 56:5 (2001), 986–987  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 2)  scopus (cited: 2)
37. O. K. Sheinman, “Krichever–Novikov algebras and self-duality equations on Riemann surfaces”, Russian Math. Surveys, 56:1 (2001), 176–178  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)  scopus (cited: 3)

   1999
38. M. Schlichenmaier, O. K. Sheinman, “Wess–Zumino–Witten–Novikov theory, Knizhnik–Zamolodchikov equations, and Krichever–Novikov algebras”, Russian Math. Surveys, 54:1 (1999), 213–249  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 22)  scopus (cited: 24)

   1998
39. M. Schlichenmaier, O. K. Scheinman, “The Sugawara construction and Casimir operators for Krichever-Novikov algebras”, Complex analysis and representation theory, 1, J. Math. Sci. (New York), 92:2 (1998), 3807–3834 , arXiv: q-alg/9512016  crossref  mathscinet (cited: 17)  zmath  scopus (cited: 23)

   1996
40. O. K. Sheinman, “Orbits and representations of Krichever-Novikov affine-type algebras”, Algebra, 3, J. Math. Sci., 82:6 (1996), 3834–3843  crossref  mathscinet  zmath  scopus
41. O. K. Sheinman, “Integrable many-body systems of Calogero-Moser-Sutherland type in high dimension”, Internat. Math. Res. Notices, 1996, no. 1, 27–36  crossref  mathscinet  zmath  elib  scopus

   1995
42. O. K. Sheĭnman, “Representations of Krichever-Novikov algebras”, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 185–197  mathscinet (cited: 3)  zmath  isi (cited: 13)
43. O. K. Sheinman, “Weil Modules with Highest Weight for Affine Lie Algebras on Riemann Surfaces”, Funct. Anal. Appl., 29:1 (1995), 44–55  mathnet  crossref  mathscinet  zmath  isi (cited: 4)  scopus (cited: 4)
44. O. K. Sheinman, “The Krichever–Novikov algebras and CCC-groups”, Russian Math. Surveys, 50:5 (1995), 1097–1099  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)

   1993
45. O. K. Sheinman, “Affine Lie Algebras on Riemann Surfaces”, Funct. Anal. Appl., 27:4 (1993), 266–272  mathnet  crossref  mathscinet  zmath  isi (cited: 10)  scopus (cited: 16)

   1992
46. O. K. Sheinman, “Highest weight modules over certain quasigraded Lie algebras on elliptic curves”, Funct. Anal. Appl., 26:3 (1992), 203–208  mathnet  crossref  mathscinet  zmath  isi (cited: 10)  scopus (cited: 9)

   1990
47. O. K. Sheinman, “Elliptic affine Lie algebras”, Funct. Anal. Appl., 24:3 (1990), 210–219  mathnet  crossref  mathscinet  zmath  isi (cited: 15)  scopus (cited: 19)

   1989
48. O. K. Sheinman, “Hamiltonian string formalism and discrete groups”, Funct. Anal. Appl., 23:2 (1989), 124–128  mathnet  crossref  mathscinet  zmath  isi  scopus

   1988
49. O. K. Sheinman, “Kernel of evolution operator in the space of sections of a vector bundle as integral over trajectories”, Funct. Anal. Appl., 22:3 (1988), 251–253  mathnet  crossref  mathscinet  zmath  isi  scopus

   1985
50. O. K. Sheinman, “Dedekind $\eta$-function and indefinite quadratic forms”, Funct. Anal. Appl., 19:3 (1985), 232–234  mathnet  crossref  mathscinet  zmath  isi  scopus

   1983
51. S. S. Lebedev, O. K. Sheĭnman, “Dual approach to integer programming”, Engrg. Cybernetics, 21:1 (1983), 140–147 (1984)  mathscinet  zmath  scopus

   1981
52. S. S. Lebedev, O. K. Sheĭnman, “Duality in integer programming”, Èkonom. i Mat. Metody, 17:3 (1981), 593–608  mathscinet  zmath

   1980
53. O. K. Šeĭnman, “Duality and subadditive functions in integer programming”, Èkonom. i Mat. Metody, 16:4 (1980), 808–810  mathscinet

   1979
54. O. K. Šeĭnman, “Group-theoretic methods of constructing cuts in integer programming”, Mathematical methods of solution of economic problems, v. 8, Optimal'noe Planirovanie i Upravlenie [Optimal Planning and Control Series], Nauka, Moscow, 1979, 44–49  mathscinet

   1978
55. O. K. Sheinman, “Duality in some discrete minimization problems”, Russian Math. Surveys, 33:2 (1978), 251–252  mathnet  crossref  mathscinet  zmath  adsnasa

Presentations in Math-Net.Ru
1. Некоторые редукции систем Хитчина ранга 2 родов 2 и 3.
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
August 30, 2017 14:00
2. Матричные дивизоры на римановых поверхностях
O. K. Sheinman
VI Workshop and Conference on Lie Algebras, Algebraic Groups, and Invariant Theory
February 3, 2017 12:15   
3. Moduli of matrix divisors on Riemann surfaces
O. K. Sheinman
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
November 23, 2016 16:45
4. Moduli of matrix divisors on Riemann surfaces
O. K. Sheinman
Riemann surfaces, Lie algebras and mathematical physics
November 11, 2016 17:00
5. Алгебры операторов Лакса и конечномерные интегрируемые системы
O. K. Sheinman
Differential geometry and applications
September 26, 2016 16:45
6. Модули матричных дивизоров на римановых поверхностях (по следам работ А.Н.Тюрина)
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
August 24, 2016 14:00
7. Lax operator algebras and related structures
O. K. Sheinman
Riemann surfaces, Lie algebras and mathematical physics
March 11, 2016 17:00
8. Алгебры операторов Лакса, интегрируемые системы и голоморфные расслоения
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
December 9, 2015 18:30
9. О параметризации пространств голоморфных расслоений на римановых поверхностях
O. K. Sheinman
Complex analysis and mathematical physics
November 17, 2015 16:00
10. Lax operator algebras and integrable systems
O. K. Sheinman
Steklov Mathematical Institute Seminar
December 18, 2014 16:00   
11. Lax operator algebras and gradings on semi-simple Lie algebras
O. K. Sheinman
Scientific session of the Steklov Mathematical Institute dedicated to the results of 2014
November 12, 2014 14:00   
12. Lax operator algebras and gradings on semi-simple Lie algebras
O. K. Sheinman
Random geometry and physics
September 11, 2014 12:10   
13. Алгебры операторов Лакса, градуировки полупростых алгебр и интегрируемые системы
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
August 13, 2014 14:00
14. Lax integrable systems and conformal field theory
O. K. Sheinman
Complex analysis and mathematical physics
February 18, 2013 16:00
15. Конечномерные лаксовы интегрируемые системы и уравнения Книжника–Замолодчикова
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
December 1, 2010 18:30
16. Алгебры операторов Лакса и интегрируемые иерархии
O. K. Sheinman
Lie groups and invariant theory
November 19, 2008
17. Current algebras on Riemann surfaces
O. K. Sheinman
Steklov Mathematical Institute Seminar
January 17, 2008 16:00   
18. Алгебры операторов Лакса
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
March 21, 2007
19. Аффинные алгебры Ли и их представления
O. K. Sheinman
Seminar on Arithmetic Algebraic Geometry
November 28, 2006 11:30
20. Krichever–Novikov algebras, their representations and applications to geometry and mathematical physics
O. K. Sheinman
Meetings of the St. Petersburg Mathematical Society
May 16, 2006
21. Симплектическая геометрия представлений фундаментальных групп поверхностей
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
March 2, 2005
22. Представления старшего веса алгебр Кричевера–Новикова
O. K. Sheinman
Seminar of the Department of Theoretical Physics, Steklov Mathematical Institute of RAS
February 2, 2005
23. Деформации функций и векторных полей Кричевера–Новикова и связность Книжника–Замолодчикова
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
October 6, 2004

Books in Math-Net.Ru
  1. O. K. Sheinman, Krichever–Novikov Algebras, their Representations and Applications in Geometry and Mathematical Physics, Sovrem. Probl. Mat., 10, 2007, 142 с.
    http://mi.mathnet.ru/book230

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017