RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Volkov, Vladimir Tarasovich

Statistics Math-Net.Ru
Total publications: 15
Scientific articles: 15

Number of views:
This page:382
Abstract pages:2332
Full texts:1067
References:253
Associate professor
Candidate of physico-mathematical sciences
Birth date: 25.03.1961
E-mail:

http://www.mathnet.ru/eng/person25476
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/219745
http://elibrary.ru/author_items.asp?spin=4642-7121
ISTINA http://istina.msu.ru/workers/851789
http://orcid.org/0000-0002-4205-4141

Publications in Math-Net.Ru
2019
1. V.T. Volkov, D. V. Lukyanenko, N. N. Nefedov, “Аналитико-численный подход для описания периодических по времени движущихся фронтов в сингулярно возмущенных моделях реакция–диффузия–адвекция”, Zh. Vychisl. Mat. Mat. Fiz., 59:1 (2019),  50–62  mathnet  elib
2017
2. D. V. Luk'yanenko, V. T. Volkov, N. N. Nefedov, “Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation”, Model. Anal. Inform. Sist., 24:3 (2017),  322–338  mathnet  elib
3. E. A. Antipov, V. T. Volkov, N. T. Levashova, N. N. Nefedov, “Moving front solution of the reaction-diffusion problem”, Model. Anal. Inform. Sist., 24:3 (2017),  259–279  mathnet  elib
2016
4. D. V. Lukyanenko, V. T. Volkov, N. N. Nefedov, L. Recke, K. Schneider, “Analytic-numerical approach to solving singularly perturbed parabolic equations with the use of dynamic adapted meshes”, Model. Anal. Inform. Sist., 23:3 (2016),  334–341  mathnet  mathscinet  elib
2010
5. V. T. Volkov, N. E. Grachev, A. V. Dmitriev, N. N. Nefedov, “Front formation and dynamics in the reaction-diffusion-advection model”, Matem. Mod., 22:8 (2010),  109–118  mathnet  mathscinet; Math. Models Comput. Simul., 3:2 (2011), 158–164  scopus
6. N. E. Grachev, A. V. Dmitriev, D. S. Senin, V. T. Volkov, N. N. Nefedov, “Simulation of in-situ combustion front dynamics”, Vychisl. Metody Programm., 11:4 (2010),  306–312  mathnet
2007
7. V. T. Volkov, N. E. Grachëv, N. N. Nefedov, A. N. Nikolaev, “On the formation of sharp transition layers in two-dimensional reaction-diffusion models”, Zh. Vychisl. Mat. Mat. Fiz., 47:8 (2007),  1356–1364  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 47:8 (2007), 1301–1309  scopus
2006
8. V. T. Volkov, N. N. Nefedov, “Development of the asymptotic method of differential inequalities for investigation of periodic contrast structures in reaction-diffusion equations”, Zh. Vychisl. Mat. Mat. Fiz., 46:4 (2006),  615–623  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 46:4 (2006), 585–593  scopus
1994
9. V. T. Volkov, N. N. Nefedov, “Periodic solutions with boundary layers of a singularly perturbed reaction–diffusion model”, Zh. Vychisl. Mat. Mat. Fiz., 34:8-9 (1994),  1307–1315  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 34:8-9 (1994), 1133–1140
1991
10. A. B. Vasil'eva, V. T. Volkov, “Asymptotic approximation of a periodic solution of the second boundary-value problem for systems with small diffusion”, Mat. Zametki, 49:5 (1991),  32–36  mathnet  mathscinet  zmath; Math. Notes, 49:5 (1991), 463–466  isi
1989
11. A. B. Vasil'eva, V. T. Volkov, “The asymptotic of periodic solutions of some systems with small diffusion”, Matem. Mod., 1:4 (1989),  150–154  mathnet  mathscinet  zmath
12. V. T. Volkov, S. V. Kryuchkov, I. A. Obukhov, S. V. Rumyantsev, “Numerical-asymptotic analysis of transient processes in semiconductors”, Zh. Vychisl. Mat. Mat. Fiz., 29:8 (1989),  1159–1167  mathnet  mathscinet; U.S.S.R. Comput. Math. Math. Phys., 29:4 (1989), 132–138
1985
13. A. B. Vasil'eva, V.T. Volkov, “Periodic solutions of a singularly perturbed equation of parabolic type”, Dokl. Akad. Nauk SSSR, 285:1 (1985),  15–19  mathnet  mathscinet  zmath
14. A. B. Vasil'eva, V. T. Volkov, “Periodic solutions of singularly perturbed equations of parabolic type”, Differ. Uravn., 21:10 (1985),  1755–1760  mathnet  mathscinet
15. A. B. Vasil'eva, V. T. Volkov, “Periodic solutions of some singularly-perturbed equations of parabolic type”, Zh. Vychisl. Mat. Mat. Fiz., 25:4 (1985),  609–614  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 25:2 (1985), 182–186

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020