RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Smirnov Yury Gennadievich

Statistics Math-Net.Ru
Total publications: 24
Scientific articles: 24

Number of views:
This page:410
Abstract pages:3020
Full texts:833
References:457
Professor
Doctor of physico-mathematical sciences (1995)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 9.03.1962
E-mail:
Keywords: differential equations, boundary value problems in electromagnetics, eigenvalue problens, supercomputing.
UDC: 517.958, 519.634

Subject:

Partial differential equations, eigenvalue problens, pseudodifferential and integral equations, boundary value problems in electromagnetics, inverse problems, numerical methods, supercomputing

   
Main publications:
  1. K. Kobayashi, Yu.V. Shestopalov, Yu.G. Smirnov, “Investigation of Electromagnetic Diffraction by a Dielectric Body in a Waveguide Using the Method of Volume Singular Integral Equation”, SIAM Journal of Applied Mathematics, 70:3 (2009), 969–983  crossref  mathscinet
  2. Yu.V. Shestopalov, Yu.G. Smirnov, “Existence and Uniqueness of a Solution to the Inverse Problem of the Complex Permittivity Reconstruction of a Dielectric Body in a Waveguide”, Inverse Problems, 26 (2010), 105002  crossref  mathscinet  adsnasa
  3. Yu.G. Smirnov, D.V. Valovik, “Coupled electromagnetic transverse-electric.transverse magnetic wave propagation in a cylindrical waveguide with Kerr nonlinearity”, Journal of Mathematical Physics, 54:4 (2013), 043506-1–22  crossref  mathscinet  adsnasa
  4. A.S. Ilyinsky, Yu.G. Smirnov, Electromagnetic Wave Diffraction by Conducting Screens, VSP Int. Science Publishers, Utrecht, the Netherlands, 1998
  5. Yu.G. Shestopalov, Yu.G. Smirnov, “Eigenwaves in waveguides with dielectric inclusions: completeness”, Applicable Analysis: An International Journal, 93:9 (2014), 1824–1845  crossref  mathscinet

http://www.mathnet.ru/eng/person46510
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/239837

Publications in Math-Net.Ru
1. The problem of diffraction of acoustic waves on a system of bodyes, screens and antennas
Yu. G. Smirnov, M. Yu. Medvedik, A. A. Tsupak, M. A. Moskaleva
Matem. Mod., 29:1 (2017),  109–118
2. On the unique existence of the classical solution to the problem of electromagnetic wave diffraction by an inhomogeneous lossless dielectric body
Yu. G. Smirnov, A. A. Tsupak
Zh. Vychisl. Mat. Mat. Fiz., 57:4 (2017),  702–709
3. On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation
Yu. G. Smirnov
Zh. Vychisl. Mat. Mat. Fiz., 56:9 (2016),  1657–1666
4. Inverse problem of determining parameters of inhomogeneity of a body from acoustic field measurements
R. O. Evstigneev, M. Yu. Medvedik, Yu. G. Smirnov
Zh. Vychisl. Mat. Mat. Fiz., 56:3 (2016),  490–497
5. Eigenvalue transmission problems describing the propagation of TE and TM waves in two-layered inhomogeneous anisotropic cylindrical and planar waveguides
Yu. G. Smirnov
Zh. Vychisl. Mat. Mat. Fiz., 55:3 (2015),  460–468
6. Scalar problem of plane wave diffraction by a system of nonintersecting screens and inhomogeneous bodies
M. Yu. Medvedik, Yu. G. Smirnov, A. A. Tsupak
Zh. Vychisl. Mat. Mat. Fiz., 54:8 (2014),  1319–1331
7. On the problem of propagation of nonlinear coupled TE–TM waves in a layer
D. V. Valovik, Yu. G. Smirnov
Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014),  504–518
8. Ellipticity of the electric field integral equation for absorbing media and the convergence of the Rao–Wilton–Glisson method
M. Yu. Medvedik, Yu. G. Smirnov
Zh. Vychisl. Mat. Mat. Fiz., 54:1 (2014),  105–113
9. Nonlinear transmission eigenvalue problem describing TE wave propagation in two-layered cylindrical dielectric waveguides
D. V. Valovik, Yu. G. Smirnov, E. Yu. Smol'kin
Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013),  1150–1161
10. Итерационный метод определения диэлектрической проницаемости образца неоднородного материала, расположенного в прямоугольном волноводе
M. Yu. Medvedik, Yu. G. Smirnov
Zh. Vychisl. Mat. Mat. Fiz., 52:12 (2012),  2228–2237
11. On the existence and uniqueness of solutions of the inverse boundary value problem for determining the dielectric permittivity of materials
D. A. Mironov, Yu. G. Smirnov
Zh. Vychisl. Mat. Mat. Fiz., 50:9 (2010),  1587–1597
12. A nonlinear boundary eigenvalues problem for TM-polarized electromagnetic waves in a nonlinear layer
D. V. Valovik, Yu. G. Smirnov
Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 10,  70–74
13. Propagation of TM waves in a Kerr nonlinear layer
D. V. Valovik, Yu. G. Smirnov
Zh. Vychisl. Mat. Mat. Fiz., 48:12 (2008),  2186–2194
14. Convergence of the Galerkin methods for equations with elliptic operators on subspaces and solving the electric field equation
Yu. G. Smirnov
Zh. Vychisl. Mat. Mat. Fiz., 47:1 (2007),  129–139
15. Existence and Uniqueness of a Solution of a Singular Volume Integral Equation in a Diffraction Problem
Yu. G. Smirnov, A. A. Tsupak
Differ. Uravn., 41:9 (2005),  1190–1197
16. A parallel algorithm for computing surface currents in a screen electromagnetic diffraction problem
M. Yu. Medvedik, Yu. G. Smirnov, S. I. Sobolev
Vychisl. Metody Programm., 6:1 (2005),  99–108
17. Investigation of an electromagnetic problem of diffraction by a dielectric body using the method of a volume singular integral equation
Yu. G. Smirnov, A. A. Tsupak
Zh. Vychisl. Mat. Mat. Fiz., 44:12 (2004),  2252–2267
18. The propagation of electromagnetic waves in cylindrical dielectric waveguides filled with a nonlinear medium
S. N. Kupriyanova, Yu. G. Smirnov
Zh. Vychisl. Mat. Mat. Fiz., 44:10 (2004),  1850–1860
19. Strong ellipticity of the hybrid formulation of the electromagnetic diffraction problem
I. V. Slavin, Yu. G. Smirnov
Zh. Vychisl. Mat. Mat. Fiz., 40:2 (2000),  286–299
20. The solvability of vector integro-differential equations for the problem of the diffraction of an electromagnetic field by screens of arbitrary shape
Yu. G. Smirnov
Zh. Vychisl. Mat. Mat. Fiz., 34:10 (1994),  1461–1475
21. On the solvability of vector problems of diffraction in domains connected through an opening in a screen
Yu. G. Smirnov
Zh. Vychisl. Mat. Mat. Fiz., 33:9 (1993),  1427–1440
22. On the Fredholm property of a system of pseudodifferential equations in the problem of diffraction by a bounded screen
Yu. G. Smirnov
Differ. Uravn., 28:1 (1992),  136–143
23. The method of operator pencils in boundary value problems of conjugation for a system of elliptic equations
Yu. G. Smirnov
Differ. Uravn., 27:1 (1991),  140–147
24. Mathematical modeling of the process of propagation of electromagnetic oscillations in a slot transmission line
A. S. Il'inskii, Yu. G. Smirnov
Zh. Vychisl. Mat. Mat. Fiz., 27:2 (1987),  252–261

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018