RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






At Steklov Mathematical Institute of Russian Academy of Sciences
July 22, 2015 15:00, Moscow
 


Constraints, Graphs, Algebra, Logic, and Complexity

Moshe Vardi
Video records:
MP4 2,006.4 Mb
MP4 509.1 Mb

Number of views:
This page:1036
Video files:240

Moshe Vardi


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: A large class of problems in AI and other areas of computer science can be viewed as constraint-satisfaction problems. This includes problems in database query optimization, machine vision, belief maintenance, scheduling, temporal reasoning, type reconstruction, graph theory, and satisfiability. All of these problems can be recast as questions regarding the existence of homomorphisms between two directed graphs. It is well-known that the constraint-satisfaction problem is NP-complete. This motivated an extensive research program into identify tractable cases of constraint satisfaction.
This research proceeds along two major lines. The first line of research focuses on non-uniform constraint satisfaction, where the target graph is fixed. The goal is to identify those traget graphs that give rise to a tractable constraint-satisfaction problem. The second line of research focuses on identifying large classes of source graphs for which constraint-satisfaction is tractable. We show in this talk how tools from graph theory, universal algebra, logic, and complexity theory, shed light on the tractability of constraint satisfaction

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017