RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 Video Library Archive Most viewed videos Search RSS New in collection

You may need the following programs to see the files

А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 22, 2017 15:25, Moscow, Steklov Mathematical Institute

An effective version of the Bombieri-Vinogradov theorem

A. A. Sedunova

Georg-August-Universität Göttingen
 Video records: MP4 966.9 Mb MP4 245.2 Mb

Photo Gallery

 Видео не загружается в Ваш браузер: Активируйте JavaScript в Вашем браузере Установите Adobe Flash Player     Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080 Сообщите администратору портала о данной ошибке

Abstract: In the talk, we deal with a new effective version of the Bombieri-Vinogradov theorem. This theorem improves the previous result belonging to F. Dress, H. Iwaniec and G. Tenenbaum [1]. Namely, we prove the following
Theorem. Suppose that $x\geqslant 4$, $1\leqslant Q_{1}\leqslant Q\leqslant x^{ 1/2}$ and let $l(q)$ denotes the smallest prime divisor of $q$. Then
$$\sum\limits_{\substack{q\leqslant Q l(q)>Q_{1}}}\max_{2\leqslant y\leqslant x}\max_{(a,q)=1}|\psi(y;q,a) - \frac{\psi(y)}{\varphi(q)}| \ll (xQ_{1}^{-1} + Qx^{ 1/2} + x^{ 95/96}\log{x})(\log{x})^{3}.$$
(Here we get the factor $(\log{x})^{3}$ instead $(\log{x})^{7/2}$ from [1]). In the proof, we use a weighted form of Vaughan’s identity, allowing a smooth truncation inside the procedure and a technique of Graham [2] related to Selberg’s sieve.
[1] F. Dress, H. Iwaniec, G. Tenenbaum, Sur une somme liée à la fonction de Möbius. J. Reine Angew. Math. 340 (1983). P. 53 – 58.
[2] S. Graham, An asymptotic estimate related to Selberg’s sieve. J. Number Theory. 10:1 (1978). P. 83 – 94.

Language: English

 SHARE: