RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






Scientific session of the Steklov Mathematical Institute of RAS dedicated to the results of 2020
November 25, 2020 16:45–17:00, Moscow, online
 


Sobolev $W_{p}^{1}$-spaces on $d$-thick closed subsets of $\mathbb{R}^{n}$

A. I. Tyulenev
Video records:
MP4 82.6 Mb

Number of views:
This page:90
Video files:34
Youtube Video:


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Abstract: Let $S \subset \mathbb{R}^{n}$ be a closed nonempty set such that for some $d \in [0,n]$ and $\varepsilon > 0$ the $d$-Hausdorff content $\mathcal{H}^{d}_{\infty}(S \cap Q(x,r)) \geq \varepsilon r^{d}$ for all cubes $Q(x,r)$ centered in $x \in S$ with side length $2r \in (0,2]$. For each $p > \max\{1,n-d\}$ we give an intrinsic characterization of the trace space $W_{p}^{1}(\mathbb{R}^{n})|_{S}$ of the Sobolev space $W_{p}^{1}(\mathbb{R}^{n})$ to the set $S$. Furthermore, we prove the existence of a bounded linear operator $\operatorname{Ext}:W_{p}^{1}(\mathbb{R}^{n})|_{S} \to W_{p}^{1}(\mathbb{R}^{n})$ such that $\operatorname{Ext}$ is right inverse for the usual trace operator.
Our results extend those available in the case $p \in (1,n]$ for Ahlfors-regular sets $S$.

* Zoom Meeting ID: 979 5396 3790

Related articles:

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021