А. Р. Бикметов, Д. И. Борисов, О дискретном спектре оператора Шредингера, возмущенного ограниченным потенциалом с малым носителем, ТМФ, 2005, том 145, номер 3, 372–384

DOI: https://doi.org/10.4213/tmf1906
О ДИСКРЕТНОМ СПЕКТРЕ ОПЕРАТОРА ШРЁДИНГЕРА, ВОЗМУЩЕННОГО ОГРАНИЧЕННЫМ ПОТЕНЦИАЛОМ С МАЛЫМ НОСИТЕЛЕМ

Изучаются асимптотические свойства дискретного спектра оператора Шрёдingera, возмущенного потенциалом с узким носителем. Для собственных значений и соответствующих собственных функций строится первые члены асимптотических разложений по малому параметру, которым является ширина носителя потенциала.

Ключевые слова: оператор Шрёдingera, спектр, возмущение, асимптотика.

1. ВВЕДЕНИЕ

Изучению дискретного спектра оператора Шрёдingera с различного рода возмущениями посвящено достаточно много работ (см., например, [1] [5]). Классической задачей является исследование возмущения стационарного оператора Шрёдingera на оси и плоскости малым потенциалом вида $\varepsilon V(x)$, $0 < \varepsilon \ll 1$, $\int_{\mathbb{R}} (1 + |x|)|V(x)|dx < \infty$, что соответствует малой (нетупой) потенциальной яме либо барьёр, в зависимости от знака V. Такое возмущение рассматривалось в § 45 книге [1] и в работах [2]. Случай нелинейной зависимости потенциала от малого параметра был рассмотрен в [4]. В работах [5] результаты, полученные в работах [1] [4], были обобщены на случай возмущения вида $\varepsilon L_\varepsilon$, где $L_\varepsilon : W^2_1(Q) \to L_2(Q)$ произвольный оператор, ограниченный равномерно по ε, Q произвольная ограничённая область в \mathbb{R}^n, $n = 1, 2$, а функции из $L_2(Q)$ считаются продолжёнными нулем вне Q.

Настоящая работа посвящена изучению нового случая, когда возмущение описывается потенциалом, принимающим конечные (не малые) значения, но имеющим малый носитель. А именно, изучается дискретный спектр оператора

$$\mathcal{H}_\varepsilon := -\Delta + V\left(\frac{x - x_0}{\varepsilon}\right)$$

в ограниченной однородной области $\Omega \subset \mathbb{R}^n$, $n = 1, 2, 3$, с граничным условием Дирихле на границе. В случае $n = 1$ мы положем $\Omega = (0, 1)$, $\Delta = d^2/dx^2$, в случае $n = 2, 3$
гранича области \(\Omega \) предполагается бесконечно дифференцируемой. Функция \(V(t) \) является произвольной вещественно-значной бесконечно дифференцируемой функцией, определённой на всем пространстве, \(x_0 \) некоторая фиксированная точка из \(\Omega \).

Так как функция \(V \) физионом, то интеграл потенциала в (1) сжимается в точку \(x_0 \) при \(\varepsilon \rightarrow 0 \). Физически рассматриваемую задачу можно интерпретировать как задачу о потенциальной яме с бесконечно высокими стенками (см. [1], § 22), когда на две ямы присутствует узкий конечный всплеск.

Заметим, что если вопрос о спектре оператора (1) в \(\mathbb{R}^n \) заменён переменными \(y = (x - x_0) \varepsilon^{-1} \) сводится к задачам, рассмотренным в [1], [2], то совершенно иная ситуация имеет место при изучении оператора (1) в ограниченной области. Легко видеть, что в данном случае указанная выше переменная не сводит задачу ни к ранее исследованной, ни к более простой задаче.

Целью настоящей работы является выяснение асимптотического поведения собственных значений оператора \(\mathcal{H}_\varepsilon \) при \(\varepsilon \rightarrow 0 \). Подчеркнем, что, в отличие от работ [1], [5], здесь рассматривается возмущение, которое носит сингулярный характер и поэтому не может быть исследовано с помощью методов цитированных работ. Поэтому при построении асимптотик используется метод согласования асимптотических разложений [6], [10]. Заметим также, что рассматриваемая задача не сводится к схожим постановкам задачам с конфигурацией массой (см., например, [11]).

В настоящей работе в явном виде построены первые члены асимптотических разложений собственных значений и собственных функций оператора \(\mathcal{H}_\varepsilon \) по параметру \(\varepsilon \). Показано, что эти первые поправки полностью определяются положением центра сжатия \(x_0 \) потенциала в (1), а также его средним значением, причем последнее также определяет и знак первой поправки.

2. ФОРМУЛИРОВКА ОСНОВНОГО РЕЗУЛЬТАТА

Через \(\mathcal{H}_0 \) обозначим оператор \(-\Delta \) в области \(\Omega \) с краевым условием Дирихле на границе. Пусть \(\lambda_0 \) простое собственное значение оператора \(\mathcal{H}_0 \), \(\psi_0 \) соответствующая нормированная в \(L_2(\Omega) \) собственная функция.

Используя схему доказательства, принятую в [8], [12], [13], можно показать, что при \(\varepsilon \rightarrow 0 \) собственные значения и собственные функции оператора \(\mathcal{H}_\varepsilon \) сходятся к собственным значениям и соответствующим собственным функциям оператора \(\mathcal{H}_0 \). Кроме того, к \(\lambda_0 \) сходится простое собственное значение \(\lambda^\varepsilon \) оператора \(\mathcal{H}_\varepsilon \), а соответствующая собственная функция \(\psi^\varepsilon \) сходится к \(\psi_0 \) в норме \(H^1(\Omega) \). Обозначим

\[
\langle V \rangle = \int_{\mathbb{R}^n} V(t) \, dt.
\]

Основной результат работы формулируется в виде следующего утверждения.

Теорема. Собственное значение \(\lambda^\varepsilon \) оператора \(\mathcal{H}_\varepsilon \), сходящееся к простому собственному значению \(\lambda_0 \) оператора \(\mathcal{H}_0 \), имеет асимптотику

\[
\lambda^\varepsilon = \lambda_0 + \varepsilon^n \lambda_n + O(\mu_n(\varepsilon)),
\]

\[
\lambda_n = \psi_0^2(x_0) \langle V \rangle,
\]
$\mu_1(\varepsilon) = \varepsilon^{3/2}, \ \mu_2(\varepsilon) = \varepsilon^3 |\ln \varepsilon|^{1/2}, \ \mu_3(\varepsilon) = \varepsilon^{7/2}$.

ЗАМЕЧАНИЕ 1. В настоящей работе построены и асимптотики собственных функций. Однако представляется более удобным сформулировать соответствующее утверждение ниже (см. приведенную в разделе 5 лемму).

ЗАМЕЧАНИЕ 2. Подчеркнем, что асимптотики собственных значений, приводимые в теореме, не являются равномерными по номеру собственного значения. Не равномерны по номеру и асимптотики собственных функций, сформулированные в разделе 5 лемме.

Используя методику доказательства теоремы, можно получить полные асимптотические разложения собственных значений и собственных функций оператора H_ω. В настоящей работе мы строим и обосновываем только первые члены асимптотических разложений, демонстрируя на их примере все идеи, необходимые для построения полных асимптотик. Построение полных асимптотик не отличается от доказательства приведенной выше теоремы, но оно достаточно громоздкое с технической точки зрения. При получении строгой оценки остатка в асимптотиках (2) мы также стремились минимизировать число технических деталей, поэтому оценка остатка в (2) не является наилучшей по порядку.

Отметим, что нестрого формулу (3) можно получить следующим образом. Рассматривая потенциал в (1) как обобщённую функцию, мы можем представить его в виде

$$V\left(\frac{x - x_0}{\varepsilon}\right) = \varepsilon^n \langle V \rangle \delta(x - x_0) + \cdots,$$

где $\delta(x - x_0)$ - дельта-функция. Формально используя теперь формулу (38.6) из гл. 6, § 38 книги [1], получаем

$$\lambda_n = \lambda_0 + \varepsilon^n \langle V \rangle \int_\Omega \psi_0^2(x) \delta(x - x_0) \, dx + \cdots = \lambda_0 + \varepsilon^n \langle V \rangle \psi_0^2(x_0) + \cdots,$$

что совпадает с первыми членами в (2). Данный подход, разумеется, не может рассматриваться как строгое математическое доказательство, так как использованная в формуле для первой оценки может быть примена, вообще говоря, лишь в случае регулярных краевых условий (см. [14], гл. 2, § 3). Кроме того, подобный подход приводит к неверной асимптотике для собственных функций, так как формула (38.8) из гл. 6, § 38 [1] для первой оценки к собственной функции с точностью до слагаемого вида $C \psi_0(x)$ является разложением по собственным функциям определителя H_ω функции ψ_n из приведённой в разделе 5 леммы (что неправильно проверить, умножая уравнение для ψ_n на собственную функцию определителя H_ω, соответствующую m-му собственному значению, и интегрируя затем по частям). Функция ψ_n имеет особенность в точке x_0, совпадающую с особенностью функции Грина для оператора Лапласа (см. ниже [12], (31)). В то же время, как следует из леммы, первая оценка к собственной функции полимо ψ_n включает в себя ещё одно слагаемое, причем данная сумма вышеупомянутой особенности не имеет.
О ДИСКРЕТНОМ СПЕКТРЕ ОПЕРАТОРА ШРЕДИНГЕРА 375

При доказательстве теоремы нам удобно будет рассматривать собственные значения и собственные функции операторов H_ϵ и H_0 как собственные элементы следующих краевых задач:

$$-\Delta \psi^\epsilon + V \left(\frac{x-x^0}{\epsilon} \right) \psi^\epsilon = \lambda^\epsilon \psi^\epsilon, \quad x \in \Omega, \quad \psi^\epsilon = 0, \quad x \in \partial \Omega, \quad (4)$$

$$-\Delta \psi_0 = \lambda_0 \psi_0, \quad x \in \Omega, \quad \psi_0 = 0, \quad x \in \partial \Omega. \quad (5)$$

Статья построена следующим образом. Разд. 3 посвящен построению асимптомических разложений в условиях сформулированной теоремы в случае $n = 1$. Построение в двумерном и трёхмерном случаях проведено в разд. 4. Разд. 5 посвящен строгому обоснованию асимптомических разложений, т.е. получению оценки остатка асимптомических разложений.

3. ПОСТРОЕНИЕ АСИМПТОТИК В ОДНОМЕРНОМ СЛУЧАЕ

В настоящем разделе будут формально построены первые члены асимптоматических собственных значений и соответствующих собственных функций задачи (4) в одномерном случае в условиях теоремы.

Сходимости $\lambda^\epsilon \rightarrow \lambda_0$, $\psi^\epsilon \rightarrow \psi_0$ означают, что главными членами асимптоматических разложений λ^ϵ и ψ^ϵ являются соответственно λ_0 и ψ_0. Следующие члены асимптоматических разложений λ_1^ϵ и ψ_1^ϵ будем строить так, чтобы они асимптоматы при подстановке в (4) давали достаточно малую невязку. Так как возмущающий потенциал в уравнении (4) сосредоточен на малом интервале и фактически зависит от "растянутой" переменной $\xi = (x-x^0)/\epsilon$, то, следуя методу согласования асимптоматических разложений [6], асимптоматику собственной функции ψ^ϵ в малой окрестности точки x_0 будем искать в виде ряда с коэффициентами, зависящими от переменной ξ (внутреннее разложение). Вне окрестности точки x_0 асимптоматику ψ^ϵ будем искать в виде внешнего разложения, зависящего от переменной x.

Асимптоматику собственного значения будем строить в виде

$$\lambda^\epsilon = \lambda_0 + \epsilon \lambda_1 + \cdots. \quad (6)$$

Внешнее разложение для собственной функции ψ^ϵ будем искать в следующем виде:

$$\psi^{\epsilon x, -}_0(x) = \psi_0(x) + \epsilon \psi_1^-(x) + \cdots, \quad x < x_0,$$

$$\psi^{\epsilon x, +}_0(x) = \psi_0(x) + \epsilon \psi_1^+(x) + \cdots, \quad x > x_0. \quad (7)$$

Выясним теперь вид внутреннего разложения. Ясно, что $\psi_0 \in C^\infty[0,1]$, следовательно, в окрестности точки x_0 функция ψ_0 разлагается в ряд Тейлора:

$$\psi_0(x) = \psi_0(x_0) + \psi_0'(x_0)(x-x_0) + \frac{1}{2}\psi_0''(x_0)(x-x_0)^2 + O((x-x_0)^3).$$

Переписывая теперь данное разложение в переменных ξ, видим, что при $x \rightarrow x_0$ выполнено равенство

$$\psi_0(x) = \psi_0(x_0) + \epsilon \psi_0'(x_0)\xi + \frac{1}{2}\epsilon^2 \psi_0''(x_0)\xi^2 + O(\epsilon^3\xi^3).$$
Отсюда согласно методу согласования асимптотических разложений выводим, что внутреннее разложение для ψ^\pm должно выглядеть следующим образом:

$$\psi_{\varepsilon^+}(\xi) = \psi_0(\xi) + \varepsilon v_1(\xi) + \varepsilon^2 v_2(\xi) + \cdots, \quad (8)$$

причём должны быть выполнены соотношения

$$v_i(\xi) = \frac{\psi_i^{(i)}(x_0)}{i!} \xi^i + o(|\xi|^i), \quad \xi \to \pm \infty, \quad i = 0, 1, 2. \quad (9)$$

Подставим теперь (8) и (6) в уравнение (4), перейдём к переменной ξ и соберем коэффициенты при одинаковых степенях ε. Такая процедура приводит к следующим дифференциальным уравнениям:

$$v_0''(\xi) = 0, \quad v_1'(\xi) = 0, \quad v_2''(\xi) = (V(\xi) - \lambda_0) v_0(\xi), \quad -\infty < \xi < \infty.$$

Полученные уравнения для v_1 и асимптотики (9) определяют функции v_i:

$$v_0(\xi) \equiv \psi_0(x_0), \quad v_1(\xi) = \psi_0'(x_0) \xi + c_1,$$

$$v_2(\xi) = -\frac{1}{2} \lambda_0 \psi_0(x_0) \xi^2 + i_2(\xi) + c_2 \xi + c_3,$$

$$\bar{v}_2(\xi) = \psi_0(x_0) \int G_1(\xi - t) V(t) \, dt,$$

где c_i некоторые пока произвольные константы,

$$G_1(t) = \begin{cases} 0, & t < 0, \\ t, & t \geq 0. \end{cases}$$

Функция v_2, очевидно, имеет следующее поведение на бесконечности:

$$v_2(\xi) = \begin{cases} -\lambda_0 \psi_0(x_0) \xi^2/2 + c_2 \xi + c_3, & \xi \to -\infty, \\ -\lambda_0 \psi_0(x_0) \xi^2/2 + (c_2 + \psi_0(x_0) \langle V \rangle) \xi + (c_3 - \psi_0(x_0) \langle V \rangle), & \xi \to +\infty. \end{cases}$$

С учитом полученных асимптотик, равенства (8) и уравнения (5), взятого в точке x_0, получим

$$\psi_{\varepsilon^+}(x) = \begin{cases} \sum_{i=0}^{2} \frac{\psi_i^{(i)}(x_0)}{i!}(x - x_0)^i + \varepsilon (c_1 + c_2(x - x_0)) + \cdots, & \xi \to -\infty, \\ \sum_{i=0}^{2} \frac{\psi_i^{(i)}(x_0)}{i!}(x - x_0)^i + \varepsilon (c_1 + (c_2 + \psi_0(x_0) \langle V \rangle)(x - x_0)) + \cdots, & \xi \to +\infty. \end{cases}$$

Отсюда в силу метода согласования асимптотических разложений следует, что функции ψ^\pm_1 должны удовлетворять соотношениям

$$\psi_1^- (x) = c_1 + c_2(x - x_0) + o(|x - x_0|), \quad x \to x_0 - 0,$$

$$\psi_1^+ (x) = c_1 + (c_2 + \psi_0(x_0) \langle V \rangle)(x - x_0) + o(|x - x_0|), \quad x \to x_0 + 0,$$
которые фактически являются граничными условиями для функций ψ^\pm_1:

$$
\psi^-_1(x_0) = \psi^+_1(x_0), \quad \frac{d}{dx}\psi^-_1(x_0) = \frac{d}{dx}\psi^+_1(x_0) + \psi_0(x_0)\langle V \rangle. \tag{10}
$$

Определим теперь функции ψ^\pm_1. Для этого подставим (6), (7) в (4) и соберем коэффициенты при первой степени ε:

$$
-\frac{d^2\psi^-_1}{dx^2} = \lambda_0\psi^-_1 + \lambda_1\psi_0, \quad x \in (0, x_0), \quad \psi^-_1(0) = 0,
$$

$$
-\frac{d^2\psi^+_1}{dx^2} = \lambda_0\psi^+_1 + \lambda_1\psi_0, \quad x \in (x_0, 1), \quad \psi^+_1(1) = 0. \tag{11}
$$

В рассматриваемом здесь одномерном случае собственное значение λ_0 и собственная функция ψ_0 выписываются явно: $\lambda_0 = \pi^2m^2$, $\psi_0(x) = \sqrt{2}\sin(\pi mx)$, $m \in \mathbb{N}$. Учитывая данный факт, легко найти общее решение задачи (11):

$$
\psi^-_1 = \frac{\lambda_1}{2\lambda_0}x\psi_0 + c_4\psi_0, \quad \psi^+_1 = \frac{\lambda_1}{2\lambda_0}(x - 1)\psi_0 + c_5\psi_0,
$$

где c_4, c_5 константы. Подставляя теперь данные равенства в краевые условия (10), приходим к системе

$$
\lambda_1\psi'_0(x_0) + 2\lambda_0(c_4 - c_5)\psi_0(x_0) = 0,
\lambda_1\psi_0(x_0) - 2(c_4 - c_5)\psi'_0(x_0) = 2\psi_0(x_0)\langle V \rangle.
$$

Решая эту систему с использованием очевидного равенства $(\psi'(x_0))^2 + \lambda_0\psi_0^2(x_0) = 2\lambda_0$, получаем выражение (3) для $n = 1$ и

$$
c_4 - c_5 = -\frac{\psi_0(x_0)\psi'_0(x_0)\langle V \rangle}{2\lambda_0}.
$$

Функции $\psi^\pm_1(x)$ определены с точностью до слагаемого $c_6\psi_0$. Константу c_6 выбираем так, чтобы удовлетворить равенства $c_1 \equiv \psi^+_1(x_0) = 0$. Такое требование означает, что определяет вид функций ψ^\pm_1:

$$
\psi^-_1(x) = \frac{\psi_0(x_0)\langle V \rangle}{2\lambda_0}(x\psi_0(x_0)\psi'_0(x) - x_0\psi_0(x)\psi'_0(x_0)),
$$

$$
\psi^+_1(x) = \frac{\psi_0(x_0)\langle V \rangle}{2\lambda_0}((x - 1)\psi_0(x)\psi'_0(x) - (x_0 - 1)\psi_0(x)\psi'_0(x_0)). \tag{12}
$$
4. ПОСТРОЕНИЕ АСИМПТОТИК
В ДВУМЕРНОМ И ТРЕХМЕРНОМ СЛУЧАЯХ

В настоящем разделе будут построены формальные асимптотики собственного значения и соответствующих собственных функций краевой задачи (4) в случаях $n = 2, 3$ в условиях сформулированной выше теоремы.

Как и в предыдущем разделе, для построения асимптотик мы будем применять метод согласования асимптотических разложений. Асимптотику собственного значения будем искать в виде

$$\lambda^* = \lambda_0 + \varepsilon^n \lambda_n + \ldots$$ \hspace{1cm} (13)

Внешнее разложение для собственной функции в окрестности точки x_0 будем строить следующим образом:

$$\psi^*(x) = \psi_0(x) + \varepsilon^n \psi_n(x) + \ldots, \quad x \in \Omega \setminus \{x_0\}.$$ \hspace{1cm} (14)

В окрестности точки $x_0 = (x_0^1, \ldots, x_0^n)$ введем новые "растянутые" переменные $\xi = (\xi_1, \ldots, \xi_n), \quad \xi_i = (x_i - x_i^0)\varepsilon^{-1}$. Положим $r = |x - x_0|, \quad \rho = |\xi|$.

Так как $\psi_0 \in C^\infty(\Omega)$, то в окрестности точки x_0 функция $\psi_0(x)$ удовлетворяет равенству

$$\psi_0(x) = P_0 + P_1(x - x_0) + P_2(x - x_0) + O(r^3), \quad r \to 0,$$ \hspace{1cm} (15)

где P_i — полиномы степени i. Отметим, что в обоих случаях ($n = 2, 3$) в силу уравнения (3) справедливо равенство

$$-\Delta P_2 = \lambda_0 P_0.$$ \hspace{1cm} (16)

Переписывая (15) в переменных ξ, получаем, что при $r \to 0$ справедливо

$$\psi_0(x) = P_0 + \varepsilon P_1(\xi) + \varepsilon^2 P_2(\xi) + O(\varepsilon^3 \rho^3).$$

Отсюда в силу метода согласования асимптотических разложений следует, что внутреннее разложение для обоих случаев ($n = 2, 3$) должно иметь вид

$$\psi^{(n)}(\xi) = v_0(\xi) + \varepsilon v_1(\xi) + \varepsilon^2 v_2(\xi) + \ldots,$$ \hspace{1cm} (17)

причем функции v_i должны удовлетворять соотношениям

$$v_j(\xi) = P_j(\xi) + o(\rho^2), \quad \rho \to \infty, \quad j = 0, 1, 2,$$ \hspace{1cm} (18)

где $P_0(\xi) \equiv P_0$. Подставив (13), (17) в (4), перейдем к переменным ξ и, вычислив коэффициенты при одинаковых степенях ε, в обоих случаях $n = 2, 3$ получим уравнения

$$\Delta \xi v_0 = 0, \quad \Delta \xi v_1 = 0, \quad \xi \in \mathbb{R}^n,$$ \hspace{1cm} (19)

$$\Delta \xi v_2 = (V(\xi) - \lambda_0) v_0, \quad \xi \in \mathbb{R}^n.$$ \hspace{1cm} (20)

Легко видеть, что функции

$$v_0(\xi) = P_0, \quad v_1(\xi) = P_1(\xi)$$ \hspace{1cm} (21)
удовлетворяют уравнениям (19) и условиям (18). Учитывая (16), проверяем, что функция

\[v_2(\xi) = P_2(\xi) + \bar{v}_2(\xi), \quad (22) \]

\[\bar{v}_2(\xi) = P_0 \int_{\mathbb{R}^n} V(\eta)G_n(\xi - \eta) \, d\eta, \quad (23) \]

gде

\[G_2(t) = \frac{1}{2\pi} \ln |t|, \quad G_3(t) = -\frac{1}{4\pi |t|} \]

является решением уравнения (20). Из (23) следует, что функция \(\bar{v}_2 \) имеет следующую асимптотику при \(\rho \to \infty \):

\[\bar{v}_2(\xi) = P_0(V)G_n(\rho) + O(\rho^{-n+1}). \quad (24) \]

Из соотношений (21), (22), (24) вытекает, что при \(\rho \to \infty \)

\[\psi^{in}_\varepsilon(\xi) = \sum_{i=0}^{2} \varepsilon^i P_i(\xi) + \varepsilon^2 P_0(V)G_n(\rho) + \cdots. \]

Переписывая теперь данное равенство в переменных \(x \) и следуя методу согласования асимптотических разложений, заключаем, что внешнее разложение при \(r \to 0 \) должно иметь следующую асимптотику:

\[\psi^{ex}_\varepsilon(x) = \sum_{i=0}^{2} P_i(x - x_0) + \varepsilon^2 \frac{P_0(V)}{2\pi} \ln r - \varepsilon^2 c_7 \ln \varepsilon + \cdots, \quad n = 2, \quad (25) \]

\[\psi^{ex}_\varepsilon(x) = \sum_{i=0}^{2} P_i(x - x_0) - \varepsilon^3 \frac{P_0(V)}{4\pi r} + \cdots, \quad n = 3, \quad (26) \]

gде \(c_7 = P_0(V)/(2\pi) \). Как видно из полученных соотношений, в случае \(n = 2 \) асимптотике внешнего разложения появляется член порядка \(O(\varepsilon^2 \ln \varepsilon) \). Это означает, что, вообще говоря, в двумерном случае во внешнем разложении придется ввести член такого же порядка. Вместе с тем, если ввести во внутреннем разложении дополнительное слагаемое \(\varepsilon^2 v_{2,1} \ln \varepsilon \) с асимптотией

\[v_{2,1}(\xi) = \frac{P_0(V)}{2\pi} + o(1), \quad \rho \to \infty, \quad (27) \]

член порядка \(O(\varepsilon^2 \ln \varepsilon) \) исчезнет в (25). С учетом данного дополнительного слагаемого внутреннее разложение для собственной функции в двумерном случае выглядит так:

\[\psi^{in}_\varepsilon(\xi) = \psi_0(\xi) + \varepsilon v_1(\xi) + \varepsilon^2 v_2(\xi) + \varepsilon^2 v_{2,1}(\xi) \ln \varepsilon + \cdots. \quad (28) \]

Подставив (28) и (13) в (4) и выписав коэффициенты при \(\varepsilon^2 \ln \varepsilon \), получаем уравнение для \(v_{2,1} \):

\[\Delta_\xi v_{2,1} = 0, \quad \xi \in \mathbb{R}^2. \quad (29) \]
Очевидно, что функция

$$v_{2,1}(\xi) = \frac{1}{2\pi} P_0(V)$$

является решением уравнения (29) с асимптотикой (27). Подставив в (28) вместо v_2 и $v_{2,1}$ их асимптотики на бесконечности (см. (21) и (24), (30)) и переписав последние в переменных x, получаем, что при $\rho \to \infty$ должно быть выполнено соотношение (25) с $c_7 = 0$. Следуя методу согласования асимптотических разложений, из (14), (25) и (26) с $c_7 = 0$ заключаем, что функция ψ_n из (14) должна удовлетворять следующей асимптотике:

$$\psi_n(x) = P_0(V)G_n(r) + O(1), \quad r \to 0.$$

(31)

Подстановка (13) и (14) в (4) приводит к краевой задаче для ψ_n:

$$-\Delta \psi_n = \lambda_n \psi_n + \lambda_n \psi_0, \quad x \in \Omega \setminus \{x_0\}, \quad \psi_n = 0, \quad x \in \partial \Omega.$$

(32)

Существование решения данной задачи, имеющего асимптотику (31), доказывается достаточно стандартным образом (см., например, [3, гл. 3 и [13]). Выведем условия разрешимости данной задачи. Умножим уравнение (32) на ψ_0 и проинтегрируем полученное равенство по области $\Omega_d = \Omega \setminus \{x: \|x - x_0\| \leq d\}, \quad d$ малое число:

$$-\int_{\Omega_d} \psi_0 \Delta \psi_n \, dx = \lambda_n \int_{\Omega_d} \psi_0 \psi_n \, dx + \lambda_n \int_{\partial \Omega_d} \psi_0^2 \, ds.$$

В левой части данного равенства проведем интегрирование по частям, тогда получим

$$\int_{|x - x_0| = d} \left(\psi_0 \frac{\partial \psi_n}{\partial r} - \psi_n \frac{\partial \psi_0}{\partial r} \right) \, ds = \lambda_n \int_{\Omega_d} \psi_0^2 \, ds.$$

Подставим в левую часть данного равенства формулы (15) и (31) и перейдем затем к пределу при $d \to 0$. В результате с учетом керамировки ψ_0 приходим к формуле (3). Функция ψ_n определена с точностью до слагаемого $C\psi_0$. Конкретный выбор постоянной C для дальнейших рассуждений несуществен; для определенности мы будем предполагать, что константа C выбрана из условия $\int_{\Omega} \psi_n \psi_0 \, dx = 0$.

Таким образом, формальная асимптотика собственного значения имеет вид (13), где λ_n определяется формулой (3).

5. ОБОСНОВАНИЕ АСИМПТОТИЧЕСКИХ РАЗЛОЖЕНИЙ

В настоящем разделе получена оценка остатка для асимптотических разложений, построенных в разделах 3, 4.

Лемма 1. Справедливо утверждение теоремы.

Собственную функцию Ψ, соответствующую собственному значению λ^2, можно выбрать так, что в норме $H^1(\Omega)$ она будет иметь следующую асимптотику:

$$\Psi(x) = \psi_0(x) + \varepsilon^n \psi_n(x) +$$

$$+ \varepsilon^2 \psi_0(x_0) \int_{\mathbb{R}^n} V(\eta) \left(G_n \left(\frac{x - x_0}{\varepsilon} - \eta \right) - G_n \left(\frac{x - x_0}{\varepsilon} \right) \right) \, d\eta + O(\mu_n(\varepsilon)).$$

(33)
где \(\psi_1(x) = \psi_1^\pm(x) \) при \(\pm(x - x_0) > 0 \), функция \(\psi_1^\pm \) определяются соотношениями (12), \(\psi_2, \psi_3 \) — решения краевой задачи (32) с асимптотикой (31).

Замечание 3. Асимптотическое разложение собственной функции \(\Phi \) (33) является суммой внешнего и внутреннего разложений, построенных в разделах 3, 4, из которой в соответствии с методом согласования асимптотических разложений были вычленены согласованные члены данных разложений:

\[
\psi_0(x) + \varepsilon^n \psi_n(x) + \varepsilon \psi_1(\xi) + \varepsilon^2 \psi_2(\xi) -
(P_0 + \varepsilon P_1(\xi) + \varepsilon^2 P_2(\xi) + \varepsilon^2 \psi_0(x_0) G_n(\varepsilon)(V)) = \psi_0(x) + \varepsilon^n \psi_n(x) + \varepsilon^2 \psi_2(\xi),
\]

\[
\psi_2(\xi) = \psi_0(x_0) \int_{\mathbb{R}^n} V(\eta)[G_n(\xi - \eta) - G_n(\xi)] \, d\eta.
\]

Доказательство леммы. Обозначим \(\lambda^\varepsilon = \lambda_0 + \varepsilon^n \lambda_n, \phi_\varepsilon(x) = \psi_0(x) + \varepsilon^n \psi_n(x) + \varepsilon^2 \psi_2(\xi) \). Начнем с одномерного случая. Покажем, что асимптотические разложения, построенные в разделе 3, удовлетворяют краевой задаче (4) с точностью до достаточно малой невязки. Положим

\[
R_\varepsilon(x) = \varepsilon^2 \psi_0(x_0)(tV(t))x, \quad \tilde{\psi}_\varepsilon(x) = \phi_\varepsilon(x) - R_\varepsilon(x).
\]

Учитывая определение функции \(\psi_1 \), нетрудно убедиться, что функция \(\tilde{\psi}_\varepsilon(x) \) является элементом \(H^2(\Omega) \) и обращается в нуль на границе области \(\Omega \). Прямыми вычислениями с учетом уравнений (11) проверяем, что функция

\[
f_\varepsilon = (\mathcal{H}_\varepsilon - \lambda^\varepsilon) \tilde{\psi}_\varepsilon
\]

имеет следующий вид:

\[
f_\varepsilon = -\sum_{i=1}^3 f_{\varepsilon,i},
\]

\[
f_{\varepsilon,1}(x) = \varepsilon^2 \lambda_1 \psi_1 + \left(\lambda^\varepsilon - V\left(\frac{x - x_0}{\varepsilon}\right)\right)R_\varepsilon,
\]

\[
f_{\varepsilon,2}(x) = -V\left(\frac{x - x_0}{\varepsilon}\right)(\psi_0(x) - \psi_0(x_0) + \varepsilon \psi_1),
\]

\[
f_{\varepsilon,3}(x) = \varepsilon^2 \left(\lambda^\varepsilon - V\left(\frac{x - x_0}{\varepsilon}\right)\right)\psi_2(\xi).
\]

Функция \(\psi_1 \) непрерывна в \(\bar{\Omega} \), поэтому с учетом определения \(R_\varepsilon \) получаем \(\|f_{\varepsilon,1}\| = O(2^\varepsilon) \), где \(\| \cdot \| \) — норма в \(L_2(\Omega) \). Функция \(V((x - x_0)/\varepsilon) \) не равна нулю лишь в малой (порядка \(O(\varepsilon) \)) окрестности точки \(x_0 \). В этой окрестности в силу гладкости функции \(\psi_0(x) \) верна равномерная по \(\varepsilon \) и \(x \) оценка

\[
|\psi_0(x) - \psi_0(x_0)| \leq C\varepsilon.
\]
Отсюда с учетом ограниченности и финитности функций \(V \) и ограниченности функции \(\psi_1 \) (см. (12)) получаем

\[
\| f_{\varepsilon,2} \| ^2 \leq C \varepsilon^2 \| V \left(\frac{x-x_0}{\varepsilon} \right) \| ^2 \leq C \varepsilon^3,
\]
откуда следует \(\| f_{\varepsilon,2} \| = O(\varepsilon^{3/2}) \). По определению функция \(\hat{\psi}_2(\xi) \) ограниченная, а потому \(\| f_{\varepsilon,3} \| = O(\varepsilon^2) \). Следовательно,

\[
\| f_\varepsilon \| = O(\varepsilon^{3/2}). \tag{34}
\]

Собственное значение \(\lambda^\varepsilon \) является простым полюсом резольвенты оператора \(\mathcal{H}_\varepsilon \) (так как оператор самосопряжен, см. [14], гл. 5, § 3.5). Используя данный факт, аналогично [8], [13] можно показать, что при \(\lambda \) близких к \(\lambda_0 \), для всех \(f \in L_2(\Omega) \) справедливо представление

\[
(\mathcal{H}_\varepsilon - \lambda)^{-1} f = \frac{\psi^\varepsilon}{\lambda - \lambda^\varepsilon} \int_{\Omega} \psi^\varepsilon f dx + u_\varepsilon, \tag{35}
\]
где \(\psi^\varepsilon \) нормированная в \(L_2(\Omega) \) собственная функция, соответствующая \(\lambda^\varepsilon \), а функция \(u_\varepsilon \) удовлетворяет оценке

\[
\| u_\varepsilon \|_1 \leq C \| f \|. \tag{36}
\]
Здесь константа \(C \) не зависит от \(\varepsilon \), \(\lambda \) и \(f \), \(\| \cdot \|_1 \) — норма в \(H^1(\Omega) \). Представление (35) и оценка (36) верны для любой разрезности.

Применив теперь представление (35) к функции \(f_\varepsilon \) с \(\lambda = \lambda^\varepsilon \), с учетом нормированности \(\psi^\varepsilon \) и очевидного равенства \(\hat{\psi}^\varepsilon = (\mathcal{H}_\varepsilon - \lambda^\varepsilon)^{-1} f_\varepsilon \) получаем очевидную оценку:

\[
\| \hat{\psi}^\varepsilon - u_\varepsilon \| \leq \frac{\| f_\varepsilon \|}{|\lambda^\varepsilon - \lambda^\varepsilon|}. \tag{37}
\]
Так как \(\| u_\varepsilon \| \) мала в силу (34), (36), а функция \(\hat{\psi}^\varepsilon \) построена очевидно, сходится к \(\psi_0 \) в \(L_2(\Omega) \) при \(\varepsilon \to 0 \), то из (34), (37) немедленно следует:

\[
|\lambda^\varepsilon - \lambda^\varepsilon| \leq C \| f_\varepsilon \| = O(\varepsilon^{3/2}),
\]
что доказывает теорему в одномерном случае. Далее, первое слагаемое правой части (35) является, очевидно, собственной функцией, соответствующей \(\lambda^\varepsilon \). Обозначим эту собственную функцию через \(\Psi_{\varepsilon} \). В силу представления (35) для функции \(f_\varepsilon \), оценок (34), (36) и равенства \(\| R_\varepsilon \|_1 = O(\varepsilon^2) \) имеем

\[
\| \psi_\varepsilon - \Psi_{\varepsilon} \|_1 \leq \| \hat{\psi}^\varepsilon - \Psi_{\varepsilon} \|_1 + \| R_\varepsilon \|_1 = \| u_\varepsilon \|_1 + \| R_\varepsilon \|_1 = O(\varepsilon^{3/2}),
\]
что доказывает асимптотику (33) в одномерном случае.

В случаях \(n = 2, 3 \) доказательство в целом аналогично. Отличается лишь вид функции \(R_\varepsilon \), так как в этом случае она более сложная и содержит большие число членов.
Для того чтобы определить ее, необходимо ввести в рассмотрение следующие дополнительные функции. Положим

$$v_{3}(\xi) = \int_{\mathbb{R}^n} V(\eta)P_{1}(\eta)(G_{n}(\xi - \eta) - G_{n}(\xi))\,d\eta.$$

Функцию $\hat{\psi}_{n+1}$ определим как гармоническую в Ω, удовлетворяющую однородному граничному условию Дирихле на границе и имеющую следующее поведение при $x \to x_0$:

$$\hat{\psi}_{n+1}(x) = \langle P_{1}(V)G_{n}(r) + O(1) \rangle.$$

В малой окрестности границы Ω выведем координаты (s, τ), где s координата на поверхности $\partial \Omega$, τ расстояние от точки x до $\partial \Omega$, измеренное в направлении внешней нормали. Пусть $\chi(x)$ — бесконечно дифференцируемая срастающая функция, равная нулю вне окрестности $\partial \Omega$, в которой определены координаты (s, τ), и единичная в некоторой меньшей окрестности. Также предполагается, что коэффициент $\chi(x)$ и $V((x - x_0)/\varepsilon)$ не пересекаются для всех достаточно малых ε. Положим

$$g(s, \varepsilon) := \varepsilon^2 \int_{\mathbb{R}^n} V(\eta)(P_{0} + \varepsilon P_{1}(\eta))(G_{n}(\xi - \eta) - G_{n}(\xi))\,d\eta, \quad x \in \partial \Omega.$$

Нетрудно убедиться, что

$$g(s, \varepsilon) = \varepsilon^{n+1}g(s, \varepsilon), \quad (38)$$

где $\tilde{g}(s, \varepsilon)$ бесконечно дифференцируемая по $s \in \partial \Omega$ и $\varepsilon \in [0, \varepsilon_0]$ функция, ε_0 достаточно малое число. Определим функцию R_ε следующим образом:

$$R_\varepsilon(x) := \varepsilon^3g_\varepsilon(\xi) + \varepsilon^{n+1}\hat{\psi}_{n+1}(x) - \tilde{g}(s, \varepsilon)\chi(x).$$

Используя данную функцию R_ε, определим $\hat{\psi}$ и f_ε так же, как и в одномомерном случае. Прямыми вычислениями проверяется, что функция $\hat{\psi}(x)$ является элементом $H^2(\Omega)$ и удовлетворяет однородному краевому условию Дирихле на границе $\partial \Omega$, а функция f_ε представлена в виде

$$f_\varepsilon = -\sum_{i=1}^{3}f_{\varepsilon,i},$$

$$f_{\varepsilon,1}(x) = \varepsilon^2\lambda_{n}\psi_{n}(x) - \left(\Delta - V\left(\frac{x - x_0}{\varepsilon}\right) + \lambda^2\right)g(x, \varepsilon)\chi(x),$$

$$f_{\varepsilon,2}(x) = -V\left(\frac{x - x_0}{\varepsilon}\right)(\psi_{0}(x) - P_{0} - P_{1}(x - x_0) + \varepsilon^{n}\psi_{n}(x)), $$

$$f_{\varepsilon,3}(x) = \left(\lambda^2 - V\left(\frac{x - x_0}{\varepsilon}\right)\right)(\varepsilon^{n+1}\hat{\psi}_{n+1} + \varepsilon^2v_2(\xi) + \varepsilon^3v_3(\xi)).$$

Учитывая равенство (38) и принадлежность функции ψ_{n} к $L_2(\Omega)$, нетрудно проверить, что $\|f_{\varepsilon,1}\| = O(\varepsilon^{n+1})$. Функция $V((x - x_0)/\varepsilon)$ не равна нулю лишь в малой окрестности точки x_0, где функция $\psi_{0}(x) - P_{0} - P_{1}(x)$ оценивается по модулю величиной порядка $O(\varepsilon^2)$, а потому вектор $\|f_{\varepsilon,2}\| = O(\varepsilon^{n/2+2})$. Используя оценку равенства $v_i(\xi) = O(\varepsilon^{-n+1})$ при $\xi \to \infty$ и принадлежность ψ_{n+1} к $L_2(\Omega)$, нетрудно убедиться, что $\|f_{\varepsilon,3}\| = O(\mu_n(\varepsilon))$. Дальнейшее доказательство проводится аналогично одномерному случаю. При этом для доказательства асимптотики собственной функции следует лишь учесть, что $\|R_\varepsilon\|_1 = O(\varepsilon^{n/2+2})$. Лемма полностью доказана.
Благодарности. Авторы выражают благодарность Р. Р. Гадыльшину за постоянное внимание к работе и полезные замечания. Также авторы благодарят Н. Эксерна за обсуждение результатов работы. Д. И. Борисова благодарит за гостеприимство Университет Штутгарт (Германия), где была выполнена часть этой работы. Работа выполнена при частичной финансовой поддержке программы "Ведущие научные школы" (НШ-1446.2003.1). А. Р. Бикметов поддержит грантом РФФИ (№ 05-01-97912-м_ги-д). Д. И. Борисова программой "Университеты России" (УР 04.01.484).

Список литературы

