В. М. Бухштабер, Группы полиномиальных преобразований прямой, неформальные симплектические многообразия и алгебра Ландвебера–Новикова,
УМН, 1999, том 54, выпуск 4(328), 161–162

DOI: https://doi.org/10.4213/rm186

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
19 марта 2019 г., 22:40:07
ГРУППЫ ПОЛИНОМИАЛЬНЫХ ПРЕОБРАЗОВАНИЙ ПРЯМОЙ,
НЕФОРМАЛЬНЫЕ СИМПЛЕКТИЧЕСКИЕ МНОГООБРАЗИЯ
И АЛГЕБРА ЛАНДВЕБЕРА—НОВИКОВА

В. М. БУХТАБЕР

В настоящей работе мы даем ясную конструкцию неформальных симплектических многообразий, предложенных в работе [1], и, следуя [2], устанавливаем связь их когомологий с когомологией алгебры Ландвебера—Новикова.

Пусть k — некоторое коммутативное кольцо с единицей. Обозначим через $V_n(k)$ пространство всех полиномов над k вида

$$P_x(t) = t + \sum_{i=1}^{n} x_i t^{i+1}.$$

Относительно операции подстановки $mod \ t^{n+2}$

$$P_x * P_y(t) = P_y(P_x(t)) \ mod \ t^{n+2}$$

пространство $V_n(k)$ является алгебраической группой. Отождествим $V_n(k)$ с k^n, состояния полиному $P_x(t)$ вектор $x = (x_1, \ldots, x_n)$. Таким образом мы получим в k^n структуру алгебраической группы с умножением $x * y = x$, которое линейно по y и невлияет по x.

Пусть \mathbb{R} — поле вещественных чисел и \mathbb{Z} — поле целых чисел. Группу $\Gamma_n := V_n(\mathbb{R}) = \mathbb{R}^n$ будем называть группой полиномиальных преобразований прямой, $V_n(\mathbb{Z}) = \mathbb{Z}^n$ — канонической решёткой Γ_n в V_n.

Обозначим через M^n факторпространство группы V_n по правому действию ее подгруппы Γ_n.

Как будет показано ниже, эти многообразия дают серию неформальных симплектических многообразий из [1].

В качестве кольца функций на $V_n(k)$ возьмем кольцо полиномов $k[x_1, \ldots, x_n]$. Введем, как обычно, оператор правого сдвига на группе $V_n(k)$:

$$R_x^y f(x) = f(x * y) = \sum_i \varphi_I(f(x)) y^i,$$

где $I = (i_1, \ldots, i_n)$ — мультипликатор и $y^i = y_1^{i_1} \cdots y_n^{i_n}$. Тогда алгебра $A(k)$, порожденная всеми операторами φ_I является алгеброй всех линейных дифференциальных операторов на $k[x_1, \ldots, x_n]$, инвариантных относительно левого сдвига $L_x^y f(x) = f(y * x)$ на группе $V_n(k)$.

Лемма 1. Алгебра $A(k)$ мультипликативно порождается операторами

$$\xi_i = \partial_i + \sum_{q=1}^{n} a_{i q}(x) \partial_q, \quad i = 1, \ldots, n,$$

где $\partial_i = \partial/\partial x_i$ и $a_{i q}(x)$ — коэффициент при t^{q+1} у полинома $P_x(t)^{i+1}$. Эти операторы связаны коммутативными соотношениями $[\xi_i, \xi_j] = (j-i)\xi_{i+j}$, где ξ_q представляет обычным видом при $q > n$.

В случае $k = \mathbb{R}$ операторы $\{\xi_i\}$ задают базис в алгебре Ли линейнвариантных векторных полей на группе V_n, причем оператору ξ_m соответствует однохарактерная группа $\varphi_m(s)$ полиномов $t(1 - mst^m)^{-1/m \ mod \ t^{n+2}}$.

Пусть $\omega_1, \ldots, \omega_n$ — линейнвариантные дифференциальные 1-формы на V_n, и $\omega = \sum_{i=1}^{n} \omega_i \xi_i$ — соответствующая каноническая линейнвариантная 1-форма со значениями в алгебре Ли (форма
Маурера–Картана). Уравнение Маурера–Картана \(d\omega = -\frac{1}{2}[\omega, \omega] \) в нашем случае принимает вид

\[
d\omega_q = -\frac{1}{2} \sum_{i=1}^{q-1} (q - 2i)\omega_i \wedge \omega_{q-i}.
\]

Заметим, что \(d\omega_1 = d\omega_2 = 0 \) и формула (2) не запись от \(n \).

Для каждого \(n \) имеет место функциональная по \(k \) точка последовательность групп

\[
0 \rightarrow k \rightarrow V_{n+1}(k) \rightarrow V_n(k) \rightarrow 0.
\]

Из этой последовательности получаем, что для каждого \(n \) имеет место гладкое расслоение \(\pi_n : M^{n+1} \to M^n \) сечением окружность \(S^1 \).

Лемма 2. Для форм кринизма \(\Omega_n \) формы связности \(\omega_{n+1} \) расслоения \(\pi \) имеет место соотношение

\[
\pi^*\Omega_n = d\omega_{n+1}.
\]

Теорема 1. Многообразие \(M^n \) с формой \(\Omega_n \) является симплектическим (в случае нечетного \(n \) это означает, что форма \(\Omega_n \) имеет максимально возможное \(n \) ранг \((n-1) \)).

Доказательство ведется из соотношения формула (2) и (3), а также непосредственной проверки того, что 2-форма в одной части формулы (2) имеет максимально возможный ранг.

Многообразие \(M^n \) является пространством Эйнштейна–Маклайена \(K(\Gamma, n, 1) \) и классифицирующим пространством \(K \Gamma \) группы \(\Gamma \).

Используя технику \(B \)-резольвент [3], получаем, что имеет место

Теорема 2. \(H^*(M^n, \mathbb{Z}) = H^*(\Gamma^n, \mathbb{Z}) = \text{Ext}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}) \).

Как показано в [2], алгебра Ландшауфа–Новикова \(S \) в комплексных координатах изоморфна алгебре \(\text{lim}_n A_n(\mathbb{Z}) \), где обратный предел соответствует обратной последовательности групп

\[
\cdots \rightarrow \Gamma_{n+1} \rightarrow \Gamma_n \rightarrow \cdots.
\]

Таким образом, для каждого \(n \) мы получим гомоморфизм

\[
\lambda_{q,n} : H^q(M^n, \mathbb{Z}) \to \text{Ext}_{\mathbb{Z}}^1(\mathbb{Z}, \mathbb{Z}) = H^q(S).
\]

Известно, что \(H^q(S) \otimes \mathbb{Q} = \mathbb{Q} \otimes \mathbb{Q} = \mathbb{Q} \) для всех \(q \) (см. [4]), умножение в конце \(H^*(S) \otimes \mathbb{Q} \) тривиально, и все элементы представляют собой производные Масси от двух образующих группы \(H^1(S) \) (см. [5]). Заметим, что \(\lambda_{1,n} \) является изоморфизмом при \(n \geq 2 \). Неформализовано многообразий \(M^{2n} \), \(n \geq 2 \) доказано в [6] как следствие того, что в конце восклицаний \(H^*(M^{2n}, \mathbb{Q}) \) являются нетривиальные производные Масси.

Естественно распространить описанные в данной работе конструкции на случай групп полиномиальных преобразований Евклидовых пространства \(\mathbb{R}^n \). Уже в случае \(m = 2 \) мы получаем нетривиальный аналог \(S^2 \) алгебры Ландшауфа–Новикова \(S \) для новой теории куберовских функций, которую естественно назвать \(2D \)-теорией куберовских куберовских. Алгебра \(S^2 \) содержит в качестве подалгебры квадратный двойной алгебры \(S \), опиная в [6]. Этим результатом мы попытаемся дополнить эту статью.

СПИСОК ЛИТЕРАТУРЫ