М. В. Зайцев, С. П. Мищенко, Многообразия супералгебр Ли полиномиального роста, УМН, 1997, том 52, выпуск 2(314), 165–166

DOI: https://doi.org/10.4213/rm833

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением
http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
15 марта 2019 г., 23:27:54
МНОГООБРАЗИЯ СУПЕРМАГЕБЛЕЙ ЛИ ПОЛИНОМИАЛЬНОГО РОСТА

М. В. Зайцев, С. П. Мищенко

Пусть \mathbf{V} — некоторое многообразие супералгебр Ли над полем F нульевой характеристики. Все необходимые определения и свойства супералгебр Ли можно найти в [1] или [2]. Рассмотрим относительно свободную супералгебру $L = L_0 + L_1$ с n членами порождающими x_1, \ldots, x_n и n нечетными порождающими y_1, \ldots, y_n. Обозначим через $P_n(V)$ n-мерное пространство, порожденное элементами степени n, получаемыми отсюда элементов $z_i = x_i + y_i$, где $i = 1, \ldots, n$. Разрезание этого пространства обозначим через $c_n(V)$. Последовательность членов $(c_n(V))$, $n = 1, 2, \ldots$, является характеризующей многообразия \mathbf{V}. Рост этой последовательности называют ростом многообразия \mathbf{V}.

В статье изучаются многообразия супералгебр Ли с полиномиальным ростом. Основной результат является теорема 2, дающая очевидное определение многообразий супералгебр Лий полиномиального роста на языке коды. Показано также, что не существует многообразий супералгебр Лий, рост которых больше любого полинома, но меньше любой экспоненты.

Обозначим через $N_c(A)$ множество, состоящее из всех алгебр с убывающими индексами степени не выше c. Договоримся опускать в скобки случаи их доконтурированной расстановки.

Для выделения основных результатов необходимо получить ряд необходимых и достаточных условий полиномиального роста.

ТЕОРЕМА 1. Пусть $c_{n+1}(V) < 2^{n/2}$, при некотором n для многообразия супералгебр \mathbf{L} и \mathbf{V} над полем F. Кроме того, пусть в \mathbf{V} выполняется тождество $(ad y)^n \equiv 0$ для нечетной переменной y. Тогда для некоторого s справедливо включение $\mathbf{V} \subset N_s(A)$.

Квадратичные случаи оцениваются целым числом.

Обозначим через $H = H_0 \oplus H_1$ четырехмерную супералгебру Ли с базисом a, b, u, v и табличей умножения $ab = 0$, $uv = 0$, $au = u$, $av = u$, $bv = v$, $a^2 = 2b$, $b^2 = a^2 = v^2 = 0$, в которой $H_0 = \langle b, v \rangle$, $H_1 = \langle a, u \rangle$. Отметим, что $(ad b)^n$ — нулевое отображение на H при любом n, поскольку в H не выполняется тождество $(ad z)^n \equiv 0$ для нечетной переменной z при каком-то n.

Лемма 1. Для многообразия супералгебр \mathbf{L} и \mathbf{V} следующие условия эквивалентны:

1) для какого n в \mathbf{V} не выполняется тождество $y^n \equiv 0$ для нечетного y;
2) \mathbf{V} содержит супералгебру H.

Кроме того, для любой константы $\alpha < \frac{2}{3}$ выполняется неравенство $2^n \leq c_n(\alpha H) \leq n^2 2^n$.

Лемма 2. Пусть \mathbf{V} — многообразие супералгебр \mathbf{L}, лежащее в $N_c(A)$, рост которого не превышает $2^{n/4}$, то есть существует такое N, что любой полиномиальный полином $f(x_1, \ldots, x_k, y_1, \ldots, y_m)$ от четных x_1, \ldots, x_k и нечетных y_1, \ldots, y_m равен нулю только в \mathbf{V}, если $k, m \geq N$.

Чтобы сформулировать еще одно необходимое условие полиномиального роста, введем следующие обозначения. Пусть J — произвольное подмножество в $\{1, 2, \ldots, N\}$. Обозначим через $d_{r, J}$, $r \geq 0$, полиномиальные оцифровки в F вида

$$d_{r, J} = (z_1 z_2 x_{j_1} \ldots x_{j_k})_{l_1} \ldots (z_{2^k} x_{i_1} \ldots x_{i_m}),$$

где $J = \{j_1, \ldots, j_k\}$, $\{1, 2, \ldots, N\} \setminus J = \{i_1, \ldots, i_m\}$, причем $j_1 < \cdots < j_k$, $i_1 < \cdots < i_m$.

Лемма 3. Пусть \mathbf{V} — многообразие супералгебр \mathbf{L}, лежащее в $N_c(A)$, рост которого меньше $2^{n/2}$. Тогда в \mathbf{V} для любого $r = 0, 1, \ldots, c - 1$ при некоторых скалярах $\alpha_{r, J}$ выполняется тождество

$$\sum_J \alpha_{r, J} d_{r, J} \equiv 0.$$
ТЕОРЕМА 2. Многообразие V супералгебра $Lи$ над полем холловой характеристики имеет полиномиальный рост тогда и только тогда, когда выполняются следующие условия:
1) $V \subset N_c A$;
2) существует такое k, что любой полиномиальный полином, содержащий не меньше k членов и k нечетных переменных, тождественно равен нулю в V;
3) в V для любого $r = 0, 1, \ldots, c - 1$ выполняются тождества виды (1).

Напомним, что V называют многообразием промежуточного роста, если алгебрачески $cn(V) < a^n$ для любого $a > 1$ и $cn(V) > n^k$ для любого целого k. Из теоремы 2 и полученных ранее оценок вытекает

СЛЕДСТВИЕ 1. В классе супералгебра $Lи$ отсутствуют многообразия промежуточного роста.

Последнее утверждение аналогично результату в обычных алгебрах Ли, однако в данном случае можно указать идущую оценку: если $cn(V) < 2^n$, то V — многообразие полиномиального роста [3]. Для супералгебра Ли вопрос о существовании подобной оценки открыт.

Напомним еще одно определение. Про многообразие V говорят, что оно почти полиномиального роста, если его размерность $cn(V)$ строго больше полиномиального, но у любого собственного подмногообразия рост полиномиален. Пример такого многообразия дает h^5, где H — четырехмерная супералгебра из примера 1.

СЛЕДСТВИЕ 2. $n! h^5$ — многообразие почти полиномиального роста.

Наряду с известными примерами многообразий алгебры Ли почти полиномиального роста (см. [4]) и $n! h^5$, этим свойством обладает многообразие A^2.

СЛЕДСТВИЕ 3. Многообразие всех метаболенных супералгебра $Lи$ имеет почти полиномиальный рост.

В заключение отмечаем, что для алгебры управляемых алгебр предложена и другая попытка определения функции роста. Если $L = L_0 \oplus L_1 = \text{alg}(x_1, x_2, \ldots, y_1, y_2, \ldots)$ — свободная супералгебра светового ранга некоторого многообразия V, $x_1 \in L_0, y_1 \in L_1$, то можно рассмотреть пространство $P_n(L)$ полиномиальных полиномов от $x_1, \ldots, x_m, y_1, \ldots, y_k$. Обозначим

$$P_n(L) = \sum_{k=0}^n P_{k,n-k}(L)$$

и положим

$$\mu_n(V) = \dim P_n(L) = \sum_{k=0}^n \dim P_{k,n-k}(L).$$

Тогда последовательность $\{\mu_n(V)\}, n = 1, 2, \ldots$, также характеризует многообразие V, и ее можно вписать в классы другой функции роста, отличной от $cn(V)$. Кроме того, рост описывается в работе [5]. То, что эти функции разные, показывает пример метаболена многообразия, поскольку $\mu_2(A^2) = n^2 - 1$ (см. [5]), и $cn(A^2)$ растет экспоненциально. Аналогичная ситуация и с $U = n! h^5$, поскольку $cn(U) > 2n^2$ до размера 2, а $n! h^5 \leq n^2$ ввиду соотношения $c_1 c_2 c_3 c_4 c_5 = c_1^2 c_2 c_3 c_4$, выполняющегося для любых одиннадцати элементов c_1, \ldots, c_5 из H.

СПИСОК ЛИТЕРАТУРЫ

Пришто родолюбней
03.12.1996