В. П. Заставный, Асимптотика рядов, возникающих при приближении периодических функций средними Рисса и Чезаро, *Матем. заметки*, 2013, том 93, выпуск 1, 45–55

DOI: https://doi.org/10.4213/mzm9109
Асимптотика рядов, возникающих при приближении периодических функций средними Рисса и Чезаро
В. П. Заставный

Найдены асимптотические разложения по степеням δ при $\delta \to +\infty$ рядов

$$
\sum_{k=0}^{\infty} (-1)^{(\beta+1)k} \frac{Q((\delta^\alpha - (ak+b)^\alpha)_+)}{(ak+b)^{r+1}},
$$

где $\beta \in \mathbb{Z}$, $\alpha, a, b > 0$, и $r \in \mathbb{C}$, а Q — алгебраический многочлен, удовлетворяющий условию $Q(0) = 0$. В частных случаях эти ряды возникают при приближении периодических дифференцируемых функций средними Рисса и Чезаро.

1. Введение. Объектом исследования работы являются следующие ряды:

$$
G_\delta^\beta(r; Q, \alpha, a, b) := \sum_{k=0}^{\infty} (-1)^{(\beta+1)k} \frac{Q((\delta^\alpha - (ak+b)^\alpha)_+)}{(ak+b)^{r+1}},
$$

где функция Q задана на $[0, +\infty)$ и удовлетворяет условию $Q(0) = 0$. При $Q(x) = x^\mu$, $\mu > 0$, и $Q(x) = \prod_{k=1}^{\mu}(x + k - 1)$, $\mu \in \mathbb{N}$, эти ряды возникают при приближении периодических функций соответственно средними Рисса и средними Чезаро (более подробно об этом изложено в п. 4). При $Q(x) = \prod_{k=1}^{\mu}(x + k - 1)$, $\mu \in \mathbb{N}$, $\alpha = 1$, $r \in \mathbb{N}$, $a = 2$, $b = 1$, $\delta \in \mathbb{N}$, эти ряды возникли в работах Надя [1], [2]. В случае $Q(x) = x$, $\alpha = 1$, $r \in \mathbb{N}$, $a = 2$, $b = 1$, $\delta \in \mathbb{N}$, асимптотическое разложение рядов (1.1) по степеням δ при $\delta \to +\infty$ найдено в работах Теляковского и Баскакова [3], [4].

В теоремах 1 и 2 данной работы в случае, когда Q является алгебраическим многочленом, найдены асимптотические разложения рядов (1.1) при $\delta \to +\infty$. Коэффициенты этих разложений выражаются через функцию Гурвица $\zeta(s, b)$ и функцию $\tilde{\zeta}(s, b)$, которые при фиксированном $b > 0$ определяются по формулам

$$
\zeta(s, b) := \sum_{k=0}^{\infty} \frac{1}{(k+b)^s}, \quad \Re s > 1, \quad \tilde{\zeta}(s, b) := \sum_{k=0}^{\infty} \frac{(-1)^k}{(k+b)^s}, \quad \Re s > 0.
$$

1 Здесь и далее $t_+ = t$, если $t > 0$, и $t_+ = 0$, если $t \leq 0$.
С помощью формулы Эрмита функция Гурвица аналитически продолжается в $\mathbb{C} \setminus \{1\}$, а точка $s = 1$ является для нее полюсом первого порядка и при $b > 0$ справедливы равенства (см. [5], [6])

$$
\lim_{s \to 1} \left(\zeta(s, b) - \frac{1}{s - 1} \right) = -\frac{\Gamma'(b)}{\Gamma(b)}, \\
\lim_{s \to 1} \left(2^{1-s} \zeta \left(s, \frac{b}{2} \right) - \zeta(s, b) \right) = \frac{\Gamma'(b)}{\Gamma(b)} - \frac{\Gamma'(b/2)}{\Gamma(b/2)} - \ln 2.
$$

(1.3)

Здесь $\Gamma(s) = \int_0^{+\infty} e^{-t}t^{s-1} dt,$ Re $s > 0$, – гамма-функция Эйлера. Из равенства

$$
\tilde{\zeta}(s, b) = 2^{1-s} \zeta \left(s, \frac{b}{2} \right) - \zeta(s, b), \quad \text{Re } s > 1,
$$

(1.4)

вытекает, что функция $\tilde{\zeta}(s, b)$ аналитически продолжается в \mathbb{C} и

$$
\tilde{\zeta}(1, b) = \frac{\Gamma'(b)}{\Gamma(b)} - \frac{\Gamma'(b/2)}{\Gamma(b/2)} - \ln 2, \quad b > 0.
$$

(1.5)

Теорема 1. Пусть Q – алгебраический многочлен степени $\mu \in \mathbb{N}$, для которого точка $x = 0$ является нулем кратности $\mu_0 \in \mathbb{N}$. Пусть $\alpha, a, b > 0$ и $r \in \mathbb{C}$. Если r/α не является целым числом из отрезка $[0, \mu]$, то для любого $m \in \mathbb{N}$, $m > \max\{\alpha \mu - \text{Re } r; \mu_0\}$, при $\delta \to +\infty$ справедливы соотношения

$$
G^1_\delta(r, Q, \alpha, a, b) = \sum_{p=0}^{\mu} (-1)^pQ(p)(\delta^\alpha) a^{\alpha p - r - 1} \zeta \left(r + 1 - \alpha p, \frac{b}{a} \right) - A_0(r, Q, \delta^\alpha, \alpha) a^{\delta^r} + \sum_{k=\mu_0+1}^{m} b_k((\delta - b)/a) \cdot a^{k-1} A_k(r, Q, \delta^\alpha, \alpha) + O \left(\frac{1}{\delta^{r+m+1-\alpha \mu}} \right).
$$

(1.6)

Здесь $b_k(x) := B_k(\{x\})$ – сплайны Бернулли, $A_k(x) –$ многочлены Бернулли, и

$$
A_k(r, Q, x, \alpha) := \sum_{p=0}^{\mu} (-1)^pQ(p)(x) a^{\alpha p} \cdot \gamma_{k-1}(r - \alpha p + 1), \quad k \in \mathbb{Z}_+.
$$

(1.7)

$$
A_{k}(r, Q, x, \alpha) = 0, \quad 1 \leq k \leq \mu_0, \quad A_{\mu_0+1}(r, Q, x, \alpha) = Q(\mu_0)(0)\alpha^{\mu_0} x^{\mu_0}.
$$

Если $r/\alpha = q \in \mathbb{Z}$ и $q \in [0, \mu]$, то для любого $m \in \mathbb{N}$, $m > \max\{\alpha \mu - \text{Re } r; \mu_0\}$, при $\delta \to +\infty$ справедливы соотношения

$$
G^1_\delta(r, Q, \alpha, a, b) = \frac{(-1)^qQ(q)(\delta^\alpha)}{q! a} \left(\ln \frac{\delta}{a} - \frac{\Gamma'(b/a)}{\Gamma(b/a)} \right) - \sum_{p=0, p \neq q}^{\mu} \frac{(-1)^pQ(p)(\delta^\alpha) a^{\alpha p - r}}{\alpha p! (q - p)}
$$

$$
+ \sum_{p=0, p \neq q}^{\mu} \frac{(-1)^pQ(p)(\delta^\alpha) a^{\alpha p - r - 1} \zeta \left(r + 1 - \alpha p, \frac{b}{a} \right)}{\alpha p! (q - p)}
$$

$$
- \sum_{k=\mu_0+1}^{m} b_k((\delta - b)/a) \cdot a^{k-1} A_k(r, Q, \delta^\alpha, \alpha) + O \left(\frac{1}{\delta^{r+m+1-\alpha \mu}} \right).
$$

(1.8)
Внимание 1. Очевидно $\gamma_k(s) = \Gamma(s + k)/\Gamma(s)$, $k = -1, 0, 1, \ldots, s \in \mathbb{C}$. Если $Q(x) = x^\mu$, $\mu \in \mathbb{N}$, то $A_k(r, Q, x, \alpha) = x^\mu a_k(r, \mu, \alpha)$, где

$$a_k(r, \mu, \alpha) = \sum_{p=0}^\mu (-1)^p \binom{\mu}{p} \frac{\Gamma(r - \alpha p + k)}{\Gamma(r - \alpha p + 1)}, \quad k \in \mathbb{Z}_+,$$

(1.9)

Легко проверить, что для любого алгебраического многочлена Q степени μ справедливы равенства

$$A_k(r, Q, x, \alpha) = \frac{a_k(r, \mu, \alpha) Q^{(\mu)}(0)}{\mu!} x^\mu + O(x^{\mu-1}), \quad x \to \infty, \quad k \in \mathbb{Z}_+.$$

Если $-r, \alpha \in \mathbb{N}$, то, очевидно, $A_k(r, Q, x, \alpha) = 0$ при всех $x \in \mathbb{R}$ и $k \geq \alpha \mu - r + 1$. Если $-r \notin \mathbb{N}$ или $\alpha \notin \mathbb{N}$, то $a_k(r, \mu, \alpha) \neq 0$ при всех достаточно больших $k \in \mathbb{N}$. Это вытекает из того, что в последнем случае или $1/\Gamma(r + 1) \neq 0$, или $1/\Gamma(r - \alpha + 1) \neq 0$. Следует только учесть, что если $s_1 < s_2$, то $\Gamma(s_1 + u)/\Gamma(s_2 + u) \to 0$ при $u \to +\infty$.

Теорема 2. Пусть Q — алгебраический многочлен степени $\mu \in \mathbb{N}$, для которого точка $x = 0$ является нулем кратности $\mu_0 \in \mathbb{N}$. Пусть $\alpha, a, b > 0$ и $r \in \mathbb{C}$. Тогда для любого $m \in \mathbb{N}$, $m > \max\{\alpha \mu - \text{Re} r; \mu_0\}$, при $\delta \to +\infty$ справедливы соотношения

$$G_\delta^2(r, Q, \alpha, a, b) = \sum_{p=0}^\mu \frac{(-1)^p Q^{(p)}(\delta \alpha) a^{\alpha p - r - 1} \zeta(r + 1 - \alpha p, b)}{p!} \quad + \sum_{k=\mu_0+1}^m \frac{e_{k-1}((\delta - b)/a)}{2(k - 1)!} \cdot \frac{a^{k-1} A_k(r, Q, \delta \alpha, a)}{\delta^{r+k}} + O\left(\frac{1}{\delta^{r+m+1-\alpha \mu}}\right).$$

(1.10)

Здесь $A_k(r, Q, x, \alpha)$ определяются по формуле (1.7), а

$$e_{k-1}(x) = \frac{2}{k} \left(b_k(x) - 2^k b_k\left(\frac{x}{2}\right)\right), \quad k \in \mathbb{N},$$

— сплайны Эйлера.

2. **Вспомогательные утверждения.** Многочлены Бернулли $B_n(x)$ и Эйлера $E_n(x)$ определяются с помощью следующих производящих функций (см., например, [6; §1.13, §1.14]):

$$\frac{t e^{tx}}{e^t - 1} = \sum_{n=0}^\infty \frac{t^n}{n!} B_n(x), \quad |t| < 2\pi, \quad \frac{2t e^{tx}}{e^t + 1} = \sum_{n=0}^\infty \frac{t^n}{n!} E_n(x), \quad |t| < \pi.$$

(2.1)

Связь между ними вытекает из тождества $n E_{n-1}(x) = 2(B_n(x) - 2^n B_n(x/2))$, $n \in \mathbb{N}$. Сплайны Бернулли и Эйлера определяются соответственно по формулам

$$b_n(x) = B_n(\{x\}), \quad e_n(x) = \frac{2}{n + 1} \left(b_{n+1}(x) - 2^{n+1} b_{n+1}\left(\frac{x}{2}\right)\right), \quad n \in \mathbb{Z}_+.$$
Отметим, что
\[e_n(x) = (-1)^{[x]} E_n([x]), \]
\(n \in \mathbb{Z}_+. \) При 0 \(\leq x < 1 \) равенство очевидно, а при 1 \(\leq x < 2 \) вытекает из формулы умножения \(B_n(2u) = 2^{n-1}(B_n(u) + B_n(u + 1/2)). \)

Если \(p, m \in \mathbb{N} \) и \(f \in C^m[0, p], \) то формулу Эйлера–Маклорена (см., например, [7; гл. IV, § 3]) можно записать в виде
\[\sum_{k=1}^{p} f(k) = \int_0^p f(t) dt + \sum_{k=1}^{m} \frac{(-1)^k}{(k)!} B_k(f^{(k-1)}(p) - f^{(k-1)}(0)) + \frac{(-1)^{m-1}}{(m)!} \int_0^p b_m(t) f^{(m)}(t) dt, \] (2.2)
где \(B_k := B_k(0), \) \(k \in \mathbb{Z}_+, \) — числа Бернулли. При этом надо учесть, что \((-1)^k B_k = B_k \) при всех \(k \in \mathbb{Z}_+, \) \(k \neq 1, \) и \(B_1 = -1/2. \)

Пусть
\[\zeta_p(s, b) := \sum_{k=0}^{p} \frac{1}{(k+b)^s}, \quad b > 0, \quad s \in \mathbb{C}, \quad p \in \mathbb{Z}_+. \] (2.3)
Применим формулу (2.2) к функции \(f(t) = (t + b)^{-s}, \) \(b > 0, \) \(s \in \mathbb{C}. \) Производные этой функции равны
\[f^{(k)}(t) = (-1)^k \gamma_k(s)(t + b)^{-s-k}, \quad k \in \mathbb{Z}_+, \]
где \(\gamma_0(s) = 1, \) \(\gamma_k(s) = s(s+1) \cdots (s+k-1), \) \(k \in \mathbb{N}. \) Функции \(\gamma_k(s) \) целые и могут быть представлены в виде \(\gamma_k(s) = \Gamma(s+k)/\Gamma(s), \) \(k \in \mathbb{Z}_+. \) Если \(n \in \mathbb{Z}_+, \) то \(\gamma_k(-n) = 0 \) при всех \(k \geq n + 1. \)

Если \(s \neq 1, \) то для любых \(p, m \in \mathbb{N}, \) \(m > 1 - \text{Re} s, \) справедливы равенства
\[\zeta_p(s, b) = c_m(s, b) - \frac{1}{(s-1)(p+b)^{s-1}} - \sum_{k=1}^{m} \frac{B_k}{k!} \cdot \frac{\gamma_{k-1}(s)}{(p+b)^{s+k-1}} + R_p^m(s, b), \] (2.4)
где
\[R_p^m(s, b) = \frac{1}{m!} \int_p^{+\infty} \frac{\gamma_m(s)b_m(t)}{(t+b)^{s+m}} dt, \]
\[|R_p^m(s, b)| \leq \frac{\gamma_m(s)}{m!} \cdot \sup_{[0,1]} \left| \frac{b_m(t)}{(t+b)^{s+m-1}} \right| = O\left(\frac{1}{(p+b)^{s+m-1}} \right), \] (2.5)
\[c_m(s, b) = \frac{1}{b^s} + \frac{1}{(s-1)b^{s-1}} + \sum_{k=1}^{m} \frac{B_k}{k!} \cdot \frac{\gamma_{k-1}(s)}{b^{s+k-1}} - \frac{1}{m!} \int_0^{+\infty} \frac{\gamma_m(s)b_m(t)}{(t+b)^{s+m}} dt. \] (2.6)
Если \(-s \in \mathbb{Z}_+, \) то эти равенства справедливы при \(m \geq 1 - s \) (в этом случае слагаемые, содержащие интегралы, равны нулю). При фиксированном \(b > 0 \) функция \(c_m(s, b) \) является аналитической в области \(\text{Re} s > 1 - m, \) \(s \neq 1, \) и \(c_m(s, b) = \zeta(s, b) \) при всех \(\text{Re} s > 1 \) (это вытекает из (2.4) и (2.5) при \(p \rightarrow \infty). \) В силу теоремы единственности равенство \(c_m(s, b) = \zeta(s, b) \) выполняется при всех \(\text{Re} s > 1 - m, \) \(s \neq 1. \) Заменяя
в равенстве (2.4) m на $m + 1$ и учитывая равенство $B_0 = 1$, получаем, что при любых $s \in \mathbb{C}$, $s \neq 1$, $p, m \in \mathbb{N}$, $m > 1 - \text{Re} s$, справедливы равенства

$$
\zeta_p(s, b) = \zeta(s, b) - \sum_{k=0}^{m} \frac{B_k}{k!} \frac{\Gamma(s + k - 1)}{\Gamma(s)} \cdot \frac{1}{(p + b)^{s+k-1}} + O\left(\frac{1}{(p + b)^{s+m}}\right), \quad (2.7)
$$

Лемма 1. Пусть $s \in \mathbb{C}$, $s \neq 1$, $b > 0$. Тогда для любого $m \in \mathbb{N}$, $m > 1 - \text{Re} s$, при $\delta \to +\infty$ имеет место равенство

$$
\zeta_{[\delta-b]}(s, b) = \zeta(s, b) - \sum_{k=0}^{m} \sum_{j=0}^{k-m} \frac{B_k}{k!} \frac{\Gamma(s + k - 1 + j)}{\Gamma(s)} \cdot \frac{1}{\delta^{s+k-1+j}} \cdot \frac{\varepsilon^j}{j!} + O\left(\frac{1}{\delta^{s+m}}\right). \quad (2.8)
$$

Доказательство. Пусть $\delta \geq b + 1$. В равенстве (2.7) берем $p = [\delta - b] \in \mathbb{N}$. Тогда $p + b = \delta - \varepsilon$, где $\varepsilon = \{\delta - b\} \in [0, 1)$. Учитывая, что при любых $z \in \mathbb{C}$, $q \in \mathbb{Z}_+$ справедливы соотношения

$$
\frac{1}{(1 - x)^z} = \sum_{j=0}^{q} \frac{\Gamma(z + j)}{\Gamma(z)} \cdot \frac{x^j}{j!} + O\left(x^{q+1}\right), \quad x \to 0, \quad (2.9)
$$

получаем, что для любого $m \in \mathbb{N}$, $m > 1 - \text{Re} s$, при $\delta \to +\infty$ имеет место равенство

$$
\zeta_{[\delta-b]}(s, b) = \zeta(s, b) - \sum_{k=0}^{m} \sum_{j=0}^{k-m} \frac{B_k}{k!} \frac{\Gamma(s + k - 1 + j)}{\Gamma(s)} \cdot \frac{1}{\delta^{s+k-1+j}} \cdot \frac{\varepsilon^j}{j!} + O\left(\frac{1}{\delta^{s+m}}\right).
$$

Если в повторной сумме сделать замену $k + j = l$, то эта сумма будет равна выражению

$$
\sum_{l=0}^{m} \frac{\Gamma(s + l - 1)}{\Gamma(s)} \cdot \frac{1}{\delta^{s+l-1}} \cdot \sum_{j=0}^{l-j} \frac{B_{l-j}}{(l-j)!} \cdot \varepsilon^j \cdot \frac{j!}{l!} = \sum_{l=0}^{m} \frac{\Gamma(s + l - 1)}{\Gamma(s)} \cdot \frac{1}{\delta^{s+l-1}} \cdot \frac{B_l(\varepsilon)}{l!}.
$$

Здесь мы воспользовались разложением многочлена Бернулли по степеням аргумента (см., например, [7; гл. IV, (13)]). Осталось учесть, что $B_l(\varepsilon) = b_l(\delta - b)$. Лемма 1 доказана.

Лемма 2. Пусть $b > 0$. Тогда для любого $m \in \mathbb{N}$ при $\delta \to +\infty$ имеет место равенство

$$
\zeta_{[\delta-b]}(1, b) = -\frac{\Gamma'(b)}{\Gamma(b)} + \ln \delta - \sum_{k=1}^{m} \frac{\Gamma(k)}{\delta^k} \cdot \frac{b_k(\delta - b)}{k!} + O\left(\frac{1}{\delta^{m+1}}\right). \quad (2.10)
$$

Доказательство. Применим формулу (2.2) к функции $f(t) = (t + b)^{-1}$, $b > 0$. Тогда для любых $p, m \in \mathbb{N}$ справедливо равенство

$$
\zeta_p(1, b) = d_m(b) + \ln(p + b) - \sum_{k=1}^{m} \frac{B_k}{k!} \frac{\Gamma(k)}{(p + b)^k} + R^m_p(1, b), \quad (2.11)
$$

где величина $R^m_p(1, b)$ определена по формуле (2.5) при $s = 1$, а

$$
d_m(b) = \frac{1}{b} - \ln b + \sum_{k=1}^{m} \frac{B_k}{k!} \cdot \frac{\Gamma(k)}{b^k} - \int_{0}^{+\infty} \frac{b_m(t)}{(t + b)^{m+1}} dt. \quad (2.12)
$$
Из равенства (2.11) и соотношения $R_p^m(1, b) = O((p + b)^{-m})$, $p \to +\infty$, получаем равенство

$$d_m(b) = \lim_{p \to +\infty} \left(\sum_{k=0}^{p} \frac{1}{k + b} - \ln(p + b) \right).$$

Из этого равенства вытекает, что $d_m(1) = C$, где $C = -\Gamma'(1)$ – постоянная Эйлера, и

$$d_m(1) - d_m(b) = \sum_{k=0}^{\infty} \left(\frac{1}{k + 1} - \frac{1}{k + b} \right) = \frac{\Gamma(b)}{\Gamma(b)} + C.$$

Потому $d_m(b) = -\Gamma'(b)/\Gamma(b)$. Заменив в равенстве (2.11) m на $m + 1$, получаем, что при любых $p, m \in \mathbb{N}$ справедливо равенство

$$\zeta(p, b) = -\frac{\Gamma'(b)}{\Gamma(b)} + \ln(p + b) - \sum_{k=1}^{m} \frac{B_k}{k!} \cdot \frac{\Gamma(k)}{(p + b)^k} + O\left(\frac{1}{(p + b)^{m+1}}\right).$$ (2.13)

Пусть $\delta \geq b + 1$. В равенстве (2.13) берем $p = [\delta - b] \in \mathbb{N}$. Тогда $p + b = \delta - \varepsilon$, где $\varepsilon = \{\delta - b\} \in [0, 1)$. Учитывая (2.9) и равенство

$$\ln(1 - x) = -\sum_{k=1}^{m} \frac{x^k}{k} + O(x^{m+1}), \quad x \to 0,$$

получаем, что для любого $m \in \mathbb{N}$ при $\delta \to +\infty$ справедливо равенство

$$\zeta_{\{\delta - b\}}(1, b) = -\frac{\Gamma'(b)}{\Gamma(b)} + \ln \delta - \sum_{k=1}^{m} \frac{1}{k} \cdot \varepsilon^k - \sum_{k=1}^{m} \sum_{j=0}^{m-k} \frac{B_k}{k!} \cdot \frac{\Gamma(k + j)}{\delta^{k+j}} \cdot \frac{\varepsilon^j}{j!} + O\left(\frac{1}{\delta^{m+1}}\right).$$

Если в повторной сумме сделать замену $k + j = l$, то эта сумма будет равна выражению

$$\sum_{l=1}^{m} \frac{\Gamma(l)}{\delta^l} \sum_{j=0}^{l-1} \frac{B_{l-j}}{(l-j)!} \cdot \frac{\varepsilon^j}{j!} = \sum_{l=1}^{m} \frac{\Gamma(l)}{\delta^l} \left(\frac{B_l(\varepsilon)}{l!} - \varepsilon^l / l! \right) = \sum_{l=1}^{m} \frac{\Gamma(l)}{\delta^l} \cdot \frac{b_l(\delta - b)}{l!} - \sum_{l=1}^{m} \frac{1}{\delta^l} \cdot \frac{\varepsilon^l}{l!}.$$

Лемма 2 доказана.

3. Доказательство теорем 1 и 2.

ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ 1. Учитывая тождество

$$Q(x - y) = \sum_{p=0}^{\infty} \frac{(-1)^p Q^{(p)}(x)}{p!} y^p, \quad x, y \in \mathbb{R},$$ (3.1)

получаем, что при $\delta \geq b + a$ справедливо равенство

$$G_1^\delta(r, Q, a, b) = \sum_{k=0}^{[\delta/a-b/a]} \frac{Q(\delta^a - (ak + b)^a)}{(ak + b)^{r+1}}$$

$$= \sum_{p=0}^{\mu} \frac{(-1)^p Q^{(p)}(\delta^a)}{p!} a^{\alpha p - r - 1} \zeta_{[\delta/a-b/a]} \left(r + 1 - \alpha p, \frac{b}{a} \right).$$ (3.2)
Если r/α не является целым числом из отрезка $[0, \mu]$, то к каждому слагаемому в (3.2) применяем лемму 1 с любым натуральным $m > 1 - \Re(r + 1 - \alpha \mu) = \alpha \mu - \Re r$. Тогда для таких m при $\delta \to +\infty$ будут справедливы равенства

$$G^1_\delta(r, Q, \alpha, a, b) = \sum_{p=0}^{\mu} \frac{(-1)^p Q^{(p)}(\delta \alpha)}{p!} a^{\alpha p - r - 1} \zeta \left(r + 1 - \alpha p, \frac{b}{a} \right)$$

$$- \sum_{k=0}^{m} \frac{b_k((\delta - b)/a)}{k!} \cdot \frac{a^{k-1} A_k(r, Q, \delta \alpha, \alpha)}{\delta^{r+k}} + O \left(\frac{1}{\delta^{r+m+1-\alpha \mu}} \right),$$

gде числа $A_k(r, Q, x, \alpha)$ определены по формуле (1.7). Докажем, что $A_k(r, Q, x, \alpha) = 0$ при всех целых $k \in [1, \mu_0]$. Так как точка $x = 0$ для многочлена Q является нулем кратности $\mu_0 \in \mathbb{N}$, то $Q(x) = x^{\mu_0} Q_1(x)$, где Q_1 — алгебраический многочлен степени $\mu - \mu_0$ и $Q^{(\mu_0)}(0) = \mu_0! Q_1(0) \neq 0$. При фиксированном x рассмотрим функцию

$$f(y) := Q(x - x e^y) = x^{\mu_0} (1 - e^y)^{\mu_0} Q_1(x - x e^y), \quad y \in \mathbb{R}.$$

Очевидно $f^{(q)}(0) = 0$ при всех целых $q \in [0, \mu_0 - 1]$ и $f^{(\mu_0)}(0) = \mu_0! \lim_{y \to 0} f(y)/y^{\mu_0} = (-1)^{\mu_0} Q^{(\mu_0)}(0)x^{\mu_0}$. Учитывая тождество (3.1), получаем равенства

$$f^{(q)}(0) = \sum_{p=0}^{\mu} \frac{(-1)^p Q^{(p)}(x)}{p!} x^p y^q = \begin{cases} 0, & 0 \leq q \leq \mu_0 - 1, \\ (-1)^{\mu_0} Q^{(\mu_0)}(0)x^{\mu_0}, & q = \mu_0. \end{cases}$$

Посому $A_k(r, Q, x, \alpha) = 0$ при $1 \leq k \leq \mu_0$. Это следует из того, что при $k \in \mathbb{N}$ отношение $\Gamma(r - \alpha p + k)/\Gamma(r - \alpha p + 1)$ является относительно p многочленом степени $k - 1$ и коэффициент при старшей степени равен $(-\alpha)^{k-1}$. Отсюда следует, что

$$A_{\mu_0 + 1}(r, Q, x, \alpha) = (-\alpha)^{\mu_0} \sum_{p=0}^{\mu} \frac{(-1)^p Q^{(p)}(x)x^p y^{\mu_0}}{p!} = Q^{(\mu_0)}(0)x^{\mu_0} y^{\mu_0}.$$

Равенство (1.6) доказано. Осталось учить, что $b_0(x) \equiv 1$.

Если $r/\alpha = q \in \mathbb{Z}$ и $q \in [0, \mu]$, то к каждому слагаемому в (3.2) при $p \neq q$ применяем лемму 1 с любым натуральным $m > \alpha \mu - \Re r$, а к слагаемому при $p = q$ применяем лемму 2. Для таких m при $\delta \to +\infty$ будут справедливы равенства

$$G^1_\delta(r, Q, \alpha, a, b)$$

$$= \frac{(-1)^q Q^{(q)}(\delta \alpha)}{q! a} \left(\ln \frac{\delta}{\alpha} - \frac{\Gamma'(b/a)}{\Gamma(b/a)} \right) - \sum_{k=1}^{m} \Gamma(k) \cdot \frac{b_k((\delta - b)/a)}{k!} \cdot \frac{a^{k-1} A_k(r, Q, \delta \alpha, \alpha)}{\delta^{r+k}} + O \left(\frac{1}{\delta^{r+m+1-\alpha \mu}} \right).$$
Если в двойной сумме выделить отдельно слагаемое при $k = 0$, то эта сумма будет равна выражению

$$
\sum_{p=0, p\neq q}^{q} \frac{(-1)^{p}Q(p)(\delta^{\alpha})\delta^{\alpha p-r}}{\alpha p! (q - p)} + \sum_{k=1}^{m} b_k((\delta - b)/a)^{k-1} \left(A_k(r, Q, \delta^{\alpha}, \alpha) - \frac{(-1)^{q}Q(q)(\delta^{\alpha})\delta^{\alpha q}\Gamma(k)}{q!} \right).
$$

Равенство (1.8) доказано. Надо только учесть, что $A_k(r, Q, \delta^{\alpha}, \alpha) = 0$ при $k = 1, \ldots, \mu$.

Доказательство теоремы 2. Доказательство вытекает из теоремы 1 и следующего очевидного равенства:

$$
G_{\beta}^2(r, Q, \alpha, a, b) = 2G_{\beta}^1(r, Q, \alpha, 2a, b) - G_{\beta}^1(r, Q, \alpha, a, b), \quad \delta, \alpha, a, b > 0, \quad r \in \mathbb{C}.
$$

В случае, когда r/α не является целым числом из отрезка $[0, \mu]$, надо учесть равенство $\tilde{\zeta}(s, b) = 2^{-s}\zeta(s, b/2) - \zeta(s, b)$, $s \neq 1$, которое при $\text{Re} s > 1$ очевидно, а при остальных $s \neq 1$ вытекает из теоремы единственности, а в случае, когда r/α является целым числом из отрезка $[0, \mu]$, надо еще учесть равенство (1.5).

4. Приближение средними типа Рисса и Чезаро. Пусть $L_p = L_p(-\pi, \pi)$ — классы 2π-периодических вещественнозначимых измеримых функций с конечной нормой $\|f\|_p = (\int_{-\pi}^{\pi} |f(t)|^p dt)^{1/p}$ при $1 \leq p < \infty$ и $\|f\|_\infty = \text{ess sup}\{|f(t)| : t \in [-\pi, \pi]\}$. Коэффициенты Фурье функции $\varphi \in L_1$ и свертка функций φ и K определяются соответственно по формулам

$$
\hat{\varphi}(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi(t)e^{-ikt} dt, \quad k \in \mathbb{Z}, \quad (\varphi * K)(x) := \frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi(x-t)K(t) dt.
$$

Пусть $\beta \in \mathbb{R}$, $r > 0$, $n \in \mathbb{N}$, а $W_{p,n}^{r,\beta}$ — класс функций, представимых в виде

$$
f = \varphi * \psi_{r,\beta},
$$

gде $\varphi \in L_p$, $\|\varphi\|_p \leq 1$, $\hat{\varphi}(k) = 0$, $|k| \leq n - 1$, $k \in \mathbb{Z}$ и

$$
\psi_{r,\beta}(t) = \sum_{k=1}^{\infty} \frac{2\cos(kt - \beta \pi/2)}{k^r}, \quad r > 0, \quad \beta \in \mathbb{R}.
$$

Известно, что $\psi_{r,\beta} \in L_1$ (см. [8; гл. V] или [9; гл. 7]). Поэтому $W_{p,n}^{r,\beta} \subset L_p$ при всех $1 \leq p < \infty$, а если $p = \infty$ или $\psi_{r,\beta} \in L_\infty$, то $W_{p,n}^{r,\beta} \subset C(\mathbb{R})$ (см. [10; гл. 4]). В частных случаях, когда $n = 1$, $\beta = r$ или $\beta = r + 1$, получаются классы $W_p^r := W_{p,1}^{r,r}$ и $\bar{W}_p^r := W_{p,1}^{r,r+1}$.

Если U — линейный оператор, действующий из $W_{p,n}^{r,\beta}$ в L_p, то величина приближения класса $W_{p,n}^{r,\beta}$ оператором U определяется по формуле

$$
E(W_{p,n}^{r,\beta}; U)_p := \sup_{f \in W_{p,n}^{r,\beta}} \|f - U(f)\|_p.
$$

(4.1)
Мы рассматриваем операторы $U = G_{\delta}^{\alpha,Q}$, $\alpha, \delta > 0$, следующего вида:

$$G_{\delta}^{\alpha,Q}(f)(x) := \sum_{k \in \mathbb{Z}} \frac{Q((\delta^\alpha - |k|^\alpha)_+)}{Q(\delta^\alpha)} \hat{f}(k)e^{ikx}, \quad f \in L_1,$$

где функция $Q(x) > 0$ при $x > 0$ и $Q(0) = 0$. Если $Q(x) = x^\mu$, $\mu > 0$, то получаем

$$G_{\delta}^{\alpha,Q} = R_{\delta}^{\alpha,\mu} - \text{средние Рисса (при } \alpha = \mu = 1, \delta \in \mathbb{N} \text{ получаются средние арифметические частных сумм ряда Фурье). Если } Q(x) = \prod_{k=1}^\mu (x + k - 1), \mu \in \mathbb{N}, \text{ то при } \alpha = 1, m \in \mathbb{Z}_+, \text{ получаем } G_{\delta}^{\alpha,Q} = \sigma_m^{\alpha} - \text{средние Чезаро целого порядка } \mu \in \mathbb{N}.

Если $\beta \in \mathbb{Z}$, а $p = 1$ или $p = \infty$, то для некоторых функций Q и при некоторых значениях параметров $n \in \mathbb{N}$, $\alpha > 0$, $r > 0$ и для любого $\delta > 0$ имеет место равенство

$$E(W_p^{r,\beta}; G_{\delta}^{\alpha,Q}) = \frac{4}{\pi n r} \sum_{k=0}^{\infty} \frac{(-1)^{k(\beta+1)}}{(2k+1)^{r+1}} \left(1 - \frac{Q((\delta^\alpha - (2k+1)^{\alpha})_+)}{Q(\delta^\alpha)}\right). \tag{4.2}$$

В работе автора [11; § 3] (см. также [12]) доказан следующий результат.

Пусть $Q(x) = \sum_{k=1}^m a_k x^{\mu_k}$, где $m \in \mathbb{N}$, $a_k > 0$ и $\mu_k \geq 1$. Пусть $\beta \in \mathbb{Z}$, $p = 1$ или $p = \infty$, $n = 1$, $0 < \alpha \leq 1$ и $\delta > 0$. Тогда равенства (4.2) справедливы по крайней мере в следующих случаях:

1) $\beta + 1 \in 2\mathbb{Z}$, $r = 1$ или $r > 2$;
2) $\beta \in 2\mathbb{Z}$, $r = 2$ или $r > 3$.

В [11; § 3] (см. также [12]) доказано, что для средних Рисса ($Q(x) = x^\mu$) равенство (4.2) при любом $\delta > 0$ и $p = 1$ или $p = \infty$ справедливо по крайней мере в следующих случаях (доказательство использует теорему Никольского [13], [14]):

1) $\beta + 1 \in 2\mathbb{Z}$ и выполняется одно из трех условий:
 i) $0 < \alpha \leq 1$, $\mu \geq 2$, $r \geq \alpha$, $n \in \mathbb{N}$;
 ii) $0 < \alpha \leq 1$, $\mu \geq 1$, $r = 1$, $n = 1$;
 iii) $\alpha > 0$, $\mu \geq 1$, $r \geq \max\{2; \alpha + 1\}$, $n = 1$.
2) $\beta \in 2\mathbb{Z}$ и выполняется одно из четырех условий:
 i) $0 < \alpha \leq 1$, $\mu \geq 3$, $r \geq \alpha$, $n \in \mathbb{N}$;
 ii) $0 < \alpha \leq 1$, $\mu \geq 2$, $r \geq \alpha + 1$, $n = 1$;
 iii) $0 < \alpha \leq 1$, $\mu \geq 1$, $r = 2$, $n = 1$;
 iv) $\alpha > 0$, $\mu \geq 1$, $r \geq \max\{3; \alpha + 2\}$, $n = 1$.

ЗАМЕЧАНИЕ. 2. В случае средних Чезаро ($Q(x) = \prod_{k=1}^\mu (x + k - 1)$, $\mu \in \mathbb{N}$, $\alpha = 1$, $\delta \in \mathbb{N}$) для классов W_p^{r}, $r \in \mathbb{N}$, и \tilde{W}_p^{r}, $r - 1 \in \mathbb{N}$, равенство (4.2) при $p = \infty$ доказано в работах Надя [1], [2], а в работе Теляковского [15] доказано совпадение величин $E(W_p^{r,\beta}; G_{\delta}^{\alpha,Q})$ для указанных классов при $p = 1$ и $p = \infty$. В этом же случае для класса W_1^{∞} в работе Фалалеева [16] были приведены шесть первых членов в асимптотике для величины (4.2) при $\delta \to +\infty$. В случае средних арифметических ($Q(x) = x$, $\alpha = 1$, $\delta \in \mathbb{N}$) для классов W_p^{r}, $r \in \mathbb{N}$, и \tilde{W}_p^{r}, $r - 1 \in \mathbb{N}$, для которых параметр $n = 1$, асимптотическое разложение ряда (4.2) по степеням δ при $\delta \to +\infty$ найдено в работах Теляковского и Баскакова [3], [4]. В случае средних Рисса ($Q(x) = x^\mu$, $\alpha = 1$), $\mu \in \mathbb{N}$, $\delta \in \mathbb{N}$, для класса W_1^{∞} в работе Фалалеева [16] приведены три первых члена в асимптотике величины (4.2).
Если Q является алгебраическим многочленом степени $\mu \in \mathbb{N}$, то из теорем 1 и 2 сразу получаются асимптотические разложения при $\delta \to +\infty$ ряда (4.2). В частности, получаются асимптотические разложения величины (4.2) для средних Рисса и Чезаро целого порядка. Выпишем эти разложения, например, для средних Рисса.

Сумма ряда в правой части равенства (4.2) при $Q(x) = x^\mu$ равна $F_\delta^{\beta}/n(r, \mu, \alpha)$, где

$$F_\delta^{\beta}(r, \mu, \alpha) := \sum_{k=0}^{\infty} \frac{(-1)^k(\beta+1)}{(2k+1)r+1} \left(1 - \frac{1}{\delta^{\alpha} (2k+1)^{\alpha} \mu} \right), \quad \beta \in \mathbb{Z}, \quad \delta, r, \mu, \alpha > 0.$$

Из теорем 1 и 2 получаем следующие асимптотические разложения при $\delta \to +\infty$ функции $F_\delta^{\beta}(r, \mu, \alpha)$.

1) Пусть $r, \alpha > 0$ и $\mu \in \mathbb{N}$. Тогда для любого $m \in \mathbb{N}$, $m > \max\{\alpha \mu - r; \mu\}$ при $\delta \to +\infty$ справедливы (4.3) и (4.4) соответственно в случаях, когда r/α не является натуральным числом из отрезка $[1, \mu]$ и когда $r/\alpha = q \in \mathbb{N}$, $q \in [1, \mu]$:

$$F_\delta^1(r, \mu, \alpha) = \sum_{p=1}^{\mu} (-1)^{p+1} \left(\frac{\mu}{p} \right) \frac{2^{\alpha p - r - 1} \zeta(r + 1 - \alpha p, 1/2)}{\delta^{\alpha p}} + \frac{a_0(r, \mu, \alpha)}{2^r} + \sum_{k=\mu+1}^{m} b_k \left(\frac{\delta - 1}{2} \right) \frac{2^k \zeta(r, \mu, \alpha, \alpha p, 1/2)}{k! \delta^{r+k}} + O\left(\frac{1}{\delta^{r+m+1}} \right), \quad (4.3)$$

$$F_\delta^1(r, \mu, \alpha) = \frac{1}{2^r} \left(-1 \right)^{q+1} \left(\frac{\mu}{q} \right) (\ln \delta + \ln 2 + C) + \frac{1}{\alpha} \sum_{p=0, p \neq q}^{\mu} \left(\frac{\mu}{p} \right) \frac{(-1)^p}{q - p} + \sum_{k=\mu+1}^{m} b_k \left(\frac{\delta - 1}{2} \right) \frac{2^k \zeta(r, \mu, \alpha, \alpha p, 1/2)}{k! \delta^{r+k}} + O\left(\frac{1}{\delta^{r+m+1}} \right). \quad (4.4)$$

Здесь C — константа Эйлера, а числа $a_k(r, \mu, \alpha)$ определены по формуле (1.9).

2) Пусть $r, \alpha > 0$ и $\mu \in \mathbb{N}$. Тогда для любого $m \in \mathbb{N}$, $m > \max\{\alpha \mu - r; \mu\}$, при $\delta \to +\infty$ справедливо равенство

$$F_\delta^2(r, \mu, \alpha) = \sum_{p=1}^{\mu} (-1)^{p+1} \left(\frac{\mu}{p} \right) \frac{2^{\alpha p - r - 1} \zeta(r + 1 - \alpha p, 1/2)}{\delta^{\alpha p}} - \sum_{k=\mu+1}^{m} e_k \left(\frac{\delta - 1}{2} \right) \frac{2^{k-2} \zeta(r, \mu, \alpha, \alpha p, 1/2)}{(k-1)! \delta^{r+k}} + O\left(\frac{1}{\delta^{r+m+1}} \right). \quad (4.5)$$

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

\footnote{В (4.4) мы воспользовались равенством $\Gamma'(1/2)/\Gamma(1/2) = -C - 2 \ln 2$.}

В. П. Заставный
Донецкий национальный университет, Украина
Поступило 12.09.2010

E-mail: zastavn@rambler.ru