Э. Митидиери, С. И. Похожаев, Априорные оценки и отсутствие решений нелинейных уравнений и неравенств в частных производных, Тр. МИАН, 2001, том 234, 3–383

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением
http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
5 ноября 2019 г., 22:36:40
<table>
<thead>
<tr>
<th>Глава</th>
<th>Название</th>
<th>Страница</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ВВЕДЕНИЕ</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА</td>
<td>21</td>
</tr>
<tr>
<td>2.</td>
<td>Полулинейные уравнения и неравенства второго порядка с ограниченными коэффициентами</td>
<td>21</td>
</tr>
<tr>
<td>3.</td>
<td>Полулинейные уравнения и неравенства второго порядка с неограниченными коэффициентами</td>
<td>24</td>
</tr>
<tr>
<td>4.</td>
<td>Полулинейные уравнения и неравенства высокого порядка с ограниченными коэффициентами</td>
<td>27</td>
</tr>
<tr>
<td>5.</td>
<td>Полулинейные уравнения и неравенства высокого порядка с неограниченными коэффициентами</td>
<td>29</td>
</tr>
<tr>
<td>6.</td>
<td>Эллиптические задачи второго порядка с локальным (полным) разрушением решения</td>
<td>32</td>
</tr>
<tr>
<td>7.</td>
<td>Полулинейные неравенства высокого порядка с сингулярными коэффициентами</td>
<td>38</td>
</tr>
<tr>
<td>8.</td>
<td>Полулинейные дифференциальные неравенства второго порядка с критическим выражением</td>
<td>41</td>
</tr>
<tr>
<td>9.</td>
<td>Полулинейные дифференциальные неравенства с полигармоническим оператором</td>
<td>43</td>
</tr>
<tr>
<td>10.</td>
<td>Отсутствие решений полулинейных задач в полупространстве</td>
<td>44</td>
</tr>
<tr>
<td>11.</td>
<td>Полулинейные неравенства в конусах</td>
<td>47</td>
</tr>
<tr>
<td>12.</td>
<td>Модельная квазилинейная задача и ее обобщения</td>
<td>59</td>
</tr>
<tr>
<td>13.</td>
<td>Общий случай квазилинейных неравенств</td>
<td>65</td>
</tr>
<tr>
<td>14.</td>
<td>Коэрцитивные задачи</td>
<td>68</td>
</tr>
<tr>
<td>15.</td>
<td>Задачи с правой частью, зависящей от градиента решения</td>
<td>70</td>
</tr>
<tr>
<td>16.</td>
<td>Обобщения теоремы Бернштейна</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Глава 2. СИСТЕМЫ СТАЦИОНАРНЫХ НЕРАВЕНСТВ</td>
<td>80</td>
</tr>
<tr>
<td>17.</td>
<td>Системы полулинейных уравнений и неравенств второго порядка с ограниченными коэффициентами</td>
<td>80</td>
</tr>
<tr>
<td>18.</td>
<td>Системы полулинейных уравнений и неравенств второго порядка с неограниченными коэффициентами</td>
<td>82</td>
</tr>
<tr>
<td>19.</td>
<td>Системы полулинейных уравнений и неравенств высокого порядка с ограниченными коэффициентами</td>
<td>85</td>
</tr>
<tr>
<td>20.</td>
<td>Системы полулинейных уравнений и неравенств высокого порядка с неограниченными коэффициентами</td>
<td>87</td>
</tr>
<tr>
<td>21.</td>
<td>Системы полулинейных неравенств в конусах</td>
<td>91</td>
</tr>
<tr>
<td>22.</td>
<td>Теоремы отсутствия решений для систем квазилинейных эллиптических дифференциальных уравнений</td>
<td>94</td>
</tr>
</tbody>
</table>
Часть II. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ПЕРВОГО ПОРЯДКА

25. ВВЕДЕНИЕ ... 108

Глава 3. ЭВОЛЮЦИОННЫЕ НЕРАВЕНСТВА 110
26. Полулинейные уравнения и неравенства второго порядка 110
27. Эволюционные неравенства второго порядка с критическим выражением .. 116
28. Параболические задачи второго порядка с локальным (полным и мгновенным) разрушением решения .. 119
29. Полулинейные уравнения и неравенства высокого порядка 127
30. Эволюционные неравенства высокого порядка с докритическим выражением .. 130
31. Эволюционные неравенства высокого порядка с критическим выражением .. 140
32. Полулинейные неравенства в конусе .. 141
33. Уравнения и неравенства второго порядка с нелинейной главной частью 153

Глава 4. СИСТЕМЫ НЕРАВЕНСТВ ... 165
34. Системы полулинейных уравнений и неравенств второго порядка 165
35. Системы полулинейных уравнений и неравенств второго порядка с субкритическим выражением .. 171
36. Системы полулинейных уравнений и неравенств второго порядка с критическим выражением .. 177
37. Системы полулинейных сингулярных неравенств второго порядка 180
38. Системы полулинейных уравнений и неравенств высокого порядка 182
39. Системы параболических неравенств с операторами типа средней кривизны .. 192
40. Системы параболических уравнений и неравенств с нелинейной главной частью 195
41. Некоторые общие системы параболических неравенств с нелинейной главной частью 210
42. Оценки решений параболических систем второго порядка в окрестности точки разрушения .. 219

Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

43. ВВЕДЕНИЕ ... 224

Глава 5. ЭНЕРГЕТИЧЕСКИЙ МЕТОД И ЗАДАЧИ С КОМПАКТНЫМ НОСИТЕЛЕМ 230
44. Абстрактная схема и приложения .. 230
45. Задача Коши с компактным носителем .. 235

Глава 6. МЕТОД ПРОБНЫХ ФУНКЦИЙ И ЗАДАЧИ С НЕКОМПАКТНЫМ НОСИТЕЛЕМ 243
46. Нелинейные задачи высокого порядка с некомпактным носителем 243
Глава 7. ВЫРОЖДЕНИЕ И СИНГУЛЯРНЫЕ ГИПЕРБОЛИЧЕСКИЕ ЗАДАЧИ В \mathbb{R}^{N+1}...... 267

50. Гиперболические неравенства с субкритическим вырождением 267
51. Модельная задача второго порядка с критическим вырождением 278
52. Гиперболические задачи с локальным (полным и мгновенным) разрушением решения ... 284
53. Задача с суперкритическим показателем сингулярности 294
54. Зависимость критического показателя от выбора функционального пространства 297

Глава 8. ВАРИАЦИОННЫЙ МЕТОД. ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ 300

55. Существование периодических решений нелинейных гиперболических уравнений 300
56. Первое гиперболическое вариационное тождество. Отсутствие периодических решений. Примеры ... 311

Глава 9. МЕТОД СРАВНЕНИЯ ДЛЯ СИСТЕМЫ ВОЛНОВЫХ УРАВНЕНИЙ 322

57. Системы неравенств. Докритический случай 322
58. Разрушение решений гиперболической системы. Критический случай при $N = 3$ 330

Глава 10. МЕТОД ПРОБНЫХ ФУНКЦИЙ. ОТСУТСТВИЕ РЕШЕНИЙ
СИСТЕМ НЕРАВЕНСТВ ... 338

59. Отсутствие решений гиперболических систем с некомпактным носителем 338
60. Отсутствие решений для систем смешанного типа 346

ДОПОЛНЕНИЯ

А. Полулинейные дифференциальные неравенства на группах Гейзенберга 349

Б. Отсутствие решений эволюционных дифференциальных неравенств высокого порядка 360

СПИСОК ЛИТЕРАТУРЫ .. 374
INTRODUCTION ... 9

Part I. STATIONARY PROBLEMS

1. INTRODUCTION .. 16

Chapter 1. STATIONARY INEQUALITIES ... 21

2. Second-Order Semilinear Equations and Inequalities with Bounded Coefficients 21
3. Second-Order Semilinear Equations and Inequalities with Unbounded Coefficients 24
4. Higher Order Semilinear Equations and Inequalities with Bounded Coefficients 27
5. Higher Order Semilinear Equations and Inequalities with Unbounded Coefficients 29
6. Second-Order Elliptic Problems with Local (Complete) Blow-up of a Solution 32
7. Higher Order Semilinear Inequalities with Singular Coefficients 38
8. Second-Order Semilinear Differential Inequalities with Critical Degeneracy 41
9. Semilinear Differential Inequalities with a Polyharmonic Operator 43
10. Nonexistence of Solutions to Semilinear Problems in a Half-Space 44
11. Semilinear Inequalities in Cones ... 47
12. A Model Quasilinear Problem and Its Generalizations 59
13. The General Case of Quasilinear Inequalities ... 65
14. Coercive Problems .. 68
15. Problems With the Right-Hand Side Depending on the Gradient of a Solution 70
16. Generalizations of the Bernstein Theorem ... 73

Chapter 2. SYSTEMS OF STATIONARY INEQUALITIES 80

17. Systems of Second-Order Semilinear Equations and Inequalities with Bounded Coefficients .. 80
18. Systems of Second-Order Semilinear Equations and Inequalities with Unbounded Coefficients .. 82
19. Systems of Higher Order Semilinear Equations and Inequalities with Bounded Coefficients .. 85
20. Systems of Higher Order Semilinear Equations and Inequalities with Unbounded Coefficients .. 87
21. Systems of Semilinear Inequalities in Cones .. 91
23. Nonexistence of Positive Solutions for One Class of Weakly Coupled Systems 100
24. Strongly Coupled System ... 104
Part II. FIRST-ORDER EVOLUTION PROBLEMS

25. INTRODUCTION ... 108

Chapter 3. EVOLUTION INEQUALITIES .. 110
26. Second-Order Semilinear Equations and Inequalities ... 110
27. Second-Order Evolution Inequalities with Critical Degeneracy 116
28. Second-Order Parabolic Problems with Local (Complete and Instantaneous) Blow-up of Solution .. 119
29. Higher Order Semilinear Equations and Inequalities ... 127
30. Higher Order Evolution Inequalities with Precritical Degeneracy 130
31. Higher Order Evolution Inequalities with Critical Degeneracy 140
32. Semilinear Inequalities in a Cone .. 141
33. Second-Order Equations and Inequalities with Nonlinear Principal Part 153

Chapter 4. SYSTEMS OF INEQUALITIES ... 165
34. Systems of Second-Order Semilinear Equations and Inequalities 165
35. Systems of Second-Order Semilinear Equations and Inequalities with Subcritical Degeneracy ... 171
36. Systems of Second-Order Semilinear Equations and Inequalities with Critical Degeneracy ... 177
37. Systems of Second-Order Semilinear Singular Inequalities 180
38. Systems of Higher Order Semilinear Equations and Inequalities 182
39. Systems of Parabolic Inequalities with Mean Curvature Type Operators 192
40. Systems of Parabolic Equations and Inequalities with Nonlinear Principal Part 195
41. Certain General Systems of Parabolic Inequalities with Nonlinear Principal Part 210
42. Estimates of Solutions to Second-Order Parabolic Systems in the Neighborhood of a Blow-up Point .. 219

Part III. SECOND-ORDER EVOLUTION PROBLEMS

43. INTRODUCTION ... 224

Chapter 5. ENERGY METHOD AND PROBLEMS WITH COMPACT SUPPORT 230
44. An Abstract Scheme and Applications ... 230
45. The Cauchy Problem with Compact Support .. 235

Chapter 6. METHOD OF TEST FUNCTIONS AND PROBLEMS WITH NONCOMPACT SUPPORT .. 243
46. Higher Order Nonlinear Problems with Noncompact Support 243
47. Higher Order Equations ... 253
48. Higher Order Quasilinear Differential Inequalities with Essentially Variable Coefficients 256
49. Equations with Nonlocal Nonlinearity .. 263

Chapter 7. DEGENERATE AND SINGULAR HYPERBOLIC PROBLEMS IN \(\mathbb{R}^{n+1} \) 267

50. Hyperbolic Inequalities with Subcritical Degeneracy .. 267

51. A Second-Order Model Problem with Critical Degeneracy 278

52. Hyperbolic Problems with Local (Complete and Instantaneous) Blow-up of a Solution 284

53. Problem with Supercritical Exponent of Singularity 294

54. Dependence of the Critical Exponent on the Choice of the Function Space 297

Chapter 8. VARIATIONAL METHOD: PERIODIC SOLUTIONS 300

55. Existence of Periodic Solutions to Nonlinear Hyperbolic Equations 300

56. The First Hyperbolic Variational Identity. Nonexistence of Periodic Solutions. Examples .. 311

Chapter 9. COMPARISON METHOD FOR A SYSTEM OF WAVE EQUATIONS 322

57. Systems of Inequalities: Precritical Case ... 322

58. Blow-up of Solutions to a Hyperbolic System: Critical Case for \(N = 3 \) 330

Chapter 10. METHOD OF TEST FUNCTIONS: NONEXISTENCE OF SOLUTIONS TO SYSTEMS OF INEQUALITIES .. 338

59. Nonexistence of Solutions to Hyperbolic Systems with Noncompact Support 338

60. Nonexistence of Solutions for Mixed-Type Systems 346

APPENDICES

A. Semilinear Differential Inequalities on the Heisenberg Groups 349

B. Nonexistence of Solutions to Higher Order Evolution Differential Inequalities 360

REFERENCES ... 374
ВВЕДЕНИЕ

В предлагаемой книге излагается общий подход к априорным оценкам решений нелинейных уравнений и неравенств в частных производных, основанный на методе пробных функций. Этот подход охватывает достаточно широкий класс нелинейных задач, для которых мы исследуем проблему отсутствия нетривиальных решений.

В последние годы проблеме отсутствия, или, другими словами, “необходимым условиям существования решения”, уделяется большое внимание. За это время был достигнут значительный успех в этом направлении.

Библиография, посвященная этой теме, является весьма обширной. Прежде всего мы рекомендуем ставшую уже классической книгу А.А. Самарского, В.А. Галaktionова, С.П. Курдиюнова и А.П. Михайлова [237]. Из современных публикаций мы рекомендуем прекрасный обзор В.А. Галaktionова и Х.Л. Вазкеза [78], содержащий список литературы из 176 наименований, и обзор К. Денга и Х. Левина [55], содержащий 88 наименований, а также книгу Б. Страутгама [168]. Эти обзоры содержат по существу почти всю основную библиографию, посвященную теории разрушения решений нелинейных параболических уравнений.

Публикаций, посвященных необходимым условиям существования глобальных решений нелинейных гиперболических уравнений и систем, существенно меньше. Достаточно полное представление по этому вопросу можно получить из монографий С. Алияхака [2], Ф. Джона [108], Л. Хёрманцера [102], М. Струве [173], В. Штраусса [172].

Что касается проблемы отсутствия решений нелинейных эллиптических задач, то достаточно полный список литературы содержится в работах Дж. Серрина и Х. Зоу [163], Дж. Серрина [162], М.-Ф. Бидо-Венон и С.И. Пожажева [26] и Э. Митидиери и С.И. Пожажева [223].

Мы не касаемся анализа этой литературы, поскольку наш подход существенно отличается от использованных ранее методов. Мы имеем в виду следующее. Известные нам методы основаны на принципе сравнения. Этот принцип позволяет на основе построения нижних разрушающихся решений доказать разрушение решения за конечное время для исходных рассматриваемых эволюционных уравнений. Аналогичным образом доказывается отсутствие нетривиальных решений соответствующих нелинейных эллиптических задач.

В предлагаемом подходе не используется метод сравнения. Наш подход основан на априорных оценках. Сначала мы получаем априорную оценку для решения рассматриваемой нелинейной проблемы. Затем получаем асимптотику этой априорной оценки. Асимптотика
 рассмотривается относительно некоторого параметра, стремящегося либо к $+\infty$, либо к 0 в зависимости от характера задачи. Доказательство отсутствия решения проводится методом от противного, а именно: установление нулевого предельного значения соответствующей априорной оценки гарантирует отсутствие нетривиального решения задачи.

Вывод априорной оценки основан на методе пробных функций. Оптимальный выбор пробной функции приводит к минимаксной нелинейной проблеме, которая порождает нелинейную емкость, индуцированную соответствующей нелинейной задачей. Для анализа проблемы отсутствия достаточно получить точную оценку первого члена асимптотики этой емкости. Это значительно упрощает анализ и позволяет рассматривать существенно новые классы нелинейных задач без привлечения какой-либо информации о фундаментальном решении соответствующего дифференциального оператора. В частности, этот подход позволил рассмотреть многомерные нелинейные гиперболические задачи высокого порядка.

Проиллюстрируем наш подход на следующем простом примере. Рассмотрим обыкновенное дифференциальное неравенство k-го порядка

$$
\begin{cases}
 \frac{d^k x}{dt^k} \geq |x|^q, & t \geq 0, \\
 x^{(k-1)}(0) = x_{k-1} > 0
\end{cases}
$$

с $q > 1$.

I. Априорная оценка. Умножаем это неравенство на пробную функцию $\varphi \geq 0$ из класса $C^k_0(\mathbb{R})$ такую, что $\varphi'(0) = \ldots = \varphi^{(k-1)}(0) = 0$ и $\varphi(T_1) = \ldots = \varphi^{(k-1)}(T_1) = 0$, где

$$
 \varphi(t) = \begin{cases}
 1, & 0 \leq t \leq T < T_1, \\
 0, & t \geq T_1,
 \end{cases}
$$

Тогда получим

$$
\int_0^{T_1} |x|^q \varphi \, dt \leq (-1)^k \int_0^{T_1} \frac{d^k x}{dt^k} \, dt - x_{k-1}.
$$

Отсюда в силу неравенства Юнга с параметром $\varepsilon > 0$

$$
a b \leq \varepsilon \frac{a^q}{q'} + \frac{1}{q \varepsilon^{q'-1}} b^q', \quad a, b \geq 0,
$$

где $q' = \frac{q}{q-1}$, находим

$$
\left(1 - \frac{\varepsilon}{q}\right) \int_0^{T_1} |x|^q \varphi \, dt \leq \frac{1}{q' \varepsilon^{q'-1}} \int_0^{T_1} \frac{|\varphi^{(k)}(t)|}{(\varphi(t))^{q'-1}} \, dt - x_{k-1}.
$$

Таким образом при любом $q > \varepsilon > 0$, $q > 1$, мы получили априорную оценку, не зависящую от начальных значений $x(0), \ldots, x^{(k-2)}(0)$.

Отсюда получаем

$$
\int_0^T |x|^q \, dt \leq \int_0^{T_1} \frac{|\varphi^{(k)}(t)|}{(\varphi(t))^{q'-1}} \, dt - q' x_{k-1},
$$

поскольку (при $q > 1$) $\min_{0 < \varepsilon < q} \left\{ \frac{\varepsilon-1}{q} \frac{1}{q' \varepsilon^{q'-1}} \right\} = 1$ и достигается при $\varepsilon = 1$.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
ВВЕДЕНИЕ

II. Нелинейная емкость. Для получения оптимальной априорной оценки введем следующую величину:

\[\text{cap}(D^k, T) := \inf_{T_1 > T} \left\{ \frac{T_1}{\int_0^T \frac{\left| \varphi^{(k)}(t) \right|^{q'}}{(\varphi(t))^{q'-1}} \, dt} \right\}, \]

gде инфимум берется по всем пробным функциям \(\varphi(t) \) из указанного класса.

Эту величину естественно назвать нелинейной емкостью, индуцированной нашей задачей. Тогда оптимальная априорная оценка принимает вид

\[\int_0^T |x|^q \, dt \leq \text{cap}(D^k, T). \]

III. Асимптотика. Возьмем в качестве пробной функции \(\varphi(t) \) функцию вида

\[\varphi(t) = \varphi_0(\tau), \quad \tau = \frac{t}{T}, \]

где \(\varphi_0 \in C_0^k(\mathbb{R}), \varphi_0 \geq 0 \) и такая, что

\[\varphi_0(\tau) = \begin{cases} 1, & 0 \leq \tau \leq 1, \\ 0, & \tau \geq \tau_1 > 1. \end{cases} \]

Тогда

\[\int_0^T |x|^q \, dt \leq \frac{1}{T^{kq'-1}} \int_1^{\tau_1} \frac{\left| \varphi_0^{(k)}(\tau) \right|^{q'}}{(\varphi_0(\tau))^{q'-1}} \, d\tau - q' x_{k-1}. \]

Ясно, что функция \(\varphi_0 \) из рассматриваемого класса с

\[\int_1^{\tau_1} \frac{\left| \varphi_0^{(k)}(\tau) \right|^{q'}}{(\varphi_0(\tau))^{q'-1}} \, d\tau < \infty \]

существует.

Обозначим через \(c_1 > 0 \) значение этого интеграла. Тогда получим

\[\int_0^T |x|^q \, dt \leq c_1 T^{1-kq'} - q' x_{k-1}. \]

IV. Отсутствие глобального решения. Из этой оценки при \(x_{k-1} \geq 0 \) немедленно получаем отсутствие глобального нетривиального решения при

\[kq' > 1, \]

t.е. при любом \(k \geq 1 \) и \(q > 1 \).
ВВЕДЕНИЕ

V. Оценка времени жизни решения. Если $x_{k-1} > 0$, то при $T > T_0$ с

$$T_0 = \left(\frac{c_1}{q' x_{k-1}} \right)^{\frac{1}{q' - 1}}$$

решение рассматриваемой задачи не существует.

Замечание 1. Зависимость времени жизни от начального значения $x_{k-1} > 0$ является точной, т.е. неулучшаемой, во всем рассматриваемом классе задач.

Получение точной константы $c_1 > 0$ связано с отысканием

$$\inf_{\tau_1 > 1} \int_{1}^{\tau_1} \frac{|\varphi_0^{(k)}(\tau)|^q'}{(|\varphi_0(\tau)|^{q'-1})} d\tau$$

в рассматриваемом классе функций φ_0.

Замечание 2. Аналогично рассматривается обыкновенное дифференциальное неравенство вида

$$\frac{d^k x}{dt^k} + a_{k-1}(t) \frac{d^{k-1} x}{dt^{k-1}} + \ldots + a_0(t)x \geq b(t)|x|^q$$

с $a_0,\ldots,a_{k-1}, b \in L^1_{loc}(\mathbb{R}_+)$ и $q > 1, b > 0$ п.в. в \mathbb{R}_+.

Точно так же рассматриваются и системы таких неравенств.

Исследование нелинейных неравенств с частными производными основано на специальном выборе пробных функций, ассоциированных с рассматриваемой нелинейной проблемой. Отметим, что этот выбор определяется как нелинейным, так и сингулярным характерами задачи и зависит от рассматриваемого класса решений. В частности, критический показатель для фиксированной нелинейной задачи может быть разным в разных функциональных пространствах.

Предлагаемый подход имеет, на наш взгляд, следующие преимущества: простота, общность, точность. Во-первых, все вычисления являются достаточно простыми, почти очевидными и не требуют привлечения специальных дополнительных аргументов. По существу анализы задач сводятся к анализу соответствующих алгебраических неравенств. Во-вторых, отказ от предположений о применимости принципа сравнения позволил рассмотреть довольно широкий класс нелинейных проблем, включая нелинейные гиперболические неравенства высокого порядка. Наконец, все полученные нелинейные характеристики, обеспечивающие отсутствие нетривиальных решений, являются окончательными, т.е. неулучшаемыми, во всем соответствующем классе рассматриваемых проблем. Естественно, что при изменении класса (при дополнительных ограничениях) эти нелинейные характеристики могут быть улучшены.

Простейшим примером, связанным с нелинейными теоремами типа Лувиля, радиальный случай которого был рассмотрен Ни и Серрином [146], служит задача

$$-\Delta u \geq |u|^q, \quad x \in \mathbb{R}^N,$$

где $q > 0$ и решение предполагается в слабом смысле. Нас интересуют необходимые условия на q, при которых задача (1) имеет нетривиальное решение. Для положительного решения рассуждения, основанные на сферическом усреднении, позволяют показать, что задача (1) не имеет решений, если $1 < q \leq \frac{N}{N-2}$ (см., например, [146] с общим обсуждением исследования эллиптических задач в радиальном случае).
Однако без предположения о положительности решения методы работы [146] оказываются неприменимыми. С другой стороны, по определению слабого решения (и даже в смысле обобщенных функций) для задачи (1) имеем

$$\int_{S_\varphi} |u|^q \varphi \, dx \leq - \int_{S_\varphi} u \Delta \varphi \, dx$$

для любой неотрицательной пробной функции $\varphi \in C^2_0(\mathbb{R}^N)$. Здесь S_φ обозначает носитель функции φ.

Пусть $q > 1$ (случай $0 < q \leq 1$ рассмотрен в разд. 12). Тогда из (2), применяя (формально) неравенство Гельдера

$$\int f g \, dx \leq \left(\int f^q \, dx \right)^{1/q} \left(\int g^q' \, dx \right)^{1/q'},$$

получим

$$\int_{S_\varphi} |u|^q \varphi \, dx \leq \int_{S_\varphi} |\Delta \varphi|^q \varphi^{1-q} \, dx,$$

где $1/q + 1/q' = 1$.

Полагая $\varphi := \psi^\gamma$ с $\gamma > 2q'$ и неотрицательной функцией $\psi \in C^2_0(\mathbb{R}^N)$, из (3) получим

$$\int_{S_\varphi} |u|^q \psi^\gamma \, dx \leq C \left\{ \int_{S_\varphi} \left(\psi^{\gamma-2q'} |\nabla \psi|^{2q'} + \psi^{\gamma-q'} |\Delta \psi|^{q'} \right) \, dx \right\}.$$ (4)

Заметим, что по нашему предположению о ψ правая часть этого неравенства конечна. Если теперь выбрать такое ψ, чтобы оно было константой на компактном подмножестве $K \subset S_\varphi$ (скажем, $\psi \equiv 1$ на K), то из (4) выводим

$$\int_K |u|^q \, dx \leq c \gamma R(\psi),$$ (5)

где $R(\psi)$ определяется правой частью (4).

Уточняя наш выбор функции φ (см., например, (2.7)), приходим к известному результату: задача (1) не имеет глобального нетривиального решения, если

$$1 < q \leq \frac{N}{N-2}.$$ (6)

Аналогичные рассуждения мы используем и для изучения эволюционных задач. Конечно, в этом случае пробные функции зависят от t, x.

Если теперь вместо (1) мы рассмотрим задачу

$$-\Delta u = |u|^q + f, \quad x \in \mathbb{R}^N,$$ (7)

где $f \in L^1_{\text{loc}}(\mathbb{R}^N)$ неотрицательна, то приведенные выше рассуждения дают необходимые условия существования решения задачи (7)

$$\int_K f \, dx \leq \tilde{c} \gamma R(\psi).$$ (8)
ВВЕДЕНИЕ

Конечно, (8) показывает, что задача (7) не имеет решения, если f достаточно “большая” в некотором смысле. То есть (7) не имеет решений, если

$$\int_{K_\psi} f\, dx > c_\gamma R(\psi).$$

(9)

Это простое следствие имеет большое значение в приложении к эволюционным задачам. Именно, в эволюционных задачах аналогичную роль играют начальные данные, что позволяет, используя предлагаемый нами метод, проследить зависимость критического показателя от роста начальных данных.

За счет специального выбора пробных функций из допустимого для данной задачи класса мы получаем некоторые (неявные) условия отсутствия решения в виде оценки некоторых интегралов от решения через интегралы емкостного типа от пробной функции. Обычно это сводит задачу исследования отсутствия решения для заданного дифференциального неравенства к задаче оптимального выбора параметров, определяющих соответствующую пробную функцию. В случаях, когда исходная задача является полулинейной (или близкой к ней), нахождение соответствующих параметров обычно не составляет труда, однако, например, для систем квазилинейных эллиптических неравенств с p- и q-лапласианами определение явной связи параметров становится отдельной большой проблемой (см. разд. 2 и далее).

Во всех рассматриваемых в книге задачах основное внимание мы уделяем нелинейностям степенного вида. Возможно применять предлагаемый метод и к более общим нелинейностям, однако это тема отдельного исследования. На протяжении книги мы пытаемся ответить на следующий общий вопрос: возможно ли для заданного типа нелинейности (например, степенной) и различных классов связанных с ней нелинейных задач (эллиптических, параболических или гиперболических) описать в единым ключе, используя один и тот же подход, условия отсутствия решения для этой нелинейности? Эта цель объясняет, в частности, отказ от использования принципов сравнения и других сведений из линейной теории. Тем более удивительно, что получаемые при этом результаты в большинстве случаев являются точными в рассматриваемых нами классах задач, что еще раз подтверждает “естественность” предлагаемого метода. В книге мы ограничились рассмотрением лишь модельных задач, часто налагая дополнительные несущественные ограничения с целью облегчить восприятие метода и обозримость получаемых результатов. Мы надеемся, что заинтересованный читатель, следуя приведенным в книге замечаниям и указаниям, сможет исследовать весь спектр представленных проблем.

Книга состоит из трех частей, посвященных, условно говоря, “эллиптическим”, “параболическим” и “гиперболическим” задачам. В дополнениях рассмотрены дифференциальные неравенства на группах Гейзенберга и эволюционные неравенства высокого порядка.

В первой части “Стационарные задачи” изучаются стационарные нелинейные неравенства как в \mathbb{R}^N, так и в $\mathbb{R}^N \setminus \{0\}$. В качестве модельных в данной части используются эллиптические неравенства и системы таких неравенств, поэтому далее мы часто будем называть стационарные задачи “эллиптическими”, хотя наши результаты в основном не используют никаких сведений о типе оператора или свойствах его фундаментального решения. Мы достаточно подробно излагаем доказательства, начиная с простых полулинейных неравенств в \mathbb{R}^N. В данном контексте рассмотрение именно неравенств, а не уравнений, позволяет получать неулучшаемые критические показатели, поскольку соответствующие показатели для уравнений и неравенств (по крайней мере во всем \mathbb{R}^N) различны. Более полное представление

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
можно получить из введения к части, в котором рассматривается случай одного неравенства (глава 1) и системы неравенств (глава 2).

Вторая часть "Эволюционные задачи первого порядка" посвящена "параболическим" неравенствам в \(\mathbb{R}^N \times (0, \infty)\) и \((\mathbb{R}^N \setminus \{0\}) \times (0, \infty)\), т.е. задачам, в которых некоторым образом выделена первая производная по одной из переменных, которую мы традиционно называем "временем" и обозначаем буквой \(t\). В отличие от стационарных задач появляются начальные условия, которые влияют на отсутствие решения. Замечательным для нас является также факт совпадения критических показателей для уравнений и неравенств, в частности, в качестве примера мы доказываем классический результат Фужиты [68] для уравнения теплопроводности, послуживший толчком к исследованиям проблем критических показателей отсутствия решений дифференциальных уравнений в частных производных. Как и выше, факт "параболичности" для нас не является принципиальным. Новым моментом по сравнению со стационарными задачами является введение анизотропных пробных функций. Естественно, эта анизотропность переменных \(x\) и \(t\) обусловлена характером рассматриваемых задач.

В третьей части "Эволюционные задачи второго порядка" мы рассматриваем нелинейные неравенства и системы в \(\mathbb{R}^N \times (0, \infty)\) и \((\mathbb{R}^N \setminus \{0\}) \times (0, \infty)\), содержащие вторую производную по времени. Поскольку для нас тип оператора, действующего по переменной \(x\), не является определяющим, с формальной точки зрения кажется, что эти задачи (если их рассматривать на множестве \(\mathbb{R}^{N+1}\)) являются частным случаем изученных в первой части стационарных неравенств. Однако на первый взгляд более простой характер зависимости дифференциального оператора от переменной \(t\) в действительности позволяет получить результаты для неравенств с сингулярными и вырождающимися коэффициентами, применимые, в частности, к соответствующим гиперболическим неравенствам. Это требует введения анизотропных по \(t\) и \(x\) пробных функций и приводит к совершенно новым и неожиданным результатам. Необходимо подчеркнуть существенное отличие гиперболических задач от параболических, состоящее в разных критических показателях для задач с компактными (критические показатели типа Джона) и некомпактными (критические показатели типа Като) носителями начальных данных. Мы фокусируем наше внимание на втором типе задач, для широкого класса которых наш метод позволяет установить неулучшаемые результаты, а также получить утверждения о полном и мгновенном разрушении решений гиперболических задач. Но для полноты изложения мы приводим и утверждения о критических показателях типа Джона, полученные несколькими иной техникой.

В книге мы не касаемся весьма актуальных вопросов численного моделирования явления разрушения решения, отсылая заинтересованных читателей к работам [7, 34, 38], а также многочисленных приложений теории отсутствия глобальных решений [37, 33, 133, 128, 194, 129].

В заключение отметим, что мы приводим не только наши результаты, но и результаты, полученные совместно с другими математиками. В связи с этим мы хотим поблагодарить наших друзей и коллег М.-Ф. Бидо-Вероя, Л. Верона, В.А. Галактионова, В. Георгиева, Д. Дель Санто, Ю.В. Егорова, Г. Каристи, В.А. Кондратьева, А. Тесея. Мы приводим также ряд интересных результатов, полученных на базе предлагаемых нами методов Г. Каристи и Г.Г. Лаптевым.

Особую благодарность мы выражаем Г.Г. Лаптеву за подготовку рукописи к печати.
Часть I

СТАЦИОНАРНЫЕ ЗАДАЧИ

1. ВВЕДЕНИЕ

Мы доказываем некоторые новые теоремы отсутствия положительных решений для квазилинейных эллиптических уравнений и систем таких уравнений и неравенств в \mathbb{R}^N, $N \geq 1$. Эти теоремы доказываются методом интегральных соотношений без использования метода сравнения и принципа максимума, что позволяет рассмотреть более широкий класс нелинейных задач.

Теоремы отсутствия составляют важную часть теории уравнений с частными производными, начало которой положила известная теорема Ляувилля для гармонических функций.

В последние 20 лет было направлено много усилий на доказательство "теорем типа Лиувилля" для положительных решений нелинейных эллиптических уравнений и систем (см., например, [28, 201, 62, 202, 208, 66, 27, 3, 119, 167, 25, 210, 114]). Одна из важных причин распространения "линейных" теорем типа Лиувилля на нелинейные задачи состоит в том, что такие результаты могут использоваться при доказательстве существования решений для соответствующей задачи Дирихле в ограниченной области. Среди других причин — использование результатов отсутствия для доказательства "blow-up"-оценки для параболических задач (см. [88, 90, 41] и библиографию там). Такой подход дает ощутимые преимущества при исследовании невариационных задач (см., например, [21, 47, 22, 30, 63]).

Необходимые априорные оценки решений в ограниченной области при исследовании суперлинейных и суперподнородных задач (см. [87, 30, 63]) доказываются с помощью так называемого blow-up-метода. Этот метод основан на применении знаменитого результата Гидаса и Спрука [86] об отсутствии положительных решений для полунелинейных эллиптических уравнений в \mathbb{R}^N (см. также [185, 155, 156, 165, 158, 186, 187]).

В наиболее простом виде этот результат может быть сформулирован следующим образом. Пусть $N \geq 3$. Если

$$1 < q < \frac{N + 2}{N - 2},$$

то задача

$$\begin{cases}
-\Delta u = u^q, & x \in \mathbb{R}^N, \\
u > 0, & x \in \mathbb{R}^N, \\
u \in C^2(\mathbb{R}^N),
\end{cases} \quad (1.1)$$

не имеет решения.
Одна из интересных особенностей этой важной теоремы состоит в том, что не накладываются никаких условий на поведение возможных решений в бесконечности.

На самом деле нетрудно показать, что результат верен при подходящем ограничении на решения в бесконечности для более широкого класса уравнений (следующее простое предположение быстро приводит к цели с помощью вариационного тождества [228]: \(u(x) \leq C|x|^{-\frac{q}{N-2}}, x \neq 0 \)).

Другой удивительный факт — точность теоремы Гидаса–Спрука. Это означает, что при каждом

\[
q \geq \frac{N + 2}{N - 2}
\]

утверждение теоремы перестает быть верным.

Соответствующий контрпример легко получить с помощью техники обыкновенных дифференциальных уравнений (см., например, [146, 45]), примененной к радиальным решениям (1.1) при \(q \geq \frac{N + 2}{N - 2} \). Действительно, если \(q = \frac{N + 2}{N - 2} \), то минимизирующая функция Соболева

\[
u(x) := \frac{k}{(1 + |x|^2)^{\frac{N - 2}{2}}}, \quad x \in \mathbb{R}^N,
\]

с подходящей нормализующей константой \(k > 0 \) дает единственное решение (1.1) с \(u(0) = k \), для \(q > \frac{N + 2}{N - 2} \) задача (1.1) также имеет единственное решение для каждого фиксированного \(u(0) > 0 \).

Сформулируем проблему более точно.

Пусть \(A \) — дифференциальный оператор второго порядка в дивергентной форме, \(f : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) — заданная функция. Каковы достаточные условия отсутствия положительных решений уравнения

\[
A(u) = f(u), \quad x \in \mathbb{R}^N,
\]

cогда \(u \in S \)? Здесь \(S \) — подходящий функциональный класс, зависящий от пары \((A, f)\). Рассмотрим один важный пример (см. [162]). Пусть \(N \geq 3 \),

\[
1 < q < \frac{N + 2}{N - 2}
\]

и

\[
\begin{cases}
- \text{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) = u^q, & x \in \mathbb{R}^N, \\
u > 0, & x \in \mathbb{R}^N, \\
u \in C^2(\mathbb{R}^N),
\end{cases}
\]
Часть I. СТАЦИОНАРНЫЕ ЗАДАЧИ

Известно [48], что если рассматривать только радиальные функции $u(x)$ и наложить ограничение

$$0 < u(0) \leq (q + 1)^\frac{1}{q} \left(\frac{N + 2 - q(N - 2)}{N + q + 1}\right)^\frac{1}{q+1},$$

(1.4)

tо (1.3) не будет иметь решений. Без предположения (1.4) вопрос об отсутствии решений у (1.3) остается открытым.

Если теперь мы заменим (1.3) соответствующим дифференциальным неравенством

$$\begin{cases}
- \text{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) \geq u^q, & x \in \mathbb{R}^N, \\
u > 0, & x \in \mathbb{R}^N,
\end{cases}$$

(1.5)

tо с помощью метода, разработанного в [223], получим следующий результат.

Теорема 1.1. Пусть $q \geq 0$, если $N = 1, 2, u$

$$1 < q \leq \frac{N}{N - 2},$$

если $N \geq 3$.

Тогда (1.5) не имеет нетривиального решения. С другой стороны, если

$$q > \frac{N}{N - 2}$$

и $\varepsilon > 0$ мало, то

$$u(x) = \frac{\varepsilon}{\left(1 + |x|^2\right)^{\frac{q}{q-1}}}, \quad x \in \mathbb{R}^N,$$

(1.6)

является решением задачи (1.5).

Наша главная задача — показать, что при естественных предположениях о паре (A, f) имеют место точные теоремы отсутствия решения для задачи

$$\begin{cases}
A(u) \geq f(u), & x \in \mathbb{R}^N, \\
u \geq 0, \ u \neq 0, & x \in \mathbb{R}^N, \\
u \in S.
\end{cases}$$

(1.7)

Скажем теперь несколько слов о функциональных пространствах решений S. В отличие от уравнений для дифференциальных неравенств не существует теории регулярных решений. С этой точки зрения дифференциальные неравенства принципиально отличаются от дифференциальных уравнений. Именно поэтому определение класса решений для дифференциальных неравенств играет существенную роль. Нетрудно построить примеры дифференциальных неравенств, для которых соответствующие решения существуют в одном классе функций и не существуют в другом.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Мы систематически используем локальные пространства Соболева с нелинейным неотрицательным или положительным весом типа \(u^\alpha \) или (для систем) \(u^\alpha v^\beta \), определяемым параметром \(\alpha \in \mathbb{R} \) или (для систем) \(\alpha, \beta \in \mathbb{R} \). В некоэрцитивных задачах эти параметры неположительны, в коэрцитивных неотрицательны.

Ясно, что использование соответствующих нелинейных весов обосновано только в случае существования соответствующих интегралов на ограниченных множествах в \(\mathbb{R}^N \). В каждом конкретном случае (теореме) эти интегралы указаны явно при доказательстве. Поэтому в теоремах отсутствия мы всегда предполагаем, что возможные решения принадлежат локальному функциональному пространству, для которого определены интегралы от соответствующих произведений.

В этом и заключается смысл утверждения теорем об отсутствии решений в соответствующем классе локально ограниченных интегралов.

Опишем теперь несколько более конкретно содержание "эллиптической" части. В разд. 2 доказываются некоторые результаты об отсутствии решений полунелинейных неравенств вида

\[
- \sum_{i,j=1}^{N} \frac{\partial^2}{\partial x_i \partial x_j} a_{ij}(x, u) \geq b|u|^q, \quad x \in \mathbb{R}^N,
\]

где \(a_{ij} \) суть скалярные функции, удовлетворяющие некоторым условиям роста, \(b \) неотрицательна, \(q > p \), где \(p \) — показатель роста \(a_{ij} \) по переменной \(u \). Классическими примерами задач типа (1.8) служат

\[
- \Delta u \geq |u|^q \quad (1.9)
\]

и

\[
- \Delta (|u|^{p-1}u) \geq |u|^q. \quad (1.10)
\]

В разд. 3 мы представляем обобщения результатов на неравенства типа (1.8) с переменными коэффициентами \(b(x) \).

Разделы 4 и 5 содержат приложения нашего метода к задачам высокого порядка. Важно обратить внимание на то, что мы не используем никаких утверждений типа принципа сравнения для получения основных априорных оценок (см. (4.7) и (5.7)).

В разд. 6 рассматриваются дифференциальные неравенства в ограниченных областях. Мы уделяем основное внимание модели задаче в области \(\Omega_{0, r_0} = \{ x \in \mathbb{R}^N : 0 < |x| < r_0 \} \):

\[
\begin{cases}
- \Delta u \geq |x|^\sigma u^q, & x \in \Omega_{0, r_0}, \\
u \geq 0, & x \in \Omega_{0, r_0},
\end{cases}
\]

где \(q > 1 \) и \(\sigma \in \mathbb{R} \). Задачи такого рода рассматривались ранее многими авторами (см., например, Ни [144] и Брезис и Кабре [32]).

Раздел 7 посвящен некоторым неравенствам высокого порядка с сингулярностями в \(\mathbb{R}^N \) без предположения о знаке решений. Однако мы предполагаем, что правая часть задачи неотрицательна и имеет форму \(|x|^{-\sigma} u^q \) (см. теорему 7.1 для точной формулировки).

В следующих разд. 8 и 9 мы рассматриваем задачи с оператором Лапласа и полигармоническим оператором соответственно, для которых исследуется отсутствие решения в случае так называемого критического вырождения или сингулярности. Типичная модельная задача имеет вид

\[
-|x|^2 \Delta u \geq |u|^q, \quad x \in \mathbb{R}^N \setminus \{0\}. \quad (1.12)
\]
Интересной особенностью этой задачи является отсутствие глобального нетривиального решения при всех $q > 1$ в подходящем функциональном пространстве (см. теорему 8.1). Это не имеет места, если вместо $|x|^2$ рассматривать задачу с $|x|^\sigma$, $\sigma < 2$. В последнем случае существует критический показатель $q^* > 1$, зависящий от размерности, разделяющий области существования и отсутствия нетривиального решения.

Разделы 10 и 11 посвящены полулинейным неравенствам второго порядка в полупространстве и конусе соответственно.

Разделы 12 и 13 содержат общий результат об отсутствии решений для квазилинейных неравенств. Вообще говоря, эти результаты являются точными и представляют нерадиальные обобщения некоторых хорошо известных результатов, полученных ранее многими авторами. См., например, [146] для обсуждения методов исследования “радиальных” задач.

В разд. 14 разработанный метод применяется к “коээрцитивным” задачам. Вообще говоря, для данного класса задач не существует критического показателя, разделяющего случаи отсутствия и существования решения.

Раздел 15 затрагивает вопросы отсутствия решений для задач, содержащих градиент в правой части.

В заключительном разд. 16 приводятся некоторые обобщения известной теоремы Бернштейна на некоторые квазилинейные дифференциальные операторы.

В гл. 2 наше внимание будет сосредоточено на системах неравенств, рассмотренных в предыдущей главе. Заметим, что для нашего метода нет принципиальной разницы между одним неравенством и системой, поэтому остановимся лишь вкратце на содержании этой главы.

Разделы 17–20 аналогичны соответствующим разделам предыдущей главы и посвящены системам полулинейных неравенств второго и высокого порядков, в разд. 21 рассмотрена простейшая полулинейная система в конусе.

В заключительных разд. 22–24 рассматриваются системы квазилинейных неравенств, модельной для которых является система с p- и q-лапласианами. Отдельно рассмотрены слабо и сильно связанные системы.

Прежде чем приступить к изложению основного материала, сделаем некоторые необходимые комментарии, касающиеся общих предположений, которые мы считаем выполненными при рассмотрении большинства задач.

При исследовании задач с “линейной” главной частью для получения априорной оценки мы используем, грубо говоря, умножение неравенства на неотрицательную пробную функцию φ с последующим переходом (за счет интегрирования по частям) от исходного оператора на решение u к формально сопряженному на пробной функции φ. Этот факт и ложится в основу определения решения соответствующей задачи, что в общем случае отвечает решению в слабом смысле или даже в смысле обобщенных функций и без каких-либо предположений о знаке решения.

Для квазилинейной задачи это (пока еще) невозможно (см., например, теорему 12.4) и мы вынуждены предполагать, что решения неотрицательны и принадлежат некоторому локальному пространству Соболева. Чтобы получить априорную оценку для некоээрцитивной квазилинейной задачи, мы используем в качестве одной из составляющих пробной функции отрицательную степень самого решения. Заметим, что этот классический прием восходит к Трудингеру [174]. Было бы очень интересно получить результаты об отсутствии решений квазилинейных задач вне рамок неотрицательных решений.
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

2. ПОЛУЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА ВТОРОГО ПОРЯДКА
 С ОГРАНИЧЕННЫМИ КОЭФФИЦИЕНТАМИ

В этом разделе мы рассматриваем уравнения и неравенства вида

\[- \sum_{i,j=1}^{N} \frac{\partial^2}{\partial x_i \partial x_j} a_{ij}(x,u) \geq b|u|^q, \quad x \in \mathbb{R}^N. \tag{2.1}\]

Здесь \(a_{ij} : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}, \ i, j = 1, \ldots, N, \) суть каратеодориевы функции, удовлетворяющие условию

\[|a_{ij}(x,u)| \leq a_0 |u|^p, \quad (x,u) \in \mathbb{R}^N \times \mathbb{R}, \tag{2.2}\]

с постоянной \(a_0 \geq 0\) и некоторым \(p > 0, \) \(b — \) положительная константа и

\[q > p. \tag{2.3}\]

Определение 2.1. Под слабым решением задачи (2.1) понимается функция \(u(x) \in L^q_{\text{loc}}(\mathbb{R}^N), \) удовлетворяющая неравенству

\[- \int_{\mathbb{R}^N} \sum_{i,j=1}^{N} a_{ij}(x,u) \frac{\partial^2 \varphi}{\partial x_i \partial x_j} dx \geq \int_{\mathbb{R}^N} b|u|^q \varphi dx \]

dля любой функции \(\varphi \geq 0, \) \(\varphi \in C^2_0(\mathbb{R}^N).\)

Теорема 2.1. Пусть показатель \(q\) удовлетворяет неравенству (2.3) и

\[q \leq \frac{N}{N-2} p. \tag{2.4}\]

Тогда не существует глобального нетривиального слабого решения задачи (2.1).

Доказательство. В силу определения решения и неравенства (2.2) имеем

\[b \int_{\mathbb{R}^N} |u|^q \varphi dx \leq a_0 \int_{\mathbb{R}^N} |u|^p L_2(\varphi) dx, \tag{2.5}\]

где

\[L_2(\varphi) = \sum_{i,j=1}^{N} \left| \frac{\partial^2 \varphi}{\partial x_i \partial x_j} \right|. \]

Отсюда в силу неравенства Гельдера получаем следующую априорную оценку:

\[\int_{\mathbb{R}^N} |u|^q \varphi dx \leq c_0 \int_{\mathbb{R}^N} \frac{[L_2(\varphi)]^{r'}}{\varphi^{r'-1}} dx, \tag{2.6}\]

где \(r' = \frac{r}{r-1}, \) \(r = \frac{q}{p}\) и \(c_0 = \left(\frac{a_0}{b} \right)^{r'}.\)
Часть I. СТАЦИОНАРНЫЕ ЗАДАЧИ

Выберем теперь пробную функцию $\varphi(x)$ вида

$$
\varphi(x) = \varphi_0 \left(\frac{|x|^2}{R^2} \right),
$$

где $\varphi_0 \geq 0$ из класса $C_0^2(\mathbb{R})$ такая, что

$$
\varphi_0(s) = \begin{cases}
1, & 0 \leq s \leq 1, \\
0, & s \geq 2.
\end{cases}
$$

Сделаем теперь замену переменных

$$
x \to \xi: \ x = R\xi.
$$

Тогда получим $\varphi(x) = \varphi_0(|\xi|^2)$ и

$$
\int_{\mathbb{R}^N} \frac{|L_2(\varphi)|^r}{\varphi^{r-1}} \, dx = R^\theta \int_{1 \leq |\xi| \leq \sqrt{2}} \frac{|L^*_2(\varphi_0)|^r}{\varphi_0^{r-1}} \, d\xi,
$$

где

$$
L^*_2(\varphi_0) = \sum_{i,j=1}^N \left| \frac{\partial^2 \varphi_0}{\partial x_i \partial x_j} \right|
$$

и

$$
\theta = N - 2p'.
$$

Выберем теперь пробную функцию φ_0 вида (2.7) так, чтобы интеграл в правой части (2.6) являлся конечным. Ясно, что такая функция φ_0 существует.

Тогда из формулы (2.6) следует, что справедлива априорная оценка

$$
\int_{\mathbb{R}^N} |u|^q \varphi \, dx \leq CR^\theta
$$

с некоторой константой $C = C_\theta > 0$.

Отсюда получаем после перехода к пределу при $R \to \infty$, что если $\theta < 0$, то

$$
\int_{\mathbb{R}^N} |u|^q \, dx = 0.
$$

Таким образом, утверждение теоремы доказано при $\theta < 0$, т.е. при

$$
p < q < \frac{N}{N - 2p}.
$$

Рассмотрим теперь случай $\theta = 0$, т.е.

$$
q = \frac{N}{N - 2p}.
$$

В этом случае соотношение (2.9) влечет

$$
\int_{\mathbb{R}^N} \frac{|L_2(\varphi)|^r}{\varphi^{r-1}} \, dx = c_1,
$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

где

\[c_1 = \int_{1 \leq |\xi| \leq \sqrt{2}} \frac{|L_2(\varphi_0)|^r}{\varphi_0^{-1}}\, d\xi. \]

Следовательно, в силу (2.6) имеем априорную оценку

\[\int_{\mathbb{R}^N} |u|^q \varphi \, dx \leq c_0 \]

при любом \(R \to \infty \), так что

\[\int_{\mathbb{R}^N} |u|^q \, dx \leq c_0. \quad (2.14) \]

Возвратимся теперь к неравенству (2.5). Заметим, что

\[\text{supp} \{L_2(\varphi)\} \subseteq \{x \in \mathbb{R}^N \mid R \leq |x| \leq \sqrt{2}R\} = \overline{B}_R \setminus B_L, \]

где \(B_L = \{x \in \mathbb{R}^N \mid |x| < L\} \).

Тогда соотношение (2.5) в силу неравенства Гельдера влечет

\[b \int_{\mathbb{R}^N} |u|^q \varphi \, dx \leq a_0 \int_{R \leq |x| \leq \sqrt{2}R} |u|^p L_2(\varphi) \, dx \leq a_0 \left(\int_{R \leq |x| \leq \sqrt{2}R} |u|^q \varphi \, dx \right)^{p/q} \left(\int_{R \leq |x| \leq \sqrt{2}R} \frac{|L_2(\varphi)|^r}{\varphi^{-1}} \, dx \right)^{1/r}. \]

Отсюда в силу (2.13) следует, что

\[\int_{\mathbb{R}^N} |u|^q \varphi \, dx \leq \frac{a_0}{b} c_1^{1/r'} \left(\int_{R \leq |x| \leq \sqrt{2}R} |u|^q \varphi \, dx \right)^{p/q} \leq \frac{a_0}{b} c_1^{1/r'} \left(\int_{R \leq |x| \leq \sqrt{2}R} |u|^q \, dx \right)^{p/q}. \quad (2.15) \]

Но в силу (2.14) и абсолютной сходимости интеграла \(\int_{\mathbb{R}^N} |u|^q \, dx \) имеем

\[\int_{R \leq |x| \leq \sqrt{2}R} |u|^q \, dx \to 0 \]

при \(R \to \infty \).

Тогда, переходя к пределу при \(R \to \infty \) в (2.15), получаем

\[\int_{\mathbb{R}^N} |u|^q \, dx = 0. \]

Таким образом, и в этом случае \(u = 0 \), т.е. окончательно с учетом (2.12) условие отсутствия решения принимает вид

\[p < q \leq \frac{N}{N - 2p}. \]

Утверждение теоремы 2.1 доказано. \(\square \)

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Замечание 2.1. Теорема 2.1 является неулучшаемой, т.е. показатель \(q \) нельзя увеличить в общих условиях этой теоремы.

Этот факт следует из простого контрпримера. Пусть \(p > 0 \) и \(q > \frac{N}{N-2}p \). Возьмем функцию \(u_0(x) \) вида

\[
u_0(x) = \frac{\varepsilon}{(1 + |x|^2)^{1/(q-p)}}
\]

с достаточно малым \(\varepsilon > 0 \). Тогда эта положительная гладкая функция удовлетворяет неравенству

\[-\Delta u^p \geq u^q, \quad x \in \mathbb{R}^N.\]

Таким образом, неравенство (2.4) является неулучшаемым.

Замечание 2.2. Отметим, что в условиях теоремы 2.1 отсутствует условие эллиптичности.

3. ПОЛУЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА ВТОРОГО ПОРЯДКА
С НЕОГРАНИЧЕННЫМИ КОЭФФИЦИЕНТАМИ

Рассмотрим уравнения и неравенства вида

\[-\sum_{i,j=1}^{N} \frac{\partial^2}{\partial x_i \partial x_j} a_{ij}(x, u) \geq b(x)|u|^q, \quad x \in \mathbb{R}^N. \tag{3.1}\]

Здесь \(a_{ij} : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}, \ i, j = 1, \ldots, N, \) суть каратеодориевы функции, удовлетворяющие условиям

\[|a_{ij}(x, u)| \leq a(x)|u|^p, \quad (x, u) \in \mathbb{R}^N \times \mathbb{R}, \tag{3.2}\]

с некоторым \(p > 0 \).

Функции \(a(x) \) и \(b(x) : \mathbb{R}^N \times \mathbb{R} \) являются измеримыми, \(a \geq 0 \) и \(b > 0 \) почти всюду в \(\mathbb{R}^N \) и удовлетворяют условию

\[
a^{q/(q-p)} \frac{b^p}{b^{q-p}} \in L^1_{\text{loc}}(\mathbb{R}^N \setminus B_R) \tag{3.3}\]

c \(B_R = \{ x \in \mathbb{R}^N | |x| < R \} \) при \(R \gg 1 \).

Показатель \(q > 0 \) удовлетворяет неравенству (2.3).

Определение 3.1. Под слабым решением задачи (3.1) понимается функция \(u : \mathbb{R}^N \times \mathbb{R} \) такая, что \(a(x)|u(x)|^p, b(x)|u(x)|^q \in L^1_{\text{loc}}(\mathbb{R}^N) \), и удовлетворяющая неравенству

\[-\int_{\mathbb{R}^N} \sum_{i,j=1}^{N} a_{ij}(x, u) \frac{\partial^2 \varphi}{\partial x_i \partial x_j} \, dx \geq \int_{\mathbb{R}^N} b(x)|u|^q \varphi \, dx\]

для любой функции \(\varphi \geq 0 \) из класса \(C^2_0(\mathbb{R}^N) \).

Критический показатель \(q \) для задачи (3.1) с неограниченными коэффициентами \(a(x) \) и \(b(x) \) определяется асимптотикой, точнее первым членом асимптотики, при \(R \to \infty \) следующего выражения:

\[C(R) := \int_{1 \leq |\xi| \leq \sqrt{2}} \frac{a^{q/(q-p)}(R_R \xi)}{b^{q/(q-p)}(R_R \xi)} \, d\xi. \tag{3.4}\]
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

Теорема 3.1. Пусть $p > 0$ и $q > p$. Пусть

$$
\lim_{R \to \infty} R^\theta C(R) < \infty
$$

(3.5)

$c \theta = N - \frac{2q}{q-p}$.

Тогда не существует глобального нетривиального слабого решения $u(x)$ задачи (3.1).

Доказательство по существу повторяет доказательство предыдущей теоремы. В самом деле, в силу определения решения и неравенства (3.2) имеем

$$
\int_{\mathbb{R}^N} b(x)|u|^q \varphi \, dx \leq \int_{\mathbb{R}^N} a(x)|u|^p L_2(\varphi) \, dx
$$

(3.1)

с

$$
L_2(\varphi) = \sum_{i,j=1}^N \left| \frac{\partial^2 \varphi}{\partial x_i \partial x_j} \right|.
$$

Отсюда в силу неравенства Гельдера находим, что выполнена следующая априорная оценка:

$$
\int_{\mathbb{R}^N} b(x)|u|^q \varphi \, dx \leq \int_{\mathbb{R}^N} \left(\frac{L_2(\varphi)a(x)}{(\varphi b(x))^{r'}} \right)^{r'} \, dx.
$$

(3.6)

Здесь $r' = \frac{a}{q-p}$.

Подставляя сюда пробную функцию φ, определенную формулой (2.7) из предыдущего раздела и делая замену переменных (2.8), получаем

$$
\int_{\mathbb{R}^N} b(x)|u|^q \varphi \, dx \leq \int_{1 \leq |\xi| \leq \sqrt{2}} \left(\frac{L_2^*(\varphi_0)a(R\xi)}{(\varphi_0 b(R\xi))^{r'}} \right)^{r'} \, d\xi
$$

(3.6)

с $L_2^*(\varphi_0) = \sum_{i,j=1}^N \left| \frac{\partial^2 \varphi_0}{\partial x_i \partial x_j} \right|$ и $\theta = N - 2r'$.

Выберем теперь пробную функцию φ_0, определенную формулой (2.7) и такую, что

$$
\frac{(L_2^*(\varphi_0))^{r'}}{\varphi_0^{r'-1}} < \infty
$$

при $1 \leq |\xi| \leq \sqrt{2}$. Существование такой функции является очевидным фактом.

Обозначим через

$$
c_0 := \sup \left\{ \frac{(L_2^*(\varphi_0))^{r'}}{\varphi_0^{r'-1}} \right\} \text{ при } 1 \leq |\xi| \leq \sqrt{2}.
$$

Тогда в силу неравенства (3.6) и определения (3.4) величины $C(R)$ получим

$$
\int_{\mathbb{R}^N} b(x)|u|^q \varphi \, dx \leq c_0 R^\theta C(R).
$$

(3.7)

Отсюда, переходя к пределу (нижнему) при $R \to \infty$, находим

$$
\int_{\mathbb{R}^N} b(x)|u|^q \, dx = \lim_{R \to \infty} \int_{\mathbb{R}^N} b(x)|u|^q \varphi \, dx \leq c_0 \lim_{R \to \infty} R^\theta C(R).
$$

(3.8)

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Тогда, если
\[\lim_{R \to \infty} R^\theta C(R) = 0, \]
получаем
\[\int b(x)|u|^q \, dx = 0, \]
откуда в силу неравенства \(b > 0 \) п.в. в \(\mathbb{R}^N \) следует, что \(u \equiv 0 \) п.в. в \(\mathbb{R}^N \).
Если же \(\lim_{R \to \infty} R^\theta C(R) > 0 \), то
\[\lim_{R \to \infty} R^\theta C(R) < \infty, \]
то, применяя аргументы из второй части доказательства теоремы 2.1, получаем утверждение теоремы 3.1. □

Пример 3.1.
\[-\Delta (|x|^{\gamma} u) \geq |u|^q, \quad x \in \mathbb{R}^N, \quad (3.9) \]
с \(q > 1 \) и \(\gamma < 2 \).
Тогда имеем \(p = 1 \) и
\[a(x) = |x|^{\gamma}, \quad b(x) = 1, \]
так что
\[C(R) = \int_{1 \leq |\xi| \leq \sqrt{2}} \frac{R^{q'}|\xi|^{q'}}{1} \, d\xi = R^{q'}c_\gamma, \]
где \(q' = \frac{q}{q-1} \) и
\[c_\gamma = \int_{1 \leq |\xi| \leq \sqrt{2}} |\xi|^{q'} \, d\xi. \]
Тогда
\[C(R) = c_0 R^{\theta_\gamma} \]
с
\[\theta_\gamma = \theta + \gamma q' = N - \frac{2q}{q-1} + \gamma \frac{q}{q-1} = N + \frac{\gamma - 2}{q-1}q. \]
Условие (3.5) отсутствия глобального нетривиального слабого решения задачи (3.9) принимает вид
\[(N + \gamma - 2)q \leq N. \quad (3.10) \]
Отсюда следует, что если
\[\gamma \leq 2 - N, \]
tо задача (3.9) при любом \(q > 1 \) не имеет глобального нетривиального слабого решения.
Если
\[2 - N < \gamma < 2, \]
tо задача (3.9) не имеет глобального нетривиального слабого решения при
\[1 < q \leq \frac{N}{N - 2 + \gamma}. \]
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

Пример 3.2.

\[-\Delta u \geq |x|^q|u|^q, \quad x \in \mathbb{R}^N, \quad (3.11)\]

c q > 1 и \(\sigma > -2\).

Для этой задачи имеем

\[p > 1, \quad a(x) \equiv 1, \quad b(x) = |x|^q.\]

Следовательно,

\[C(R) = \int_{1 \leq |\xi| \leq \sqrt{2}} \frac{1}{R^{\sigma/(q-1)}|\xi|^{\sigma/(q-1)}} d\xi = c_\sigma R^{-\sigma/(q-1)},\]

с

\[c_\sigma = \int_{1 \leq |\xi| \leq \sqrt{2}} |\xi|^{-\sigma/(q-1)} d\xi.\]

Тогда \(C(R) = a_0 R^{\theta_\sigma} c \theta_\sigma = N - \frac{2q}{q-1} - \frac{\sigma}{q-1}\).

Следовательно, условие (3.5) отсутствия глобального нетривиального слабого решения задачи (3.11) принимает вид

\[(N - 2)q \leq N + \sigma.\]

Отсюда следует, что при \(N = 1, 2\) задача (3.11) не имеет глобального нетривиального слабого решения при любом \(q > 1\) (\(\sigma > -2\)). Если \(N > 2\), то критический показатель \(q\) определяется из соотношения

\[1 < q \leq \frac{N + \sigma}{N - 2}.\]

4. ПОЛУЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА ВЫСОКОГО ПОРЯДКА С ОГРАНИЧЕННЫМИ КОЭФФИЦИЕНТАМИ

В этом разделе мы рассмотрим неравенства вида

\[L(u) \geq b|u|^q, \quad x \in \mathbb{R}^N. \quad (4.1)\]

Здесь

\[L(u) := \sum_{k \leq |\alpha| \leq m} (-1)^{|\alpha|} D^\alpha a_\alpha(x, u),\]

gде \(a_\alpha : \mathbb{R}^N \times \mathbb{R} \rightarrow \mathbb{R}, k \leq |\alpha| \leq m,\) суть карлсоновские функции, удовлетворяющие условию

\[|a_\alpha(x, u)| \leq a_0 |u|^p \quad (4.2)\]

c постоянной \(a_0 > 0\) и показателем \(p > 0\).

В неравенстве (4.1) мы предполагаем, что постоянная \(b > 0\) и

\[q > p. \quad (4.3)\]

Определение 4.1. Под слабым решением задачи (4.1) понимается функция \(u \in L^q_{\text{loc}}(\mathbb{R}^N)\), удовлетворяющая неравенству

\[\int_{\mathbb{R}^N} \sum_{k \leq |\alpha| \leq m} a_\alpha(x, u) D^\alpha \varphi dx \geq \int_{\mathbb{R}^N} b|u|^q \varphi dx \quad (4.4)\]

при любой функции \(\varphi \geq 0\) из класса \(C^m_0(\mathbb{R}^N)\).
Часть I. СТАЦИОНАРНЫЕ ЗАДАЧИ

Теорема 4.1. Пусть показатель q удовлетворяет неравенству (4.3) и

\[\begin{cases}
q \leq \frac{N}{N - kp}, & k < N, \\
q < \infty, & k \geq N.
\end{cases} \tag{4.5} \]

Тогда не существует глобального нетривиального слабого решения задачи (4.1).

Доказательство по существу повторяет доказательство предыдущих теорем. В силу определения решения и неравенства (4.2) имеем

\[b \int_{\mathbb{R}^N} |u|^q \varphi \, dx \leq a_0 \int_{\mathbb{R}^N} |u|^q L_s(\varphi) \, dx, \tag{4.6} \]

где

\[L_s(\varphi) = \sum_{k \leq |\alpha| \leq m} |D^\alpha \varphi|. \]

Отсюда в силу неравенства Гёльдера получаем априорную оценку

\[\int_{\mathbb{R}^N} |u|^q \varphi \, dx \leq c_0 \int_{\mathbb{R}^N} \frac{|L_s(\varphi)|^{r'}}{\varphi^{r'-1}} \, dx, \tag{4.7} \]

где $r' = \frac{r}{r-1}$, $r = \frac{q}{p}$ и $c_0 = (a_0 b)^{r'}$.

Выберем теперь пробную функцию $\varphi(x)$ вида (2.7)

\[\varphi(x) = \varphi_0 \left(\frac{|x|^2}{R^2} \right), \]

где $\varphi_0 \geq 0$ из класса $C^m_0(\mathbb{R})$ такая, что

\[\varphi_0(s) = \begin{cases}
1, & 0 \leq s \leq 1, \\
0, & s \geq 2.
\end{cases} \]

Сделаем замену переменных (2.8)

\[x \rightarrow \xi: \quad x = R\xi. \]

Тогда неравенство (4.7) влечет оценку

\[\int_{\mathbb{R}^N} |u|^q \varphi \, dx \leq c_0 R^\theta \int_{1 \leq |\xi| \leq \sqrt{2}} \frac{|L_s(\varphi_0)|^{r'}}{\varphi_0^{r'-1}} \, d\xi \tag{4.8} \]

при $R \rightarrow \infty$, где $L_s(\varphi_0) = \sum_{k \leq |\alpha| \leq m} |D^\alpha \varphi_0(\xi)|$ и

\[\theta = N - kr'. \tag{4.9} \]

Выберем теперь пробную функцию φ_0 такую, чтобы интеграл в правой части неравенства (4.8) был конечным. Ясно, что такая функция существует.

Тогда из формулы (4.8) следует, что

\[\int_{\mathbb{R}^N} |u|^q \varphi \, dx \leq c R^\theta, \quad R \rightarrow \infty, \tag{4.10} \]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

29

с некоторой постоянной $c > 0$.

Отсюда после перехода к пределу при $R \to \infty$ получаем

$$\int_{\mathbb{R}^N} |u|^q \, dx = 0,$$

если $\theta < 0$. Если же $\theta = 0$, то, повторяя рассуждения из второй части доказательства теоремы 2.1, получаем

$$\int_{\mathbb{R}^N} |u|^q \, dx = 0.$$

Замечая, что неравенство $\theta \leq 0$ эквивалентно неравенству (4.5), завершаем доказательство теоремы 4.1. □

Замечание 4.1. Отметим, что в теореме 4.1 мы не налагаем ни условия эллиптичности оператора $L(u)$, ни условия положительности решения, ни условия на знак каких-либо итераций типа $(-\Delta)^k u$.

5. ПОЛУЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА ВЫСОКОГО ПОРЯДКА С НЕОГРАНИЧЕННЫМИ КОЭФФИЦИЕНТАМИ

В этом разделе мы рассмотрим уравнения и неравенства вида

$$L_k(u) \geq b(x, u), \quad x \in \mathbb{R}^N. \quad (5.1)$$

Здесь оператор $L_k(u)$ имеет вид

$$L_k(u) = \sum_{k \leq |\alpha| \leq m} (-1)^{|\alpha|} D^\alpha A_\alpha(x, u),$$

где $A_\alpha : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ суть каратеодориевы функции, удовлетворяющие условию

$$|A_\alpha(x, u)| \leq a_\alpha(x)|u|^p \quad (5.2)$$

с $p > 0$ и неотрицательными измеримыми функциями $a_\alpha : \mathbb{R}^N \times \mathbb{R}_+$. Функция $b : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}_+$ есть неотрицательная каратеодориева функция, удовлетворяющая условию

$$b(x, u) \geq b_0(x)|u|^q \quad (5.3)$$

с

$$q > p$$

и неотрицательной измеримой функцией $b_0 : \mathbb{R}^N \times \mathbb{R}_+$.

Измеримые функции a_α, $k \leq |\alpha| \leq m$, и $b_0 : \mathbb{R}^N \times \mathbb{R}$ удовлетворяют условию

$$a_\alpha \geq 0, \quad b_0 > 0 \quad \text{п.в. в } \mathbb{R}^N$$

и

$$\frac{(a_0(x))^{p/(q-p)}}{(b_0(x))^{p/(q-p)}} \in L_{\text{loc}}^1(\mathbb{R}^N \setminus B_R),$$

где $B_R = \{x \in \mathbb{R}^N \mid |x| < R\}$ с $R \gg 1$ и $a_0(x) := \sum_{k \leq |\alpha| \leq m} a_\alpha(x)$. ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Определение 5.1. Под слабым решением задачи (5.1) понимается функция u такая, что $a_0(x)|u|^p, b_0(x)|u|^q \in L^1_{\text{loc}}(\mathbb{R}^N)$, и удовлетворяющая неравенству
\[
\int_{\mathbb{R}^N} \sum_{k \leq |\alpha| \leq m} A_\alpha(x, u) D^\alpha \varphi \, dx \geq \int_{\mathbb{R}^N} b(x, u) \varphi \, dx
\]
для любой функции $\varphi \geq 0$ из класса $C_0^m(\mathbb{R}^N)$.

Так же как и в случае уравнений и неравенств второго порядка с неограниченными коэффициентами, критический показатель q определяется асимптотикой при $R \to \infty$ соответствующего выражения (см. (3.4))
\[
E(R) := \int_{1 \leq |\xi| \leq \sqrt{2}} \frac{(\sum_{k \leq |\alpha| \leq m} \frac{1}{R^{|\alpha|}} a_\alpha(R^\xi))^q/(q-p)}{b_0^p/(q-p)}(R^\xi) \, d\xi.
\]
(5.5)

Теорема 5.1. Пусть $p > 0$ и $q > p$. Пусть
\[
\lim_{R \to \infty} R^N E(R) < \infty.
\]
(5.6)

Тогда не существует глобального нетривиального слабого решения $u(x)$ задачи (5.1).

Доказательство следует схеме доказательства предыдущей теоремы. В силу определения решения и неравенств (5.2) и (5.3) имеем
\[
\int_{\mathbb{R}^N} b_0(x)|u|^q \varphi \, dx \leq \int_{\mathbb{R}^N} |u|^p \sum_{k \leq |\alpha| \leq m} a_\alpha(x) D^\alpha \varphi \, dx.
\]
Применяя неравенство Гельдера, получаем априорную оценку
\[
\int_{\mathbb{R}^N} b_0(x)|u|^q \varphi \, dx \leq \int_{\mathbb{R}^N} \frac{|L(\varphi)|^r}{(b_0 \varphi)^{r-1}} \, dx
\]
(5.7)
с
\[
L(\varphi) = \sum_{k \leq |\alpha| \leq m} a_\alpha(x) D^\alpha \varphi
\]
и $r' = q/(q - p)$.

Введем теперь пробную функцию φ вида (2.7). Тогда после замены переменных (2.8) получим
\[
L(\varphi) = \sum_{k \leq |\alpha| \leq m} a_\alpha(R^\xi) \frac{1}{R^{|\alpha|}} D^\alpha \varphi_0(\xi).
\]
Следовательно, после этой замены переменных имеем
\[
\int_{\mathbb{R}^N} \frac{|L(\varphi)|^r}{(b_0 \varphi)^{r-1}} \, dx = R^N \int_{1 \leq |\xi| \leq \sqrt{2}} \frac{\sum_{k \leq |\alpha| \leq m} \frac{1}{R^{|\alpha|}} a_\alpha(R^\xi) D^\alpha \varphi_0(\xi)|^r}{(b_0(R^\xi) \varphi_0(\xi))^{r-1}} \, d\xi.
\]
(5.8)
Выберем теперь пробную функцию φ_0 из указанного класса так, чтобы
\[
\frac{|D^\alpha \varphi_0(\xi)|}{(\varphi_0(\xi))^{r-1}} \leq c_0 < \infty
\]
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

с $k \leq |\alpha| \leq m$ и при $1 \leq |\xi| \leq \sqrt{2}$. Заметим, что существование такой функции является очевидным фактом.

Тогда неравенство (5.8) влечет

$$\int_{\mathbb{R}^N} b_0(x)|u|^q \varphi \, dx \leq c_0 R^N E(R), \quad (5.9)$$

где $E(R)$ определено формулой (5.5).

Повторяя аргументы из доказательства предыдущей теоремы, как в случае

$$\lim_{R \to \infty} R^N E(R) = 0,$$

так и в случае

$$\lim_{R \to \infty} R^N E(R) < \infty,$$

завершаем доказательство теоремы 5.1. □

Замечание 5.1. Отметим, что в условиях теоремы 5.1 мы не предполагаем эллиптичность соответствующего оператора и не требуем никаких условий на знак решения u или на знак соответствующих итераций $(-\Delta)^k u$.

Пример 5.1. Рассмотрим следующую задачу:

$$(-\Delta)^l(|x|^\sigma u) \geq |u|^q, \quad x \in \mathbb{R}^N, \quad (5.10)$$

с $q > 1$ и $\sigma < 2l$.

В терминах теоремы 5.1 имеем

$$k = m = 2l, \quad a_\alpha(x) = |x|^\sigma |c_\alpha|$$

с соответствующими биномиальными коэффициентами разложения $(-\Delta)^l = \sum_{|\alpha|=2l} c_\alpha D^\alpha$ и

$$p = 1, \quad b_0(x) \equiv 1.$$

Тогда выражение $E(R)$, определенное формулой (5.5), принимает вид

$$E(R) = c_0 \int_{1 \leq |\xi| \leq \sqrt{2}} \left(\frac{1}{R^{2l}|R\xi|^\sigma} \right)^{q'} \, d\xi$$

с $c_0 = \sum_{|\alpha|=2l} |c_\alpha| > 0$.

Следовательно,

$$E(R) = c_1 R^{\sigma q' - 2l q'}$$

с $c_1 = c_0 \int_{1 \leq |\xi| \leq 2} \xi^{\sigma q'} \, d\xi$, $q' = q/(q-1)$.

Таким образом, условие (5.6) отсутствия глобального нетривиального слабого решения задачи (5.10) принимает вид

$$N + \sigma q' - 2l q' \leq 0,$$

т.е.

$$(N - 2l + \sigma)q \leq N.$$
Часть I. СТАЦИОНАРНЫЕ ЗАДАЧИ

Пример 5.2. Рассмотрим задачу

\[(-\Delta)^l u \geq |x|^\gamma |u|^q, \quad x \in \mathbb{R}^N, \]

с \(q > 1 \) и \(\gamma > -2l \).

В терминах теоремы 5.1 имеем

\[k = m = 2l, \quad a_\alpha(x) = |c_\alpha| \]

с соответствующими биномиальными коэффициентами разложения \((-\Delta)^l = \sum_{|\alpha|=2l} c_\alpha D^\alpha\) и

\[p = 1, \quad b_0(x) = |x|^\gamma. \]

Тогда выражение \(E(R) \), определенное формулой (5.5), принимает вид

\[E(R) = c_0 \int_{1 \leq |\xi| \leq \sqrt{2}} \frac{1}{R^{2q'} (R|\xi|)^\gamma (q'-1)} d\xi \]

с \(q' = q/(q - 1) \).

Следовательно,

\[E(R) = c_2 R^{-2q' - \gamma (q'-1)} \]

с

\[c_2 = c_0 \int_{1 \leq |\xi| \leq 2} \frac{1}{|\xi|^{\gamma (q'-1)}} d\xi. \]

Таким образом, условие (5.6) отсутствия глобального нетривиального слабого решения задачи (5.11) принимает вид

\[N - 2l q' - \gamma (q'-1) \leq 0, \]

т.е.

\[(N - 2l) q \leq N + \gamma. \]

6. ЭЛЛИПТИЧЕСКИЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА С ЛОКАЛЬНЫМ (ПОЛНЫМ) РАЗРУШЕНИЕМ РЕШЕНИЯ

Введем множество \(\Omega_{0,r_0} = \{ x \in \mathbb{R}^N : 0 < |x| < r_0 \} \). В настоящем разделе мы изучаем задачу

\[
\begin{cases}
-\Delta u \geq |x|^\gamma u^q, & x \in \Omega_{0,r_0}, \\
u \geq 0, & u \neq 0, x \in \Omega_{0,r_0},
\end{cases}
\]

с \(q > 1 \) и \(N \geq 2 \), без каких-либо граничных условий.

Решение \(u \) задачи (6.1) рассматривается в классе \(L^q_{\text{loc}}(\Omega \setminus \{0\}) \). Введем пробную функцию вида

\[\zeta(r) = r^\kappa \varphi_0(r) \varphi(r), \]

где параметр \(\kappa \in \mathbb{R} \) будет определен ниже,

\[\varphi_0(r) = r^\mu - r_0^\mu. \]
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

33

с параметром $\mu < 0$, который будет также определен ниже, и

$$\varphi(r) = \tilde{\varphi}(r/\varepsilon),$$

где $\tilde{\varphi} \in C^2[0, +\infty)$, $0 \leq \tilde{\varphi}(\rho) \leq 1$, $\tilde{\varphi}'(\rho) \geq 0$ при $\rho \geq 0$ и

$$\tilde{\varphi}(\rho) = \begin{cases} 0, & 0 \leq \rho \leq 1, \\ 1, & \rho \geq 2. \end{cases}$$

Положим

$$X = \varphi_0 \varphi.$$

Заметим, что $X \in C^2[0, r_0]$, $X \geq 0$ на отрезке $[0, r_0]$ и

$$X(\varepsilon) = X(r_0) = 0, \quad \frac{dX(\varepsilon)}{dr} \geq 0, \quad \frac{dX(r_0)}{dr} \leq 0. \quad (6.3)$$

Умножим неравенство (6.1) на ζ и проинтегрируем по частям. Тогда получим

$$\int_{\Omega_{\varepsilon, r_0}} u^q X r^{N-1+\kappa+\sigma} dr d\omega \leq \int_{\Omega_{\varepsilon, r_0}} \frac{\partial u}{\partial r} \psi dr d\omega, \quad (6.4)$$

где $\psi = \psi(r) := r^{N-1} \frac{d}{dr}(r^{\kappa} X)$, т.е.

$$\psi = \psi_1 \varphi + r^{N-1+\kappa} \varphi_0 \frac{d\varphi}{dr},$$

где $\psi_1 = r^{N-1} \frac{d}{dr}(r^{\kappa} \varphi_0)$, и $\Omega_{\varepsilon, r_0} = \{x \in \mathbb{R}^N : \varepsilon < |x| < r_0\}$.

Интегрируя снова (6.4) с учетом соотношений (6.3), получаем

$$\int_{\Omega_{\varepsilon, r_0}} u^q X r^{N-1+\kappa+\sigma} dr d\omega \leq - \int_{\Omega_{\varepsilon, r_0}} u \frac{d\psi}{dr} dr d\omega. \quad (6.5)$$

Для производной $\frac{d\psi}{dr}$ имеем

$$\frac{d\psi}{dr} = \frac{d\psi_1}{dr} \varphi + \psi_1 \frac{d\varphi}{dr} + \frac{d}{dr} \left(r^{N-1+\kappa} \varphi_0 \frac{d\varphi}{dr} \right). \quad (6.6)$$

Лемма 6.1. Пусть

$$N - 2 + 2\kappa \leq 0. \quad (6.7)$$

Тогда

$$(\kappa + \mu)(\kappa + \mu + N - 2) \geq \kappa(\kappa + N - 2)$$

для любого $\mu < 0$.

Доказательство этой леммы является очевидным. \(\square \)

В силу этой леммы имеем

$$\frac{d\psi_1}{dr} \geq 0, \quad 0 < r \leq r_0.$$

В самом деле, имеем

$$\psi_1 = r^{N-1} \frac{d}{dr}(r^{\mu+\kappa} - r^{\kappa} r_0^{\mu}) = (\mu + \kappa) r^{N+\mu+\kappa-2} - \kappa r^{N+\kappa-2} r_0^{\mu},$$

3 ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть I. СТАЦИОНАРНЫЕ ЗАДАЧИ

так что

\[\frac{d\psi_1}{dr} = (\mu + \kappa)(\mu + \kappa + N - 2)r^{N+\mu+\kappa-3} - (N + \kappa - 2)r^{N+\kappa-3} r_0^\mu = r^{N+\kappa-3}[(\mu + \kappa)(\mu + \kappa + N - 2)r^\mu - \kappa(N + \kappa - 2)r_0^\mu] \geq 0 \]

при условии (6.7) и

\[\mu + \kappa \leq -(N - 2), \quad \mu < 0. \] (6.8)

Тогда

\[-u \frac{d\psi}{dr} \leq u L(\varphi_0, \varphi), \quad u \geq 0, \] (6.9)

где

\[L(\varphi_0, \varphi) = - \left[\psi_1 \frac{d\varphi}{dr} + \frac{d}{dr} \left(r^{N-1+\kappa} \varphi_0 \frac{d\varphi}{dr} \right) \right]. \] (6.10)

В силу (6.9) неравенство (6.5) принимает вид

\[\int_{\Omega, r_0} u^q \varphi_0 \varphi r^{N-1+\kappa+\sigma} dr d\omega \leq \int_{\Omega, r_0} u L(\varphi_0, \varphi) dr d\omega, \] (6.11)

откуда в силу неравенства Гельдера находим

\[\int_{\Omega, r_0} u^q \varphi_0 \varphi r^{N-1+\kappa+\sigma} dr d\omega \leq C \int_{\varepsilon}^{r_0} \frac{|L(\varphi_0, \varphi)|^{q'}}{(\varphi_0 \varphi r^{N-1+\kappa+\sigma})^{q'-1}} d\varepsilon, \] (6.12)

где

\[q' = \frac{q}{q-1}, \quad C = C(N) = \int_{|\omega|=1} 1 d\omega. \]

Для получения оценки интеграла (6.12) относительно \(\varepsilon \rightarrow 0 \) воспользуемся новой масштабной переменной \(\rho, r \rightarrow \rho : r = \varepsilon \rho \). Поскольку \(\text{supp} L(\varphi_0, \varphi) \subseteq \text{supp} \frac{d\varphi}{dr} \), то интегрирование в (6.12) проводится в пределах \(\varepsilon < r < 2 \varepsilon \), т.е. \(1 < \rho < 2 \). Тогда из (6.12) получаем

\[\int_{\Omega, r_0} u^q \varphi_0 \varphi r^{N-1+\kappa+\sigma} dr d\omega \leq C_1 \varepsilon^\theta, \] (6.13)

где \(C_1 = C_1(\varphi_0, \varphi) > 0 \) и

\[\theta = -(\sigma + 2)q' - 1 + N - 2 + \kappa + \mu. \] (6.14)

Мы интересуемся условием исчезновения интеграла в левой части неравенства (6.13), т.е. случаем

\[\theta > 0. \] (6.15)

Относительно введенных выше параметров \(\kappa \) и \(\mu \) мы имеем следующие ограничения:

\[
\begin{cases}
\mu + \kappa \leq -(N - 2), \\
2\kappa + N - 2 \leq 0, \\
\mu < 0.
\end{cases}
\]
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

Тогда условия совместности этих неравенств с (6.15) принимают следующий вид:

\[
\begin{aligned}
 & (\sigma + 2)(q' - 1) - (N - 2) < \mu + \kappa \leq -(N - 2), \\
 & 2\kappa + N - 2 \leq 0, \\
 & \mu < 0.
\end{aligned}
\]

Отсюда следует, что

\[
(\sigma + 2)(q' - 1) < 0.
\]

Поскольку \(q' > 1 \), то получаем

\[
\sigma < -2.
\]

Таким образом, этот выбор пробной функции (6.2) позволяет получить условия полного отсутствия решения задачи (6.1) в суперкритическом случае \(\sigma < -2 \).

Из формулы (6.14) следует, что максимальное значение \(\theta = \theta_0 \) мы имеем при максимальном допустимом значении \(\kappa + \mu \), т.е. \(\kappa + \mu = -(N - 2) \). Тогда

\[
\theta_0 = -(\sigma + 2)(q' - 1) > 0
\]

при \(\sigma < -2 \). В этом случае получаем

\[
\int_{\Omega_{\varepsilon, r_0}} u^q r^{N-1+\kappa} \varphi_0 \varphi dr d\omega = \int_{\Omega_{\varepsilon, r_0}} u^q r^{\kappa+\mu+N-1} \left(1 - \left(\frac{r_0}{r} \right)^\mu \right) \varphi dr d\omega =
\]

\[
= \int_{\Omega_{\varepsilon, r_0}} u^q r \left(1 - \left(\frac{r}{r_0} \right)^{-\mu} \right) \varphi dr d\omega = \int_{\Omega_{\varepsilon, r_0}} u^q \left(1 - \left(\frac{r}{r_0} \right)^{-\mu} \right) \varphi \frac{dx}{|x|^{N-2}} \rightarrow 0
\]

при \(\varepsilon \rightarrow 0 \) при любом фиксированном \(r_0 > 0 \).

Отсюда в силу выбора функции \(\varphi \), а именно \(\varphi \geq 0 \) и

\[
\varphi \equiv 1, \quad r \geq 2\varepsilon,
\]

получаем

\[
\int_{\Omega_{2\varepsilon, r_0}} u^q \left(1 - \left(\frac{r}{r_0} \right)^{-\mu} \right) \frac{dx}{|x|^{N-2}} \rightarrow 0, \quad \varepsilon \rightarrow 0,
\]

при любом \(r_0 > 0 \) и тогда

\[
\int_{\Omega_{2\varepsilon, r_0}/2} u^q \frac{dx}{|x|^{N-2}} \rightarrow 0, \quad \varepsilon \rightarrow 0,
\]

при любом \(r_0 > 0 \). Следовательно, задача (6.1) не имеет нетривиального неотрицательного решения \(u \in L^q_{\mathrm{loc}}(\Omega \setminus \{0\}) \) в суперкритическом случае \(\sigma < -2 \) при \(q > 1 \) ни в какой окрестности начала координат.

Рассмотрим теперь случай \(\theta = 0 \). В этом случае интеграл в правой части неравенства (6.12) равномерно ограничен относительно \(\varepsilon \rightarrow 0 \). Таким образом, в силу (6.12) имеем

\[
\int_{\varepsilon}^{r_0} \frac{|L(\varphi_0, \varphi')|q'}{|(\varphi_0 \varphi r^{N-1+\kappa+\sigma})q' - 1| dr \leq C_1, \quad (6.16)
\]

\[
\int_{\Omega_{\varepsilon, r_0}} u^q \varphi_0 \varphi r^{N-1+\kappa+\sigma} dr d\omega \leq C_2, \quad (6.17)
\]
где C_1, C_2 не зависят от $\varepsilon \to 0$.

В силу монотонности интеграла относительно $\varepsilon \to 0$ существует конечный несобственный интеграл

$$
\int_{\Omega_{0, r_0}} u^q \varphi_0 \varphi r^{N-1+\varepsilon+\sigma} \, dr \, d\omega = \lim_{\varepsilon \to 0} \int_{\Omega_{\varepsilon, r_0}} u^q \varphi_0 \varphi r^{N-1+\varepsilon+\sigma} \, dr \, d\omega \leq C_2.
$$

Тогда

$$
C(\varepsilon) := \int_{\Omega_{\varepsilon, 2\varepsilon}} u^q \varphi_0 \varphi r^{N-1+\varepsilon+\sigma} \, dr \, d\omega \to 0, \quad \varepsilon \to 0. \quad (6.18)
$$

Вернемся теперь к неравенству (6.11) и заметим, что в силу формулы (6.10) и выбора функции φ с $\text{supp} \frac{d\varphi}{d\varepsilon} \subset [\varepsilon, 2\varepsilon]$ мы имеем

$$
\text{supp} L(\varphi_0, \varphi) \subset [\varepsilon, 2\varepsilon].
$$

Заметив это, перепишем неравенство (6.11) в виде

$$
\int_{\Omega_{\varepsilon, r_0}} u^q \varphi_0 \varphi r^{N-1+\varepsilon+\sigma} \, dr \, d\omega \leq \int_{\Omega_{\varepsilon, 2\varepsilon}} u L(\varphi_0, \varphi) \, dr \, d\omega.
$$

Отсюда по неравенству Гельдера имеем

$$
\int_{\Omega_{\varepsilon, r_0}} u^q \varphi_0 \varphi r^{N-1+\varepsilon+\sigma} \, dr \, d\omega \leq \left(\int_{\Omega_{\varepsilon, 2\varepsilon}} u^q \varphi_0 \varphi r^{N-1+\varepsilon+\sigma} \, dr \, d\omega \right)^{1/q} \times
$$

$$
\times \left(\int_{\Omega_{\varepsilon, 2\varepsilon}} \left| \frac{L(\varphi_0, \varphi)}{(\varphi_0 \varphi r^{N-1+\varepsilon+\sigma})^q} \right|^q \, dr \, d\omega \right)^{1/q}. \quad (6.19)
$$

Последний интеграл в этом неравенстве в силу (6.16) удовлетворяет оценке (при $\varepsilon < r_0/2$)

$$
\int_{\Omega_{\varepsilon, 2\varepsilon}} \left| \frac{L(\varphi_0, \varphi)}{(\varphi_0 \varphi r^{N-1+\varepsilon+\sigma})^q} \right|^q \, dr \, d\omega \leq \int_{\Omega_{\varepsilon, r_0}} \left| \frac{L(\varphi_0, \varphi)}{(\varphi_0 \varphi r^{N-1+\varepsilon+\sigma})^q} \right|^q \, dr \, d\omega \leq C C_1,
$$

где $C = \int_{|\omega|=1} 1 \, d\omega$.

Тогда неравенство (6.19) принимает вид

$$
\int_{\Omega_{\varepsilon, r_0}} u^q \varphi_0 \varphi r^{N-1+\varepsilon+\sigma} \, dr \, d\omega \leq (CC_1)^{1/q} C^{1/q}(\varepsilon) \to 0, \quad \varepsilon \to 0.
$$

Таким образом и в этом предельном случае $\theta = 0$ мы имеем то же соотношение для рассматриваемого интеграла при $\varepsilon \to 0$, что и в случае $\theta > 0$.

Повторяя предыдущие аргументы, получаем аналогичное утверждение об отсутствии решения задачи (6.1) в классе $L^q_{loc}(\Omega \setminus \{0\})$.

Аналогично случаю $\theta > 0$ проведем анализ допустимых значений р и м для случая $\theta = 0$. Имеем из формул (6.14)

$$
-(\sigma + 2)(q' - 1) + N - 2 + \kappa + \mu = 0. \quad (6.20)
$$
Далее имеем ограничения

\[\mu + \sigma \leq -(N - 2), \quad 2\sigma + N - 2 \leq 0, \quad \mu < 0. \]

Тогда условия совместности этих неравенств с (6.20) принимают следующий вид:

\[(\sigma + 2)(q' - 1) - (N - 2) = \mu + \sigma \leq -(N - 2), \]
\[2\sigma + N - 2 \leq 0, \quad \mu < 0. \]

Следовательно,

\[(\sigma + 2)(q' - 1) \leq 0. \]

Случай \(\sigma < -2 \) был рассмотрен выше.

Теперь мы получили возможность включить критический случай сингулярности \(\sigma = -2 \). Тогда из (6.14) следует

\[\sigma + \mu = -(N - 2). \]

Таким образом, соответствующая оценка

\[\int_{\Omega_{2\varepsilon,r_0/2}} u^q \frac{dx}{|x|^{N-2}} \to 0, \quad \varepsilon \to 0, \]

при любом фиксированном \(r_0 > 0 \) остается справедливой и для случая \(\sigma = -2 \). Вместе с этой оценкой остается справедливым и заключение об отсутствии нетривиального решения задачи (6.1). Объединяя оба случая, получаем окончательное утверждение.

Теорема 6.1. Пусть \(\sigma \leq -2 \) и \(q > 1 \). Тогда задача (6.1) не имеет нетривиального неотрицательного решения \(u \in L^q_{\text{loc}}(\Omega \setminus \{0\}) \) ни в какой окрестности начала координат. \(\square \)

Замечание 6.1. Насколько известно авторам, первые результаты в этом направлении для эллиптических уравнений второго порядка были получены в работе Брезиса и Кабре [32]. Квазилинейные задачи с \(p \)-лапласианом в главной части рассмотрены Галаховым [70].

Замечание 6.2. С использованием нашей техники Лаптевым [215] получен аналогичный результат для неравенства с оператором \(\Delta^2 \) в шаре \(B_R, R > 0 \),

\[\begin{cases} \Delta^2 u \geq |u|^q / |x|^\sigma, \quad x \in B_R, \\
\int_{\partial B_R} \Delta u \, dx \leq 0, \quad \int_{\partial B_R} u \, dx \geq 0. \end{cases} \quad \text{(6.21)} \]

Теорема 6.2 [215]. При \(\sigma \geq 4 \) и \(q > 1 \) задача (6.21) не имеет нетривиального решения. \(\square \)

Отметим, что без предположения о знаке решения и производной на границе аналогичное утверждение не имеет места.

Замечание 6.3. Метод пробных функций (с использованием информации о фундаментальном решении) позволяет рассматривать вопросы отсутствия (полного разрушения) решений в окрестности конической точки границы (см., например, [197, 198, 239]). Приведем один из полученных Лаптевым [218] результатов.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть I. СТАЦИОНАРНЫЕ ЗАДАЧИ

Пусть K_ω — область на единичной сфере $S^{N-1} \subset \mathbb{R}^N$, $N \geq 3$, с достаточно гладкой границей ∂K_ω. Конусом K называется множество

$$ K = \{ x = x(r, \omega) : 0 < r < +\infty, \omega \in K_\omega \}, $$

где (r, ω) — сферические координаты точки x в \mathbb{R}^N. Боковую поверхность конуса обозначаем ∂K. Для простоты считаем, что коническая точка совпадает с точкой $x = 0$. Под окрестностью K_r конической точки понимается область $\{ x \in K : |x| < r \}$ с полной границей ∂K_r. В исследовании задач в конических областях большую роль играет наименьшее (первое) собственное значение $\lambda_\omega \equiv \lambda_1(K_\omega) > 0$ оператора Бельтрами–Лапласа Δ_ω на области K_ω (см. также разд. 11, где приводится доказательство схожих результатов для задачи во всем конусе K).

Пусть R — фиксированное число. Условия отсутствия слабых решений задачи

$$ \begin{cases} -\Delta u \geq u^q / |x|^\sigma, & x \in K_R, \\ u \geq 0, & x \in K_R, \end{cases} \tag{6.22} $$

даем

Теорема 6.3. При $\sigma > 2$

$$ 1 < q \leq q^* = 1 + \frac{\sigma - 2}{s^* - N + 2}, \quad s^* = \frac{N - 2}{2} + \sqrt{\left(\frac{N - 2}{2}\right)^2 + \lambda_\omega}, $$

задача (6.22) не имеет нетривиального решения.

Замечание 6.4. Отметим, что более общий случай задачи (6.1), а именно

$$ \begin{cases} -\Delta u \geq \lambda \left(\frac{x}{|x|} \nabla u \right) |x|^\nu + |x|^\sigma u^q, & x \in \Omega \setminus \{0\} \subset \mathbb{R}^N, \\ u \geq 0, & x \in \Omega \setminus \{0\} \subset \mathbb{R}^N, \end{cases} $$

рассмотрен в совместной работе Похожаева и Тесея [236]. В приведенных выше рассуждениях мы существенно использовали эту работу.

7. ПОЛУЛИНЕЙНЫЕ НЕРАВЕНСТВА ВЫСОКОГО ПОРЯДКА С СИНГУЛЯРНЫМИ КОЭФФИЦИЕНТАМИ

Здесь мы рассмотрим класс дифференциальных операторов с переменными коэффициентами и дифференциальные неравенства с ними.

Для неравенств с постоянными коэффициентами понятия критического вырождения или сингулярности связаны с тем фактом, что рост нелинейности, при котором происходит разрушение решения, не зависит от размерности (см. ниже точные формулировки).

С другой стороны, в случае переменных коэффициентов приемлемое определение термина “критическое вырождение” неизвестно. По нашему мнению, это связано с недостаточным развитием техники исследования.

Рассмотрим дифференциальные неравенства вида

$$ L_m(u) \geq |x|^{-\sigma} |u|^q, \quad x \in \mathbb{R}^N, \tag{7.1} $$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
где $\sigma \in \mathbb{R}$ и $q > 1$. Здесь L_m — дифференциальный оператор вида

$$L_m(\cdot) = \sum_{l \leq |\alpha| \leq m} D^\alpha A_\alpha(x, \cdot),$$

где $l \geq 1$ и $A_\alpha : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ суть каратеодориевы функции. В настоящем разделе мы предполагаем, что для всех $\alpha : l \leq |\alpha| \leq m$ существуют

$$a_\alpha : \mathbb{R}^N \to \mathbb{R}_+, \quad a_\alpha \in L^\infty_{\text{loc}}(\mathbb{R}^N),$$

такие, что

$$|A_\alpha(x, t)| \leq a_\alpha(x)|t|^p$$

для п.в. $(x, t) \in \mathbb{R}^N \times \mathbb{R}$.

Определение 7.1. Функция $u \in L^q_{\text{loc}}(\mathbb{R}^N)$ такая, что $|u|^q|x|^{-\sigma} \in L^1_{\text{loc}}(\mathbb{R}^N)$, называется слабым решением задачи (7.1), если для любой неотрицательной функции $\varphi \in C^m_0(\mathbb{R}^N)$ выполнено неравенство

$$\int_{\mathbb{R}^N} \frac{|u|^q}{|x|^\sigma} \varphi \, dx \leq \int_{\mathbb{R}^N} \sum_{l \leq |\alpha| \leq m} (-1)^{|\alpha|} A_\alpha(x, u) D^\alpha \varphi \, dx.$$

(7.3)

Теорема 7.1. Пусть выполнено условие (7.2) и существует $R_0 \geq 0$ такое, что для всех $x \in \mathbb{R}^N$, $|x| \geq R_0$, имеем

$$\sum_{l \leq |\alpha| \leq m} a_\alpha(x)|x|^{\theta - \sigma} \leq C|x|^\theta,$$

(7.4)

где C — постоянная и $\theta \in \mathbb{R}$. Если

$$\sigma < l$$

(7.5)

и

$$q(N + \theta - l) \leq p(N + \theta - \sigma),$$

(7.6)

то задача (7.1) не имеет глобального нетривиального слабого решения.

Замечание 7.1. Доказательства наших результатов основаны на получении подходящих априорных интегральных оценок возможных решений рассматриваемой задачи. Главная идея состоит в систематическом использовании специальных неотрицательных пробных функций. В частности, в некоторых промежуточных интегральных оценках мы будем часто использовать емкостные интегралы (см., например, (7.7) ниже), которые включают отрицательные степени пробных функций. Существование таких интегралов легко следует, если вместо рассматриваемых пробных функций мы выбираем в качестве доказательства подходящие положительные степени некоторых специально подбераемых в дальнейшем функций (см. (7.8) ниже). Далее мы будем предполагать, что пробные функции выбраны именно таким способом.

Доказательство теоремы 7.1. Пусть u — нетривиальное слабое решение задачи (7.1). Для любой неотрицательной функции $\varphi \in C^m_0(\mathbb{R}^N)$ положим

$$A^*(\varphi) = \sum_{l \leq |\alpha| \leq m} a_\alpha(x) D^\alpha \varphi.$$
Из (7.3), используя неравенство Гельдера, получаем

$$\int_{\mathbb{R}^N} \frac{|u|^q}{|x|^{\sigma}} \varphi \, dx \leq \int_{\mathbb{R}^N} \sum_{l \leq |\alpha| \leq m} |A^*(\varphi)| \frac{\delta}{|x|^{\gamma - \theta}} |x|^{\frac{\sigma}{\gamma - \theta}} \, dx. \quad (7.7)$$

Мы предполагаем, что $\varphi \in C_0^\infty(\mathbb{R}^N)$ такова, что этот интеграл конечен. В дальнейшем мы покажем, что можно выбрать подходящую функцию φ. Пусть $\varphi_0 \in C_0^\infty(\mathbb{R}_+)$ такая, что

$$\varphi_0(s) = \begin{cases} 1, & 0 \leq s \leq 1, \\ 0, & s \geq 2, \end{cases} \quad (7.8)$$

и положим

$$\varphi(x) = \varphi_0 \left(\frac{|x|}{R} \right),$$

где $R > 0$. Используя замену переменных $x = R \zeta$, из (7.7) получим

$$\int_{\mathbb{R}^N} \frac{|u|^q}{|x|^{\sigma}} \varphi_0 \, dx \leq CR^\beta \left(\int \sum_{1 < |\zeta| < 2 |\alpha| \leq m} |a_\alpha(R \zeta) \frac{1}{|\zeta|^{\gamma - \theta}} |\varphi_0| \frac{\delta}{|\zeta|^{\gamma - \theta}} |D_\zeta^\alpha \varphi_0| \frac{\delta}{|\zeta|^{\gamma - \theta}} \, d\zeta \right), \quad (7.9)$$

gде

$$\beta = N + \frac{\sigma p - l q}{q - p}.$$

Теперь по нашему предположению (7.4) для $|x| \geq R_0$ из (7.9) следует, что

$$\int_{|x| \leq R} \frac{|u|^q}{|x|^{\sigma}} \, dx \leq CM_\alpha R^{\beta + \theta}, \quad (7.10)$$

gде

$$M_\alpha = \int \sum_{1 < |\zeta| < 2 |\alpha| \leq m} |D_\zeta^\alpha \varphi_0| \frac{\delta}{|\zeta|^{\gamma - \theta}} |\varphi_0| \frac{\delta}{|\zeta|^{\gamma - \theta}} |\zeta|^{\frac{\sigma}{\gamma - \theta}} \, d\zeta. \quad (7.11)$$

Остается показать, что правая часть (7.7) и M_α конечны. Докажем, что правая часть (7.7) конечна. Выбирая в начале доказательства функцию φ по формуле

$$\varphi(x) := \varphi_0 \left(\frac{|x|}{R} \right) \sigma,$$

gде φ_0 определено выражением (7.8), нетрудно убедиться, что если $\sigma > 0$ достаточно большое, то

$$\int \sum_{l \leq |\alpha| \leq m} |A^*(\varphi)| \frac{\delta}{|\zeta|^{\gamma - \theta}} \varphi_0 \frac{\delta}{|\zeta|^{\gamma - \theta}} |x|^{\frac{\sigma}{\gamma - \theta}} \, dx \leq C_R \int \sum_{1 < |\zeta| < 2 |\alpha| \leq m} |D_\zeta^\alpha \varphi_0| \frac{\delta}{|\zeta|^{\gamma - \theta}} |\zeta|^{\frac{\sigma}{\gamma - \theta} + \theta} \, d\zeta < \infty,$$

gде $C_R > 0$ зависит от параметров p, q, l и m, а также от R. Это показывает, что (7.7) имеет смысл. Таким же рассуждением убеждаемся, что $M_\alpha < \infty$.

Вернемся к оценке (7.10). Устремляя $R \to \infty$, получим

$$\int_{|x| \leq R} \frac{|u|^q}{|x|^{\sigma}} \, dx = 0, \quad \beta + \theta < 0, \quad (7.12)$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
и
\[
\int_{\mathbb{R}^N} \frac{|u|^q}{|x|^\sigma} \, dx < \infty, \quad \beta + \theta = 0. \tag{7.13}
\]

В первом случае непосредственно получаем отсутствие нетривиального решения, тогда как во втором надо еще воспользоваться нашим стандартным способом исследования предельного случая. □

8. ПОЛУЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ НЕРАВЕНСТВА ВТОРОГО ПОРЯДКА С КРИТИЧЕСКИМ ВЫРОЖДЕНИЕМ

Мы рассматриваем модельную задачу вида
\[
-|x|^2 \Delta u \geq |u|^q, \quad x \in \mathbb{R}^N \setminus \{0\}, \tag{8.1}
\]
где \(q > 0\) и \(N \geq 1\).

Определение 8.1. Пусть \(q > 0\). Функция \(u \in L^q_{\text{loc}}(\mathbb{R}^N \setminus \{0\}) \cap L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\})\) называется слабым решением задачи (8.1), если
\[
\int_{\mathbb{R}^N} \frac{|u|^q}{|x|^\sigma} \phi \, dx \leq - \int_{\mathbb{R}^N} u \Delta(|x|^{2-N} \phi) \, dx \tag{8.2}
\]
для любой неотрицательной пробной функции \(\phi \in C^2_0(\mathbb{R}^N \setminus \{0\})\).

Заметим, что, если \(N = 1, 2\), функция \(|x|^{2-N}\) не является фундаментальным решением оператора \(\Delta\).

Теорема 8.1. Пусть \(q > 1\). Тогда задача (8.1) не имеет глобального нетривиального слабого решения.

Доказательство. Сначала рассмотрим случай \(N > 2\). Предположим противное, и пусть \(u\) — нетривиальное слабое решение задачи (8.1). Из (8.2) имеем
\[
\int_{\mathbb{R}^N} \frac{|u|^q}{|x|^\sigma} \phi \, dx \leq \int_{\mathbb{R}^N} \frac{u}{|x|^N} (|x|^2 \Delta \phi + 2(2-N)(x, D\phi)) \, dx \tag{8.3}
\]
и по неравенству Гельдера
\[
\int_{\mathbb{R}^N} \frac{|u|^q}{|x|^\sigma} \phi \, dx \leq \int_{\mathbb{R}^N} \frac{|x|^2 \Delta \phi + 2(2-N)(x, D\phi)}{|x|^N \phi^{q'-1}} \, dx, \tag{8.4}
\]
где \(\frac{1}{q} + \frac{1}{q'} = 1\) и \(\phi \in C^2_0(\mathbb{R}^N \setminus \{0\})\).

Теперь предположим, что правая часть этого неравенства конечная. Далее мы покажем, что это всегда возможно сделать за счет подходящего выбора функции \(\phi\). Возьмем радиальную функцию \(\phi \in C^\infty_0(\mathbb{R}^N \setminus \{0\})\). Тогда из (8.4) следует
\[
\int_{\mathbb{R}^N} \frac{|u|^q}{|x|^\sigma} \phi(|x|) \, dx \leq \int_{\mathbb{R}^N} \frac{|x|^2 \partial^2 \phi}{\partial r^2} + (3-N)(x, \partial \phi) \partial \phi \bigg|_r^q r^{-N} \phi^{1-q'} \, dx, \tag{8.5}
\]
где \(|x| = r\).
Вводя замену переменных
\[s = \ln r, \quad -\infty < s < \infty, \]
и полагая
\[\psi(s) = \varphi(e^s), \]
мы видим, что правая часть (8.5) принимает вид
\[\int_{\mathbb{R}^N} \frac{|u|^q}{|x|^N} \varphi(|x|) \, dx \leq |S^{N-1}| \int_{-\infty}^{+\infty} \frac{\partial^2 \psi}{\partial s^2} + (2 - N) \frac{\partial \psi}{\partial s} \psi^{1-q'} \, ds, \tag{8.6} \]
где \(|S^{N-1}|\) обозначает меру единичной сферы в \(\mathbb{R}^N\).

Затем выбираем \(\varphi_0 \in C^\infty_0(\mathbb{R})\) такую, что
\[\varphi_0(t) = \begin{cases} 1, & |t| \leq 1, \\ 0, & |t| \geq 2, \end{cases} \tag{8.7} \]
и полагаем
\[\psi(s) = \varphi_0 \left(\frac{s}{R} \right), \]
где \(R > 0\).

Вводя замену переменных \(s = R\tau\), видим, что (8.6) для \(R \geq 1\) принимает вид
\[\int_{\mathbb{R}^N} \frac{|u|^q}{|x|^N} \varphi(|x|) \, dx \leq R^{1-q'} |S^{N-1}| \int_{1 \leq |\tau| \leq 2} \frac{\varphi''_0(\tau) + (2 - N)\varphi'_0(\tau)|\tau|^{q'} \varphi_0^{q'-1}}{\varphi_0^{q'-1}} \, d\tau, \]
и тогда в силу нашего выбора \(\varphi_0\)
\[\int_{-R}^{R} \int_{S^{N-1}} |u|^q \, ds \, d\omega \leq R^{1-q'} A_{\varphi_0}, \tag{8.8} \]
где
\[A_{\varphi_0} = |S^{N-1}| \int_{1 \leq |\tau| \leq 2} \frac{\varphi''_0 + (2 - N)\varphi'_0|\tau|^{q'} \varphi_0^{q'-1}}{\varphi_0^{q'-1}} \, d\tau < \infty. \]

Наконец, устремляя \(R \to \infty\) в (8.8), приходим к требуемому утверждению.

Остается оправдать оценку \(A_{\varphi_0} < \infty\). Для этого достаточно заметить, что, выбирая \(\psi(s) = (\varphi_0(s/R))^\sigma\) с \(\sigma > 0\) достаточно большим, действительно имеем \(A_{\varphi_0} < \infty\). Это завершает доказательство в случае \(N > 2\).

Теперь рассмотрим случай \(N = 2\). Из (8.1) следует, что
\[\int_{\mathbb{R}^2} |u|^q |x|^2 \varphi \, dx \leq \int_{\mathbb{R}^2} |u| \cdot |\Delta \varphi| \, dx \leq \left(\int_{\mathbb{R}^2} \frac{|u|^q}{|x|^2} \varphi \, dx \right)^{1/q} \left(\int_{\mathbb{R}^2} |x|^{2-\frac{2}{q'}} \frac{|\Delta \varphi| q'}{\varphi^{q'-1}} \, dx \right)^{1/q'}, \tag{8.9} \]
где \(\frac{1}{q} + \frac{1}{q'} = 1\). Выбирая \(\varphi(x) = \varphi(|x|)\), из последнего неравенства получаем
\[\int_{\mathbb{R}^2} \frac{|u|^q}{|x|^2} \varphi(|x|) \, dx \leq 2\pi \int_{\mathbb{R}^2} \left| r^2 \frac{\partial^2 \varphi}{\partial r^2} + r \frac{\partial \varphi}{\partial r} \right|^{q'} \varphi^{1-q'} \frac{dr}{r}, \tag{8.10} \]
Используя логарифмическую замену переменных, как и выше, и полагая \(\psi(s) = \varphi_0\left(\frac{s}{R}\right) \), видим, что (8.10) дает

\[
\int_{e^{-R}}^{e^{R}} \int_{S^1} |u(r, \omega)|^q r \, dr \, d\omega \leq 2\pi R^{1-2q'} \int_{1 \leq |r| \leq 2} |\varphi_0''(r)| \, dr.
\]

Далее завершаем доказательство аналогично случаю \(N > 2 \).

Поскольку доказательство для случая \(N = 1 \) совершенно аналогично приведенному выше, оставляем детали интересующимся читателям. □

Доказательство следующего результата проводится аналогично доказательству теоремы 8.1.

Предложение 8.1. Пусть \(g : \mathbb{R} \to \mathbb{R} \) — непрерывная неотрицательная функция и

\[
g(x) = 0 \iff x = 0.
\]

Тогда задача

\[-|x|^2\Delta u \geq g(u), \quad x \in \mathbb{R}^N \setminus \{0\},
\]

не имеет слабого решения такого, что \(|u|^q|x|^{-N} \in L^1(\mathbb{R}^N \setminus \{0\}) \) с \(q > 1 \). □

Ясно, что в этом утверждении определение слабого решения нуждается в очевидной модификации.

9. ПОЛУЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ НЕРАВЕНСТВА С ПОЛИГАРМОНИЧЕСКИМ ОПЕРАТОРОМ

Здесь мы рассматриваем естественное обобщение теоремы 8.1 на эллиптические неравенства высокого порядка. Подчеркнем, что это обобщение возможно, поскольку в нашем методе не используются теоремы сравнения и принцип максимума.

Пусть \(m \geq 1 \) и \(N \geq 1 \). Рассмотрим задачу

\[
(-1)^m |x|^{2m}\Delta^m u \geq |u|^q, \quad x \in \mathbb{R}^N \setminus \{0\},
\]

где \(q > 0 \).

Определение 9.1. Пусть \(q > 0 \). Функция \(u \in L^q_{\text{loc}}(\mathbb{R}^N \setminus \{0\}) \cap L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\}) \) называется слабым решением задачи (9.1), если

\[
\int_{\mathbb{R}^N} \frac{|u|^q}{|x|^N} \varphi \, dx \leq (-1)^m \int_{\mathbb{R}^N} u\Delta^m(|x|^{2m-N}) \varphi \, dx
\]

для любой неотрицательной пробной функции \(\varphi \in C^2_{0}(\mathbb{R}^N \setminus \{0\}) \).

Теорема 9.1. Пусть \(q > 1 \). Тогда (9.1) не имеет глобального нетривиального слабого решения.

Доказательство следует схеме доказательства теоремы 8.1, поэтому ограничимся случаем \(N > 2m \). Пусть \(u \) — нетривиальное решение задачи (9.1). Из (9.2) и неравенства Юнга следует, что для любой неотрицательной функции \(\varphi \in C^2_{0}(\mathbb{R}^N \setminus \{0\}) \) имеем

\[
\int_{\mathbb{R}^N} \frac{|u|^q}{|x|^q} \varphi \, dx \leq \int_{\mathbb{R}^N} |\Delta^m(|x|^{2m-N})|^q |x|^{-N} \varphi^{1-q'} \, dx,
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть I. СТАЦИОНАРНЫЕ ЗАДАЧИ

где \(\frac{1}{q} + \frac{1}{q'} = 1 \).

Далее предположим, что пробная функция \(\varphi \) радиальная и выбрана таким образом, чтобы правая часть (9.3) была конечна (см. приведенные в теореме 7.1 и замечании 7.1 рассуждения). Используя замену переменных \(s = \ln r, r = |x| \), мы видим, что неравенство (9.3) перепишется в виде

\[
\int_{\mathbb{R}^N} \frac{|u|^q}{|x|^N} \, dx \leq |S^{N-1}|^{1-q} \int_{-\infty}^{+\infty} \left| \sum_{j=1}^{2m} c_j \varphi(j)(s) \right|^{q'} \varphi^{1-q'} \, ds,
\]

(9.4)

где \(c_j \) — константы, зависящие только от \(N \) и \(m \). Далее действуем в полной аналогии с доказательством теоремы 8.1. Из (9.4) при \(R \geq 1 \) получаем

\[
\int_{\mathbb{R}^N} \frac{|u|^q}{|x|^N} \, dx \leq R |S^{N-1}| \int_{1 \leq |r| \leq 2} \left| \sum_{j=1}^{2m} c_j R^{-2j} \varphi(j)(s) \right|^{q'} \varphi_0^{1-q'} \, d\tau \leq R^{1-q'} |S^{N-1}| \int_{1 \leq |r| \leq 2} \left| \sum_{j=1}^{2m} c_j \varphi(j)(s) \right|^{q'} \varphi_0^{1-q'} \, d\tau.
\]

(9.5)

Так как \(\varphi_0 = 1 \) для \(|x| \leq R \), то отсюда следует утверждение теоремы. □

Замечание 9.1. Легко видеть, что если вместо (9.1) рассмотреть задачу

\[|x|^{2m} \Delta^m u \geq |u|^q, \quad x \in \mathbb{R}^N \setminus \{0\}, \]

где \(q > 1 \) и \(N, m \geq 1 \), или

\[\pm \Delta^m u \geq |x|^{-2m} |u|^q, \quad x \in \mathbb{R}^N \setminus \{0\}, \]

то же самое утверждение теоремы 9.1 остается в силе. Конечно, в этом случае нужно модифицировать определение слабого решения.

Возможно также обобщение на полиармонические неравенства вида

\[\sum_{j=1}^{k} a_j |x|^{2m_j} \Delta^{m_j} u \geq g(x, u), \quad x \in \mathbb{R}^N \setminus \{0\}, \]

где \(a_j \in \mathbb{R} \) и \(g : \mathbb{R}^2 \rightarrow \mathbb{R} \) — неотрицательная каратаеодориева функция, удовлетворяющая подходящим условиям роста.

10. ОТСУТСТВИЕ РЕШЕНИЙ ПОЛУЛИНЕЙНЫХ ЗАДАЧ В ПОЛУПРОСТРАНСТВЕ

Здесь мы приводим полученные совместно с М.-Ф. Бидо-Верон [26] результаты об отсутствии решений одного класса эллиптических неравенств в полупространстве. Заметим, что в цитируемой работе аналогичные результаты получены для задач с \(p \)-лапласианом и в разных областях.

Теорема 10.1. Пусть \(N \geq 2, \Omega = \mathbb{R}_+^N \) и \(A = (A_i) \),

\[A_i(x, u, \eta) = a_i(x, u) \eta_i, \]

(10.1)

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
где \(a_i \colon \mathbb{R}^N \times \mathbb{R}_+ \to \mathbb{R}_+ \) непрерывны и ограничены, \(a_N \) из \(C^1 \) с ограниченными производными и

\[
\frac{\partial a_N(x, u)}{\partial x_N} \geq 0.
\]

Если

\[
1 < q < q_{a,2} = \frac{N + 1 + \sigma}{N - 1},
\]

tо задача

\[
\begin{cases}
- \text{div} A(x, u, Du) \geq |x|^\sigma u^q, & x \in \mathbb{R}_+^N, \\
\eta \geq 0, & x \in \mathbb{R}_+^N,
\end{cases}
\]

в классе \(W^{1,1}_{\text{loc}}(\mathbb{R}_+^N) \) с \(|x|^\sigma u^q \in L^{1}_{\text{loc}}(\mathbb{R}_+^N) \) имеет только тривиальное глобальное решение.

Доказательство. Пусть \(u_{e} = u + \varepsilon \) и \(\alpha \in (-1, 0) \) и возьмем пробную функцию \(\varphi = u_{e}^2 x_N \xi_{\rho} \) с достаточно большим \(\lambda \) и радиальной стандартной срезающей функцией \(\xi_{\rho} \):

\(\xi_{\rho} = 1 \) для \(|x| \leq \rho \), \(\xi_{\rho} = 0 \) для \(|x| \geq 2\rho \), \(0 \leq \xi_{\rho} \leq 1 \) и \(|D\xi_{\rho}| \leq C/\rho \). Тогда

\[
\int_{\mathbb{R}^N} |x|^\sigma x_N u^q u_{e}^{\alpha \xi_{\rho}} dx + |\alpha| \sum_{i=1}^{N} \int_{\mathbb{R}^N} u_{e}^{\alpha-1} x_N \xi_{\rho}^\lambda a_i(x, u) \left| \frac{\partial u}{\partial x_i} \right|^2 dx \leq
\]

\[
\leq \lambda \sum_{i=1}^{N} \int_{\mathbb{R}^N} u_{e}^{\alpha} x_N \xi_{\rho}^\lambda a_i(x, u) \frac{\partial u}{\partial x_i} \frac{\partial \xi_{\rho}}{\partial x_i} dx + \int_{\mathbb{R}^N} u_{e}^{\alpha} \xi_{\rho}^\lambda a_N(x, u) \frac{\partial u}{\partial x_N} dx \leq
\]

\[
\leq \frac{|\alpha|}{2} \sum_{i=1}^{N} \int_{\mathbb{R}^N} u_{e}^{\alpha-1} x_N \xi_{\rho}^\lambda a_i(x, u) \left| \frac{\partial u}{\partial x_i} \right|^2 dx + \int_{\mathbb{R}^N} u_{e}^{\alpha} \xi_{\rho}^\lambda a_N(x, u) \frac{\partial u}{\partial x_N} dx,
\]

поскольку \(a_i \) ограничены. Тогда

\[
\int_{\mathbb{R}^N} |x|^\sigma x_N u^q u_{e}^{\alpha \xi_{\rho}} dx + \sum_{i=1}^{N} \int_{\mathbb{R}^N} u_{e}^{\alpha-1} x_N \xi_{\rho}^\lambda a_i(x, u) \left| \frac{\partial u}{\partial x_i} \right|^2 dx \leq
\]

\[
\leq C(\alpha) \left(\sum_{i=1}^{N} \int_{\mathbb{R}^N} u_{e}^{\alpha+1} x_N \xi_{\rho}^{-\lambda-2} \left| \frac{\partial \xi_{\rho}}{\partial x_i} \right|^2 dx + \int_{\mathbb{R}^N} u_{e}^{\alpha} \xi_{\rho}^\lambda a_N(x, u) \frac{\partial u}{\partial x_N} dx \right).
\]

Теперь

\[
\int_{\mathbb{R}^N} u_{e}^{\alpha} \xi_{\rho}^\lambda a_N(x, u) \frac{\partial u}{\partial x_N} dx = X_{\varepsilon} + Y_{\varepsilon},
\]

где

\[
X_{\varepsilon} = \int_{\mathbb{R}^N} u_{e}^{\alpha} \xi_{\rho}^\lambda a_N(x, u_{e}) \frac{\partial u_{e}}{\partial x_N} dx, \quad Y_{\varepsilon} = \int_{\mathbb{R}^N} u_{e}^{\alpha} \xi_{\rho}^\lambda (a_N(x, u) - a_N(x, u_{e})) \frac{\partial u}{\partial x_N} dx.
\]
Далее

\[Y_\varepsilon \leq C\varepsilon \int_{\mathbb{R}^N_+} u_\varepsilon^\alpha \frac{\partial u_\varepsilon}{\partial x_N} \, dx \leq C\varepsilon^{1+\alpha} \int_{\mathbb{R}^N_+} \xi^\alpha \frac{\partial u}{\partial x_N} \, dx \leq C\varepsilon^{1+\alpha} \int_{\mathbb{R}^N_+ \cap C_{\rho,2\rho}} \frac{\partial u}{\partial x_N} \, dx, \]

tак как \(\frac{\partial u}{\partial x_N} \in L^1_{\text{loc}}(\mathbb{R}^N_+) \). Здесь \(C_{\rho,2\rho} = \{ x \in \mathbb{R}^N \mid \rho \leq |x| \leq 2\rho \} \). Теперь положим

\[F(x,t) = \int_0^t s^\alpha a_N(x,s) \, ds \quad \forall (x,t) \in \mathbb{R}^N_+ \times \mathbb{R}_+. \]

Тогда

\[X_\varepsilon = \int_{\mathbb{R}^N_+} \xi_\rho \frac{\partial(F(x,u_\varepsilon(x)))}{\partial x_N} \, dx - \int_{\mathbb{R}^N_+} \xi_\rho \frac{u_\varepsilon(x)}{s^\alpha} \frac{\partial a_N(x,u_\varepsilon(x))}{\partial x_N} \, dsdx \leq \int_{\mathbb{R}^N_+} \xi_\rho \frac{\partial(F(x,u_\varepsilon(x)))}{\partial x_N} \, dx, \]

поскольку \(\frac{\partial a_N(x,u)}{\partial x_N} \geq 0 \). Затем интегрируем по частям по \(\mathbb{R}^N_+ \cap C_{\rho,2\rho} \):

\[X_\varepsilon \leq \lambda \int_{\mathbb{R}^N_+} F(x,u_\varepsilon) \xi_\rho \frac{\partial \xi_\rho}{\partial x_N} \, dx \leq C \int_{\mathbb{R}^N_+} u_\varepsilon^{1+\alpha} \xi_\rho \frac{\partial \xi_\rho}{\partial x_N} \, dx, \]

tак как \(\xi_\rho = 0 \) для \(|x| = 2\rho \), \(\xi_\rho \geq 0 \) для \(x_N = 0 \) и \(a_N \) ограничены. Тогда имеем

\[\int_{\mathbb{R}^N_+} |x|^\theta x_N u_\varepsilon^{\alpha} \xi_\rho \, dx \leq C \varepsilon^{1+\alpha} \int_{\mathbb{R}^N_+ \cap C_{\rho,2\rho}} \frac{\partial u}{\partial x_N} \, dx + \]

\[+ C \int_{\mathbb{R}^N_+} u_\varepsilon^{1+\alpha} \xi_\rho \frac{\partial \xi_\rho}{\partial x_N} \, dx + \sum_{i=1}^N \int_{\mathbb{R}^N_+} u_\varepsilon^{1+\alpha} x_N \xi_\rho \frac{\partial \xi_\rho}{\partial x_i} \, dx \]

и по лемме Фату можем перейти к пределу при \(\varepsilon \to 0 \), откуда следует

\[\int_{\mathbb{R}^N_+} |x|^\theta x_N u_\varepsilon^{\alpha+\alpha} \xi_\rho \, dx \leq C \varepsilon \int_{\mathbb{R}^N_+} u_\varepsilon^{1+\alpha} \xi_\rho \frac{\partial \xi_\rho}{\partial x_N} \, dx + \sum_{i=1}^N \int_{\mathbb{R}^N_+ \cap \text{supp} [\Delta \xi_\rho]} u_\varepsilon^{1+\alpha} x_N \xi_\rho \frac{\partial \xi_\rho}{\partial x_i} \, dx. \]

Применяя неравенство Гёльдера с показателями \(\theta = (q + \alpha)/(1 + \alpha) \) и \(\theta' = \theta/(\theta - 1) \), получим

\[\int_{\mathbb{R}^N_+} u_\varepsilon^{1+\alpha} \xi_\rho \frac{\partial \xi_\rho}{\partial x_N} \, dx \leq C \varepsilon \int_{\mathbb{R}^N_+} |x|^{\sigma} x_N u_\varepsilon^{\alpha+\alpha} \xi_\rho \, dx + \frac{C}{\varepsilon} \int_{\mathbb{R}^N_+ \cap \text{supp} [\Delta \xi_\rho]} |x|^{\sigma/(\theta - 1)} x_N \rho^{2\theta'} \xi_\rho \, dx, \]

так как \(|\partial \xi_\rho/\partial x_N| = x_N|\xi_\rho'(\rho)|/\rho \leq C x_N/\rho^2 \), и

\[\sum_{i=1}^N \int_{\mathbb{R}^N_+} u_\varepsilon^{1+\alpha} x_N \xi_\rho \frac{\partial \xi_\rho}{\partial x_i} \, dx \leq C \varepsilon \int_{\mathbb{R}^N_+} |x|^{\sigma} x_N u_\varepsilon^{\alpha+\alpha} \xi_\rho \, dx + \]

\[+ \frac{C}{\varepsilon} \int_{\mathbb{R}^N_+ \cap \text{supp} [\Delta \xi_\rho]} |x|^{\sigma/(\theta - 1)} x_N \xi_\rho \frac{\partial \xi_\rho}{\partial x_i} \, dx. \]

Труды математического института им. В.А. Стеклова, 2001, т. 234
Тогда, выбирая ε достаточно малым, получим

$$
\int_{\Omega^N} |x|^\gamma u^{q_1+\alpha} \xi_\rho^\lambda \, dx \leq C \int_{\Omega^N} \left(|x|^\gamma u^{(1-\theta')} x_N \rho_{(2-2\theta')/\theta'}^\lambda \xi_\rho^\lambda + |x|^\gamma u^{(1-\theta')} x_N \xi_\rho^\lambda \right) \, dx,
$$

где $\beta(q-1) = (N-1)q - (N+1+\sigma) - (\sigma+2)\alpha$. Если $q < q_{\sigma,2}$, то мы можем выбрать такое α, чтобы было $\beta < 0$, что означает $u \equiv 0$ при $\rho \rightarrow 0$. \[\square\]

Замечание 10.1. Этот результат можно расширить на случай, когда $a_i(x,u)$ имеет степенной рост по $|x|$ с соответствующим изменением критического показателя.

11. ПОЛУЛИНЕЙНЫЕ НЕРАВЕНСТВА В КОНУСАХ

В настоящем разделе мы приводим полученные Г.Г. Лаптевым [214] с использованием метода пробных функций результаты об отсутствии нетривиальных решений эллиптических задач в конусах.

Напомним, что конусом называется множество $K \subset \mathbb{R}^N$, содержащее вместе с любой своей точкой $x \in K$ также все точки вида λx, где $\lambda \in \mathbb{R}^+, \lambda > 0$. Под глобальным понимается решение, определенное для всех $x \in K$, но не обязательно интегрируемое или ограниченное на всем K.

Мы исследуем отсутствие локально ограниченных глобальных неотрицательных решений в конусах неравенств вида

$$
- \div (|x|^\alpha Du) \geq |x|^\beta u^q, \quad \beta \geq \alpha \geq 0. \quad (11.1)
$$

Пусть K_ω — область на единичной сфере $S^{N-1} \subset \mathbb{R}^N$, $N \geq 3$, с достаточно гладкой границей ∂K_ω. Конусом K называется множество

$$
K = \{ x = (r, \omega) : 0 < r < +\infty, \omega \in K_\omega \},
$$

где (r, ω) — сферические координаты точки x в \mathbb{R}^N. Боковую поверхность конуса обозначаем ∂K.

В проводимых оценках через c и C обозначаются константы, точные значения которых для нас несущественны.

Под $L^q_{loc}(K)$, $q \geq 1$, понимается пространство определенных на K измеримых функций, суммируемых со степенью q по любому (измеримому) ограниченному подмножеству $\Omega \subset K$; под $L^q_{\infty}(K)$ — пространство локально существенно ограниченных функций. Для описания дифференциальных свойств применяются пространства Соболева

$$
W^{1,q}_{\infty}(K) \equiv \{ u \in L^q_{loc}(K) : |Du| \in L^q_{loc}(K) \}, \quad W^{2,q}_{\infty}(K) \equiv \{ u \in L^q_{loc}(K) : |D^2 u| \in L^q_{loc}(K) \},
$$

где

$$
Du = \left(\frac{\partial u}{\partial x_i} \right), \quad i = 1, N, \quad |Du| = \left(\sum_{i=1}^N \left(\frac{\partial u}{\partial x_i} \right)^2 \right)^{1/2};
$$

$$
D^2 u = \left(\frac{\partial^2 u}{\partial x_i \partial x_j} \right), \quad i, j = 1, N, \quad |D^2 u| = \left(\sum_{i=1}^N \sum_{j=1}^N \left(\frac{\partial^2 u}{\partial x_i \partial x_j} \right)^2 \right)^{1/2}.
$$
Часть I. СТАЦИОНАРНЫЕ ЗАДАЧИ

Напомним, что оператор Лапласа Δ в сферических координатах (r, ω) имеет вид

$$\Delta = \frac{1}{r^{N-1}} \frac{\partial}{\partial r} \left(r^{N-1} \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \Delta_\omega = \frac{\partial^2}{\partial r^2} + \frac{N-1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \Delta_\omega,$$

где Δ_ω — оператор Бельтрами–Лапласа на единичной сфере $S^{N-1} \subset \mathbb{R}^N$.

В дальнейшем постоянно используются наименьшее собственное значение $\lambda_\omega \equiv \lambda_1(K_\omega) > 0$ и соответствующая собственная функция $\Phi(\omega)$ оператора Δ_ω, являющиеся решением задачи

$$\begin{cases}
\Delta_\omega \Phi + \lambda \Phi = 0, & x \in K_\omega, \\
\Phi = 0, & x \in \partial K_\omega.
\end{cases}$$

(11.2)

Хорошо известно, что $\Phi(\omega) > 0$ для $\omega \in K_\omega$. Предполагается, что $\Phi(\omega) \leq 1$.

Собственное значения λ_ω наряду с размерностью N является основным параметром, определяющим существование или отсутствие решений в конусе K.

Модельная задача. Рассмотрим проблему отсутствия нетривиальных неотрицательных слабых решений задачи

$$\begin{cases}
-\Delta u \geq u^q, & x \in K, \\
u = 0, & x \in \partial K.
\end{cases}$$

(11.3)

Далее слабое решение будет пониматься в следующем смысле.

Определение 11.1. Функция $u(x) \in W^{1,2}_{\text{loc}}(K) \cap L^\infty_{\text{loc}}(K), u|_{\partial K} = 0$, называется слабым решением задачи (11.3), если для любой неотрицательной функции $\varphi(x) \equiv \varphi(r, \omega) \in W^{1,2}(K)$, $\varphi|_{\partial K} = 0$, выполнено интегральное неравенство

$$\int_K Du \varphi \, dx \geq \int_K u^q \varphi \, dx.$$

(11.4)

Цель состоит в нахождении степени $q^* > 1$ такой, что при $1 < q \leq q^*$ не существует глобального нетривиального неотрицательного слабого решения задачи (11.3).

Приведем пример решения задачи (11.3) при некоторых значениях q.

Лемма 11.1. Функция

$$u(x) \equiv u(r, \omega) = \frac{\varepsilon}{(1 + r^2)^{q-1}} \Phi(\omega)$$

служит решением задачи (11.3) при достаточно малом $\varepsilon = \varepsilon(q) > 0$ для любого

$$q > q^* = 1 + \frac{2}{s^*}.$$

Здесь

$$s^* = \frac{N-2}{2} + \sqrt{\left(\frac{N-2}{2}\right)^2 + \lambda_\omega},$$

(11.5)

$\Phi(\omega)$ — решение задачи (11.2), λ_ω — соответствующее наименьшее собственное значение.

Доказательство. Обозначим

$$R(r) = \frac{\varepsilon}{(1 + |r|^2)^{q-1}}.$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Тогда \(u = R(r)\Phi(\omega) \). Используя выражение для оператора Лапласа в сферических координатах и учитывая, что \(\Delta_n \Phi = -\lambda_n \Phi \), получим

\[
-\Delta u = - \left(R'' \Phi + \frac{N-1}{r} R' \Phi + \frac{1}{r^2} R \Delta_n \Phi \right) = - \Phi \left(R'' + \frac{N-1}{r} R' - \frac{\lambda_n}{r^2} R \right).
\]

Подставляем \(R, R' \) и \(R'' \):

\[
-\Delta u = \frac{\varepsilon \Phi(\omega)}{(1 + r^2)^{(q-1)+1}} \left\{ \frac{2N}{q-1} - \frac{4q}{q-1} \left(\frac{1}{q-1} + 1 \right) \frac{r^2}{1 + r^2} + \frac{\lambda_n}{r^2} \right\}.
\]

Легко проверить, что для всех \(r > 0 \) выражение в фигурных скобках равномерно положительно:

\[
\frac{2N}{q-1} - \frac{4q}{(q-1)^2} \left(\frac{1}{q-1} + 1 \right) \frac{r^2}{1 + r^2} + \lambda_n > \frac{2N}{q-1} - \frac{4q}{(q-1)^2} + \lambda_n > \delta(q) > 0
\]

для фиксированного \(q > 1 + \frac{2}{r^2} \).

Отсюда с учетом приведенного выше выражения для \(-\Delta u \) получаем

\[
-\Delta u > \frac{\varepsilon \Phi(\omega)}{(1 + r^2)^{(q-1)}} \delta(q) \geq \frac{\varepsilon^q \Phi^q(\omega)}{(1 + r^2)^q} = R^q(r) \Phi^q(\omega) = u^q,
\]

t.e.

\[-\Delta u \geq u^q.\]

Здесь использовано условие \(\Phi(\omega) \leq 1 \), так что \(\Phi(\omega) \geq \Phi^q(\omega) \), и выбрано число \(\varepsilon = \delta^{1/(q-1)}(q) > 0 \). Как видно, введенная функция \(u(x) \in C^2(K) \cap L^\infty(K) \) и удовлетворяет неравенству (11.3) п.в. в \(K \). Достаточно очевидно, что всякое такое решение этого неравенства одновременно является слабым решением.

Лемма доказана. □

Наишим основным утверждением для задачи (11.3) является

Теорема 11.1. При

\[1 < q \leq q^* = 1 + \frac{2}{s^*} \]

задача (11.3) не имеет глобального нетривиального неотрицательного слабого решения.

Здесь \(s^* \) определено в (11.5).

Замечание 11.1. Для случая уравнения аналоги этой теоремы имеются в работах [8, 6, 57, 240, 238].

Доказательство теоремы 11.1. Далее основное внимание уделяется оценке интегралов вида

\[
\int_{\text{supp}|\Delta \varphi|} \frac{|\Delta \varphi|^q}{|\varphi'|^q} dx,
\]

где \(\frac{1}{q} + \frac{1}{q'} = 1 \), supp |\Delta \varphi| — носитель |\Delta \varphi|.

Для этого явно строится последовательность функций \(\varphi_\rho \in W^{2,1}(K) \), \(\rho \to \infty \), удовлетворяющих некоторым дополнительным требованиям. После этого находятся условия на \(q \), при которых указанные выше интегралы стремятся к нулю при \(\rho \to \infty \). Эти условия и определяют отсутствие глобального нетривиального решения.
Часть I. СТАЦИОНАРНЫЕ ЗАДАЧИ

Итак, пусть \(u \in W^{1,2}_{\text{loc}}(K) \cap L^\infty_{\text{loc}}(K) \) — слабое решение задачи (11.3) с \(1 < q \leq q^* \). Наша цель — показать, что тогда \(u \equiv 0 \). Согласно определению 11.1 слабого решения для любой неотрицательной функции \(\varphi(x) \equiv \varphi(r, \omega) \in W^{1,2}(K) \), \(\varphi|_{\partial K} = 0 \), финитной по переменной \(r \), справедливо соотношение (11.4).

Предположим дополнительно, что функция \(\varphi \in W^{2,1}(K) \cap W^{1,2}(K) \). Тогда, интегрируя левую часть (11.4) по частям, с учетом условия \(u|_{\partial K} = 0 \) получаем

\[
\int_K DuD\varphi dx = -\int_K u\Delta \varphi dx,
\]

вследствие чего неравенство (11.4) принимает вид

\[
\int_K u^q \varphi dx \leq -\int_K u\Delta \varphi dx.
\] (11.6)

Для оценки правой части примем неравенство Юнга с параметром \(\varepsilon \):

\[
-\int_K u\Delta \varphi dx = -\int_{\text{supp}|\Delta \varphi|} u\Delta \varphi dx = -\int_{\text{supp}|\Delta \varphi|} u^{1/q} \frac{\Delta \varphi}{\varphi^{1/q}} dx \leq \varepsilon \int_{\text{supp}|\Delta \varphi|} u^q dx + \frac{1}{\varepsilon q' - 1} \int_{\text{supp}|\Delta \varphi|} \frac{|\Delta \varphi|^q}{\varphi^{q' - 1}} dx,
\]

откуда при \(\varepsilon = \frac{1}{2} \)

\[
\int_{\text{supp}\varphi} u^q \varphi dx \leq c_0 \int_{\text{supp}|\Delta \varphi|} \frac{|\Delta \varphi|^q}{\varphi^{q' - 1}} dx,
\] (11.7)

где \(c_0 = 2^{q'} \) — не зависящая от \(u \) и \(\varphi \) постоянная.

Теперь необходимо построить последовательность функций \(\varphi_\rho, \rho \to \infty \), удовлетворяющую следующим условиям:

1) \(\varphi_\rho \xrightarrow{\text{н.н.}} \varphi_\infty > 0 \) в \(K \), \(\varphi_\rho = \varphi_\infty \) при \(0 < r < \rho \);
2) \(\varphi_\rho|_{\partial K} = 0 \);
3) \(\int_{\text{supp}|\Delta \varphi_\rho|} \frac{|\Delta \varphi_\rho|^q}{\varphi_\rho^{q' - 1}} dx \to 0 \) при \(\rho \to \infty \).

Здесь \(\varphi_\infty \in W^{2,1}_{\text{loc}}(K) \cap W^{1,2}_{\text{loc}}(K) \) — некоторая фиксированная функция.

Тогда, подставляя в (11.7) \(\varphi = \varphi_\rho \), будем иметь

\[
\int_{K \cap \{0 < r < \rho\}} u^q \varphi_\infty dx \leq \int_{\text{supp} \varphi_\rho} u^q \varphi_\rho dx \to 0 \text{ при } \rho \to \infty,
\]

откуда в пределе получаем

\[
\int_K u^q \varphi_\infty dx = 0,
\]

что в силу неравенства \(\varphi_\infty > 0 \) в \(K \) означает

\[
u \equiv 0, \quad x \in K,
\]

т.е. отсутствие глобального нетривиального неотрицательного решения.
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

Преврем доказательство теоремы 11.1 с целью построения последовательности \(\varphi_p \) с указанными свойствами.

Пусть заданы числа \(s > 0, \ p > 1 \). Рассмотрим семейство функций

\[
\varphi_p(r, \omega) = R_p(r) \Phi(\omega),
\]

где \(\Phi(\omega) \) — решение задачи (11.2), а функция \(R_p(r) \) задается равенствами

\[
R_p(r) = \begin{cases}
 r^s, & 0 \leq r \leq \rho, \\
 \psi^2p(r), & \rho < r < 2\rho, \\
 0, & r \geq 2\rho.
\end{cases}
\]

Здесь

\[
\psi(r) = -\left(\frac{s}{2p} + 1 \right) \rho^{\frac{s}{2p}} - r^2 + \left(3 \frac{s}{2p} + 2 \right) \rho^{\frac{s}{2p} - 1} - 2 \frac{s}{2p} \rho^{\frac{s}{2p}}.
\]

Отметим, что \(\varphi_p|_{\partial K} = 0 \) (для всех \(0 < r < 2\rho \)) за счет множителя \(\Phi(\omega) \).

Докажем некоторые свойства функции \(\varphi_p \). Поскольку последующие действия носят чисто технический характер, будем опускать промежуточные выкладки.

Лемма 11.2. Функция \(\varphi_p \in W^{2,1}(K) \cap W^{1,2}(K) \) и \(\varphi_p = \varphi_{\infty} > 0 \) для \(r \in (0, \rho) \), где \(\varphi_{\infty} = r^s \varphi(\omega) \).

Доказательство. Функция \(R_p(r) \) является гладкой в интервалах \(0 < r < \rho \) и \(\rho < r < 2\rho \). Функция \(\psi(r) \) введена для того, чтобы на участке \(\rho < r < 2\rho \) функция \(r^s \Phi(\omega) \) срезалась гладким образом (\(\varphi_p \in W^{2,1}(K) \)), достигая финитности по переменной \(r \). Конкретный многочлен \(\psi(r) \) приведен с целью наиболее наглядного и явного вычисления получающихся интегралов.

Убедимся, что функции \(R_p(r) \) и \(\psi_p(r) \) непрерывны в точках стыка \(r = \rho \) и \(r = 2\rho \). Это приведет к системе равенств

\[
\begin{align*}
\psi^2p(\rho) &= \rho^s, \\
2p \psi^2p-1(\rho) \psi'(\rho) &= s \rho^{s-1}, \\
\psi^2p(2\rho) &= 0, \\
2p \psi^2p-1(2\rho) \psi'(2\rho) &= 0.
\end{align*}
\]

Справедливость данных равенств для введенной функции \(\psi(r) \) проверяется прямой подстановкой. Собственно говоря, функция \(\psi(r) \) подбиралась так, чтобы выполнялись указанные соотношения.

Отметим, что \(R_p' = sr^{s-1} \) и \(R_p'' = s(s - 1)r^{s-2} \) для \(0 < r < \rho \), и так как \(s > 0 \), то отсюда следует принадлежность \(\varphi_p \in W^{2,1}(K \cap \{0 < r < 1\}) \cap W^{1,2}(K \cap \{0 < r < 1\}) \).

Лемма 11.3. Для всех \(\rho > 1 \) выполняется неравенство

\[
\int_{K \cap \{r < 2\rho\}} |\Delta \varphi_p|^p \varphi_p^{-1} \, dx \leq \frac{C}{\rho^{2p-s-N}},
\]

где постоянная \(C \) не зависит от \(\rho \).
Доказательство. Записывая оператор Лапласа в сферической системе координат, для функции \(\varphi_\rho = \psi^{2p}(r)\Phi(\omega) \) в интервале \(\rho < r < 2\rho \) получаем оценку

\[
|\Delta \varphi_\rho| = \left| \frac{\partial^2 \varphi_\rho}{\partial r^2} + \frac{N - 1}{r} \frac{\partial \varphi_\rho}{\partial r} + \frac{1}{r^2} \Delta_\omega \varphi_\rho \right| = \left| (\psi^{2p})'' + \frac{N - 1}{r} (\psi^{2p})' - \lambda_\omega \frac{\psi^{2p}}{r^2} \right| =
\]

\[
\Phi(\omega) \left[2p\psi^{2p-1}(r)(\psi''(r) + 2p(2p - 1)\psi^{2p-2}(r)(\psi'(r))^2 \right] + \frac{N - 1}{r} 2p\psi^{2p-1}(r)(\psi'(r)) - \lambda_\omega \psi^{2p}(r) \right| \leq
\]

\[
\leq c_1 \Phi(\omega) \psi^{2p-2}(r) \left(|\psi(r)| |\psi''(r)| + |\psi'(r)|^2 + \frac{\psi(r)|\psi'(r)|}{r} + \frac{\psi'(r)}{r^2} \right),
\]

где \(c_1 \) зависит от \(p, N \) и \(\lambda_\omega \), но не зависит от \(r \) и \(\rho \).

Итак, из явного вида функции \(\psi(r) \) для \(\rho < r < 2\rho \) получаем

\[
|\psi(r)| \leq c_2 \rho^{|\frac{2p}{s}|}, \quad |\psi'(r)| \leq c_2 \rho^{|\frac{2p}{s}-1|}, \quad |\psi''(r)| \leq c_2 \rho^{|\frac{2p}{s}-2|},
\]

где \(c_2 \) не зависит от \(r \) и \(\rho \).

Учитывая, что \(r > \rho \), можем записать оценку \(|\Delta \varphi_\rho| \):

\[
|\Delta \varphi_\rho| \leq c_3 \Phi(\omega) \psi^{2p-2}(r) \rho^{\frac{2p}{s}-2} = c_3 \rho^{\frac{2p}{s}-2} R_\rho \left(\rho^{1-\frac{2}{s}} \Phi(\omega) \right),
\]

где \(c_3 \) не зависит от \(r \) и \(\rho \).

Итак, для интеграла из формулировки леммы имеем

\[
\int_{K \cap \{ \rho < r < 2\rho \}} \frac{|\Delta \varphi_\rho|^p}{\varphi_\rho^{p-1}} \, dx \leq \int_{K \cap \{ \rho < r < 2\rho \}} \frac{c_3^{p-2p} \rho^{p-1} r^{N-1} \Phi^p(\omega)}{R_\rho^{p-1} r^{N-1} \Phi(\omega) \rho^{p-1}} \, dx =
\]

\[
= c_3^{p-2p} \int_{K_\omega} \Phi(\omega) \, d\omega \rho^{2p-s-N} \int_{r = \rho}^{2\rho} r^{N-1} \, dr \leq \frac{C}{\rho^{2p-s-N}}.
\]

Лемма доказана. □

Основная идея построения семейства \(\varphi_\rho \) заключается в том, что при некотором значении \(s = s_s \) функция \(\varphi_\rho \) на множестве \(K \cap \{ 0 < r < \rho \} \) предполагается гармонической, т.е. удовлетворяющей уравнению \(\Delta \varphi_\rho = 0 \). Это приводит к множителю \(R_\rho(r) = r^s \). В следующем утверждении определяется конкретное значение \(s_s \).

Лемма 11.4. При

\[
s = s_s = -\frac{N - 2}{2} + \sqrt{\left(\frac{N - 2}{2} \right)^2 + \lambda_\omega}
\]

функция \(\varphi_\rho \) является гармонической на множестве \(K \cap \{ 0 < r < \rho \} \). В частности, \(\text{supp} |\Delta \varphi_\rho| = K \cap \{ 0 < r < 2\rho \} \).

Доказательство. Записывая оператор Лапласа в сферической системе координат и учитывая, что для \(0 < r < \rho \) по определению \(\varphi_\rho = r^s \varphi(\omega) \), получим

\[
\Delta \varphi_\rho = \frac{\partial^2 \varphi_\rho}{\partial r^2} + \frac{N - 1}{r} \frac{\partial \varphi_\rho}{\partial r} + \frac{1}{r^2} \Delta_\omega \varphi_\rho =
\]

\[
= (r^s)'' + \frac{N - 1}{r} (r^s)' + \frac{1}{r^2} r^s \Delta_\omega \Phi = s(s - 1) r^{s-2} \Phi + \frac{N - 1}{r} s r^{s-1} \Phi - \lambda_\omega r^{s-2} \Phi =
\]

\[
r^{s-2} \Phi(\omega) \{ s(s - 1) + s(N - 1) - \lambda_\omega \} \equiv 0,
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

поскольку выражение в фигурных скобках обращается в нуль при \(s = s_* \), как показывает непосредственное вычисление (используя определение числа \(s_* \)). □

Продолжим доказательство теоремы 11.1. Обратимся к неравенству (11.7), справедливому, в частности, и для построенных выше функций \(\varphi, \rho \to \infty \) (11.8). Положим в определении функции \(\varphi, \rho \) степень \(s = s_* \) (задано в лемме 11.4). Для \(\varphi = \varphi_\rho \) из (11.7) получим в соответствии с леммой 11.3

\[
\int_{K \cap \{0 < r < \rho\}} u^q \varphi_\infty \, dx \leq \int_{\text{supp} \varphi_\rho} u^q \varphi_\rho \, dx \leq c_0 \int_{\text{supp} |\Delta \varphi_\rho|} \frac{|\Delta \varphi_\rho|^q'}{\varphi_\rho^{q'-1}} \, dx \leq c_0 C \frac{1}{\rho^{2q'-s_*-N}}.
\]

Введем показатель

\(q^* = 1 + \frac{2}{s^*} \),

где \(s^* = s_* + N - 2 \) определяется формулой (11.5). Легко видеть, что для \(1 < q < q^* \) показатель \(2q' - s_* - N > 0 \), поэтому выполняется предельное соотношение

\[
\int_{K \cap \{0 < r < \rho\}} u^q \varphi_\infty \, dx \to 0, \quad \rho \to \infty.
\]

Для \(q = q^* \) имеем \(2q' - s_* - N = 0 \), поэтому справедливо неравенство

\[
\int_{K \cap \{0 < r < \rho\}} u^q \varphi_\infty \, dx \leq C \quad \text{для всех } \rho \to \infty.
\]

Напомним, что постоянная \(C \) здесь не зависит от \(\rho \), так как взята из леммы 11.3.

Поскольку в левых частях последних двух соотношений от \(\rho \) зависит только область интегрирования, можем перейти к пределу при \(\rho \to \infty \), что дает

\[
\int_K u^q \varphi_\infty \, dx = 0, \quad 1 < q < q^*,
\]

\[
\int_K u^q \varphi_\infty \, dx \leq C, \quad q = q^*.
\]

Первое равенство (поскольку \(\varphi_\infty = r^{s_*} \Phi(\omega) > 0 \) в \(K \)) означает, что \(u \equiv 0 \). Это доказывает отсутствие глобального нетривиального неотрицательного решения для \(q < q^* \).

В предельном случае \(q = q^* \) неравенство (11.9) гарантирует лишь глобальную суммируемость функции \(u^q \varphi_\infty \) в \(K \). Для доказательства отсутствия нетривиальных решений вернемся к оценке (11.6), но примем в ней вместо неравенства Юнга неравенство Гельдера. Получим (для \(\varphi = \varphi_\rho \))

\[
\int_K u^q \varphi_\rho \, dx \leq -\int_K u \Delta \varphi_\rho \, dx \leq \left(\int_{\text{supp} |\Delta \varphi_\rho|} u^q \varphi_\rho \, dx \right)^{1/q} \left(\int_{\text{supp} |\Delta \varphi_\rho|} \frac{1}{\varphi_\rho^{q'-1}} \, dx \right)^{1/q'},
\]

где \(q = q^* \).

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Используя явный вид функции \(\varphi_\rho \), получаем оценку \(\varphi_\rho(r, \omega) \leq c_4 \varphi_\infty(r, \omega) \) для всех \(0 < r < +\infty \) и всех \(\rho \to \infty \) с постоянной \(c_4 \), не зависящей от \(\rho \), откуда

\[
\int_{\text{supp} |\Delta \varphi_\rho|} u^q \varphi_\rho \, dx \leq c_4 \int_{\text{supp} |\Delta \varphi_\rho|} u^q \varphi_\infty \, dx \leq c_4 \int_{K \cap \{ \rho < r < 2\rho \}} u^q \varphi_\infty \, dx.
\]

В то же время согласно (11.9) интеграл от \(u^q \varphi_\infty \) по всему конусу \(K \) ограничен, поэтому из общей теории интеграла по бесконечной мере следует соотношение

\[
\int_{K \cap \{ \rho < r < 2\rho \}} u^q \varphi_\infty \, dx = \frac{\varepsilon(\rho)}{\rho} \to 0, \quad \rho \to \infty.
\]

Тогда из неравенства (11.10) получим

\[
\int_{K \cap \{0 < r < \rho\}} u^q \varphi_\infty \, dx \leq \varepsilon^{1/q}(\rho) C^{1/q} \to 0, \quad \rho \to \infty,
\]

t.e. в пределе

\[
\int_K u^q \varphi_\infty \, dx = 0.
\]

Так как \(\varphi_\infty > 0 \) в \(K \), то отсюда следует, что \(u \equiv 0 \). Это доказывает отсутствие глобального нетривиального решения и в случае \(q = q^* \). Теорема 11.1 доказана. \(\square \)

Замечание 11.2. В данной теореме рассматриваются только локально ограниченные в конусе \(K \) решения неравенств. В частности, не допускается неограниченная особенность решения в нуле. Приведем несколько известных утверждений, показывающих, как ограниченность влияет на существование и отсутствие решений.

Предложение 11.1 (предложение 4 из [8]). Уравнение

\[-\Delta u = u^q, \quad u \geq 0, \quad x \in K \subset \mathbb{R}^N,\]

не имеет глобального нетривиального решения из \(C^2(K) \cap C(K \setminus \{0\}) \), если

\[1 < q < 1 + \frac{2}{s^*},\]

gде \(s^* \) определяется по формуле (11.5).

Предложение 11.2 (предложение 5 из [8]). Функция

\[u(r, \omega) = \frac{1}{r^{2/(q-1)}} \alpha(\omega),\]

gде \(\alpha(\omega) \) — решение уравнения

\[-\Delta_\omega \alpha(\omega) = \frac{2}{q-1} \left(N - 2 - \frac{2}{q-1}\right) \alpha(\omega) + \alpha^q(\omega) = 0, \quad \omega \in K_\omega, \quad \alpha(\omega)|_{\partial K_\omega} = 0,
\]

является глобальным решением из \(C^2(K) \cap C(K \setminus \{0\}) \) уравнения

\[-\Delta u = u^q, \quad u \geq 0, \quad x \in K,\]
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

при

\[1 + \frac{2}{s^*} < q < \begin{cases} +\infty, & N = 2, 3, \\ \frac{N + 1}{N - 3}, & N > 3, \end{cases} \]

где \(s^* \) определяется в (11.5).

Сравнение с теоремой 11.1 и леммой 11.1 показывает, что критические показатели для уравнений и неравенств совпадают, если допустить сингулярность решения уравнения в нуле.

Замечание 11.3. Предлагаемый подход, естественно, применим и к доказательству отсутствия локально ограниченных решений во всем пространстве \(\mathbb{R}^N \) [208, 209, 211, 212]. При этом нужно брать \(\Phi(\omega) \equiv 1 \) и соответствующее \(\lambda_\omega = 0 \). Тогда \(s_* = 0 \) и получающаяся функция \(\varphi(\rho) \) сходна со срезающей функцией, используемой на протяжении всей книги.

Необходимо уточнить, что непосредственное использование теоремы 11.1 в "предельном" случае \(K_\omega \to S^{N-1} \) не приводит к условиям, установленным для всего \(\mathbb{R}^N \). Рассмотрим подробнее случай \(N = 2 \). Тогда \(K_\omega = (0, l) \) — интервал (дуга окружности). В предельном случае окружности \(l = 2\pi \) задача (11.2) принимает вид

\[\frac{d^2\varphi}{d\omega^2} + \lambda\varphi = 0, \quad \varphi(0) = \varphi(2\pi) = 0. \]

Ее неотрицательным решением является функция \(\varphi(\omega) = \sin \frac{\omega}{2} \), что соответствует наименьшему собственному значению \(\lambda_\omega = \frac{1}{4} \).

Тогда по теореме 11.1 критический показатель

\[q^* = 1 + \frac{2}{s^*} = 1 + \frac{2}{\sqrt{\lambda_\omega}} = 5, \]

в то время как в действительности этот показатель есть \(\infty \).

Неравенство общего вида. Применим описанный метод к исследованию отсутствия нетривиальных неотрицательных слабых решений задачи

\[
\begin{cases}
- \operatorname{div}(|x|^\alpha D u) \geq |x|^\beta u^q, & x \in K, \quad 0 \leq \alpha \leq \beta, \\
 u = 0, & x \in \partial K.
\end{cases}
\]

(11.11)

Определение 11.2. Функция \(u(x) \in W^{1,2}_{\text{loc}}(K) \cap L^\infty_{\text{loc}}(K), u|_{\partial K} = 0 \), называется слабым решением задачи (11.11), если для любой неотрицательной функции \(\varphi(x) \equiv \varphi(r, \omega) \in W^{1,2}(K) \), \(\varphi|_{\partial K} = 0 \), фиniteй по переменной \(r \), выполнено интегральное неравенство

\[
\int_K |x|^\alpha D u D \varphi \, dx \geq \int_K |x|^\beta u^q \varphi \, dx.
\]

Для упрощения последующих выкладок введем оператор

\[A_\alpha(\varphi) = \operatorname{div}(|x|^\alpha D \varphi). \]

(11.12)

При \(\alpha = 0 \) имеем \(A_0(\varphi) = \Delta \varphi \).

Рассмотрим семейство функций \(\varphi_\rho \), определенных формулами (11.8). Установим аналоги лемм 11.3 и 11.4, соответствующие задаче (11.11).
Лемма 11.5. Для всех $\rho > 1$ выполняется неравенство

$$\int_{K \cap \{ \rho < r < 2\rho \}} \frac{|A_\alpha(\varphi_\rho)|^p}{|x|^{\beta(p-1)}\varphi_\rho^{p-1}} \, dx \leq \frac{C}{\rho^{(2+\beta-\alpha)p-s-\beta-N}},$$

где постоянная C не зависит от ρ; оператор A_α определен формулой (11.12). Здесь $p > 1$, $s > 0$ — заданные числа.

Доказательство. Запишем оператор $A_\alpha(\varphi)$ в сферической системе координат:

$$A_\alpha(\varphi) \equiv \text{div}(|x|^\alpha D\varphi) = r^\alpha \left(\frac{\partial^2 \varphi_\rho}{\partial r^2} + \frac{\alpha + N - 1}{r} \frac{\partial \varphi_\rho}{\partial r} + \frac{1}{r^2} \Delta_\omega \varphi_\rho \right).$$

Далее, как и в лемме 11.3, для $\rho < r < 2\rho$ с учетом явного вида функции φ_ρ получаем оценку

$$|A_\alpha(\varphi_\rho)| \leq c_3 r^\alpha \rho^{\frac{s-2}{p-1}} R_\rho^{\frac{1}{p-1}}(r) \Phi(\omega), \quad \rho < r < 2\rho,$$

где c_3 не зависит от r и ρ. Отсюда

$$\int_{K \cap \{ \rho < r < 2\rho \}} \frac{|A_\alpha(\varphi_\rho)|^p}{|x|^{\beta(p-1)}\varphi_\rho^{p-1}} \, dx \leq \int_{K \cap \{ \rho < r < 2\rho \}} c_3^p r^{p\alpha} \rho^{s-2p} P^p_{\rho-1}(r) \Phi^p(\omega) \, dx = c_3^p \rho^{s-2p} \int_{K_\omega} \Phi(\omega) \, d\omega \int_\rho^{2\rho} r^{\alpha p - \beta(p-1) + N - 1} \, dr \leq \frac{C}{\rho^{(2+\beta-\alpha)p-s-\beta-N}}.$$

Лемма доказана. □

Доказательство следующего утверждения проводится в полной аналогии с доказательством леммы 11.4.

Лемма 11.6. Функция φ_ρ для

$$s = s_{s_\alpha} = -\frac{\alpha + N - 2}{2} + \sqrt{\left(\frac{\alpha + N - 2}{2}\right)^2 + \lambda_\omega}$$

является решением уравнения $A_\alpha(\varphi_\rho) = 0$ на множестве $K \cap \{ 0 < r < \rho \}$. В частности, $\text{supp} |A_\alpha(\varphi_\rho)| = K \cap \{ \rho < r < 2\rho \}$. Здесь оператор $A_\alpha(\varphi)$ определен формулой (11.12). □

Условия отсутствия глобальных неотрицательных решений задачи (11.11) дает

Теорема 11.2. При

$$1 < q \leq q_{s_\alpha}^* = 1 + \frac{2 + \beta - \alpha}{s_\alpha^*},$$

где

$$s_\alpha^* = \frac{\alpha + N - 2}{2} + \sqrt{\left(\frac{\alpha + N - 2}{2}\right)^2 + \lambda_\omega} = s_{s_\alpha} + \alpha + N - 2,$$

(11.13)

задача (11.11) не имеет глобального нетривиального неотрицательного слабого решения.

Доказательство следует схеме доказательства теоремы 11.1.
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

Пусть $u(x)$ — слабое решение задачи (11.11). Тогда для любой финитной по переменной r функции $\varphi(r, \omega) \in W^{2,1}(K) \cap W^{1,2}(K)$, $\varphi|_{\partial K} = 0$, с помощью интегрирования по частям из определения обобщенного решения получим

$$\int_K |x|^{\beta} u^q \varphi \, dx \leq - \int_K u A_\alpha(\varphi) \, dx,$$

где $A_\alpha(\varphi)$ определен формулой (11.12). Применяя для оценки правой части неравенства Юнга с параметром, после приведения подобных членов будем иметь

$$\int_{\text{supp} \varphi} |x|^{\beta} u^q \varphi \, dx \leq c_0 \int_{\text{supp} A_\alpha(\varphi)} \left| \frac{A_\alpha(\varphi)}{|x|^{\beta(q'-1)} \varphi q' - 1} \right| dx,$$

где c_0 не зависит от u и φ.

Для $\varphi = \varphi_\rho$ отсюда в соответствии с леммой 11.5 получаем

$$\int_{K \cap \{0 < r < \rho\}} |x|^{\beta} u^q \varphi_\infty \, dx \leq \int_{\text{supp} \varphi_\rho} |x|^{\beta} u^q \varphi_\rho \, dx \leq \frac{c_0 C}{\rho^{2+3-\alpha} q' - s_\alpha - \beta - N}.$$

Введем параметр

$$q_{\alpha, \beta}^* = 1 + \frac{2 + \beta - \alpha}{s_\alpha^*},$$

где $s_\alpha^* = s_\alpha + \alpha + N - 2$ определено в формулировке теоремы, и перейдем в неравенство выше при $1 < q < q_{\alpha, \beta}^*$ к пределу по $\rho \to \infty$, что дает

$$\int_K |x|^{\beta} u^q \varphi_\infty \, dx = 0, \quad q < q_{\alpha, \beta}^*,$$

$$\int_K |x|^{\beta} u^q \varphi_\infty \, dx \leq C, \quad q = q_{\alpha, \beta}^*.$$

Эти соотношения означают, как в доказательстве теоремы 11.1, отсутствие глобальных нетривиальных неотрицательных решений.

Теорема доказана. □

Результат теоремы 11.2 точен. Функция

$$u(r, \omega) = \frac{\varepsilon}{(1 + r^2)^{\gamma}} \Phi(\omega), \quad \gamma = \frac{\beta - \alpha + 2}{2(q - 1)},$$

(11.14)

служит решением задачи (11.11) при малом $\varepsilon = \varepsilon(q) > 0$ для любого

$$q > q_{\alpha, \beta}^* = 1 + \frac{2 + \beta - \alpha}{s_\alpha^*},$$

где s_α^* определяется формулой (11.13).

Чтобы убедиться в этом, запишем оператор $-A_\alpha(u) = -\text{div}(|x|^\alpha Du)$ в сферической системе координат. Аналогично доказательству леммы 11.1 для определенной формулой (11.14) функции $u(r, \omega)$ будем иметь

$$-\text{div}(|x|^\alpha Du) = \varepsilon \frac{r^\alpha}{(1 + r^2)^{\gamma+1}} \Phi(\omega) \left\{ 2\gamma(\alpha + N) - 4\gamma(\gamma + 1) \frac{r^2}{1 + r^2} + \lambda_\omega \right\}.$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Легко проверить, что выражение в фигурных скобках равномерно положительно

\[2\gamma(\alpha + N) - 4\gamma(\gamma + 1) \frac{r^2}{1 + r^2} + \lambda \omega > 2\gamma(\alpha + N) - 4\gamma(\gamma + 1) + \lambda \omega > \delta(q) > 0 \]

для фиксированного \(q > q^*_\alpha \beta \) (при \(\gamma \), определенном в (11.14)).

Отсюда при \(q > q^*_\alpha \beta \) с учетом неравенства \(r^{\beta - \alpha} \leq (1 + r^2)(\beta - \alpha)/2 \) получим

\[-\text{div}(|x|^\alpha Du) \geq \frac{\varepsilon \Phi(\omega)}{(1 + r^2)^{\gamma + 1}} \delta(q) = \frac{\varepsilon \Phi(\omega)}{(1 + r^2)^{\gamma + 1}} r^\beta \delta(q) \geq \frac{\varepsilon \Phi(\omega)}{(1 + r^2)^{\gamma + 1}} r^\beta \delta(q). \]

Подставляя конкретное значение \(\gamma \) из (11.14) и используя оценку \(\Phi(\omega) \geq \Phi(q, \omega) \), окончательно приходим к неравенству

\[-\text{div}(|x|^\alpha Du) \geq \frac{\varepsilon \Phi(\omega)}{(1 + r^2)^{\gamma + 1}} \delta(q) \geq \frac{\varepsilon \delta(q)}{(1 + r^2)^{\gamma + 1}} \Phi(\omega) = \frac{\varepsilon}{(1 + r^2)^{\gamma + 1}} \Phi(\omega) = |x|^\beta u^\beta, \]

если положить \(\varepsilon = \delta(q)^{1/(\gamma - 1)} \). Тем самым показано, что функция \(u(x) \) является решением задачи (11.11) при \(q > q^*_\alpha \beta \).

Сравним критический показатель теоремы 11.2 с одним из результатов работы [238] для уравнения

\[-\Delta u - \sum_{i=1}^N a_i(x) \frac{\partial u}{\partial x_i} = |x|^{\alpha} u^\alpha, \quad u|_{\partial K \setminus \{0\}} = 0. \]

В наших обозначениях теорема 3.1 из [238] утверждает, что если

\[|a_i(x)| \leq \frac{c}{|x|^{1+\varepsilon}}, \quad \varepsilon > 0, \]

то эта задача не имеет нетривиального неотрицательного решения для

\[1 < q < q_M = 1 + \frac{2 + \sigma}{s^*}, \]

где \(s^* \) определено формулой (11.5).

Так как

\[\text{div}(|x|^\alpha Du) = |x|^\alpha \left(\Delta u + \alpha \sum_{i=1}^N \frac{x_i}{|x|^2} \frac{\partial u}{\partial x_i} \right), \]

то неравенство (11.11) для случая дважды дифференцируемых решений можно переписать в виде

\[-\Delta u - \sum_{i=1}^N a_i(x) \frac{\partial u}{\partial x_i} \geq |x|^{\beta - \alpha} u^\alpha, \]

где

\[a_i(x) = \alpha \frac{x_i}{|x|^2}, \quad |a_i(x)| \leq \frac{c}{|x|}. \]

По теореме 11.2 критический показатель

\[q^*_\alpha \beta = 1 + \frac{2 + \beta - \alpha}{s^*_\alpha} < q_M = 1 + \frac{2 + \beta - \alpha}{s^*}, \]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

где $s_n^* > s^*$ и определено в (11.13).

Из приведенного сравнения очевидно, что незначительное изменение поведения функций $a_i(x)$ при $|x| \to \infty$ приводит к резкому отличию критических показателей. В частности, на них начинают влиять постоянные, входящие множителями в коэффициенты при младших производных.

12. МОДЕЛЬНАЯ КВАЗИЛИНЕЙНАЯ ЗАДАЧА И ЕЕ ОБОБЩЕНИЯ

В этом разделе на модельном примере рассматривается метод исследования квазилинейных задач. Затем мы представим некоторые обобщения. Начнем с определения функционального класса решений.

Пусть $p > 1$ и $q \geq 0$. Определим S как

$$
S := W^{1,p}_{loc}(\mathbb{R}^N) = \left\{u: \mathbb{R}^N \to \mathbb{R}^+, \quad u^q, |Du|^p \in L^1_{loc}(\mathbb{R}^N)\right\},
$$

причем $D_i u, \ i = 1, \ldots, N,$ понимаются в смысле распределений.

Сформулируем наш первый результат.

Теорема 12.1. Пусть

$$
0 < p - 1 < q \leq \frac{N(p - 1)}{N - p}, \quad N > p,
$$

или

$$
0 \leq q \leq p - 1, \quad p > 1, \quad N \geq 1.
$$

Тогда задача

$$
\begin{align*}
&-\text{div}(|Du|^{p-2}Du) \geq u^q, \quad x \in \mathbb{R}^N, \\
&u \geq 0, \quad u \neq 0,
\end{align*}
$$

не имеет решения в классе $W^{1,p}_{loc}(\mathbb{R}^N)$.

Доказательство. В случае, если выполнено (12.1), мы проведем доказательство в два шага. На первом шаге мы ограничимся значениями q такими, что $p - 1 < q < \frac{N(p - 1)}{N - p}$, а на втором рассмотрим критическое значение $q = \frac{N(p - 1)}{N - p}$.

Первый шаг. Пусть $\varphi \in C^1_0(\mathbb{R}^N)$ — стандартная неотрицательная срезающая функция, мы точно определим ее позднее. Пусть $\alpha < 0$ — параметр (α также будет выбран позднее). Без потери общности мы можем предположить, что $u > 0$ в \mathbb{R}^N (иначе рассмотрим $u_\varepsilon := u + \varepsilon$ и устремим $\varepsilon \downarrow 0$). Умножая (12.3) на $u^\alpha \varphi$ и интегрируя по частям, получаем

$$
\int_{\mathbb{R}^N} u^{\alpha+\alpha} \varphi \, dx \leq \alpha \int_{\mathbb{R}^N} |Du|^p u^{\alpha-1} \varphi \, dx + \int_{\mathbb{R}^N} |Du|^{p-2}(Du, D\varphi) u^\alpha \, dx \leq
$$

$$
\leq \alpha \int_{\mathbb{R}^N} |Du|^p u^{\alpha-1} \varphi \, dx + \int_{\mathbb{R}^N} |Du|^{p-1}|D\varphi| u^\alpha \, dx
$$

и далее с помощью неравенства Юнга с параметром $\varepsilon > 0$

$$
\int_{\mathbb{R}^N} u^{\alpha+\alpha} \varphi \, dx + |\alpha| \int_{\mathbb{R}^N} |Du|^p u^{\alpha-1} \varphi \, dx \leq
$$

$$
\leq \varepsilon^p(p - 1) \int_{\mathbb{R}^N} |Du|^p u^{\alpha-1} \varphi \, dx + \frac{1}{p \varepsilon^p} \int_{\mathbb{R}^N} u^{\alpha+p-1}\left|\frac{D\varphi}{|D\varphi|}\right|^p \varphi \, dx.
$$

Теперь положим \(\theta_\varepsilon = |\alpha| - \frac{\varepsilon(p-1)}{p} > 0 \) и \(\theta'_\varepsilon = \frac{1}{\varepsilon p} \), мы получаем

\[
\int_{\mathbb{R}^N} u^{q+\alpha} \varphi \, dx + \theta_\varepsilon \int_{\mathbb{R}^N} |Du|^p u^{\alpha-1} \varphi \, dx \leq \theta'_\varepsilon \int_{\mathbb{R}^N} u^{\alpha+p-1} \frac{|D\varphi|^p}{\varphi p-1} \, dx .
\]
\((12.5) \)

Теперь оценим величину \(\int_{\mathbb{R}^N} u^q \varphi \, dx \). Для этого умножим (12.3) на \(\varphi \) и проинтегрируем по частям:

\[
\int_{\mathbb{R}^N} u^q \varphi \, dx \leq \int_{\mathbb{R}^N} |Du|^{p-2} (Du, D\varphi) \, dx \leq \int_{\mathbb{R}^N} |Du|^{p-1} |D\varphi| \, dx \leq \int_{\mathbb{R}^N} |Du|^{p-1} \frac{1}{p} |D\varphi| \, dx \leq \left(\int_{\mathbb{R}^N} |Du|^p u^{\alpha-1} \varphi \, dx \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^N} u^{(1-\alpha)(p-1)} \varphi \, dx \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^N} |D\varphi|^p \varphi^{p-1} \, dx \right)^{\frac{1}{p}} .
\]
\((12.8) \)

Выбирая \(\kappa = \frac{\alpha+q}{\alpha+p-1} \) (это возможно в силу (12.1) при малом \(\alpha < 0 \)), приходим к

\[
c_\varepsilon \int_{\mathbb{R}^N} u^{q+\alpha} \varphi \, dx + \theta_\varepsilon \int_{\mathbb{R}^N} |Du|^p u^{\alpha-1} \varphi \, dx \leq \theta'_\varepsilon \int_{\mathbb{R}^N} u^{\alpha+p-1} \frac{|D\varphi|^p}{\varphi p-1} \, dx .
\]
\((12.7) \)

Теперь оценим величину \(\int_{\mathbb{R}^N} u^q \varphi \, dx \). Для этого умножим (12.3) на \(\varphi \) и проинтегрируем по частям:

\[
\int_{\mathbb{R}^N} u^q \varphi \, dx \leq \left(\int_{\mathbb{R}^N} |Du|^p u^{\alpha-1} \varphi \, dx \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^N} u^{(1-\alpha)(p-1)} \varphi \, dx \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^N} |D\varphi|^p \varphi^{p-1} \, dx \right)^{\frac{1}{p}} .
\]
\((12.9) \)

Выбирая \(a \) из равенства \(a(1-\alpha)(p-1) = q + \alpha \) (отметим, что этот выбор также возможен в силу (12.1) при \(q > p-1 \)) и объединяя (12.9) с (12.7), имеем

\[
\int_{\mathbb{R}^N} u^q \varphi \, dx \leq \left(\int_{\mathbb{R}^N} |D\varphi|^p \varphi^{p-1} \, dx \right)^{\frac{1}{p}} \frac{1}{\varphi p} \times
\]
\[
\times \left(\frac{\theta'_\varepsilon}{c_\varepsilon} \right)^{\frac{1}{ap}} \left(\int_{\mathbb{R}^N} |D\varphi|^p \varphi^{p-1} \, dx \right)^{\frac{1}{ap}} \left(\int_{\mathbb{R}^N} |D\varphi|^p \varphi^{p-1} \, dx \right)^{\frac{1}{ap}} =
\]
\[
= C_\varepsilon \left(\int_{\mathbb{R}^N} |D\varphi|^p \varphi^{p-1} \, dx \right)^{\frac{1}{ap}} \left(\int_{\mathbb{R}^N} |D\varphi|^p \varphi^{p-1} \, dx \right)^{\frac{1}{ap}} .
\]
\((12.10) \)
где \(\overline{c_r} = \left(\frac{\theta_r}{\varepsilon_r} \right)^{\frac{N-1}{p}} \). Теперь мы можем выбрать функцию \(\varphi \) нужного вида. Пусть
\[\xi \in C_0^\infty (\mathbb{R}^N) \text{ и } \xi (x) = \xi_0 \left(\frac{|x|}{R} \right), \quad R > 0, \quad 0 \leq \xi_0 \leq 1, \]
(12.11)
где \(\xi_0 \in C^\infty (\mathbb{R}_+) \) и
\[\xi_0 (t) = \begin{cases} 1, & 0 \leq t \leq 1, \\ 0, & 2 \leq t. \end{cases} \]
Мы определим \(\varphi \) как \(\varphi := \xi^\lambda \) с достаточно большим \(\lambda \). Ясно, что при таком выборе \(\varphi \) мы с помощью замены переменных из (12.10) получаем
\[\int_{B_R} u^q (x) \, dx \leq \tilde{C} R^\sigma, \]
(12.12)
где \(\sigma = (N - p \varphi') \left(\frac{p-1}{p} + \frac{1}{ap} \right) + \left(\frac{N - p - 1}{p} \right) \). Учитывая уже выбранные значения \(\varphi' \) и \(a \), мы находим
\[\sigma = q \frac{(N - p) - N(p - 1)}{q - p + 1}. \]
(12.13)
Так как \(\sigma < 0 \), то (12.12) приводит к
\[\int_{\mathbb{R}^N} u^q (x) \, dx = 0. \]
Получили противоречие, завершающее доказательство в случае \(\sigma < 0 \).

Второй шаг. Перейдем к случаю \(q = \frac{N(p-1)}{N-p} \), т.е. \(\sigma = 0 \). При нашем выборе \(\varphi \) мы имеем
\[\int_{B_R} \varphi u^q (x) \, dx \leq \int_{S(D\varphi)} |Du|^{p-1} |D\varphi| \, dx \leq \]
\[\leq \left(\int_{S(D\varphi)} |Du|^p u^{\alpha-1} \varphi \, dx \right)^{\frac{p-1}{p}} \left(\int_{S(D\varphi)} u^{(1-\alpha)(p-1)} \varphi \, dx \right)^{\frac{1}{p}} \]
\[\leq \left(\int_{S(D\varphi)} |Du|^p u^{\alpha-1} \varphi \, dx \right)^{\frac{p-1}{p}} \left(\int_{S(D\varphi)} u^{m(1-\alpha)(p-1)} \varphi \, dx \right)^{\frac{1}{pm}} \left(\int_{S(D\varphi)} |D\varphi|^{pm'} \varphi \, dx \right)^{\frac{1}{pm'}}, \]
где \(\frac{1}{m} + \frac{1}{m'} = 1 \) и \(S(D\varphi) = \text{supp}(D\varphi) \). Выбирая \(m = \frac{q}{(1-\alpha)(p-1)} \geq 1 \) (отметим, что это возможно), мы получим (используя (12.7) и определение \(\varphi \))
\[\int_{B_R} u^q \, dx \leq C \left(\int_{S(D\varphi)} |D\varphi|^{p\varphi'} \varphi \, dx \right)^{\frac{1}{pm}} \left(\int_{S(D\varphi)} |D\varphi|^{pm'} \varphi \, dx \right)^{\frac{1}{pm'}} \left(\int_{R \leq |x| < 2R} u^q \, dx \right)^{\frac{1}{pm}}. \]
(12.14)
Теперь с помощью обычной замены переменных приходим к
\[\int_{B_R} u^q \, dx \leq C_0 R^\sigma \left(\int_{R < |x| < 2R} u^q \, dx \right)^{\frac{1}{pm}}, \]
(12.15)
Часть I. СТАЦИОНАРНЫЕ ЗАДАЧИ

где с учетом равенства $q = \frac{N(p-1)}{N-p}$ имеем

$$\tau = (N - p\alpha') \frac{p-1}{p} + \frac{N - pm'}{pm'} = 0.$$

Согласно (12.12)

$$\int_{\mathbb{R}^N} u^\theta \, dx < \infty.$$

Отсюда и из (12.15) вытекает, что существует последовательность $\{R_k\}, R_k \to \infty$, такая, что

$$\lim_{k \to \infty} \int_{B_{R_k}} u^\theta \, dx = 0.$$

Это завершает доказательство в случае (12.1).

Перейдем к случаю, когда выполнено (12.2). Предположим сначала, что $0 \leq q < p - 1$. Из (12.5) следует, что

$$\int_{\mathbb{R}^N} u^{q+\alpha} \varphi \, dx \leq C \left(\int_{\mathbb{R}^N} u^{(\alpha+p-1)\varphi} \right)^{\frac{1}{\alpha'}} \left(\int_{\mathbb{R}^N} |D\varphi|^{p\varphi'} \right)^{\frac{1}{p\varphi'}},$$

где $\frac{1}{\varphi} + \frac{1}{\varphi'} = 1$. Выбирая $\alpha = q(N-p) - N(p-1) < 0$ (заметим, что в этом случае $\alpha < 1 - p < -q$ в силу выбора α) и

$$\alpha = \frac{q + \alpha}{\alpha + p - 1} (> 1),$$

мы получаем

$$\int_{\mathbb{R}^N} u^{q+\alpha} \varphi \, dx \leq C \int_{\mathbb{R}^N} |D\varphi|^{p\varphi'} \, dx.$$

(12.16)

С помощью тех же рассуждений, что и в случае (12.1), приходим к

$$\int_{B_R} u^{q+\alpha} \, dx \leq CR^{N-p\alpha'},$$

причем

$$N - p\alpha' = \frac{N(q - p + 1) - pq - p\alpha}{q - p + 1} < 0.$$

Это завершает доказательство, если в (12.2) выполнено строгое неравенство. Рассмотрим теперь случай $q = p - 1$. Из (12.5) при $\alpha = 1 - p$ имеем

$$\int_{\mathbb{R}^N} \varphi \, dx \leq \tilde{C} \int_{\mathbb{R}^N} |D\varphi|^p \varphi^{-1} \, dx.$$

Следовательно,

$$R^N \leq CR^{N-p},$$

что легко приводит к противоречию. Теорема доказана.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

Результат теоремы 12.1 точен. Действительно, предположим, что третье неравенство в условии (12.1) теоремы 12.1 не выполнено, т.е.

\[q > \frac{N(p - 1)}{N - p}, \quad N > p. \]

Тогда легко проверить, что функция

\[u(x) := \frac{\varepsilon}{(1 + |x|^{p-1})^{\frac{p-1}{q-p+1}}}, \quad x \in \mathbb{R}^N, \]

является положительным решением (12.3) при условии, что \(\varepsilon \) удовлетворяют неравенствам

\[0 < \varepsilon < \left(\frac{p}{q-p+1} \right)^{\frac{p-1}{q-p+1}} \left(\frac{q(N-p) - N(p-1)}{q-p+1} \right)^{\frac{1}{q-p+1}}. \]

Рассмотрим теперь некоторые обобщения теоремы 12.1. Пусть \(A : \mathbb{R}^+ \to \mathbb{R}^+ \) — заданная функция и существуют \(c_1, c_2 > 0, \ p > 1 \) такие, что для любого \(t \geq 0 \) мы имеем

\[c_1 t^{p-1} \leq A(t) t \leq c_2 t^{p-1}. \] \[(12.18) \]

Следующий результат может быть получен путем небольшой модификации доказательства теоремы 12.1.

Теорема 12.2. Пусть \(p > 1 \) и \(A \) удовлетворяет условию (12.18). Если

\[p - 1 < q \leq \frac{N(p - 1)}{N - p}, \quad N > p, \] \[(12.19) \]

или

\[0 < q \leq p - 1, \quad N \geq 1, \] \[(12.20) \]

tо задача

\[\begin{cases} -\text{div}(A(|Du|) Du) \geq u^q, & x \in \mathbb{R}^N, \\ u \geq 0, u \not\equiv 0, & x \in \mathbb{R}^N, \end{cases} \] \[(12.21) \]

не имеет решения в классе \(W^{1,p}_\text{loc}(\mathbb{R}^N) \). \(\square \)

Замечание 12.1. Если функция \(A \) зависит от трех переменных \((x, s, t)\) и для всех \((x, s, t) \in \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}^N\) выполнено

\[c_1 |t|^{p-2} \leq A(x, s, t) \leq c_2 |t|^{p-2}, \] \[(12.22) \]

gде \(c_1, c_2 > 0 \) и \(p > 1 \), то легко понять, что соответствующая задача

\[-\text{div}(A(x, u, Du) Du) \geq u^q, \quad x \in \mathbb{R}^N, \] \[(12.23) \]

не имеет решения \(u \geq 0, u \not\equiv 0 \) в \(\mathbb{R}^N \) в классе \(W^{1,p}_\text{loc}(\mathbb{R}^N) \) при выполнении условия (12.19) или (12.20) теоремы 12.2.

Другой важный класс операторов, которые представляют интерес для изучения, составляют так называемые операторы типа средней кривизны.

Определение 12.1. Пусть \(A : \mathbb{R}^+ \to \mathbb{R}^+ \) — непрерывная функция. Предположим, что существует \(C > 0 \) такое, что для любого \(t \geq 0 \)

\[0 < A(t) \leq C. \] \[(12.24) \]
Часть I. СТАЦИОНАРНЫЕ ЗАДАЧИ

Тогда оператор T, определяемый по формуле

$$T(u) = \text{div}(A(|Du|)Du), \quad u \in W^{1,2}_{\text{loc}},$$

(12.25)

называется оператором типа средней кривизны, соответствующим функции A.

Приведем два важных примера (другие можно найти в [145, 146]):

$$A(t) = \frac{1}{\sqrt{1+t^2}} \quad \text{оператор средней кривизны},$$

(12.26)

$$A(t) = \frac{1}{(1+|t|^k)^s}, \quad k, s > 0 \quad \text{обобщенный оператор средней кривизны}.$$ (12.27)

Следующий результат также можно получить, слегка видоизменив доказательство теоремы 12.1.

Теорема 12.3. Пусть A — функция, порождающая оператор типа средней кривизны (см. определение 12.1). Если

$$1 < q \leq \frac{N}{N-2}, \quad N > 2,$$

или

$$0 < q \leq 1, \quad N \geq 1,$$

tо задача

$$\begin{cases}
- \text{div}(A(|Du|)Du) \geq u^q, \quad x \in \mathbb{R}^N, \\
u \geq 0, \quad u \not\equiv 0, \quad x \in \mathbb{R}^N,
\end{cases}$$

(12.28)

не имеет решения в классе $W^{1,2}_{\text{loc}}(\mathbb{R}^N)$. Более того, если $A(t) = \frac{1}{\sqrt{1+t^2}}, \quad N > 2$ и $q > \frac{N}{N-2}$, то функция

$$u(x) := \frac{\varepsilon}{(1+|x|^2)^{\frac{q-1}{2}}}$$

является решением класса $C^2(\mathbb{R}^N)$ задачи (12.28) при условии, что $\varepsilon > 0$ достаточно мало. □

Имеются и другие возможные способы обобщения теоремы 12.3. Характерная ситуация появляется при замене правой части неравенства (12.23) на

$$f(x, u) = a(x)u^q, \quad x \in \mathbb{R}^N,$$

где $a \geq 0$ — функция такая, что

$$a(x) \geq C_0|x|^{\gamma} \quad \forall x : \quad |x| \geq R_0 \geq 0, \quad \gamma \in \mathbb{R}.$$ (12.29)

Следующая теорема может быть без труда доказана повторением доказательства теоремы 12.1.

Теорема 12.4. Пусть $N > p > 1$. Кроме того, предположим, что A и a удовлетворяют условиям (12.22) и (12.29) соответственно. Если

$$p - 1 < q \leq \frac{(N+\gamma)(p-1)}{N-p},$$

(12.30)

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

\[\begin{aligned} & \text{минимизация} \\
& \begin{aligned} & -\text{div}(A(x, u, Du)Du) \geq a(x)u^q, \quad x \in \mathbb{R}^N, \\
& u \geq 0, \quad u \neq 0, \quad x \in \mathbb{R}^N, \end{aligned} \\
\end{aligned} \] (12.31)

не имеет решения в классе \(W^{1,p}_{\text{loc}}(\mathbb{R}^N) \). □

Замечание 12.2. Заинтересованный читатель может сформулировать результаты, аналогичные теореме 12.4, в случае, когда \(A \) порождает оператор типа средней кривизны (см. также [140, 222]). Другие возможные обобщения предыдущей теоремы могут быть получены для функций \(A \), явно зависящих от своих аргументов. Простым примером в этом направлении является

\[A(x, u, Du) := \frac{|x|}{\alpha^1} |u|^q |Du|^{p-2}. \] (12.32)

В этом случае теорема несуществования для задачи

\[\begin{aligned} & -\text{div}(A(x, u, Du)Du) \geq a(x)u^q, \quad x \in \mathbb{R}^N, \\
& u \geq 0, \quad u \neq 0, \quad x \in \mathbb{R}^N, \end{aligned} \] (12.33)

формулируется в терминах алгебраического условия на \(N, \alpha, q, p, \gamma \) и \(q \). Получение точной формулировки теоремы отсутствия для (12.33) мы оставляем заинтересованному читателю.

13. ОБЩИЙ СЛУЧАЙ КВАЗИЛИНЕЙНЫХ НЕРАВЕНСТВ

В этом разделе мы рассмотрим проблему отсутствия решений для общего класса квазилинейных неравенств (см. также [231]).

Сначала мы сформулируем некоторые предположения. Через \(\mathbb{R}_+ \) будем обозначать множество неотрицательных действительных чисел.

(i) Пусть \(N > 1 \) и \(A_i : \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}^N \rightarrow \mathbb{R}_+ \), \(i = 1, \ldots, N \), — картеодориевые функции.

(ii) Пусть \(f : \mathbb{R}^N \times \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) — картеодориева функция.

(iii) Пусть \(\gamma > 2 \) и \(\gamma \geq N \). Предположим, что существуют \(\alpha < 0 \) (вообще говоря, достаточно малое) и \(C_\alpha > 0 \) такие, что для любого \((x, u, \xi) \in \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}^N \) имеем

\[C_\alpha u^{\gamma-1} \frac{A_\gamma}{A_0} (x, u, \xi) \leq A(x, u, \xi) + uf(x, u, \xi), \] (13.1)

где \(A_0 \) и \(A \) определены равенствами

\[A_0(x, u, \xi) := \sum_{i=1}^N A_i(x, u, \xi), \] (13.2)

\[A(x, u, \xi) := \sum_{i=1}^N A_i(x, u, \xi) \xi_i. \] (13.3)

Перед формулировкой нашего основного результата определим функциональный класс, в котором мы будем работать. Этот функциональный класс зависит от параметра \(\alpha \) (см. (iii)) и \(A \):

\[X_\alpha^A = \left\{ u : \mathbb{R}^N \rightarrow \mathbb{R}, \quad A(x, u, Du)u^{\alpha - 1} \in L^1_{\text{loc}}(\mathbb{R}^N) \right\}, \]

причём \(D_i u \) понимаются как распределения;

\[X_\alpha^f = \left\{ u \in X_\alpha^A : f(x, u, Du)u^\alpha \in L^1_{\text{loc}}(\mathbb{R}^N) \right\}. \]
Теорема 13.1. Пусть выполнены предположения (i)–(iii), и пусть, кроме того, для всех $(x, u, \xi) \in \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}^N$

\[A(x, u, \xi) + uf(x, u, \xi) = 0 \Rightarrow u \equiv 0. \quad (13.4) \]

Тогда задача

\[\begin{cases} - \sum_{i=1}^{N} D_i (A_i(x, u, Du) D_i u) \geq f(x, u, Du), & x \in \mathbb{R}^N, \\ u \geq 0, & x \in \mathbb{R}^N, \end{cases} \quad (13.5) \]
не имеет решения в классе X_α^1.

Доказательство. Как и в предыдущем разделе, мы предположим, что возможное решение задачи (13.5) положительно. Выбирая по аналогии $\varphi \in C^2_0(\mathbb{R}^N)$ и умножая (13.5) на $u^\alpha \varphi$ с $\alpha < 0$, получаем

\[\int_{\mathbb{R}^N} f(x, u, Du)u^\alpha \varphi \, dx + |\alpha| \int_{\mathbb{R}^N} \sum_{i=1}^{N} A_i(x, u, Du)|D_i u|^2 u^{\alpha-1} \varphi \, dx \leq \int_{\mathbb{R}^N} \sum_{i=1}^{N} A_i(x, u, Du)D_i u D_i \varphi u^\alpha \, dx \]

и далее

\[\int_{\mathbb{R}^N} f(x, u, Du)u^\alpha \varphi \, dx + \frac{|\alpha|}{2} \int_{\mathbb{R}^N} A(x, u, Du)u^{\alpha-1} \varphi \, dx \leq \frac{1}{2|\alpha|} \int_{\mathbb{R}^N} A_0(x, u, Du) \frac{|D\varphi|^2}{\varphi} u^{\alpha+1} \, dx. \quad (13.6) \]

С помощью неравенства Юнга мы можем оценить интеграл в правой части (13.6) следующим образом:

\[\int_{\mathbb{R}^N} A_0(x, u, Du)u^{\alpha+1} \frac{|D\varphi|^2}{\varphi} \, dx \leq \frac{1}{\gamma} \int_{\mathbb{R}^N} C_1 \left(A_0(x, u, Du) \frac{|D\varphi|^2}{\varphi} u^{\alpha+1} \right) \, dx + \frac{2}{\gamma} \int_{\mathbb{R}^N} C_1 \frac{2\varphi}{\varphi^{\gamma-1}} \, dx, \quad (13.7) \]

где $C_1 > 0$ — произвольная константа. Теперь в соответствии с предположением (13.1)

\[\left(A_0(x, u, Du)u^{\alpha+1} \right)^{\frac{2}{\gamma-2}} u^{1-\alpha} \leq \frac{1}{C_\alpha} \left(A(x, u, Du) + uf(x, u, Du) \right), \quad (13.8) \]
откуда

\[\left(A_0(x, u, Du)u^{\alpha+1} \right)^{\frac{2}{\gamma-2}} \leq \frac{1}{C_\alpha} \left(A(x, u, Du)u^{\alpha-1} + f(x, u, Du)u^\alpha \right), \]

и таким образом из (13.7) мы имеем

\[\int_{\mathbb{R}^N} A_0(x, u, Du)u^{\alpha+1} \frac{|D\varphi|^2}{\varphi} \, dx \leq \frac{C_1^{2-\gamma}}{C_\alpha} \int_{\mathbb{R}^N} \left(A(x, u, Du)u^{\alpha-1} + f(x, u, Du)u^\alpha \right) \varphi \, dx + \frac{2C_1^{2-\gamma}}{\gamma} \int_{\mathbb{R}^N} \frac{|D\varphi|^2}{\varphi^{\gamma-1}} \, dx. \quad (13.9) \]
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

Теперь мы выберем $C_1 > 0$, а именно

$$C_1 = \frac{\gamma}{4(\gamma - 2)} C_\alpha |\alpha|^2.$$

При таком выборе C_1 из (13.6) вытекает

$$\frac{|\alpha|}{4} \int_{\mathbb{R}^N} \left(A(x, u, Du) + uf(x, u, Du) \right) u^{\alpha - 1} \varphi \, dx \leq \frac{2}{\gamma} C_1^{\frac{2-\gamma}{\gamma}} \int_{\mathbb{R}^N} \frac{|D\varphi|^\gamma}{|\varphi|^{\gamma - 1}} \, dx. \tag{13.10}$$

Рассуждая так же, как и в предыдущем разделе, из (13.9) получаем

$$\int_{B_R} \left(A(x, u, Du) + uf(x, u, Du) \right) u^{\alpha - 1} \, dx \leq C\gamma R^{\gamma - \gamma}, \tag{13.11}$$

где $C\gamma > 0$ не зависит от R. Если $N < \gamma$, то последнее неравенство дает

$$\int_{\mathbb{R}^N} \left(A(x, u, Du) + uf(x, u, Du) \right) u^{\alpha - 1} \, dx = 0$$

и тогда из (13.4) мы заключаем, что $u \equiv 0$. Это завершает доказательство в случае $N < \gamma$.

Если $N = \gamma$, то из (13.11) имеем

$$\int_{B_R} \left(A(x, u, Du) + uf(x, u, Du) \right) u^{\alpha - 1} \, dx \leq C\gamma$$

и из (13.9)

$$\int_{R < |x| < 2R} A_0(x, u, Du) u^{\alpha + 1} \frac{|D\varphi|^2}{\varphi} \, dx \leq C_2 \tag{13.13}$$

равномерно по $R > 0$. Отсюда легко получаем

$$\lim_{R \to \infty} \int_{R < |x|} A_0(x, u, Du) u^{\alpha + 1} \frac{|D\varphi|^2}{\varphi} \, dx = 0.$$

За счет нашего выбора функции φ имеем

$$\int_{B_{2R}} A_0(x, u, Du) u^{\alpha + 1} \frac{|D\varphi|^2}{\varphi} \, dx = \int_{R < |x| < 2R} A_0(x, u, Du) u^{\alpha + 1} \frac{|D\varphi|^2}{\varphi} \, dx \to 0$$

при $R \to \infty$. Используя (13.6), приходим к

$$\lim_{R \to \infty} \int_{B_R} \left(A(x, u, Du) u^{\alpha - 1} + f(x, u, Du) u^\alpha \right) \, dx = 0.$$

Из (13.4) заключаем, что $u \equiv 0$ в \mathbb{R}^N. Теорема доказана. \square
14. КОЭРЦИТИВНЫЕ ЗАДАЧИ

В этом разделе мы рассмотрим некоторые приложения метода к коэрцитивным задачам. Приведем сначала простой пример коэрцитивной задачи, изучавшейся в литературе (см., например, [208, 203] и ссылки там):

\[
\begin{cases}
\Delta u = a(x)u^q, & x \in \mathbb{R}^N, \\
u \geq 0, \ u \neq 0, & x \in \mathbb{R}^N,
\end{cases}
\tag{14.1}
\]

в классе \(C^2(\mathbb{R}^N) \), где \(q > 1, N \geq 3 \) и \(a: \mathbb{R}^N \to \mathbb{R}_+ \) — неотрицательная непрерывная функция, удовлетворяющая неравенству

\[
a(x) \geq c_0 |x|^{-\gamma} \quad \forall x : |x| \geq R_0 > 0, \quad c_0 > 0, \quad \gamma \in \mathbb{R}.
\tag{14.2}
\]

Известно, что (14.1) не имеет решений, если \(\gamma \leq 2 \) (некоторые обобщения этого результата, ослабляющие условие (14.2), можно найти, например, в [20, 181]; см. также библиографию там). Доказательство результатов такого характера использует инвариантность оператора \(\Delta \) по отношению к "оператору сферического усреднения" [20, 181]. По-видимому, этот метод нельзя использовать для исследования квазилинейного варианта задачи (14.1). Существуют другие методы для доказательства теорем несуществования для коэрцитивных квазилинейных задач, но, насколько авторам известно, все эти методы основаны на принципе максимума (см. [200, 199, 181, 203, 204, 116, 117, 205, 206]), что исключает возможность получения результатов об отсутствии решения для задач, в которых несправедлив принцип максимума или принцип сравнения. В этом разделе мы докажем некоторые теоремы отсутствия для квазилинейных неравенств вида (14.1).

Пусть \(\alpha > 0 \) достаточно большое, \(p > 1, q > 0 \) и \(a: \mathbb{R}^N \to \mathbb{R}_+ \). Определим \(S \) как

\[
S := W^{1,p}_{a,\text{loc}}(\mathbb{R}^N) = \left\{ u: \mathbb{R}^N \to \mathbb{R}, \; a(x)u^{q+\alpha}, |Du|^p u^{\alpha-1} \in L^1_{\text{loc}}(\mathbb{R}^N) \right\},
\]

причем \(D_i u, \ i = 1, \ldots, N, \) понимаются в смысле распределений.

Сформулируем основной результат раздела.

Теорема 14.1. Пусть \(N > p > 1 \) и \(q > p - 1 \). Предположим, что \(A: \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}^N \to \mathbb{R}_+ \) является карательной функцией, удовлетворяющей условию (12.22); \(a: \mathbb{R}^N \to \mathbb{R}_+ \) удовлетворяет неравенству

\[
a(x) \geq c_0 |x|^{-\gamma} \quad \forall x \in \mathbb{R}^N \setminus \{0\},
\tag{14.3}
\]

где \(c_0 > 0 \) и \(\gamma < p \).

Тогда задача

\[
\begin{cases}
\text{div} \ (A(x, u, Du)Du) \geq a(x)u^q, & x \in \mathbb{R}^N, \\
u \geq 0, \ u \neq 0, & x \in \mathbb{R}^N,
\end{cases}
\tag{14.4}
\]

не имеет решения в классе \(W^{1,p}_{a,\text{loc}}(\mathbb{R}^N) \).

Замечание 14.1. Легко проверить (см. доказательство теоремы 14.1 ниже), что утверждение теоремы 14.1 сохраняется, если вместо (14.3) мы предположим следующее: существует \(R_0 > 0 \) такое, что для любого \(|x| \geq R_0 \) верно

\[
a(x) \geq c_0 |x|^{-\gamma},
\tag{14.5}
\]

где \(c_0 > 0 \) и \(\gamma < p \).

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Доказательство теоремы 14.1. Мы будем строго следовать идеи доказательства теоремы 12.1. Пусть \(\alpha > 0 \) и \(u \) — положительное решение (14.4). Определим \(\varphi \) как стандартную неотрицательную срезающую функцию и умножим (14.4) на \(u^\alpha \varphi \). Интегрируя по частям, мы получим

\[
\int_{\mathbb{R}^N} a(x)u^{\alpha+q}\varphi \, dx \leq -\alpha \int_{\mathbb{R}^N} A(x, u, Du)|Du|^2u^{\alpha-1}\varphi \, dx - \int_{\mathbb{R}^N} A(x, u, Du)u^\alpha(Du, D\varphi) \, dx.
\]

Отсюда с учетом (12.22) находим

\[
\int_{\mathbb{R}^N} a(x)u^{q+\alpha}\varphi \, dx + \alpha c_1 \int_{\mathbb{R}^N} |Du|^p u^{\alpha-1}\varphi \, dx \leq c_2 \int_{\mathbb{R}^N} |Du|^{p-1}u^\alpha|D\varphi| \, dx. \tag{14.6}
\]

Используя в (14.6) неравенство Юнга с подходящим \(\varepsilon > 0 \), получаем (для некоторого \(C_\varepsilon > 0 \))

\[
\int_{\mathbb{R}^N} a(x)u^{q+\alpha}\varphi \, dx \leq C_\varepsilon \int_{\mathbb{R}^N} u^{\alpha+p-1}|D\varphi|^{p}_{p-1} \, dx
\]

и далее

\[
\int_{\mathbb{R}^N} a(x)u^{q+\alpha}\varphi \, dx \leq C_\varepsilon \int_{\mathbb{R}^N} u^{\alpha+p-1}a(x)^{\frac{1}{p}}|D\varphi|^{p}_{p-1}a(x)^{-\frac{1}{p}} \, dx, \tag{14.7}
\]

где \(y > 1 \) будет выбрано позднее. Далее, из (14.7) следует, что

\[
\int_{\mathbb{R}^N} a(x)u^{q+\alpha}\varphi \, dx \leq C_\varepsilon \left(\int_{\mathbb{R}^N} u^{(\alpha+p-1)y}\varphi a(x) \, dx \right)^{1/y} \left(\int_{\mathbb{R}^N} |D\varphi|^{py}_{py-1}a(x)^{-\frac{y'}{y}} \, dx \right)^{1/y'} \tag{14.8}
\]

при \(\frac{1}{y} + \frac{1}{y'} = 1 \). Теперь выберем \(y \) из условия

\[
q + \alpha = (\alpha + p - 1)y,
\]

т.е. \(y = \frac{q+\alpha}{\alpha+p-1} \). Отметим, что \(y > 1 \), так как по условию теоремы \(q > p - 1 \). Используя (14.3), из (14.8) получим

\[
\int_{\mathbb{R}^N} a(x)u^{q+\alpha}\varphi \, dx \leq C_\varepsilon \int_{\mathbb{R}^N} |D\varphi|^{py}_{py-1}|x|^{-\frac{y'}{y}} \, dx. \tag{14.9}
\]

Действуя далее обычным способом, мы окончательно получаем

\[
\int_{\mathbb{B}_R} a(x)u^{q+\alpha} \, dx \leq kR^\sigma, \tag{14.10}
\]

где \(\sigma = N - \frac{\mu(q+\alpha)}{q-p+1} + \gamma \left(\frac{\alpha+p-1}{q-p+1} \right) \). Если мы выберем \(\alpha \) достаточно большим, то из предположения \(\gamma < p \) будет следовать \(\sigma < 0 \) и из (14.10)

\[
\int_{\mathbb{R}^N} a(x)u^{q+\alpha} \, dx = 0.
\]

Это противоречит нашим предположениям об \(u \) и \(a \). Доказательство закончено. \(\square \)

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Замечание 14.2. У нас есть гипотеза, что утверждение теоремы 14.1 верно и в случае \(\gamma = p \).

В качестве простого приложения теоремы 14.1 получаем

Следствие 14.1. Пусть \(N > p > 1 \) и \(q > p - 1 \). Если \(\gamma < p \), то задача

\[
\begin{align*}
\text{div}(|Du|^p - 2Du) & \geq |x|^{\gamma} u^q, \\
u & \geq 0, u \neq 0,
\end{align*}
\]

не имеет решения в классе \(W_{\alpha, \text{loc}}^{1,p}(\mathbb{R}^N) \).

Конечно, есть несколько путей для обобщения теоремы 14.1. Мы рассматриваем здесь только один результат, оставляя заинтересованному читателю исследование более общей ситуации. Этот результат (относящийся к операторам типа средней кривизны) может быть получен повторением доказательства теоремы 14.1.

Теорема 14.2. Пусть \(N \geq 3 \), \(A(\cdot) \) — функция, удовлетворяющая предположениям определения 12.1. Предположим, что \(a : \mathbb{R}^N \to \mathbb{R}^+ \) — непрерывная неотрицательная функция и существуют \(\gamma < 2 \) и \(R_0 > 0 \) такие, что

\[
a(x) \geq c_0 |x|^{-\gamma} \quad \forall x : |x| \geq R_0.
\]

Тогда задача

\[
\begin{align*}
\text{div}(A(|Du|)Du) & \geq a(x) u^q, \\
u & \geq 0, u \neq 0,
\end{align*}
\]

не имеет решения в классе \(W_{\alpha, \text{loc}}^{1,2}(\mathbb{R}^N) \). \(\square \)

Замечание 14.3. Было бы интересно узнать, справедлива ли теорема 14.2 в случае \(\gamma = 2 \).

15. ЗАДАЧИ С ПРАВОЙ ЧАСТЬЮ, ЗАВИСЯЩЕЙ ОТ ГРАДИЕНТА РЕШЕНИЯ

В этом разделе на простых модельных задачах мы покажем, как наш метод может быть приложен к задачам с “градиентной зависимостью” в правой части. Подобные вопросы рассматривались, например, в [42].

Пусть \(p > 1 \), \(q_1 > 0 \) и \(q_2 \geq 0 \). Определим класс \(S \) как

\[
S := W_{\text{loc}}^{1,p}(\mathbb{R}^N) = \left\{ u : \mathbb{R}^N \to \mathbb{R}, u^{q_1}, |Du|^p \in L_{\text{loc}}^{1}(\mathbb{R}^N) \right\},
\]

причем \(D_i u, i = 1, \ldots, N, \) понимаются в смысле распределений.

Сформулируем основной результат раздела.

Теорема 15.1. Пусть \(N > p > 1, f : \mathbb{R}^+ \times \mathbb{R}^N \to \mathbb{R}^+ \) — картеодориева функция такая, что для любых \((t, s) \in \mathbb{R}^+ \times \mathbb{R}^N \)

\[
f(t, s) \geq K_0 t^{q_1} |s|^{q_2},
\]

где \(q_1 > 0, q_2 \geq 0, q_1 + q_2 > p - 1 \) и \(K_0 > 0 \). Если

\[
q_1 + \frac{N - 1}{N - p} q_2 < \frac{N(p - 1)}{N - p},
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
заменим дифференциальный оператор \(\phi \)

Положим

использованиенеравенстваЮнгасконечно

(15.1)

Используемпредположение

ISTRY МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ.

для каждого изменения

удовлетворяет условию

Умножая

; отличное от константы

С помощью неравенстваЮнга с показателями \(p \) и \(\alpha \) и параметром \(\varepsilon > 0 \) мы получаем

Кроме констант

и

единственное решение в классе \(W^{1,p}_{\text{loc}}(\mathbb{R}^N) \), кроме констант.

Доказательство проводится так же, как и доказательство теоремы 12.1, но с некоторыми изменениями. Как будет видно (из доказательства), результат сохраняется, если мы заменим дифференциальный оператор \(\Delta_p \) в (15.3) на более общий \(\text{div}(A(x,u,Du)Du) \), где \(A \) удовлетворяет условию (12.22).

Пусть \(\phi \in C^1_0(\mathbb{R}^N) \) — стандартная неотрицательная срезающая функция и \(\alpha < 0 \) мало. Умножая (15.3) на \(u^\alpha \phi \) (здесь мы без ограничения общности полагаем, что \(u > 0 \) — решение, отличное от константы; если же \(u \geq 0 \), то можно в качестве множителя взять \((u + \varepsilon)^\alpha \), \(\varepsilon > 0 \), и затем после получения оценки перейти к пределу по \(\varepsilon \to 0 \) и интегрируя возникающее неравенство по носителю функции \(\phi \), получаем

Используем предположение (15.1) в (15.4):

Положим \(\kappa := \frac{pq_1 + \alpha(p - q_2) + q_2}{q_1(p - 1) + \alpha(p - 1 - q_2)} \). Легко понять, что при \(\alpha > 1 - p \) будем иметь

и \(\kappa > \frac{p}{p - 1} > 1 \). Перепишем (15.5) следующим образом:

С помощью неравенства Юнга с показателями \(\kappa \) и \(\kappa' \) и параметром \(\varepsilon > 0 \) мы получаем

Теперь для \(\kappa' = \frac{pq_1 + \alpha(p - q_2) + q_2}{q_1 + q_2 + \alpha} \) легко проверить равенство \(1 = \frac{1}{\kappa} + \frac{1}{\kappa'} \), т.е. предыдущее использование неравенства Юнга законно.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть I. СТАЦИОНАРНЫЕ ЗАДАЧИ

Далее применим неравенство Гельдера к правой части (15.7):

\[\int_{\mathbb{R}^N} u^{q_1 + \alpha} |Du|^{q_2} \varphi \, dx \leq \left(\int_{\mathbb{R}^N} \frac{u^{\frac{\alpha + 1}{\alpha} \gamma} |Du|^{\frac{\gamma (q - 1)}{\alpha} \gamma} \varphi \, dx \right)^\frac{1}{\gamma} \left(\int_{\mathbb{R}^N} \frac{|D\varphi|^{\frac{q_2}{\gamma}}}{|\varphi|^{\frac{q_1}{\gamma} - 1}} \, dx \right)^\frac{1}{q}, \]

где \(\frac{1}{y} + \frac{1}{y'} = 1 \). Выберем \(y \) из условий

\[\begin{cases}
q_2 = \frac{\gamma'}{\gamma} [\gamma (p - 1) - p] y, \\
q_1 + \alpha = \frac{\gamma'}{\gamma} [\alpha \gamma + 1 - \alpha] y.
\]

Отметим, что система (15.9) совместна и \(y > 1 \). Как следствие из (15.8) получаем

\[\int_{\mathbb{R}^N} u^{q_1 + \alpha} |Du|^{q_2} \varphi \, dx \leq C \int_{\mathbb{R}^N} \frac{|D\varphi|^{\frac{q_2}{\gamma}}}{|\varphi|^{\frac{q_1}{\gamma} - 1}} \, dx \]

и с помощью обычных выкладок

\[\int_{B_R} u^{q_1 + \alpha} |Du|^{q_2} \, dx \leq CR^\sigma, \]

где \(\sigma = N - \gamma' y' \).

Используя явные значения \(\gamma \) и \(y \) и равенства \(\frac{1}{\gamma} + \frac{1}{\gamma'} = 1, \frac{1}{y} + \frac{1}{y'} = 1 \), имеем

\[\sigma < 0 \iff q_1 + \frac{N - 1}{N - p} q_2 < \frac{N(p - 1)}{N - p} \]

при достаточно малых \(\alpha < 0 \).

Таким образом, если в (15.2) выполнено строгое неравенство, то из (15.10) вытекает

\[\int_{\mathbb{R}^N} u^{q_1 + \alpha} |Du|^{q_2} \, dx = 0, \]

что является явным противоречием. \(\square \)

Объединение предыдущей теоремы и теоремы 12.1 дает следующий результат.

Теорема 15.2. Пусть \(N > p > 1 \). Если \(p - 1 < p_1, q_1 \) и

\[p_1 < \frac{N(p - 1)}{N - p} \quad \text{и} \quad q_1 < \frac{N(p - 1)}{N - 1}, \]

то задача

\[\begin{cases}
- \text{div} (|Du|^{p-2} Du) \geq u^{p_1} + |Du|^{q_1}, & x \in \mathbb{R}^N, \\
u \geq 0, & u \neq 0,
\end{cases} \]

не имеет решения в классе \(W^{1,p}_{\text{loc}}(\mathbb{R}^N) \). \(\square \)

Замечание 15.1. Если в теоремах 15.1 и 15.2 рассмотреть более узкий класс, а именно пересечение классов, в которых конечны все входящие в наши выкладки интегралы (с \(\alpha = 0 \),

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

73
tо в условиях отсутствия решения можно считать допустимым и критический случай (т.е.
знак равенства).

Эти результаты могут быть обобщены в нескольких направлениях в соответствии со
схемами, разработанными в предыдущих разделах. В частности, можно доказать векторно-
значные аналоги теорем 15.1 и 15.2 для систем с дифференциальными операторами другого
вида и более чем с двумя неизвестными.

16. ОБОБЩЕНИЯ ТЕОРЕМЫ БЕРНШТЕЙНА

Известно, что если \(u \in C^2(\mathbb{R}^2) \) — решение уравнения минимальной поверхности

\[
\left(1 + \left(\frac{\partial u}{\partial y} \right)^2 \right) \frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial^2 u}{\partial x \partial y} + \left(1 + \left(\frac{\partial u}{\partial x} \right)^2 \right) \frac{\partial^2 u}{\partial y^2} = 0, \quad (x, y) \in \mathbb{R}^2, \tag{16.1}
\]

то \(u(x, y) = ax + by + c \), где \(a, b, c \in \mathbb{R} \). Это утверждение известно как теорема Бернштейна [23].
В работе [96] приведены простое доказательство и обобщения на произвольные размерности.
Очевидно, имеется тесная связь между теоремой Бернштейна и классической теоремой Лиу-
виля, однако в последней требуется ограниченность функции \(u \) [152].

Исследуется естественный вопрос: предположим, что \(u \in C^2(\mathbb{R}^2) \) — решение дифференци-
алльного неравенства

\[
- \text{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) \geq 0, \quad x \in \mathbb{R}^2 \tag{16.2}
\]

(здесь в левой части содержится оператор минимальной поверхности в непараметрической
форме). Какие утверждения можно высказать тогда о функции \(u(x) \)?

Что касается радикальных решений задачи (16.2), легко видеть, что конкретные результаты
можно получить только в случае, если \(u \) ограничена снизу. Действительно, в этом случае если
\(u(x, y) = u(\sqrt{x^2 + y^2}) \geq C \) для всех \((x, y) \in \mathbb{R}^2 \), то \(u(x, y) \equiv \text{const} \) для всех \((x, y) \in \mathbb{R}^2 \).
Это утверждение аналогично тому факту, что любая супергармоническая функция, ограниченная
снизу на \(\mathbb{R}^2 \), должна быть постоянной. Хорошо известно, что это свойство является следствием
неравенства Гриника (см. [152, 190]).

С помощью предлагаемого нами метода мы доказываем утверждения вида "если \(u \in C^1
— решение дифференциального неравенства и оно ограничено снизу, то \(u = \text{const} \)" (см. ниже
точные формулировки).

Сформулируем и докажем основной результат раздела. Начнем с введения класса диффе-
ренциальных операторов, которые мы будем изучать.

Определение 16.1. Функция

\[A : \mathbb{R}^N \to \mathbb{R}^N, \]

определяемая формулой

\[A_i(w) = A(|w|)w_i, \quad w \in \mathbb{R}^N, \quad i = 1, \ldots, N, \]

где \(A \in C([0, \infty); \mathbb{R}) \), порождает оператор типа средней кривизны, если существует постоянная
\(C > 0 \) такая, что

\[0 < A(|w|) \leq C \quad \text{для всех } w \in \mathbb{R}^N. \tag{16.3} \]
Если \(u \in C^2(\mathbb{R}^N; \mathbb{R}) \), то дифференциальный оператор, порождаемый \(A \), определяется формулой
\[
\text{div}(A(|Du|)Du).
\]

Замечание 16.1. Оператор средней кривизны в (16.3) соответствует функции \(A \), определенной формулой
\[
A_i(w) = A(|w|)w_i, \quad A(|w|) = \frac{1}{\sqrt{1 + |w|^2}}, \quad w \in \mathbb{R}^N,
\]
где \(| \cdot |\) обозначает конечномерную норму.

Главный результат раздела следующий.

Теорема 16.1. Пусть \(u \in C^1(\mathbb{R}^N), N = 1, 2, \) — слабое решение задачи
\[
- \text{div}(A(|Du|)Du) \geq 0, \quad x \in \mathbb{R}^N, \tag{16.4}
\]
ограниченное снизу. Тогда \(u(x) \) есть константа на всем \(\mathbb{R}^N, \ N = 1, 2. \)

Замечание 16.2. В этой теореме под слабым решением задачи (16.4) \(u \in C^1(\mathbb{R}^N) \) мы понимаем, что (16.4) удовлетворяется в слабом смысле. Это означает, что \(u \) — слабое решение (16.4), если для любой неотрицательной \(\varphi \in C^1_0(\mathbb{R}^N) \) выполнено неравенство
\[
0 \leq \int_{\mathbb{R}^N} A(|Du|)(Du, D\varphi) \, dx. \tag{16.5}
\]

Доказательство. Очевидно, \(u \) — слабое решение задачи (16.4) и \(u(x) \geq 1 \) для всех \(x \in \mathbb{R}^N. \) Пусть \(\psi \in C^1_0(\mathbb{R}^N) \) — неотрицательная функция, и положим
\[
m = \inf_{x \in \mathbb{R}^N} u(x).
\]

Тогда существует \(K > 0 \) такое, что
\[
\int_{B_R} A(|Dv|)|Dv|^2v^{-2} \, dx \leq KR^{N-2}, \tag{16.6}
\]
где \(v := 1 + u - m \) и \(B_R = \{ x \in \mathbb{R}^N : |x| < R \}. \)

Доказательство. Очевидно, \(v \) — слабое решение задачи (16.4) и \(v(x) \geq 1 \) для всех \(x \in \mathbb{R}^N. \) Пусть \(\varphi \in C^1_0(\mathbb{R}^N) \) — неотрицательная функция, и положим
\[
\varphi(x) := v(x)^{-1}\psi(x), \quad x \in \mathbb{R}^N.
\]
Эта функция допустима как пробная.

Тогда из (16.5) получаем
\[
0 \leq - \int_{\mathbb{R}^N} A(|Dv|)|Dv|^2v^{-2}\psi \, dx + \int_{\mathbb{R}^N} A(|Dv|)(Du, D\varphi)v^{-1} \, dx \tag{16.7}
\]
и по неравенству Коши с параметром \(\varepsilon > 0 \) имеем
\[
\int_{\mathbb{R}^N} A(|Dv|)|Dv|^2v^{-2}\psi \, dx \leq \frac{\varepsilon}{2} \int_{\mathbb{R}^N} A(|Dv|)|Dv|^2v^{-2}\psi \, dx + \frac{1}{2\varepsilon} \int_{\mathbb{R}^N} A(|Dv|)|D\psi|^2\psi^{-1} \, dx.
\]
Выбирая $\varepsilon < 2$, отсюда получим

$$
(1 - \frac{\varepsilon}{2}) \int_{\mathbb{R}^N} A(|Dv|)|Dv|^2v^{-2}\psi \, dx \leq \frac{C}{2\varepsilon} \int_{\mathbb{R}^N} |Dv|^2\psi^{-1} \, dx.
$$

(16.8)

Остается показать, что правая часть ограничена при подходящем выборе пробных функций $\psi \in C_0^1(\mathbb{R}^N)$. Для этого достаточно взять в качестве пробной функции новую функцию вида ψ^γ ($\gamma > 0$ достаточно большое) вместо ψ (следуя общей схеме метода, применяемого в книге).

Выбираем функцию $\psi_0 \in C_0^1(\mathbb{R})$ такую, что

$$
\psi_0(t) = \begin{cases}
1, & 0 \leq t \leq 1, \\
0, & t \geq 2,
\end{cases}
$$

и, полагая для $R > 0$

$$
\psi(x) = \psi_0(\frac{|x|^2}{R^2}),
$$

(16.9)

из (16.8) получаем требуемое утверждение. □

Доказательство теоремы 16.1. Предположим сначала, что $N = 1$. Из (16.6) следует, что

$$
\int_{-\infty}^{+\infty} A(v')|v'|^2v^{-2} \, dx = 0,
$$

следовательно, $v' = 0$ и $u \equiv \text{const}$ для всех $x \in \mathbb{R}$.

Теперь рассмотрим случай $N = 2$. Выбирая ψ, как в предыдущей лемме, из (16.7) получаем

$$
\int_{B_{\sqrt{T}R}} A(|Dv|)|Dv|^2v^{-2}\psi \, dx \leq \int_{R \leq |x| \leq \sqrt{T}R} A(|Dv|)|Dv||D\psi|v^{-1} \, dx
$$

и тогда

$$
\int_{B_R} A(|Dv|)|Dv|^2v^{-2} \, dx \leq \left(\int_{R \leq |x| \leq \sqrt{T}R} A(|Dv|)|Dv|^2v^{-2}\psi \, dx \right)^{1/2} \times
$$

$$
\times \left(\int_{R \leq |x| \leq \sqrt{T}R} A(|Dv||D\psi|^1 \, dx \right)^{1/2} \leq C^{1/2} \left(\int_{R \leq |x| \leq \sqrt{T}R} A(|Dv|)|Dv|^2v^{-2} \, dx \right)^{1/2} K,
$$

(16.10)

где C и K — постоянные из (16.3) и (16.6) соответственно.

Тогда, принимая во внимание, что в соответствии с (16.6)

$$
A(|Dv||D\ln v|^2 \in L^1(\mathbb{R}^2),
$$

получаем, что существует последовательность $\{R_k\} \text{ с } R_k \to \infty$ такая, что

$$
\lim_{k \to \infty} \int_{R_k \leq |x| \leq \sqrt{T}R_k} A(|Dv|)|D\ln v|^2 \, dx = 0,
$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
откуда с учетом (16.10) следует

\[\int_{\mathbb{R}^2} A(|Dv|)|D \ln v|^2 \, dx = 0, \]

что завершает доказательство. □

Следствие 16.1. Пусть \(u \in C^2(\mathbb{R}^2) \) — решение дифференциального неравенства

\[-\text{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) \geq 0, \quad x \in \mathbb{R}^2. \]

Если \(u(x) \) ограничена снизу, то \(u(x) = \text{const} \) для всех \(x \in \mathbb{R}^2 \).

Замечание 16.3. В общем случае аналог теоремы 16.1 несправедлив для высоких размерностей. Действительно, функция

\[u(x) = \varepsilon (1 + |x|^2)^{1/(1-q)}, \quad x \in \mathbb{R}^N, \quad N > 2, \]

где \(\varepsilon > 0 \) достаточно мало и \(q > \frac{N}{N-2} \), является глобальным решением дифференциального неравенства

\[-\text{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) \geq u^q, \quad x \in \mathbb{R}^N. \]

Замечание 16.4. Односторонняя теорема Бернштейна (Лиувилля) типа 16.1 несправедлива для операторов не в дивергентной форме. Этот факт был отмечен Бернштейном (см. [115] с обсуждением). Действительно, функция

\[u(x, y) = e^{x-y^2} \]

является положительным решением уравнения

\[2(1 + 2y^2) \frac{\partial^2 u}{\partial x^2} + 4y \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0, \quad (x, y) \in \mathbb{R}^2. \]

Отметим кратко некоторые обобщения теоремы 16.1 на другие типы дифференциальных неравенств [226]. Начнем с введения класса рассматриваемых операторов.

Определение 16.2. Пусть \(A : \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N \) — непрерывная функция. Будем говорить, что \(A \) порождает оператор типа \(m \)-лапласиана, если существуют \(a, b > 0 \) такие, что для всех \((x, t, w) \in \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}^N \) имеем

\[(A(x, t, w), w) \geq a|w|^m \geq b|A(x, t, w)|^{m'}, \quad (16.11) \]

где \(\frac{1}{m} + \frac{m'}{m} = 1, \quad m > 1. \)

Если \(u \in C^2(\mathbb{R}^N) \), то оператор типа \(m \)-лапласиана, порождаемый \(A \), вычисляется по формуле

\[\text{div} A(x, u, Du), \quad x \in \mathbb{R}^N. \]

Замечание 16.5. Класс операторов, удовлетворяющих условию (16.11), использовался в классических работах Серринга [160, 161]. Известно, что (16.11) означает справедливость слабого неравенства Гарнака.
Замечание 16.6. Нетрудно проверить, что если $A : \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ имеет вид

$$A(x, t, w) = A(x, t, |w|)w, \quad w \in \mathbb{R}^N,$$

т.е.

$$A_i(x, t, w) = A(x, t, |w|)w_i, \quad i = 1, \ldots, N,$$

где $A : \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}$ непрерывна, то A удовлетворяет (16.11) тогда и только тогда, когда

$$c_A^{-1}s^{m-2} \leq A(x, t, s) \leq c_A s^{m-2}, \quad s \in \mathbb{R}_+,$$

где $m > 1$, $c_A > 0$ — постоянная.

В частности, m-лапласиан, определяемый формулой $\text{div}(|D \cdot |^{m-2}D|)$, принадлежит этому классу.

Определение 16.3. Пусть A порождает оператор типа m-лапласиана. Будем говорить, что $u \in C^1(\mathbb{R}^N)$ есть слабое решение дифференциального неравенства

$$-\text{div} A(x, u, Du) \geq 0, \quad x \in \mathbb{R}^N,$$

если для всех неотрицательных $\varphi \in C^1_0(\mathbb{R}^N)$ выполнено неравенство

$$0 \leq \int_{\mathbb{R}^N} (A(x, u, Du), D\varphi) \, dx.$$

Справедливо

Теорема 16.2. Пусть $N \geq 1$, и предположим, что A порождает оператор типа m-лапласиана. Пусть $u \in C^1(\mathbb{R}^N)$ — слабое решение задачи (16.12).

Если $u \geq 0$ в \mathbb{R}^N и $N \leq m$, то $u(x) \equiv \text{const}$ для всех $x \in \mathbb{R}^N$.

Доказательство аналогично доказательству теоремы 16.1. Пусть утверждение неверно и u не равно нулю тождественно в \mathbb{R}^N. Поскольку для оператора типа m-лапласиана справедлив сильный принцип максимума, можно предположить, что $u > 0$ в \mathbb{R}^N.

Заметим, что в действительности доказательство теоремы может быть проведено без использования сильного принципа максимума, для этого достаточно положить $u_\varepsilon = (u + \varepsilon)^\alpha$. Умножая на $\varphi_\varepsilon = u_\varepsilon \psi(x)$, $\varepsilon > 0$, и полагая $\varepsilon \to 0$, можно продолжить все последующие выводы.

Пусть $\psi \in C^1_0(\mathbb{R}^N)$ — неотрицательная функция, и положим

$$\varphi(x) = u^\alpha(x) \psi(x), \quad x \in \mathbb{R}^N,$$

где $\alpha < 0$ будет выбрано позднее.

Подставляя φ в (16.13), получим

$$\alpha \int_{\mathbb{R}^N} \left(\sum_{i=1}^n A_i(x, u, Du) \frac{\partial \psi}{\partial x_i} \right) u^{\alpha-1} \psi \, dx \leq \int_{\mathbb{R}^N} \left(\sum_{i=1}^n A_i(x, u, Du) \frac{\partial \psi}{\partial x_i} \right) u^\alpha \, dx,$$

что в силу (16.11) и неравенства Юнга с параметром $\varepsilon > 0$ означает

$$|\alpha| \int_{\mathbb{R}^N} \left| A(x, u, Du) \right|^{m'} u^{\alpha-1} \psi \, dx \leq \frac{\varepsilon^{m'}}{m} \int_{\mathbb{R}^N} \left| A(x, u, Du) \right|^{m'} u^{\alpha-1} \psi \, dx + \frac{\varepsilon^{m'}}{m} \int_{\mathbb{R}^N} u^{\frac{(1-\alpha)+m}{m'}} |D\psi|^{m/1-m} \, dx.$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Выбирая $\alpha = 1 - m$ в (16.15) и $\varepsilon > 0$ достаточно малое, из (16.15) следует, что

$$
\int_{\mathbb{R}^N} |A(x, u, Du)|^{m'} u^{-m} \psi \, dx \leq K \int_{\mathbb{R}^N} |D\psi|^{m+1} \psi^{1-m} \, dx,
$$

где $K = K(\varepsilon, m, b) > 0$.

Очевидно, используя снова (16.11), из (16.14) и (16.16) выводим

$$
|\alpha| a \int_{\mathbb{R}^N} |Du|^m u^{-m} \psi \, dx \leq \left(\int_{\mathbb{R}^N} |A(x, u, Du)|^{m'} u^{-m} \psi \, dx \right)^{1/m'} \left(\int_{\mathbb{R}^N} |D\psi|^{m+1} \psi^{1-m} \, dx \right)^{1/m} \leq K^{1/m'} \int_{\mathbb{R}^N} |D\psi|^{m+1} \psi^{1-m} \, dx. \tag{16.17}
$$

Наконец, выбирая $\psi \in C_0^1(\mathbb{R}^N)$, как в (16.9), из (16.17) получаем

$$
\int_{B_R} |Du|^m u^{-m} \, dx \leq \text{const} \cdot R^{-m}. \tag{16.18}
$$

Если $N < m$, то из (16.18) сразу следует требуемое утверждение, а в случае $N = m$ действуем следующим образом. Из (16.14) с $\alpha = 1 - m$ и ψ, выбранным аналогично (16.9), получаем

$$
|\alpha| \int_{B_R} \left(\sum_{i=1}^n A_i(x, u, Du) \frac{\partial u}{\partial x_i} \right) u^{-m} \psi \, dx \leq

\leq \left(\int_{R \leq |x| \leq \sqrt{2}R} |A(x, u, Du)|^{m'} u^{-m} \psi \, dx \right)^{1/m'} \left(\int_{R \leq |x| \leq \sqrt{2}R} |D\psi|^{m+1} \psi^{1-m} \, dx \right)^{1/m} \leq \text{const} \cdot \left(\int_{R \leq |x| \leq \sqrt{2}R} |A(x, u, Du)|^{m'} u^{-m} \psi \, dx \right)^{1/m'}.
$$

Следовательно, из (16.11) и (16.19)

$$
a |\alpha| \int_{B_R} |Du|^m u^{-m} \, dx \leq \text{const} \cdot \left(\int_{R \leq |x| \leq \sqrt{2}R} |A(x, u, Du)|^{m'} u^{-m} \psi \, dx \right)^{1/m'} \leq

\leq \text{const} \cdot \left(\frac{a}{b} \right)^{1/m'} \left(\int_{R \leq |x| \leq \sqrt{2}R} |Du|^m u^{-m} \, dx \right)^{1/m'}. \tag{16.20}
$$

Принимая во внимание, что из (16.18) при $m = N$ следует

$$
|Du|^m u^{-m} = |D \ln u|^m \in L^1(\mathbb{R}^N),
$$

получаем, что существует последовательность $\{R_k\}$ с $R_k \to \infty$ такая, что

$$
\lim_{k \to \infty} \int_{R_k \leq |x| \leq \sqrt{2}R_k} |D \ln u|^m \, dx = 0.
$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 1. СТАЦИОНАРНЫЕ НЕРАВЕНСТВА

Тогда из (16.20) следует, что

\[
\lim_{k \to \infty} \int_{B_R} |D \ln u|^m \, dx = \int_{\mathbb{R}^N} |D \ln u|^m \, dx = 0.
\]

Это означает \(u(x) \equiv \text{const} \) для всех \(x \in \mathbb{R}^N \). \(\square \)

Из теоремы 16.2 вытекает

Следствие 16.2. Пусть \(N \geq 1, m > 1 \), и предположим, что \(A : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N \) непрерывна и существуют \(a, b > 0 \) такие, что

\[
(A(x, w), w) \geq a|w|^m \geq b|A(x, w)|^{m'}
\]

для всех \((x, w) \in \mathbb{R}^N \times \mathbb{R}^N \). Пусть \(u \in C^1(\mathbb{R}^N) \) — слабое решение задачи

\[
- \text{div} A(x, Du) \geq 0, \quad x \in \mathbb{R}^N.
\]

Если \(u(x) \) ограничена снизу и \(N \leq m \), то \(u(x) \equiv \text{const} \) для всех \(x \in \mathbb{R}^N \).

Доказательство. Применяем теорему 16.2 к задаче

\[
- \text{div} A(x, Du) \geq 0, \quad x \in \mathbb{R}^N,
\]

gде \(v = 1 + u - m, \quad m = \inf_{x \in \mathbb{R}^N} u(x) \). \(\square \)

Следствие 16.3. Пусть \(\sigma \geq 0 \) и \(m > 1 \). Пусть и — гладкое слабое решение дифференциального неравенства

\[
- \text{div}(|x|^{\sigma}|Du|^{m-2}Du) \geq 0, \quad x \in \mathbb{R}^N.
\]

Пусть \(u(x) \) ограничена снизу и \(N + \sigma \leq m \). Тогда \(u(x) \equiv \text{const} \) для всех \(x \in \mathbb{R}^N \).

Доказательство полностью аналогично доказательству теоремы 16.2. \(\square \)

Различные обобщения теоремы 16.2 можно доказать, например, для зависящей от \(x \) правой части (16.11). Детали оставляем интересующемуся читателю.

Замечание 16.7. В общем случае аналог теоремы 16.2 несправедлив для больших размерностей. Действительно, функция

\[
u(x) = \varepsilon (1 + |x|^{m-1})^{\frac{1-m}{m-m+1}},\]

где \(\varepsilon > 0 \) достаточно мало и \(q > \frac{N(m-1)}{N-m} \), является глобальным решением дифференциального неравенства

\[
- \text{div}(|Du|^{m-2}Du) \geq u^q, \quad x \in \mathbb{R}^N,
\]

при \(N > m \) (см. [222]).
Глава 2. СИСТЕМЫ СТАЦИОНАРНЫХ НЕРАВЕНСТВ

СИСТЕМЫ ПОЛУЛИНЕЙНЫХ УРАВНЕНИЙ И НЕРАВЕНСТВ ВТОРОГО ПОРЯДКА С ОГРАНИЧЕННЫМИ КОЭФФИЦИЕНТАМИ

В этом разделе мы рассматриваем системы уравнений и неравенств вида

\[
\begin{cases}
-\sum_{i,j=1}^{N} \frac{\partial^2}{\partial x_i \partial x_j} a_{ij}(x,u,v) \geq c|v|^r, \quad x \in \mathbb{R}^N, \\
-\sum_{i,j=1}^{N} \frac{\partial^2}{\partial x_i \partial x_j} b_{ij}(x,u,v) \geq d|u|^s, \quad x \in \mathbb{R}^N.
\end{cases}
\]

(17.1)

Здесь \(a_{ij}, b_{ij} : \mathbb{R}^N \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}\), \(i, j = 1, \ldots, N\), суть каратаоедориевы функции, удовлетворяющие неравенствам

\[|a_{ij}(x,u,v)| \leq a_0|u|^p, \quad |b_{ij}(x,u,v)| \leq b_0|v|^q\]

(17.2)

в \(\mathbb{R}^N \times \mathbb{R} \times \mathbb{R}\) с постоянными \(a_0, b_0 > 0\) и показателями \(p,q > 0\).

Относительно правых частей неравенств (17.1) предполагаем, что постоянные \(c,d > 0\) и \(r > q, \quad s > p\).

Определение 17.1. Под слабым решением задачи (17.1) понимается пара функций \((u,v) \in L^s_{\text{loc}}(\mathbb{R}^N) \times L^r_{\text{loc}}(\mathbb{R}^N)\) таких, что выполнены неравенства

\[-\int_{\mathbb{R}^N} \sum_{i,j=1}^{N} a_{ij}(x,u,v) \frac{\partial^2 \varphi}{\partial x_i \partial x_j} dx \geq \int_{\mathbb{R}^N} c|v|^r \varphi dx,
\]

\[-\int_{\mathbb{R}^N} \sum_{i,j=1}^{N} b_{ij}(x,u,v) \frac{\partial^2 \psi}{\partial x_i \partial x_j} dx \geq \int_{\mathbb{R}^N} d|u|^s \psi dx\]

для любых функций \(\varphi \geq 0, \quad \psi \geq 0\) из класса \(C^2_0(\mathbb{R}^N)\).

Теорема 17.1. Пусть

\[r > q > 0, \quad s > p > 0.\]

Пусть выполнено по крайней мере одно из следующих неравенств:

\[N \left(1 - \frac{pq}{rs}\right) \leq 2 \left(1 + \frac{q}{r}\right), \quad N \left(1 - \frac{pq}{rs}\right) \leq 2 \left(1 + \frac{p}{s}\right).\]

(17.4)

Тогда задача (17.1) не имеет глобального нетривиального слабого решения в \(\mathbb{R}^N\).

Замечание 17.1. Отметим, что условия (17.4) эквивалентны следующему:

\[\max \left\{ \frac{2q(p+s)}{rs-pq}, \frac{2p(q+r)}{rs-pq} \right\} \geq N - 2.\]

(17.5)

Доказательство теоремы 17.1. Положим \(\psi(x) = \varphi(x)\). Тогда из определения решения и из неравенств (17.2) получаем

\[c \int_{\mathbb{R}^N} |v|^r \varphi dx \leq a_0 \int_{\mathbb{R}^N} |u|^p L_2(\varphi) dx, \quad d \int_{\mathbb{R}^N} |u|^s \varphi dx \leq b_0 \int_{\mathbb{R}^N} |v|^q L_2(\varphi) dx\]

(17.6)
Введем обозначения

\[X = \int_{\mathbb{R}^N} |u|^s \varphi \, dx, \quad Y = \int_{\mathbb{R}^N} |v|^r \varphi \, dx. \]

Тогда из неравенств (17.6) в силу неравенства Гельдера получаем

\[X \leq \frac{b_0}{d} \left(\int_{\mathbb{R}^N} \frac{(L_2(\varphi))^{\mu'}}{\varepsilon^{\mu'-1}} \, dx \right)^{1/\mu'} Y^{1/\mu}, \quad Y \leq \frac{a_0}{c} \left(\int_{\mathbb{R}^N} \frac{(L_2(\varphi))^{\lambda'}}{\varepsilon^{\lambda'-1}} \, dx \right)^{1/\lambda'} X^{1/\lambda} \]

(17.7)

с \(\mu = \frac{q}{p} > 1, \lambda = \frac{q}{p} > 1 \) и \(\mu' = \frac{r}{q - \mu}, \lambda' = \frac{r}{q - \lambda}. \)

В свою очередь неравенства (17.7) означают

\[X^{\frac{\mu-1}{\mu\lambda}} \leq \frac{b_0}{d} \left(\frac{a_0}{c} \right)^{1/\mu} \left(\int_{\mathbb{R}^N} \frac{(L_2(\varphi))^{\mu'}}{\varepsilon^{\mu'-1}} \, dx \right)^{1/\mu'} \left(\int_{\mathbb{R}^N} \frac{(L_2(\varphi))^{\lambda'}}{\varepsilon^{\lambda'-1}} \, dx \right)^{1/(\mu\lambda')}, \]

(17.8)

\[Y^{\frac{\lambda-1}{\mu\lambda}} \leq \frac{a_0}{c} \left(\frac{b_0}{d} \right)^{1/\lambda} \left(\int_{\mathbb{R}^N} \frac{(L_2(\varphi))^{\lambda'}}{\varepsilon^{\lambda'-1}} \, dx \right)^{1/\lambda'} \left(\int_{\mathbb{R}^N} \frac{(L_2(\varphi))^{\mu'}}{\varepsilon^{\mu'-1}} \, dx \right)^{1/(\mu'\lambda)} \]

(17.9)

Введем теперь стандартную пробную функцию \(\varphi \) вида (2.7) с конечными интегралами

\[\int_{\mathbb{R}^N} \frac{(L_2(\varphi))^{\mu'}}{\varepsilon^{\mu'-1}} \, dx, \quad \int_{\mathbb{R}^N} \frac{(L_2(\varphi))^{\lambda'}}{\varepsilon^{\lambda'-1}} \, dx \]

при любом \(R \gg 1. \)

Тогда после замены переменных (2.8) получим

\[X^{\frac{\mu-1}{\mu\lambda}} \leq C_1 R^{\theta_1}, \quad Y^{\frac{\lambda-1}{\mu\lambda}} \leq C_2 R^{\theta_2} \]

(17.10)

с

\[\theta_1 = N \left(1 - \frac{pq}{rs} \right) - 2 \left(1 + \frac{q}{r} \right), \quad \theta_2 = N \left(1 - \frac{pq}{rs} \right) - 2 \left(1 + \frac{p}{s} \right) \]

и постоянными \(C_1, C_2 > 0. \)

Далее в силу аргументов, использованных при доказательстве аналогичных теорем для скалярного случая, получаем утверждение теоремы 17.1. В самом деле, если выполнено первое из неравенств (17.4), т.е. \(\theta_1 \leq 0, \) то получим \(X = 0 \) и тогда из первого из неравенств (17.7) следует \(Y = 0. \) Таким образом получим

\[\int_{\mathbb{R}^N} |u|^s \varphi \, dx = 0, \quad \int_{\mathbb{R}^N} |v|^r \varphi \, dx = 0 \]

с пробной функцией \(\varphi \) вида (2.7).

Отсюда после перехода к пределу при \(R \to \infty \) следует, что \(u = 0, v = 0 \) п.в. в \(\mathbb{R}^N. \)

6 ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть I. СТАЦИОНАРНЫЕ ЗАДАЧИ

Замечание 17.2. Результат (17.4) является неулучшаемым. Это следует из соответствующих контрпримеров.

Замечание 17.3. Мы не налагаем ни условий эллиптичности соответствующих операторов, ни условия на знак решений.

18. СИСТЕМЫ ПОЛУЛИНЕЙНЫХ УРАВНЕНИЙ И НЕРАВЕНСТВ ВТОРОГО ПОРЯДКА С НЕОГРАНИЧЕННЫМИ КОЭФФИЦИЕНТАМИ

В этом разделе мы рассматриваем системы уравнений и неравенств вида

\[
\begin{cases}
- \sum_{i,j=1}^{N} \frac{\partial^2}{\partial x_i \partial x_j} a_{ij}(x, u, v) \geq c(x)|v|^r, & x \in \mathbb{R}^N, \\
- \sum_{i,j=1}^{N} \frac{\partial^2}{\partial x_i \partial x_j} b_{ij}(x, u, v) \geq d(x)|u|^s, & x \in \mathbb{R}^N.
\end{cases}
\]

(18.1)

Здесь \(a_{ij}, b_{ij} : \mathbb{R}^N \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}, i, j = 1, \ldots, N\), суть каранциферные функции, удовлетворяющие неравенствам

\[|a_{ij}(x, u, v)| \leq a(x)|u|^p, \quad |b_{ij}(x, u, v)| \leq b(x)|v|^q\]

(18.2)

в \(\mathbb{R}^N \times \mathbb{R} \times \mathbb{R}\), с показателями \(p, q > 0\) и \(r > q, s > p\).

Функции \(a(x) \geq 0, b(x) \geq 0, c(x) > 0, d(x) > 0\) являются измеримыми в \(\mathbb{R}^N\) и удовлетворяют условию

\[\frac{a^{s/(s-p)}}{d^{p/(s-p)}} \frac{b^{r/(r-q)}}{c^{q/(r-q)}} \in L^1_{\text{loc}}(\mathbb{R}^N \setminus B_R)\]

(18.3)

с \(B_R = \{x \in \mathbb{R}^N \mid |x| \leq R\}\) при \(R \gg 1\).

Определение 18.1. Под слабым решением задачи (18.1) понимается пара функций \((u, v)\) такая, что

\[a(x)|u|^p, b(x)|u|^s, c(x)|v|^q, d(x)|v|^r \in L^1_{\text{loc}}(\mathbb{R}^N)\]

и удовлетворяют неравенствам

\[- \int_{\mathbb{R}^N} \sum_{i,j=1}^{N} a_{ij}(x, u, v) \frac{\partial^2 \varphi}{\partial x_i \partial x_j} dx \geq \int_{\mathbb{R}^N} c(x)|v|^r \varphi dx,\]

\[- \int_{\mathbb{R}^N} \sum_{i,j=1}^{N} b_{ij}(x, u, v) \frac{\partial^2 \psi}{\partial x_i \partial x_j} dx \geq \int_{\mathbb{R}^N} d(x)|u|^s \psi dx\]

для любых функций \(\varphi \geq 0, \psi \geq 0\) из класса \(C^2_0(\mathbb{R}^N)\).

В случае неограниченных коэффициентов критические показатели \(r\) и \(s\) (критическая ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
кривая в плоскости \((r, s)\) определяется асимптотиками следующих выражений:

\[
C_1(R) := \left(\int_{1 \leq |\xi| \leq \sqrt{2}} \frac{\mu^\alpha(R\xi)}{\sigma^{\alpha-1}(R\xi)} d\xi \right)^{1/\mu'}, \quad C_2(R) := \left(\int_{1 \leq |\xi| \leq \sqrt{2}} \frac{\alpha^\lambda(R\xi)}{d^{\lambda-1}(R\xi)} d\xi \right)^{1/\lambda'},
\]

с \(\lambda = \frac{p}{q} > 1, \mu = \frac{r}{s} > 1\) и \(\lambda' = \frac{s}{r-q}, \mu' = \frac{r}{r-q}\).

Теорема 18.1. Пусть

\[
r > q > 0, \quad s > p > 0.
\]

Пусть выполнено по крайней мере одно из следующих неравенств:

\[
limit_{R \to \infty} R^{\theta_1} C_1(R) < \infty, \quad \limit_{R \to \infty} R^{\theta_2} C_2(R) < \infty,
\]

где

\[
\theta_1 = N \left(1 - \frac{pq}{rs} \right) - 2 \left(1 + \frac{q}{r} \right), \quad \theta_2 = N \left(1 - \frac{pq}{rs} \right) - 2 \left(1 + \frac{p}{s} \right).
\]

Тогда задача (18.1) не имеет глобального нетривиального слабого решения в \(\mathbb{R}^N\).

Доказательство по существу повторяет доказательство предыдущей теоремы. Поэтому мы ограничимся лишь схемой доказательства.

Пусть вычисление решения и неравенств (18.2) получаем

\[
\int_{\mathbb{R}^N} c(x)|v|^r \varphi dx \leq \int_{\mathbb{R}^N} a(x)|u|^p L_2(\varphi) dx, \quad \int_{\mathbb{R}^N} d(x)|u|^s \varphi dx \leq \int_{\mathbb{R}^N} b(x)|v|^q L_2(\varphi) dx
\]

с

\[
L_2(\varphi) = \sum_{i,j=1}^N \left| \frac{\partial^2 \varphi}{\partial x_i \partial x_j} \right|.
\]

Введем следующие обозначения:

\[
X = \int_{\mathbb{R}^N} d(x)|u|^s \varphi dx, \quad Y = \int_{\mathbb{R}^N} c(x)|v|^r \varphi dx.
\]

Тогда, применяя неравенство Гёльдера, из (18.5) получаем

\[
X \leq \left(\int_{\mathbb{R}^N} \left(\frac{(b(x)L_2(\varphi))^{\mu'}}{(c(x)\varphi(x))^{\mu'-1}} \right)^{1/\mu'} \right)^{1/\lambda'} Y^{1/\mu'}, \quad Y \leq \left(\int_{\mathbb{R}^N} \left(\frac{(a(x)L_2(\varphi))^{\lambda'}}{(d(x)\varphi(x))^{\lambda'-1}} \right)^{1/\lambda'} \right)^{1/\mu'} X^{1/\lambda'}.
\]

Отсюда следует, что

\[
X^{\frac{\mu'-1}{\mu}} \leq \left(\int_{\mathbb{R}^N} \left(\frac{(b(x)L_2(\varphi))^{\mu'}}{(c(x)\varphi(x))^{\mu'-1}} \right)^{1/\mu'} \right)^{1/\lambda'} \left(\int_{\mathbb{R}^N} \left(\frac{(a(x)L_2(\varphi))^{\lambda'}}{(d(x)\varphi(x))^{\lambda'-1}} \right)^{1/\lambda'} \right)^{1/(\mu\lambda')}.
\]
Выберем теперь пробную функцию φ вида (2.7) и сделаем замену переменных (2.8). Тогда

$$L_2(\varphi) = \frac{1}{R^2}L^s_2(\varphi_0),$$

где

Выберем теперь пробную функцию φ_0 так, чтобы

$$\frac{(L^s_2(\varphi_0))^{\lambda'}}{\varphi_0^{\lambda - 1}}, \quad \frac{(L^s_2(\varphi_0))^{\mu'}}{\varphi_0^{\mu - 1}} < \infty$$

при $1 \leq |\xi| \leq \sqrt{2}$.

Тогда из неравенств (18.7) и (18.8) следует, что

$$X^{-\frac{\lambda - 1}{\mu}} \leq \text{const} \cdot R^\theta C_1(R), \quad Y^{-\frac{\lambda - 1}{\mu}} \leq \text{const} \cdot R^\theta C_2(R).$$

Отсюда, используя рассуждения, аналогичные предыдущим, получаем утверждение теоремы 18.1.

Замечание 18.1. Результат теоремы 18.1 является неулучшаемым, что следует из соответствующих контпримеров.

Замечание 18.2. Как и в предыдущих теоремах настоящей главы, мы не налагаем ни условий эллиптиности соответствующих операторов, ни условия на знак рассматриваемого решения.

Пример 18.1. Рассмотрим следующую систему:

$$\begin{cases}
\pm \Delta u \geq |x|^{\gamma} |u|^r, & x \in \mathbb{R}^N, \\
\pm \Delta v \geq |x|^{\gamma} |u|^s, & x \in \mathbb{R}^N,
\end{cases}$$

(18.9)

c $r, s > 1$.

В терминах теоремы 18.1 имеем

$$p = q = 1, \quad a(x) \equiv 1, \quad b(x) \equiv 1, \quad c(x) = |x|^{\gamma}, \quad d(x) = |x|^{\gamma}.$$

Тогда выражения $C_1(R)$ и $C_2(R)$ из теоремы 18.1 принимают вид

$$C_1(R) = \left(\int_{1 \leq |\xi| \leq \sqrt{2}} \frac{d\xi}{|R\xi|(|r'|-1)^{\gamma_1}} \right)^{1/r'} \left(\int_{1 \leq |\xi| \leq \sqrt{2}} \frac{d\xi}{|R\xi|(|r'|-1)^{\gamma_2}} \right)^{1/(rs')} = \text{const} \cdot R^{\theta_1},$$

$$C_2(R) = \left(\int_{1 \leq |\xi| \leq \sqrt{2}} \frac{d\xi}{|R\xi|(|r'|-1)^{\gamma_1}} \right)^{1/s'} \left(\int_{1 \leq |\xi| \leq \sqrt{2}} \frac{d\xi}{|R\xi|(|r'|-1)^{\gamma_2}} \right)^{1/(sr')} = \text{const} \cdot R^{\theta_2}.$$
Глава 2. СИСТЕМЫ СТАЦИОНАРНЫХ НЕРАВЕНСТВ

\[\nu_1 = -\frac{\gamma_1}{r} - \frac{\gamma_2}{rs}, \quad \nu_2 = -\frac{\gamma_2}{s} - \frac{\gamma_1}{sr}. \]

Тогда условие (18.4) с \(p = q = 1 \) отсутствия решения задачи (18.9) формулируется следующим образом.

Пусть выполнено по крайней мере одно из неравенств:

\[\theta_1 + \nu_1 = N \left(1 - \frac{1}{rs} \right) - 2 \left(1 + \frac{1}{r} \right) - \frac{\gamma_1}{r} - \frac{\gamma_2}{rs} \leq 0, \]
\[\theta_2 + \nu_2 = N \left(1 - \frac{1}{rs} \right) - 2 \left(1 + \frac{1}{s} \right) - \frac{\gamma_2}{s} - \frac{\gamma_1}{sr} \leq 0. \]

Тогда задача (18.9) не имеет глобального нетривиального слабого решения в \(\mathbb{R}^N \).

19. СИСТЕМЫ ПОЛУЛИНЕЙНЫХ УРАВНЕНИЙ И НЕРАВЕНСТВ ВЫСОКОГО ПОРЯДКА С ОГРАНИЧЕННЫМИ КОЭФФИЦИЕНТАМИ

В этом разделе мы рассматриваем системы вида

\[
\begin{cases}
L(u, v) \geq |v|^r, & x \in \mathbb{R}^N, \\
M(u, v) \geq |u|^q, & x \in \mathbb{R}^N,
\end{cases}
\]
(19.1)

с постоянными \(c, d > 0 \) и

\[L(u, v) = \sum_{k_1 \leq |\alpha| \leq m_1} (-1)^{|\alpha|} D^\alpha a_\alpha(x, u, v), \quad M(u, v) = \sum_{k_2 \leq |\beta| \leq m_2} (-1)^{|\beta|} D^\beta b_\beta(x, u, v). \]

Здесь \(a_\alpha \) с \(1 \leq k_1 \leq |\alpha| \leq m_1 \) и \(b_\beta \) с \(1 \leq k_2 \leq |\beta| \leq m_2 \) суть кардедориевы функции \(\mathbb{R}^N \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \), удовлетворяющие условиям

\[|a_\alpha(x, u, v)| \leq a_0|u|^p, \quad |b_\beta(x, u, v)| \leq b_0|v|^q \]
(19.2)

c \(a_0, b_0 \geq 0 \) и

\[s > p > 0, \quad r > q > 0. \]
(19.3)

Определение 19.1. Под слабым решением задачи (19.1) понимается пара функций \((u, v) \in L^s_{\text{loc}}(\mathbb{R}^N) \times L^r_{\text{loc}}(\mathbb{R}^N) \), удовлетворяющих системе неравенств

\[\int_{\mathbb{R}^N} \sum_{k_1 \leq |\alpha| \leq m_1} a_\alpha(x, u, v) D^\alpha \varphi \, dx \geq \int_{\mathbb{R}^N} c|v|^r \varphi \, dx, \]
\[\int_{\mathbb{R}^N} \sum_{k_2 \leq |\beta| \leq m_2} a_\beta(x, u, v) D^\beta \psi \, dx \geq \int_{\mathbb{R}^N} d|u|^q \psi \, dx \]

для любых функций \(\varphi \geq 0, \psi \geq 0 \) из классов \(\varphi \in C^m_0(\mathbb{R}^N) \) и \(\psi \in C^m_0(\mathbb{R}^N) \).

Теорема 19.1. Пусть выполнено условие (19.3). Пусть

\[\max \left\{ \frac{k_2 p + k_1 s}{rs - pq} - \frac{N - k_2}{q}, \frac{k_1 q + k_2 r}{rs - pq} - \frac{N - k_1}{r} \right\} \geq 0. \]
(19.4)

Тогда задача (19.1) не имеет глобального нетривиального слабого решения в \(\mathbb{R}^N \).
Доказательство теоремы следует стандартной схеме. Мы ограничиваемся только основными моментами этого доказательства.

В определении решения положим \(\psi(x) = \varphi(x) \). Тогда в силу неравенств (19.2) имеем

\[
c \int_{\mathbb{R}^N} |v|^r \varphi \, dx \leq a_0 \int_{\mathbb{R}^N} |u|^p L_s(\varphi) \, dx, \quad d \int_{\mathbb{R}^N} |u|^s \varphi \, dx \leq b_0 \int_{\mathbb{R}^N} |v|^q M_s(\varphi) \, dx, \tag{19.5}
\]

где

\[
L_s(\varphi) = \sum_{k_1 \leq |\alpha| \leq m_1} |D^\alpha \varphi|, \quad M_s(\varphi) = \sum_{k_2 \leq |\beta| \leq m_2} |D^\beta \varphi|.
\]

Применяя неравенство Гельдерла к (19.5), находим

\[
\left(\int_{\mathbb{R}^N} |v|^r \varphi \, dx \right)^{1-1/(\lambda \mu)} \leq a_0 \frac{b_0}{c} \left(d \left(\int_{\mathbb{R}^N} \frac{M_s(\varphi)}{|\varphi|^{\mu'-1}} \, dx \right) \right)^{1/(\lambda \mu')} \left(\int_{\mathbb{R}^N} \frac{L_s(\varphi)}{|\varphi|^{\nu'-1}} \, dx \right)^{1/\nu'}, \tag{19.6}
\]

\[
\left(\int_{\mathbb{R}^N} |u|^s \varphi \, dx \right)^{1-1/(\lambda \mu)} \leq b_0 \frac{a_0}{d} \left(c \left(\int_{\mathbb{R}^N} \frac{L_s(\varphi)}{|\varphi|^{\nu'-1}} \, dx \right) \right)^{1/(\mu \lambda')} \left(\int_{\mathbb{R}^N} \frac{M_s(\varphi)}{|\varphi|^{\mu'-1}} \, dx \right)^{1/\mu'}, \tag{19.7}
\]

с \(\lambda = \frac{p}{r} > 1, \mu = \frac{q}{s} > 1 \) и \(\lambda' = \frac{p}{s-r}, \mu' = \frac{r}{r-q} \).

Введем теперь стандартную пробную функцию вида (2.7) с \(\varphi_0 \geq 0 \) из класса \(C_0^m(\mathbb{R}) \) с \(m = \max\{m_1, m_2\} \). Далее сделаем замену переменных (2.8) в интегралах, стоящих в правых частях неравенств (19.7) и (19.6). Тогда получим

\[
\left(\int_{\mathbb{R}^N} |u|^s \varphi \, dx \right)^{1-1/(\lambda \mu)} \leq \text{const} \cdot R^{\nu_1}, \quad \left(\int_{\mathbb{R}^N} |v|^r \varphi \, dx \right)^{1-1/(\lambda \mu)} \leq \text{const} \cdot R^{\nu_2} \tag{19.8}
\]

при \(R \to \infty \) с

\[
\nu_1 = N \left(1 - \frac{pq}{rs} \right) - \left(k_2 + k_1 \frac{q}{r} \right), \quad \nu_2 = N \left(1 - \frac{pq}{rs} \right) - \left(k_1 + k_2 \frac{p}{s} \right).
\]

Далее в силу неравенства (19.4) имеем, что по крайней мере один из показателей \(\nu_1, \nu_2 \) является неположительным. Например, \(\nu_1 \leq 0 \). Если \(\nu_1 < 0 \), то непосредственно из первого неравенства в (19.8) после перехода к пределу при \(R \to \infty \) получаем \(\int_{\mathbb{R}^N} |u|^s \varphi \, dx = 0 \) при любом \(R \gg 1 \), значит, \(\int_{\mathbb{R}^N} |u|^s \varphi \, dx = 0 \), т.е. \(u \equiv 0 \) п.в. в \(\mathbb{R}^N \).

Если же \(\nu_1 = 0 \), то применяем рассуждения, аналогичные использованным ранее для скалярного случая.

Теперь если \(\int_{\mathbb{R}^N} |u|^s \, dx = 0 \), то в неравенстве (19.5) следует, что \(\int_{\mathbb{R}^N} |v|^r \varphi \, dx = 0 \), т.е. после перехода к пределу при \(R \to \infty \) получаем \(\int_{\mathbb{R}^N} |v|^r \varphi \, dx = 0 \). Теорема 19.1 доказана.

Непосредственно из теоремы 19.1 получаем

Следствие 19.1. Пусть выполнено (19.3) и

\[
\max\{k_1, k_2\} \geq N \tag{19.9}
\]

с \(k_1, k_2 \geq 1 \).

Тогда задача (19.1) не имеет глобального нетривиального слабого решения в \(\mathbb{R}^N \).
Доказательство. В самом деле, неравенство (19.9) влечет (19.4). □

Замечание 19.1. Теорема 19.1 доказана без предположения об эллиптичности соответствующих операторов высокого (произвольного) порядка и без каких-либо предположений о знаке решения или его производных.

20. СИСТЕМЫ ПОЛУЛИНЕЙНЫХ УРАВНЕНИЙ И НЕРАВЕНСТВ ВЫСОКОГО ПОРЯДКА С НЕОГРАНИЧЕННЫМИ КОЭФФИЦИЕНТАМИ

В этом разделе мы рассматриваем системы вида

\[
\begin{cases}
L(u, v) \geq c(x)|v|^r, & x \in \mathbb{R}^N, \\
M(u, v) \geq d(x)|u|^s, & x \in \mathbb{R}^N,
\end{cases}
\tag{20.1}
\]

где

\[L(u, v) = \sum_{k_1 \leq |\alpha| \leq m_1} (-1)^{|\alpha|} D^{\alpha} A_\alpha(x, u, v), \quad M(u, v) = \sum_{k_2 \leq |\beta| \leq m_2} (-1)^{|\beta|} D^{\beta} B_\beta(x, u, v) \]

с \(k_1, k_2 \geq 1 \). Здесь \(A_\alpha \) с \(1 \leq k_1 \leq |\alpha| \leq m_1 \) и \(B_\beta \) с \(1 \leq k_2 \leq |\beta| \leq m_2 \) суть карательные функции \(\mathbb{R}^N \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \), удовлетворяющие условиям

\[|A_\alpha(x, u, v)| \leq a_\alpha(x)|u|^p, \quad |B_\beta(x, u, v)| \leq b_\beta(x)|v|^q \tag{20.2} \]

с

\[s > p > 0, \quad r > q > 0 \tag{20.3} \]

и измеримыми функциями \(a_\alpha \geq 0 \) и \(b_\beta \geq 0 \).

Далее предполагается, что функции \(c(x) > 0 \) и \(d(x) > 0 \) являются измеримыми и выполняются следующие условия:

\[\left(\sum_{k_1 \leq |\alpha| \leq m_1} a_\alpha(x) \right)^{s/(s-p)} (d(x))^{-p/(s-p)}, \quad \left(\sum_{k_2 \leq |\beta| \leq m_2} b_\beta(x) \right)^{r/(r-q)} (c(x))^{-q/(r-q)} \]

принадлежат \(L_1^1(\mathbb{R}^N \setminus B_R) \) при \(R \gg 1 \). Здесь \(B_R = \{ x \in \mathbb{R}^N \mid |x| \leq R \} \).

Определение 20.1. Под слабым решением задачи (20.1) понимается пара функций \((u, v)\) такая, что

\[a_\alpha(x)|u|^p, \quad b_\beta(x)|v|^q \in L_1^1(\mathbb{R}^N) \]

с \(k_1 \leq |\alpha| \leq m_1, \, k_2 \leq |\beta| \leq m_2, \)

\[d(x)|u|^s, \quad c(x)|v|^r \in L_1^1(\mathbb{R}^N), \]

и удовлетворяет неравенствам

\[\int_{\mathbb{R}^N} \sum_{k_1 \leq |\alpha| \leq m_1} A_\alpha(x, u, v) \varphi \, dx \geq \int_{\mathbb{R}^N} c(x)|v|^r \varphi \, dx, \]

\[\int_{\mathbb{R}^N} \sum_{k_2 \leq |\beta| \leq m_2} B_\beta(x, u, v) \psi \, dx \geq \int_{\mathbb{R}^N} d(x)|u|^s \psi \, dx \]

для любых функций \(\varphi \geq 0, \psi \geq 0 \) из классов \(\varphi \in C_0^{m_1}(\mathbb{R}^N) \) и \(\psi \in C_0^{m_2}(\mathbb{R}^N) \).
Критические показатели \(r \) и \(s \) (критическая кривая в плоскости \((r, s)\)) определяются асимптотикой следующих выражений:

\[
E_1(R) := \left(\int_{1 \leq |\xi| \leq \sqrt{2}} \left(\sum_{k_2 \leq |\beta| \leq m_2} \frac{b_{\beta}(R\xi)}{R^{\beta}} \right)^{\nu'} c^{1-\nu'}(R\xi) \, d\xi \right)^{1/\nu'} \times \left(\int_{1 \leq |\xi| \leq \sqrt{2}} \left(\sum_{k_1 \leq |\alpha| \leq m_1} \frac{a_{\alpha}(R\xi)}{R^{\alpha}} \right)^{\lambda'} d^{1-\lambda'}(R\xi) \, d\xi \right)^{1/(\lambda\nu')},
\]

(20.4)

\[
E_2(R) := \left(\int_{1 \leq |\xi| \leq \sqrt{2}} \left(\sum_{k_1 \leq |\alpha| \leq m_1} \frac{a_{\alpha}(R\xi)}{R^{\alpha}} \right)^{\lambda'} d^{1-\lambda'}(R\xi) \, d\xi \right)^{1/\lambda'} \times \left(\int_{1 \leq |\xi| \leq \sqrt{2}} \left(\sum_{k_2 \leq |\beta| \leq m_2} \frac{b_{\beta}(R\xi)}{R^{\beta}} \right)^{\nu'} c^{1-\nu'}(R\xi) \, d\xi \right)^{1/(\lambda\nu')},
\]

(20.5)

с \(\lambda = \frac{p}{q} > 1, \mu = \frac{p}{q} > 1 \) и \(\lambda' = \frac{1}{s-p}, \mu' = \frac{1}{r-q} \).

Теорема 20.1. Пусть выполнено условие (20.3). Пусть выполнено по крайней мере одно из неравенств

\[
\lim_{R \to \infty} R^\nu E_1(R) < \infty, \quad \lim_{R \to \infty} R^\nu E_2(R) < \infty
\]

(20.6)

c \(\nu = N(1 - \frac{pq}{r^2}) \).

Тогда задача (20.1) не имеет глобального нетривиального слабого решения в \(\mathbb{R}^N \).

Доказательство проводится по стандартной схеме. Мы ограничимся только основными моментами этого доказательства.

В определении решения положим \(\varphi(x) = \psi(x) \). Тогда в силу неравенств (20.2) получаем

\[
\int_{\mathbb{R}^N} c(x)|v|^r \varphi \, dx \leq \int_{\mathbb{R}^N} |u|^p \sum_{k_1 \leq |\alpha| \leq m_1} a_{\alpha}(x)|D^\alpha \varphi| \, dx,
\]

\[
\int_{\mathbb{R}^N} d(x)|u|^s \varphi \, dx \leq \int_{\mathbb{R}^N} |v|^q \sum_{k_2 \leq |\beta| \leq m_2} b_{\beta}(x)|D^\beta \varphi| \, dx.
\]

(20.7)

Введем следующие обозначения:

\[
X = \int_{\mathbb{R}^N} d(x)|u|^s \varphi \, dx, \quad Y = \int_{\mathbb{R}^N} c(x)|v|^r \varphi \, dx.
\]

Тогда, применяя неравенство Гельдера, из (20.7) находим

\[
X \leq \left(\int_{\mathbb{R}^N} \frac{(M_s(\varphi))^{\nu'}}{(c(x, \varphi))^{\mu'-1}} \, dx \right)^{1/\nu'} Y^{1/\nu}, \quad Y \leq \left(\int_{\mathbb{R}^N} \frac{(L_s(\varphi))^{\lambda'}}{(d(x, \varphi))^{\mu'-1}} \, dx \right)^{1/\lambda'} X^{1/\lambda}
\]

(20.8)
Глава 2. СИСТЕМЫ СТАЦИОНАРНЫХ НЕРАВЕНСТВ

с $\lambda = \frac{s}{p} > 1$, $\mu = \frac{r}{q} > 1$ и $\lambda' = \frac{s}{s-p}$, $\mu' = \frac{r}{r-q}$ и

$$L_s(\varphi) = \sum_{k_1 \leq |\alpha| \leq m_1} a_\alpha(x)|D^\alpha \varphi|, \quad M_s(\varphi) = \sum_{k_2 \leq |\beta| \leq m_2} b_\beta(x)|D^\beta \varphi|.$$

Из неравенств (20.8) в свою очередь следует, что

$$X^{\frac{\lambda-1}{\mu \lambda}} \leq \left(\int_{\mathbb{R}^N} \frac{(M_s(\varphi))^{\mu'}}{(c(x)\varphi)^{\mu' - 1}} \, dx \right)^{1/\mu'} \left(\int_{\mathbb{R}^N} \frac{(L_s(\varphi))^{\lambda'}}{(d(x)\varphi)^{\lambda' - 1}} \, dx \right)^{1/(\mu \lambda')},$$

(20.9)

$$Y^{\frac{\lambda-1}{\mu \lambda}} \leq \left(\int_{\mathbb{R}^N} \frac{(L_s(\varphi))^{\lambda'}}{(d(x)\varphi)^{\lambda' - 1}} \, dx \right)^{1/\lambda'} \left(\int_{\mathbb{R}^N} \frac{(M_s(\varphi))^{\mu'}}{(c(x)\varphi)^{\mu' - 1}} \, dx \right)^{1/(\mu \lambda')}.$$

Введем, как и в предыдущем разделе, стандартную пробную функцию φ вида (2.7) такую, что

$$\frac{|D^\alpha \varphi(0)(\xi)|^{\lambda'}}{(\varphi(0)(\xi))^{\lambda' - 1}}, \frac{|D^\beta \varphi(0)(\xi)|^{\mu'}}{(\varphi(0)(\xi))^{\mu' - 1}} \leq c_0 < \infty$$

при $1 \leq |\xi| \leq \sqrt{2}$ с $1 \leq k_1 \leq |\alpha| \leq m_1$ и $1 \leq k_2 \leq |\beta| \leq m_2$. Тогда неравенства (20.9) влекут

$$X^{\frac{\lambda-1}{\mu \lambda}} \leq \text{const} \cdot E_1(R) R^{\nu}, \quad Y^{\frac{\lambda-1}{\mu \lambda}} \leq \text{const} \cdot E_2(R) R^{\nu}$$

с $\nu = N(1 - \frac{r}{\nu})$.

Повторяя рассуждения из доказательств предыдущих теорем, получаем утверждение теоремы 20.1. □

Пример 20.1. Рассмотрим следующую задачу:

$$\begin{aligned}
\sum_{|\alpha| = k_1} D^\alpha (\tilde{a}_\alpha(x)|x|^{\sigma_1} u) \geq |v|^r, \quad x \in \mathbb{R}^N, \\
\sum_{|\beta| = k_2} D^\beta (\tilde{b}_\beta(x)|x|^{\sigma_2} v) \geq |u|^s, \quad x \in \mathbb{R}^N,
\end{aligned}$$

(20.10)

с $k_1, k_2 \geq 1$, $r, s > 1$ и измеримыми ограниченными коэффициентами

$$\tilde{a}_\alpha (|\alpha| = k_1), \tilde{b}_\beta (|\beta| = k_2) : \mathbb{R}^N \to \mathbb{R},$$

так что

$$|\tilde{a}_\alpha(x)|, |\tilde{b}_\beta(x)| \leq c_0, \quad x \in \mathbb{R}^N.$$

Для этой задачи в терминах теоремы 20.1 имеем

$$p = q = 1, \quad \lambda = s, \quad \mu = r, \quad m_1 = k_1, \quad m_2 = k_2$$

и

$$a_\alpha = c_0|x|^{\sigma_1}, \quad |\alpha| = k_1, \quad b_\beta = c_0|x|^{\sigma_2}, \quad |\beta| = k_2, \quad c(x) \equiv 1, \quad d(x) \equiv 1, \quad x \in \mathbb{R}^N,$$

так что

$$E_1(R) \leq \text{const} \cdot R^{\tilde{b}_2}, \quad E_2(R) \leq \text{const} \cdot R^{\tilde{b}_2}.$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Тогда простой подсчет показывает, что
\[\tilde{\theta}_1 = \sigma_2 - k_2 + \frac{\sigma_1 - k_1}{r}, \quad \tilde{\theta}_2 = \sigma_1 - k_1 + \frac{\sigma_2 - k_2}{s}. \]
Тогда условие теоремы 20.1 отсутствия нетривиального решения задачи (20.10) принимает вид
\[\min\{\tilde{\nu} + \tilde{\theta}_1, \tilde{\nu} + \tilde{\theta}_2\} \leq 0 \]
c \(\tilde{\nu} = N(1 - \frac{1}{r^s}), \) т.е.
\[\max \left\{ \frac{k_1 - \sigma_1 + (k_2 - \sigma_2)r}{rs - 1} - N + k_1 - \sigma_1, \frac{k_2 - \sigma_2 + (k_1 - \sigma_1)s}{rs - 1} - N + k_2 - \sigma_2 \right\} \geq 0. \]

Пример 20.2. Рассмотрим следующую задачу:
\[\begin{cases} \sum_{|\alpha|=k_1} D^\alpha(\tilde{a}_\alpha(x, u)) \geq |x|^{\gamma_1}|u|^r, & x \in \mathbb{R}^N, \\ \sum_{|\beta|=k_2} D^\beta(\tilde{b}_\beta(x, u)) \geq |x|^{\gamma_2}|u|^s, & x \in \mathbb{R}^N, \end{cases} \tag{20.11} \]
c \(k_1, k_2 \geq 1 \) и \(r, s > 1. \) Здесь \(a_\alpha (|\alpha| = k_1), b_\beta (|\beta| = k_2) \) суть ограниченные измеримые функции \(\mathbb{R}^N \to \mathbb{R}, \) так что
\[|a_\alpha(x)|, |b_\beta(x)| \leq c_0, \quad x \in \mathbb{R}^N. \]
Для этой задачи в терминах теоремы 20.1 имеем
\[p = q = 1, \quad \lambda = s, \quad \mu = r, \quad m_1 = k_1, \quad m_2 = k_2 \]
и
\[a_\alpha(x) \equiv c_0, \quad |\alpha| = k_1, \quad b_\beta(x) \equiv c_0, \quad |\beta| = k_2, \quad c(x) = |x|^{\gamma_1}, \quad d(x) = |x|^{\gamma_2}, \quad x \in \mathbb{R}^N. \]
Тогда простой подсчет показывает, что
\[E_1(R) \leq \text{const} \cdot R^{\tilde{\theta}_1}, \quad E_2(R) \leq \text{const} \cdot R^{\tilde{\theta}_2} \]
c \(\tilde{\theta}_1 = -k_2 - \frac{k_1 + \gamma_1}{r} - \frac{\gamma_2}{rs}, \quad \tilde{\theta}_2 = -k_1 - \frac{k_2 + \gamma_2}{s} - \frac{\gamma_1}{rs}. \]
Условие теоремы 20.1 отсутствия нетривиального решения задачи (20.11) принимает вид
\[\min\{\tilde{\nu} + \tilde{\theta}_1, \tilde{\nu} + \tilde{\theta}_2\} \leq 0 \]
c \(\tilde{\nu} = N(1 - \frac{1}{r^s}), \) т.е.
\[\max \left\{ \frac{k_1 + \gamma_1 + (k_2 + \gamma_2)r}{rs - 1} - N + k_1, \frac{k_2 + \gamma_2 + (k_1 + \gamma_1)s}{rs - 1} - N + k_2 \right\} \geq 0. \]

Замечание 20.1. В приведенных примерах 20.1 и 20.2 речь идет об отсутствии нетривиальных слабых решений в \(\mathbb{R}^N \) в соответствии с общим определением решения системы (20.1), но классы решений в этих примерах являются разными.
Глава 2. СИСТЕМЫ СТАЦИОНАРНЫХ НЕРАВЕНСТВ

21. СИСТЕМЫ ПОЛУЛИНЕЙНЫХ НЕРАВЕНСТВ В КОНУСАХ

Рассмотрим систему

\[
\begin{align*}
-\Delta u & \geq v^q, \quad x \in K, \\
-\Delta v & \geq u^p, \quad x \in K, \\
u & = 0, \quad x \in \partial K, \\
v & = 0, \quad x \in \partial K.
\end{align*}
\] \tag{21.1}

Определение 21.1. Пара функций \((u, v) \in W^{1,2}_{\text{loc}}(K) \cap L^\infty_{\text{loc}}(K), u|_{\partial K} = 0, v|_{\partial K} = 0,
называется слабым решением задачи \((21.1),\) если для любой неотрицательной пробной функции \(\varphi(x) \equiv \varphi(r, \omega) \in W^{1,2}(K), \varphi|_{\partial K} = 0,
финитной по переменной \(r,\) выполнены интегральные неравенства

\[
\int_K DuD\varphi\,dx \geq \int_K v^q\varphi\,dx, \quad \int_K DvD\varphi\,dx \geq \int_K u^p\varphi\,dx.
\]

Теорема 21.1. Задача \((21.1)\) не имеет глобального нетривиального неотрицательного слабого решения, если

\[
\max\{\gamma_1, \gamma_2\} \geq \frac{s^*}{2}, \quad \gamma_1 = \frac{q + 1}{pq - 1}, \quad \gamma_2 = \frac{p + 1}{pq - 1},
\]

с дельта определяется формулой (11.5).

Доказательство. Пусть \((u, v)\) — слабое решение задачи \((21.1).\) Для любой финитной по переменной \(r\) функции \(\varphi \in W^{2,1}(K) \cap W^{1,2}(K), \varphi|_{\partial K} = 0,
в определения слабого решения с помощью интегрирования по частям получим

\[
\int_K v^q\varphi\,dx \leq -\int_K u\Delta \varphi\,dx, \quad \int_K u^p\varphi\,dx \leq -\int_K v\Delta \varphi\,dx.
\]

Для оценки интегралов справа применим неравенство Гельдера (как в предельном случае \(q = q^*\) из разд. 11):

\[
\int_K v^q\varphi\,dx \leq -\int_K u\Delta \varphi\,dx = -\int_{\text{supp}\,[\Delta \varphi]} u^{1/p} \frac{\Delta \varphi}{\varphi^{1/p}}\,dx \leq \left(\int_{\text{supp}\,[\Delta \varphi]} u^p\varphi\,dx \right)^{1/p} \left(\int_{\text{supp}\,[\Delta \varphi]} \left| \frac{\Delta \varphi}{\varphi^{1/p}}\right|^{1/p'}\,dx \right)^{1/p'} J_{p/p'}, \tag{21.2}
\]

\[
\int_K u^p\varphi\,dx \leq -\int_K v\Delta \varphi\,dx = -\int_{\text{supp}\,[\Delta \varphi]} v^{1/q} \frac{\Delta \varphi}{\varphi^{1/q}}\,dx \leq \left(\int_{\text{supp}\,[\Delta \varphi]} v^q\varphi\,dx \right)^{1/q} \left(\int_{\text{supp}\,[\Delta \varphi]} \left| \frac{\Delta \varphi}{\varphi^{1/q}}\right|^{1/q'}\,dx \right)^{1/q'} J_{q/q'}, \tag{21.3}
\]

где

\[
J_{p'} = \int_{\text{supp}\,[\Delta \varphi]} \left| \frac{\Delta \varphi}{\varphi^{1/p'}}\right|\,dx, \quad J_{q'} = \int_{\text{supp}\,[\Delta \varphi]} \left| \frac{\Delta \varphi}{\varphi^{1/q'}}\right|\,dx.
\]
Подставим неравенство (21.3) в правую часть (21.2), что дает

\[
\int_K v^q \varphi \, dx \leq \left\{ \int_{\text{supp } |\Delta \varphi|} v^q \varphi \, dx \right\}^{1/q} J_q^{1/q'} \left(\int_{\text{supp } |\Delta \varphi|} v^q \varphi \, dx \right)^{1/p} J_p^{1/p'} = \left(\int_{\text{supp } |\Delta \varphi|} v^q \varphi \, dx \right)^{1/qp} J_q^{1/qp'} J_p^{1/qp'}. \tag{21.4}
\]

Далее используем неравенство Юнга:

\[
\int_K v^q \varphi \, dx \leq \varepsilon \int_{\text{supp } |\Delta \varphi|} v^q \varphi \, dx + \frac{1}{\varepsilon^{1/(pq-1)}} \left(J_q^{1/qp'} J_p^{1/qp'q} \right)^{pq/(pq-1)},
\]
откуда

\[
\int_K v^q \varphi \, dx \leq c_0 \left(J_q^{1/qp'} J_p^{1/qp'q} \right)^{pq/(pq-1)}.
\]

Аналогично подставляем неравенство (21.2) в правую часть (21.3):

\[
\int_K u^p \varphi \, dx \leq \left\{ \int_{\text{supp } |\Delta \varphi|} u^p \varphi \, dx \right\}^{1/p} J_p^{1/p'} \left(\int_{\text{supp } |\Delta \varphi|} u^p \varphi \, dx \right)^{1/q} J_q^{1/q'} = \left(\int_{\text{supp } |\Delta \varphi|} u^p \varphi \, dx \right)^{1/qp} J_p^{1/qp'} J_q^{1/qp'}, \tag{21.5}
\]
откуда по неравенству Юнга

\[
\int_K u^p \varphi \, dx \leq \varepsilon \int_{\text{supp } |\Delta \varphi|} u^p \varphi \, dx + \frac{1}{\varepsilon^{1/(pq-1)}} \left(J_p^{1/qp'} J_q^{1/qp'q} \right)^{pq/(pq-1)},
\]
так что

\[
\int_K u^p \varphi \, dx \leq c_0 \left(J_p^{1/qp'} J_q^{1/qp'q} \right)^{pq/(pq-1)}.
\]

При \(\varphi = \varphi_\rho \), где \(\varphi_\rho \) определяется по формуле (11.8) с \(s = s_* \), для \(J_p' \) и \(J_q' \) согласно лемме 11.3 имеем

\[
J_p' \leq \frac{C}{\rho^{2p'-s_*-N}} = \frac{C}{\rho^{2q'-s_*-2}}, \quad J_q' \leq \frac{C}{\rho^{2q'-s_*-N}} = \frac{C}{\rho^{2q'-s^*-2}}.
\]

Подставим эти оценки в полученные выше неравенства. Тогда

\[
\int_{K \cap \{0 < r < \rho\}} v^q \varphi \, dx \leq \int_K v^q \varphi_\rho \, dx \leq \frac{c}{\rho^{k_1q/(pq-1)}}, \tag{21.6}
\]

\[
\int_{K \cap \{0 < r < \rho\}} u^p \varphi \, dx \leq \int_K u^p \varphi_\rho \, dx \leq \frac{c}{\rho^{k_2p/(pq-1)}},
\]
где

\[
k_1 = \frac{2q' - s^* - 2}{q'} + (2p' - s^* - 2)(p - 1), \quad k_2 = \frac{2p' - s^* - 2}{p'} + (2q' - s^* - 2)(q - 1),
\]
\(c \) не зависит от \(\rho \).

Соотношения (21.4)–(21.6) полностью аналогичны соответствующим оценкам для случая одного неравенства.
Глава 2. СИСТЕМЫ СТАЦИОНАРНЫХ НЕРАВЕНСТВ

Следовательно, из оценок (21.6) при \(\rho \to \infty \) вытекает, что если \(k_1 \geq 0 \), то \(v(x) \equiv 0 \), если же \(k_2 \geq 0 \), то \(u(x) \equiv 0 \). Заметим, что если хотя бы одна из функций \(u(x) \) или \(v(x) \) тождественно равна нулю, то равна нулю и другая. Действительно, если \(v(x) \equiv 0 \), то второе неравенство в определении обобщенного решения примет вид

\[
0 \geq \int_k u^p \varphi \, dx,
\]

откуда \(u(x) \equiv 0 \), и наоборот.

Таким образом, условие отсутствия нетривиального неотрицательного решения задачи (21.1) имеет вид

\[
\max\{k_1, k_2\} \geq 0.
\]

После упрощения приходим к условию из формулировки

\[
\max\{\gamma_1, \gamma_2\} \geq \frac{s^*}{2}.
\]

Теорема доказана. \(\square \)

Сравним теорему 21.1 и теорему 11.1. Пусть в задаче (21.1) \(q = p \). Тогда

\[
\gamma_1 = \gamma_2 = \frac{q + 1}{q^2 - 1} = \frac{1}{q - 1}
\]

и условие отсутствия нетривиальных решений теоремы 21.1 принимает вид

\[
\frac{1}{q - 1} \geq \frac{s^*}{2},
\]

t.e. \(q \leq 1 + \frac{2}{s} \), что совпадает с аналогичным условием теоремы 11.1.

Точность результата теоремы 21.1 покажем на примере функций

\[
u(r, \omega) = \frac{\varepsilon_1}{(1 + r^2)^{\gamma_1}} \Phi(\omega), \quad v(r, \omega) = \frac{\varepsilon_2}{(1 + r^2)^{\gamma_2}} \Phi(\omega),
\]

где \(\gamma_1 \) и \(\gamma_2 \) определены в формулировке теоремы 21.1, \(\varepsilon_1(q, p), \varepsilon_2(q, p) > 0 \) малы.

По аналогии с леммой 11.1 имеем

\[
-\Delta u = \frac{\varepsilon_1 \Phi(\omega)}{(1 + r^2)^{\gamma_1+1}} \left\{ 2\gamma_1 N - 4\gamma_1(\gamma_1 + 1) \frac{r^2}{1 + r^2} + \lambda \frac{1 + r^2}{r^2} \right\} \geq \frac{\varepsilon_1 \Phi(\omega)}{(1 + r^2)^{\gamma_1+1}} \delta_1(q, p),
\]

\[
-\Delta v = \frac{\varepsilon_2 \Phi(\omega)}{(1 + r^2)^{\gamma_2+1}} \left\{ 2\gamma_2 N - 4\gamma_2(\gamma_2 + 1) \frac{r^2}{1 + r^2} + \lambda \frac{1 + r^2}{r^2} \right\} \geq \frac{\varepsilon_2 \Phi(\omega)}{(1 + r^2)^{\gamma_2+1}} \delta_2(q, p),
\]

где \(\delta_1(q, p) > 0 \), \(\delta_2(q, p) > 0 \), если \(\gamma_1 < s^{*}/2 \) и \(\gamma_2 < s^{*}/2 \), поскольку в этом случае выражения в фигурных скобках равномерно по \(r > 0 \) положительны.

Далее, поскольку \(\gamma_1 + 1 = \gamma_2 q \) и \(\gamma_2 + 1 = \gamma_1 p \), а также учитывая неравенства \(\Phi(\omega) \geq \Phi^*(\omega) \) и \(\Phi(\omega) \geq \Phi^p(\omega) \), получаем

\[
-\Delta u \geq \frac{\varepsilon_1}{(1 + r^2)^{\gamma_2 q}} \Phi^p(\omega) \delta_1(q, p) = u^q, \quad -\Delta v \geq \frac{\varepsilon_2}{(1 + r^2)^{\gamma_1 p}} \Phi^p(\omega) \delta_2(q, p) = u^p,
\]

если \(\varepsilon_1 = \delta_1^{1/(q-1)}(q, p), \varepsilon_2 = \delta_2^{1/(p-1)}(q, p) \).
Таким образом, пара заданных так функций $u(x)$ и $v(x)$ является решением задачи (21.1), если $\gamma_1 < s^*/2$ и $\gamma_2 < s^*/2$, т.e.

$$\max\{\gamma_1, \gamma_2\} < \frac{s^*}{2}.$$

Аналогичные результаты можно получить и для общих систем с переменными коэффициентами в конической области (под конической областью K_R, $R > 0$, понимается область $\{x \in K : \|x\| > R\}$ с полной границей ∂K_R). Сформулируем без доказательства общий результат, не вдаваясь в анализ различных частных случаев.

Рассмотрим систему

$$
\begin{aligned}
- \text{div}(|x|^\alpha_1 Du) &\geq |x|^\beta_1 v_1, & x &\in K_R, \\
- \text{div}(|x|^\alpha_2 Dv) &\geq |x|^\beta_2 v_2, & x &\in K_R, \\
u &\geq 0, u \neq 0, & x &\in K_R, \\
v &\geq 0, v \neq 0, & x &\in K_R,
\end{aligned}
$$

где $\beta_1 - \alpha_1 + 2 > 0$, $\beta_2 - \alpha_2 + 2 > 0$. Введем параметры

$$\sigma_1 = 2 + \beta_1 - \alpha_1 + s^*_{\alpha_1}, \quad \sigma_2 = 2 + \beta_2 - \alpha_2 + s^*_{\alpha_2}.$$

Теорема 21.2. Задача (21.7) не имеет глобального нетривиального неотрицательного слабого решения (u,v) из класса непрерывных функций $C(K_R) \times C(K_R)$, если

$$\max\{k_1, k_2\} \geq 0,$$

где

$$k_1 = (\sigma_1 - s^*_{\alpha_1})q_1 - (\sigma_2 - \beta_2 + \beta_1)(q_1 - 1) + (\sigma_2 - s^*_{\alpha_2})q_2q_1 - (\sigma_1 - \beta_1 + \beta_2)(q_2 - 1)q_1,$$

$$k_2 = (\sigma_2 - s^*_{\alpha_2})q_2 - (\sigma_1 - \beta_1 + \beta_2)(q_2 - 1) + (\sigma_1 - s^*_{\alpha_1})q_1q_2 - (\sigma_2 - \beta_2 + \beta_1)(q_1 - 1)q_2,$$

$s^*_{\alpha_1}, s^*_{\alpha_2}$ определяются формулой (11.13) с $\alpha = \alpha_1$ и $\alpha = \alpha_2$ соответственно. □

Приведенные в этом разделе результаты получены Г.Г. Лаптевым [214, 217] с использованием метода пробных функций.

22. ТЕОРЕМЫ ОТСУТСТВИЯ РЕШЕНИЙ ДЛЯ СИСТЕМ КВАЗИЛИНЕЙНЫХ ЭЛАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

В этом разделе мы докажем некоторые теоремы несуществования решений для систем квазилинейных дифференциальных уравнений. В последнее время уже были получены [140, 139, 222, 224] некоторые результаты, касающиеся отсутствия положительных радиальных решений у таких систем (см. по поводу полулинейных потенциальных систем [147], по поводу гамильтоновых эллиптических систем [138, 63]). Наша цель — показать, что эти результаты верны и без предположения о радиальности решений.

Далее в качестве функционального класса решений мы рассматриваем тот же класс, что и в разд. 12. Начнем с классической задачи (см. [47, 163, 164]).

Теорема 22.1. Пусть $N > p$, $q > 1$ и, кроме того, $q - 1 < q_1$, $p - 1 < p_1$.

Если

$$\max\left\{\frac{qq_1 + p(q_1 - 1)}{p_1q_1 - (p - 1)(q_1 - 1)} - \frac{N - p}{p - 1}, \frac{pp_1 + q(p_1 - 1)}{p_1q_1 - (p - 1)(q_1 - 1)} - \frac{N - q}{q - 1}\right\} \geq 0,$$

(22.1) ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Доказательство. Предположим, что \((u, v) \in W^{1,p}_{\text{loc}}(\mathbb{R}^N) \times W^{1,q}_{\text{loc}}(\mathbb{R}^N)\) — решение задачи (22.2). Без потери общности мы можем предположить, что \(u > 0\) и \(v > 0\) в \(\mathbb{R}^N\). Пусть \(\varphi \in C^1_0(\mathbb{R}^N)\) — стандартная неотрицательная срезающая функция и \(\alpha < 0\) — вообще говоря, достаточно малое число, они будут точно определены позже. Умножим первое и второе уравнения (22.2) на \(u^\alpha\varphi\) и \(v^\alpha\varphi\) соответственно и интегрируя по частям, находим

\[
\int_{\mathbb{R}^N} u^p v^\alpha \varphi\, dx + c_\varepsilon^p \int_{\mathbb{R}^N} |Du|^p u^\alpha - 1 \varphi\, dx \leq c_\varepsilon^p \int_{\mathbb{R}^N} \frac{|D\varphi|^p}{\varphi^\alpha} u^\alpha + 1\, dx, \tag{22.3}
\]

где константы \(c_\varepsilon^p, c_\varepsilon^q, d_\varepsilon^p > 0\) зависят только от \(\alpha, p, q\) и \(\varepsilon > 0\). Теперь умножим (22.2) на \(\varphi\), пронтегрируем по частям и примем неравенство Гельдера:

\[
\int_{\mathbb{R}^N} u^p v^\alpha \varphi\, dx \leq \left(\int_{\mathbb{R}^N} |Du|^p u^\alpha - 1 \varphi\, dx \right)^\frac{p-1}{p} \left(\int_{\mathbb{R}^N} \frac{|D\varphi|^p}{\varphi^\alpha} u^\alpha + 1\, dx \right)^\frac{1}{p}, \tag{22.5}
\]

\[
\int_{\mathbb{R}^N} u^p v^\alpha \varphi\, dx \leq \left(\int_{\mathbb{R}^N} |Du|^p u^\alpha - 1 \varphi\, dx \right)^\frac{q-1}{q} \left(\int_{\mathbb{R}^N} \frac{|D\varphi|^q}{\varphi^\alpha} v^\alpha + 1\, dx \right)^\frac{1}{q}. \tag{22.6}
\]

С помощью (22.3) и (22.4) из последних оценок находим

\[
\int_{\mathbb{R}^N} u^p v^\alpha \varphi\, dx \leq D_\varepsilon \left(\int_{\mathbb{R}^N} |D\varphi|^p \varphi^{\alpha + p - 1}\, dx \right)^\frac{p-1}{p} \left(\int_{\mathbb{R}^N} \frac{|D\varphi|^p}{\varphi^\alpha} u^\alpha + 1\, dx \right)^\frac{1}{p}, \tag{22.7}
\]

\[
\int_{\mathbb{R}^N} u^p v^\alpha \varphi\, dx \leq E_\varepsilon \left(\int_{\mathbb{R}^N} |D\varphi|^q \varphi^{\alpha + q - 1}\, dx \right)^\frac{q-1}{q} \left(\int_{\mathbb{R}^N} \frac{|D\varphi|^q}{\varphi^\alpha} v^\alpha + 1\, dx \right)^\frac{1}{q}, \tag{22.8}
\]

где \(E_\varepsilon, D_\varepsilon > 0\) зависят только от \(p, q, \alpha\) и \(\varepsilon > 0\). Теперь примем неравенство Гельдера с параметрами \(a, a'\) к первому интегралу в правой части (22.7):

\[
\left(\int_{\mathbb{R}^N} |D\varphi|^p \varphi^{\alpha + p - 1}\, dx \right)^\frac{p-1}{p} \leq \left(\int_{\mathbb{R}^N} u^{(\alpha + p - 1)a}\, dx \right)^\frac{p-1}{pa} \left(\int_{\mathbb{R}^N} \frac{|D\varphi|^p}{\varphi^{\alpha + p - 1}} v^{a + 1}\, dx \right)^\frac{p-1}{pa}, \tag{22.9}
\]

с \(\frac{1}{a} + \frac{1}{a'} = 1\). Выберем \(a\) так, чтобы

\[(\alpha + p - 1)a = p_1,
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
точно из (22.7) имеем

\[\int v^{q_1} \varphi \, dx \leq D_\varepsilon \left(\int u^{p_1} \varphi \, dx \right)^{\frac{p_1}{p_1-1}} \left(\int \frac{|D\varphi|^{p_1'} |\varphi|_{p_1'-1}}{\varphi_{p_1'-1}} \, dx \right)^{\frac{p_1-1}{p_1'}} \left(\int \frac{|D\varphi|^{p_1} |\varphi|_{p_1-1}}{\varphi_{p_1-1}} \, dx \right)^{\frac{1}{p_1}}, \tag{22.10} \]

Повторяя эту процедуру с параметрами \(y, y' \geq 1 \) для третьего интеграла в (22.10), получаем

\[\int \frac{|D\varphi|^{p_1} u^{(1-\alpha)(p-1)} \, dx}{\varphi_{p_1-1}} \leq \left(\int u^{y(1-\alpha)(p-1)} \varphi \, dx \right)^{\frac{1}{p_1}} \left(\int \frac{|D\varphi|^{p_1'} |\varphi|_{p_1'-1}}{\varphi_{p_1'-1}} \, dx \right)^{\frac{1}{p_1'}}, \tag{22.11} \]

где \(\frac{1}{y} + \frac{1}{y'} = 1 \). Полагая \((1-\alpha)(p-1)y = p_1 \) в (22.11) и учитывая (22.10), заключаем, что

\[\int v^{q_1} \varphi \, dx \leq D_\varepsilon \left(\int u^{p_1} \varphi \, dx \right)^{\frac{1}{p_1}} \left(\int \frac{|D\varphi|^{p_1'} |\varphi|_{p_1'-1}}{\varphi_{p_1'-1}} \, dx \right)^{\frac{1}{p_1'}}, \tag{22.12} \]

t.e.

\[\int v^{q_1} \varphi \, dx \leq D_\varepsilon \left(\int u^{p_1} \varphi \, dx \right)^{\frac{1}{p_1}} \left(\int \frac{|D\varphi|^{p_1'} |\varphi|_{p_1'-1}}{\varphi_{p_1'-1}} \, dx \right)^{\frac{1}{p_1'}}, \tag{22.13} \]

где параметры \(a, y \) выбраны из условий

\[\begin{cases}
\frac{1}{y} + \frac{1}{y'} = 1, & (1-\alpha)(p-1)y = p_1, \\
\frac{1}{a} + \frac{1}{a'} = 1, & (\alpha + p - 1)a = p_1.
\end{cases} \tag{22.14} \]

Отметим, что такой выбор \(a \) и \(y \) возможен в силу предположения \(q - 1 < q_1, p - 1 < p_1 \) при малых \(\alpha < 0 \). Введем новые параметры \(b \) и \(\varkappa \) такие, что

\[\begin{cases}
\frac{1}{\varkappa} + \frac{1}{\varkappa'} = 1, & (1-\alpha)(q-1)\varkappa = q_1, \\
\frac{1}{b} + \frac{1}{b'} = 1, & (\alpha + q - 1)b = q_1,
\end{cases} \tag{22.15} \]

и оценим левую часть (22.8) (используя тот же метод, что и выше):

\[\int u^{p_1} \varphi \, dx \leq E_\varepsilon \left(\int v^{q_1} \varphi \, dx \right)^{\frac{q_1-1}{q_1'} + \frac{1}{q_1'}} \left(\int \frac{|D\varphi|^{q_1'} |\varphi|_{q_1'-1}}{\varphi_{q_1'-1}} \, dx \right)^{\frac{q_1-1}{q_1'}}, \tag{22.16} \]
Глава 2. СИСТЕМЫ СТАЦИОНАРНЫХ НЕРАВЕНСТВ

Объединяя (22.13) и (22.16), приходим к следующим неравенствам:

\[
\left(\int_{\mathbb{R}^N} u^{q_1} \varphi \, dx \right)^{1-mn} \leq D_{\varepsilon} E_\varepsilon^{\nu}\left(\int_{\mathbb{R}^N} \frac{|D\varphi|^{q_1'}}{\varphi^{q_1'}-1} \, dx \right)^{\frac{m}{p_1}} \left(\int_{\mathbb{R}^N} \frac{|D\varphi|^{q_2'}}{\varphi^{q_2'}-1} \, dx \right)^{\frac{m}{q_2'}} \times \]

и

\[
\left(\int_{\mathbb{R}^N} u^{p_1} \varphi \, dx \right)^{1-mn} \leq E_\varepsilon D_\varepsilon^\nu\left(\int_{\mathbb{R}^N} \frac{|D\varphi|^{p_1'}}{\varphi^{p_1'}-1} \, dx \right)^{\frac{m}{p_1}} \left(\int_{\mathbb{R}^N} \frac{|D\varphi|^{p_2'}}{\varphi^{p_2'}-1} \, dx \right)^{\frac{m}{p_2'}} \times \]

\[
\left(\int_{\mathbb{R}^N} \frac{|D\varphi|^{q_1'}}{\varphi^{q_1'}-1} \, dx \right)^{\frac{q_1-1}{q_1'}} \left(\int_{\mathbb{R}^N} \frac{|D\varphi|^{q_2'}}{\varphi^{q_2'}-1} \, dx \right)^{\frac{q_2-1}{q_2'}} , \]

где

\[
\sigma_1 = n \left\{ \frac{N - q_1 b'}{q_1'} + \frac{N - q_2'}{q_2'} \right\} + \frac{N - p_1 a'}{p_1 a'} (p - 1) + \frac{N - p_2 a'}{p_2 a'} ,
\]

\[
\sigma_2 = m \left\{ \frac{N - p_1 a'}{p_1 a'} + \frac{N - p_2 a'}{p_2 a'} \right\} + \frac{N - q_1 b'}{q_1 b'} (q - 1) + \frac{N - q_2 b'}{q_2 b'} .
\]

Выбор параметров (22.14), (22.15) дает нам явные значения \(\sigma_1 \) и \(\sigma_2 \):

\[
\sigma_1 = \sigma_v := N - p - (p - 1) \left\{ \frac{p(q - 1) + q_1}{p_1 q_1 - (p - 1)(q - 1)} \right\} ,
\]

\[
\sigma_2 = \sigma_u := N - q - (q - 1) \left\{ \frac{q(p - 1) + p_1}{p_1 q_1 - (p - 1)(q - 1)} \right\} .
\]
Теперь выполнено это противоречит предположению \(v > 0 \) в \(\mathbb{R}^N \), и таким образом теорема доказана, если выполнено (22.23). В случае, когда в (22.23) максимум \(\frac{q(p-1)+pp_1}{p_1q_1-(p-1)(q-1)} \frac{N-q}{q-1} > 0 \), доказательство аналогично, так что мы опускаем его.

Рассмотрим теперь критический случай

\[
\frac{p(q-1) + q q_1}{p_1 q_1 - (p-1)(q-1)} - \frac{N-p}{p-1} = 0
\]

(случай \(\frac{q(p-1)+pp_1}{p_1q_1-(p-1)(q-1)} - \frac{N-q}{q-1} = 0 \) не имеет принципиальных отличий).

За счет выбора функции \(\varphi \in C_0^1(\mathbb{R}^N) \) имеем

\[
\int_{B_R} v^q_1 \varphi \, dx \leq \int_{B_{2R}} v^q_1 \varphi \, dx \leq \left(\int_{|x|<2R} |Du|^p u^{(1-n)(p-1)} \frac{D\varphi}{\varphi^{q-1}} \, dx \right)^{\frac{p-1}{p}} \left(\frac{p-1}{p} \int_{B_{2R}} u^{(1-n)(p-1)} |D\varphi|^{q-1} \, dx \right)^{\frac{1}{p}}
\]

и, рассуждая, как и в первой части доказательства, заключаем, что

\[
\int_{B_R} v^q_1 \, dx \leq \tilde{C} \left(\int_{|x|<2R} v^q_1 \, dx \right)^{mn} R^{\sigma_v}.
\]

Теперь, так как \(\sigma_v = \sigma_1 = 0 \), из первого неравенства (22.21) следует

\[
\int_{\mathbb{R}^N} v^q_1 \, dx < \infty.
\]

Отсюда вытекает, что правая часть (22.26) стремится к нулю при \(R \to \infty \), откуда

\[
\int_{\mathbb{R}^N} v^q_1 \, dx = 0.
\]

Это противоречие завершает доказательство. \(\square \)

Замечание 22.1. Теорема 22.1 точна, т.е. если

\[
\max \left\{ \frac{q q_1 + p(p-1)}{p_1q_1 - (p-1)(q-1)} - \frac{N-p}{p-1}, \frac{p p_1 + q(p-1)}{p_1q_1 - (p-1)(q-1)} - \frac{N-q}{q-1} \right\} < 0,
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
то (22.2) имеет положительное решение. Покажем это, огра ничившись для простоты случаем $p = q$. Для $\varepsilon > 0$ и $x \in \mathbb{R}^N$ определим u и v как

$$ u(x) := \varepsilon \left(1 + |x|^p \right)^{\left(1-p\right)p_1 + \frac{1}{p_1 - (p-1)\varepsilon}}, \quad v(x) := \varepsilon \left(1 + |x|^p \right)^{\left(1-p\right)p_1 + \frac{1}{p_1 - (p-1)\varepsilon}}. $$

Легко видеть, что если

$$\varepsilon < \min \left\{ \frac{p_1 - 1}{p_1 - (p-1)\varepsilon}(q_1 + p - 1) - \frac{1}{p_1 - (p-1)\varepsilon} \right\},$$

то (u, v) — положительное решение (22.2), причем $u, v \in C^2(\mathbb{R}^N \setminus \{0\}) \cap C^1(\mathbb{R}^N)$. Мы оставляем заинтересованному читателю проверку того, что, немного изменяя определение (u, v) выше, можно получить явную формулу для решения в случае $p \neq q$, что доказывает точность теоремы 22.1.

Замечание 22.2. В работе Каристи [40] доказано, что теорема 22.1 справедлива в предположениях

$$p_1 q_1 > (p-1)(q-1)$$

и (22.1).

Предположение (22.27) есть естественное определение "супероднородности" для системы (22.2) (см. также [46]). Случай $0 < p_1 q_1 \leq (p-1)(q-1)$ рассматривался в [40], и было доказано, что задача (22.2) не имеет решения без всех дополнительных предположений типа (22.1).

Следующий результат легко вывести из теорем 12.1 и 22.1.

Теорема 22.2. Пусть $p, q > 1, p_1, p_2, q_1, q_2 > 0$ и выполнено одно из следующих условий:

i) $p - 1 < q_2, p_1, \quad q - 1 < p_2, q_1, \quad N > \max\{p, q\},$

$$\max \left\{ \frac{p}{q_2 - p + 1} - \frac{N - p}{p - 1}, \frac{qq_1 + p(q-1)}{p_1 q_1 - (p-1)(q-1)} - \frac{N - p}{p - 1}, \right\} \geq 0;$$

$$\frac{q}{p_2 - q + 1} - \frac{N - q}{q - 1}, \frac{pp_1 + q(p-1)}{p_1 q_1 - (p-1)(q-1)} - \frac{N - q}{q - 1} \geq 0;$$

ii) $0 < q_2 \leq p - 1, \quad 0 < p_2 \leq q - 1, \quad N \geq 1.$

Тогда задача

$$\begin{cases}
- \text{div}(|Du|^{p-2}Du) \geq u^{q_2} + v^{q_1}, & x \in \mathbb{R}^N, \\
- \text{div}(|Dv|^{q-2}Dv) \geq u^{p_1} + v^{p_2}, & x \in \mathbb{R}^N,
\end{cases}$$

$$u \geq 0, \quad u \neq 0, \quad x \in \mathbb{R}^N,\quad (22.28)$$

не имеет решения $(u, v) \in W^{1,p}_\text{loc}(\mathbb{R}^N) \times W^{1,q}_\text{loc}(\mathbb{R}^N)$. \(\square\)
Замечание 22.3. Результаты, подобные теореме 22.2, можно получить, если заменить (p,q)-лапласиан на дифференциальный опператор, который подчиняется условию (12.22).

Мы также можем взять правую часть (22.28) в виде

$$f(x,u,v) = |x|^p u^a + |x|^q v^q, \quad g(x,u,v) = |x|^p u^p + |x|^q v^q,$$

где $\sigma_1, \sigma_2, \alpha, \alpha_2 \in \mathbb{R}$ и q_1, q_2, p_1, p_2 удовлетворяют некоторому подходящему алгебраическому условию. Результаты такого типа доказаны в [140, 139] в радикальном случае.

Кроме того, тот же метод, который мы использовали при доказательстве теоремы 22.1, может быть применен при исследовании систем квазилинейных эллиптических неравенств с более чем двумя неизвестными. При этом системы могут содержать дифференциальные операторы, удовлетворяющие условию (12.22) или (12.24). Ясно, однако, что в этом случае алгебраическое условие на параметры, N и порядок роста нелинейности, гарантирующее отсутствие положительных решений, становится чрезвычайно сложным.

Рассмотрим один пример в этом направлении.

Теорема 22.3. Пусть $N > \max\{p, 2\}, p > 1$, A и B порождают оператор типа p-лапласиана (см. (12.22)) и оператор типа средней кривизны соответственно. Если $p - 1 < q_2, p_1, 1 < p_2, q_1$ и

$$\max\left\{\frac{p}{q_2 - p + 1} - \frac{N - p}{p - 1}, \frac{2q_1 + 1}{p_1q_1 - p + 1} - \frac{N - p}{p - 1}, \frac{2}{p_2 - 1} - N - 2, \frac{pp_1 + p - 1}{p_1q_1 - p + 1} - N - 2\right\} \geq 0,$$

то задача

$$\begin{cases}
- \text{div}(A(x,u,Du)Du) \geq u^a + v^q, & x \in \mathbb{R}^N, \\
- \text{div}(B(|Du|)Du) \geq u^p + v^p, & x \in \mathbb{R}^N, \\
|u| \geq 0, & u \neq 0, \\
v \geq 0, & v \neq 0,
\end{cases} \quad (22.29)$$

не имеет решения $(u,v) \in W^{1,p}_{\text{loc}}(\mathbb{R}^N) \times W^{1,2}_{\text{loc}}(\mathbb{R}^N).$ \hfill \Box

23. ОТСУТСТВИЕ ПОЛОЖИТЕЛЬНЫХ РЕШЕНИЙ ДЛЯ ОДНОГО КЛАССА СЛАБО СВЯЗАННЫХ СИСТЕМ

Наш основной результат в этом разделе — векторнозначный аналог теоремы 13.1. Сначала введем некоторые предположения, объясняющие значение термина “слабая связь”. Как обычно, через \mathbb{R}_+ обозначим множество неотрицательных действительных чисел.

(i) Пусть $N > 1$, $A_i, B_i : \mathbb{R}^N \times \mathbb{R}_{+}^N \times (\mathbb{R}_N)^2 \to \mathbb{R}_+$, $i = 1, \ldots, N$, — картиодоровы функции.

(ii) Пусть $f, g : \mathbb{R}^N \times \mathbb{R}_{+}^N \times (\mathbb{R}_N)^2 \to \mathbb{R}_+$ — картиодоровы функции.

(iii) Пусть задано $\gamma > 2$, $\gamma \geq N$, и существует $\alpha, \beta < 0$ (малые) и $C_{\alpha,\beta} > 0$ такие, что для всех $(x, u, \xi), (x, v, \eta) \in (\mathbb{R}^N \times \mathbb{R}_{+}^N \times (\mathbb{R}_N)^2)$ имеем

$$\left(u^{\alpha+1}A_0(x,u,v,\xi,\eta) + v^{\beta+1}B_0(x,u,v,\xi,\eta)\right)^{\gamma/\gamma-}\leq C_{\alpha,\beta}(u^{\alpha-1}A(x,u,v,\xi,\eta) + v^{\beta-1}B(x,u,v,\xi,\eta) + u^{\alpha}f(x,u,v,\xi,\eta) + v^{\beta}g(x,u,v,\xi,\eta)),$$ \quad (23.1)
где

\[A_0(x, u, v, \xi, \eta) := \sum_{i=1}^{N} A_i(x, u, v, \xi, \eta), \quad (23.2) \]

\[A(x, u, v, \xi, \eta) := \sum_{i=1}^{N} A_i(x, u, v, \xi, \eta) \xi_i^2, \quad (23.3) \]

и \(B_0, B \) определяются аналогично.

Мы будем рассматривать следующий класс функций \((u, v) : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}_+ \) (конечно, как и ранее, этот класс зависит от параметров \(\alpha \) и \(\beta \)):

\[X_{\alpha, \beta}^{AB} = \left\{ (u, v) : A(x, u, v, Du, Dv)u^{\alpha-1} \in L^1_{\text{loc}}(\mathbb{R}^N), B(x, u, v, Du, Dv)v^{\beta-1} \in L^1_{\text{loc}}(\mathbb{R}^N) \right\}, \]

причем \(D_i u \) и \(D_i v, i = 1, \ldots, N \), понимаются в смысле распределений,

\[X_{\alpha, \beta}^{f,g} = \left\{ (u, v) \in X_{\alpha, \beta}^{AB} : f(x, u, v, Du, Dv)u^{\alpha} + g(x, u, v, Du, Dv)v^{\beta} \in L^1_{\text{loc}}(\mathbb{R}^N) \right\}. \]

Теорема 23.1. Пусть выполнены предположения (i)–(iii), и пусть, кроме того, для всех \((x, u, v, \xi, \eta) \in \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}^N \times \mathbb{R}^N\)

\[u^{\alpha-1}A(x, u, v, \xi, \eta) + v^{\beta-1}B(x, u, v, \xi, \eta) + u^\alpha f(x, u, v, \xi, \eta) + v^\beta g(x, u, v, \xi, \eta) = 0 \Rightarrow u \equiv v \equiv 0. \quad (23.4) \]

Тогда задача

\[\begin{align*}
-\sum_{i=1}^{N} D_i(A_i(x, u, v, Du, Dv)D_i u) & \geq f(x, u, v, Du, Dv), \quad x \in \mathbb{R}^N, \\
-\sum_{i=1}^{N} D_i(B_i(x, u, v, Du, Dv)D_i v) & \geq g(x, u, v, Du, Dv), \quad x \in \mathbb{R}^N, \\
u \geq 0, \quad v \geq 0, \quad u \neq 0, \quad v \neq 0, \quad x \in \mathbb{R}^N, \end{align*} \quad (23.5) \]

не имеет решения в классе \(X_{\alpha, \beta}^{f,g} \).

Доказательство. Как обычно, предположим, что \((u, v)\) — положительное решение задачи (23.5), и придем к противоречию. За счет регуляризации мы можем ограничиться рассмотрением только положительных решений. Рассуждая так же, как в доказательстве теоремы 13.1, получаем

\[\int_{\mathbb{R}^N} (fu^\alpha + gv^\beta) \varphi dx + |\alpha| \int_{\mathbb{R}^N} Au^{\alpha-1} \varphi dx + |\beta| \int_{\mathbb{R}^N} Bu^{\beta-1} \varphi dx \leq \]

\[\leq \sum_{i=1}^{N} \int_{\mathbb{R}^N} A_i(x, u, v, Du, Dv)D_i u D_i \varphi u^\alpha dx + \sum_{i=1}^{N} \int_{\mathbb{R}^N} B_i(x, u, v, Du, Dv)D_i v D_i \varphi v^\beta dx. \quad (23.6) \]
Оценим правую часть (23.6):

\[
\sum_{i=1}^{N} A_i (x, u, v, Du, Dv) D_i u D_i \varphi u^a \, dx + \sum_{i=1}^{N} B_i (x, u, v, Du, Dv) D_i v D_i \varphi v^\beta \, dx \leq \\
\leq \frac{1}{2} \sum_{i=1}^{N} A_i (x, u, v, Du, Dv) |D_i u|^2 u^{a-1} \varphi \, dx + \frac{1}{2} \sum_{i=1}^{N} A_i (x, u, v, Du, Dv) u^{a+1} |D\varphi|^2 \varphi \, dx + \\
+ \frac{1}{2} \sum_{i=1}^{N} B_i (x, u, v, Du, Dv) |D_i v|^2 v^{\beta-1} \varphi \, dx + \frac{1}{2} \sum_{i=1}^{N} B_i (x, u, v, Du, Dv) v^{\beta+1} |D\varphi|^2 \varphi \, dx.
\]

(23.7)

Далее, применяя неравенство Юнга, имеем

\[
(A_0 u^{a+1} + B_0 v^{\beta+1}) |D\varphi|^2 \leq \frac{\gamma - 2}{\gamma} C_1 (A_0 u^{a+1} + B_0 v^{\beta+1}) \frac{\gamma}{2} \varphi + \frac{2}{\gamma} \frac{\gamma}{2} |D\varphi|^{\gamma} \varphi^{-1},
\]

(23.8)

где $C_1 > 0$ — произвольная константа.

Теперь, полагая $\delta := \min \{|\alpha|, |\beta|, 2\}$ и выбирая подходящим образом $C_1 > 0$, мы из (23.1), (23.6)–(23.8) получаем

\[
\frac{\delta}{4} \int_{\mathbb{R}^N} (A u^{a-1} + B v^{\beta-1} + u^a f + v^\beta g) \, dx \leq \frac{2}{\gamma} C_1 \frac{\gamma}{2} \int_{\mathbb{R}^N} |D\varphi|^{\gamma} \varphi^{-1} \, dx.
\]

(23.9)

Оставшиеся шаги с учетом предположения (23.4) полностью повторяют доказательство теоремы 13.1. Теорема доказана. □

Следующие примеры иллюстрируют доказанную нами теорему.

Пример 23.1. Рассмотрим задачу

\[
\left\{
\begin{array}{ll}
-\Delta u \geq u^q - au^{q-1} = f(x, u, v), & x \in \mathbb{R}^N, \\
-\Delta v \geq v^q - av^{q-1} = g(x, u, v), & x \in \mathbb{R}^N, \\
u \geq 0, & v \geq 0, & u \neq 0, & v \neq 0, & x \in \mathbb{R}^N,
\end{array}
\right.
\]

(23.10)

где $q > 0$, $a > 0$ и $N \geq 1$. В прежних обозначениях имеем

\[
A_0 = N, \quad A = |\xi|^2, \quad B_0 = N, \quad B = |\eta|^2.
\]

(23.11)

Чтобы применить теорему 23.1, мы должны проверить неравенство (23.1) в этом случае. Другими словами, мы должны показать, что существует $C_{\alpha, \beta} > 0$ такое, что для всех достаточно малых $\alpha, \beta < 0$ выполнено

\[
(u^{a+1} A_0 + v^{\beta+1} B_0)^{\frac{\gamma}{\gamma - 2}} \leq C_{\alpha, \beta} \left\{ u^{a-1} A + v^{\beta-1} B + u^a f(x, u, v) + v^\beta g(x, u, v) \right\}
\]

(23.12)

при $2 \leq \gamma \leq N$. С учетом (23.10) и $\alpha = \beta < 0$ неравенство (23.12) принимает форму

\[
N^\frac{\gamma}{\gamma - 2} (u^{a+1} + v^{\beta+1})^{\frac{\gamma}{\gamma - 2}} \leq C_{\alpha, \beta} \left\{ u^{a-1} |\xi|^2 + v^{a-1} |\eta|^2 + u^{q+a} + v^{q+\beta} - au^{a+1} v^{q-1} - av^{a+1} u^{q-1} \right\}.
\]

(23.13)
Применяя неравенство Юнга, получаем

\[au^{\alpha+1}v^{q-1} \leq \frac{1}{2}u^{q+\alpha} + k_u v^{q+\alpha} , \quad av^{\alpha+1}u^{q-1} \leq \frac{1}{2}v^{q+\alpha} + k_v u^{q+\alpha} , \] (23.14)

где

\[k_u = \frac{q - 1}{q + \alpha} \left(\frac{\alpha + 1}{q + \alpha} \right)^{\frac{\alpha + 1}{q + \alpha}} , \] (23.15)

и \(\alpha \in (-1, 0) \).

Пусть \(\gamma = N > 2 \), рассмотрим следующее неравенство:

\[(u^{\alpha+1} + v^{\alpha+1})^{\frac{N}{N-2}} \leq C \left(\frac{1}{2}u^{q+\alpha} + \frac{1}{2}v^{q+\alpha} - k_u u^{q+\alpha} - k_v v^{q+\alpha} \right) = C \left(\frac{1}{2} - k_a \right) \{ u^{q+\alpha} + v^{q+\alpha} \} , \] (23.16)

где \(k_a < \frac{1}{2} \).

Предположим, что (23.16) верно. Тогда (23.16) эквивалентно (с точностью до константы)

\[(u^{\alpha+1} + v^{\alpha+1})^{\frac{N}{N-2}} \leq C \{ u^{q+\alpha} + v^{q+\alpha} \} . \] (23.17)

Мы же знаем, что для \(u, v > 0 \)

\[(u^{\alpha+1} + v^{\alpha+1})^{\frac{N}{N-2}} \leq C \{ u^{(\alpha+1)\frac{N}{N-2}} + v^{(\alpha+1)\frac{N}{N-2}} \} . \] (23.18)

Следовательно, если существует \(\alpha \in (-1, 0) \) такое, что

\[q + \alpha = (\alpha + 1)\frac{N}{N-2} , \] (23.19)

то (23.17) выполнено.

Равенство (23.19), очевидно, равносильно

\[q = \frac{N}{N-2} + \alpha \frac{2}{N-2} , \] (23.20)

откуда следует, что для любого \(q \in (1, \frac{N}{N-2}) \) существует \(\alpha \in (-1, 0) \) такое, что (23.17) выполнено. В завершение проанализируем неравенство \(k_a < \frac{1}{2} \), которым мы воспользовались при получении (23.16). Это неравенство равносильно

\[\frac{q - 1}{q + \alpha} \left(\frac{\alpha + 1}{q + \alpha} \right)^{\frac{\alpha + 1}{q + \alpha}} < \frac{1}{2} , \] (23.21)

где \(a > 0 \) и (из (23.20))

\[-1 < \alpha = \frac{(N - 2)q - N}{2} < 0 . \]

Подставляя это значение \(\alpha \) в (23.21), окончательно получаем

\[\frac{2}{N} \left(\frac{N - 2}{N} \right)^{\frac{N-2}{2}} a^{\frac{N}{2}} < \frac{1}{2} \Leftrightarrow a < \frac{1}{2} \left(\frac{N - 2}{N} \right)^{\frac{N}{2}} \frac{N}{N - 2} . \]

Теперь мы можем сформулировать результат, касающийся задачи (23.10).

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Теорема 23.2. Пусть \(1 < q < \frac{N}{N-2} u \)

\[
0 < a < \frac{1}{2} \left(\frac{N-2}{N} \right) \frac{N}{N-2}.
\]
(23.22)

Тогда (23.10) не имеет положительного решения в классе \(X_{\alpha,\alpha}^{f,g} \). □

Пример 23.2. Рассмотрим задачу

\[
\begin{aligned}
-\Delta u & \geq u^q - au^{q-1} = f(x,u,v), \quad x \in \mathbb{R}^N, \\
-\Delta v & \geq v^q - au^{q-1} = g(x,u,v), \quad x \in \mathbb{R}^N, \\
u & > 0, \quad v > 0,
\end{aligned}
\]
(23.23)

где \((23.12) \).

Чтобы применить теорему 23.1, мы должны проверить условие (23.12). Это условие в нашем случае принимает вид (\(\alpha = \beta < 0 \))

\[
N\frac{q}{q-2} \left(u^{q+1} + v^{q+1} \right)^{\frac{q-2}{q}} \leq C_{\alpha,\alpha} \left(u^{q-1} \eta^2 + v^{q-1} \eta^2 + u^{q+1} + v^{q+1} - au^{q+1} - au^{q+1} \right),
\]
(23.24)

где \(\gamma > 2 \) и \(C_{\alpha,\alpha} > 0 \).

В силу неравенства Юнга имеем

\[
au^{q+1} \leq \frac{1}{2} v^{q+1} + m_a u^{q+1}, \quad au^{q+1} \leq \frac{1}{2} v^{q+1} + m_a v^{q+1},
\]
(23.25)

где

\[
m_a := \frac{q + \alpha - 1}{q + \alpha} \left(\frac{2}{q + \alpha} \right)^{\frac{1}{q+1}} a^{\frac{q+1}{q+\alpha}},
\]

и \(\alpha \in (-1, 0), \quad q + \alpha > 1 \). Тем же методом, что и в примере 23.1, можно получить следующий результат.

Теорема 23.3. Пусть \(N > 2 \) и \(1 + \frac{2}{N} < q < \frac{N}{N-2} \). Если выполнено

\[
0 < a < \left(\frac{N(q-1)}{4} \right)^{\frac{2}{N}} \left(\frac{1}{2} q - 1 - \frac{2}{N} \right)^{1-\frac{2}{N}},
\]
(23.26)

то задача (23.23) не имеет решения в классе \(X_{\alpha,\alpha}^{f,g} \). □

24. СИЛЬНО СВЯЗАННЫЕ СИСТЕМЫ

В этом разделе мы докажем отсутствие решения для систем, которые являются "сильно связанными". Точное значение сильной связи явно из следующих предположений.

(i) \(N > 1 \) и \(A : \mathbb{R}^N \times \mathbb{R}^2 \times (\mathbb{R}^2)^2 \rightarrow \mathbb{R}_+ \) — каратаеодориева функция.

(ii) \(f, g : \mathbb{R}^N_+ \times (\mathbb{R}^N)^2 \rightarrow \mathbb{R}_+ \) — каратаеодориевые функции.
Глава 2. СИСТЕМЫ СТАЦИОНАРНЫХ НЕРАВЕНСТВ

(iii) Существуют \(\gamma > 2, \gamma \geq N, \alpha, \beta < 0 \) и \(\lambda, \mu > 0 \) такие, что

\[
\lambda(\beta + 1) + \mu(\alpha + 1) = 0
\]

(24.1)

и для любых \(u, v > 0 \)

\[
\lambda v f + \mu u g \geq 0.
\]

(24.2)

(iv) Существует \(c_0 > 0 \) такое, что для всех \((x, \xi, \eta) \in (\mathbb{R}^N)^3 \) и \(u, v > 0 \) выполнено

\[
(u^{\alpha + 1}v^{\beta + 1}A) \geq c_0(\lambda v^2|\xi|^2 + \mu u^2|\eta|^2)u^{\alpha - 1}v^{\beta - 1}A + (\lambda v f + \mu u g)u^\alpha v^\beta .
\]

(24.3)

(v) Если \(u, v \geq 0, \xi, \eta \in \mathbb{R}^N \) и

\[
\left(\lambda v^2|\xi|^2 + \mu u^2|\eta|^2\right)u^{\alpha - 1}v^{\beta - 1}A + (\lambda v f + \mu u g)u^\alpha v^\beta = 0,
\]

tо \(u \equiv v \equiv 0. \)

Справедлива

Теорема 24.1. Если выполнены предположения (i)–(v), то задача

\[
\begin{cases}
-\text{div}(A(x,u,v,Du,Dv)Du) \geq f(x,u,v,Du,Dv), \quad x \in \mathbb{R}^N, \\
-\text{div}(A(x,u,v,Du,Dv)Dv) \geq g(x,u,v,Du,Dv), \quad x \in \mathbb{R}^N,
\end{cases}
\]

(24.4)

не имеет решения в соответствующем классе функций с локально ограниченными интегралами.

Доказательство проводится при помощи всех двойных и интегралов техники, но (на этот раз) мы используем так называемые смешанные множители. Более точно, если (24.4) имеет решение, то мы назовем смешанными множителями функции вида

\[
u^\alpha v^\beta \varphi,
\]

gде \(a, b \in \mathbb{R} \) и \(\varphi \) (как и прежде) — стандартная неотрицательная срезающая функция.

Как обычно, мы предположим, что \((u,v) \) — положительное решение рассматриваемой задачи, и придем к противоречию.

Пусть \((u,v) \) — положительное решение (24.1), введем множители

\[
u^\alpha v^\beta, \quad u^{\alpha + 1}v^{\beta + 1},
\]

(24.5)

где \(\varphi \) — стандартная неотрицательная срезающая функция.

Уммножив первое уравнение (24.4) (второе уравнение (24.4) на первый множитель (24.5) (соответственно на второй) и интегрируя по частям, получаем

\[
\int_{\mathbb{R}^N} fu^\alpha v^{\beta + 1} \varphi \, dx \leq a \int_{\mathbb{R}^N} u^{-1/2} v^{\beta + 1} A|Du| \varphi \, dx + \\
+ (\beta + 1) \int_{\mathbb{R}^N} u^\alpha v^\beta A(Du,Dv) \varphi \, dx + \int_{\mathbb{R}^N} u^\alpha v^{\beta + 1} A(Du,Dv) \varphi \, dx,
\]

(24.6)

\[
\int_{\mathbb{R}^N} gv^\beta u^{\alpha + 1} \varphi \, dx \leq \beta \int_{\mathbb{R}^N} v^{\beta - 1} u^{\alpha + 1} A|Dv| \varphi \, dx + \\
+ (\alpha + 1) \int_{\mathbb{R}^N} u^\alpha v^\beta A(Du,Dv) \varphi \, dx + \int_{\mathbb{R}^N} v^\beta u^{\alpha + 1} A(Dv,Dv) \varphi \, dx.
\]

(24.7)

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Далее, умножая (24.6) (и (24.7)) на $\lambda \geq 0$ (на $\mu \geq 0$ соответственно) и суммирова, приходим к неравенству

$$\alpha \lambda \int_{\mathbb{R}^N} u^{\alpha - 1} v^{\beta + 1} |\varphi| dx + \beta \mu \int_{\mathbb{R}^N} v^{\beta - 1} u^{\alpha + 1} |\varphi| dx +$$

$$+ \int_{\mathbb{R}^N} (\lambda (\beta + 1) A + \mu (\alpha + 1) A) u^\alpha v^\beta (Du, Dv) \varphi dx + \int_{\mathbb{R}^N} \lambda u^\alpha v^{\beta + 1} A(Du, D\varphi) dx +$$

$$+ \int_{\mathbb{R}^N} \mu v^\beta u^{\alpha + 1} A(Dv, D\varphi) dx \geq \int_{\mathbb{R}^N} (\lambda u^\alpha v^{\beta + 1} f + \mu v^\beta u^{\alpha + 1} g) \varphi dx.$$ \hspace{1em} (24.8)

С помощью условия (iii) последнее неравенство можно свести к следующему:

$$- \int_{\mathbb{R}^N} \left(\alpha \lambda v^2 |Du|^2 + \beta \mu u^2 |Dv|^2 \right) u^{\alpha - 1} v^{\beta - 1} A \varphi dx + \int_{\mathbb{R}^N} (\lambda v f + \mu u g) u^\alpha v^\beta \varphi dx \leq$$

$$\leq \int_{\mathbb{R}^N} \left[\lambda v(Du, D\varphi) + \mu u(Dv, D\varphi) \right] u^\alpha v^\beta A \varphi dx.$$ \hspace{1em} (24.9)

Применяя к правой части (24.9) неравенство Юнга, получаем

$$v(Du, D\varphi) u^\alpha v^\beta \leq v|Du|^{\alpha \beta} |D\varphi| \leq \frac{\alpha}{2} u^{\alpha - 1} v^{\beta + 1} |Du|^2 \varphi + \frac{1}{2|\alpha|} u^{\alpha + 1} v^{\beta + 1} \frac{|D\varphi|^2}{\varphi}$$

и

$$u(Dv, D\varphi) u^\alpha v^\beta \leq u|Dv|^{\alpha \beta} |D\varphi| \leq \frac{\beta}{2} u^{\alpha + 1} v^{\beta - 1} |Dv|^2 \varphi + \frac{1}{2|\beta|} u^{\alpha + 1} v^{\beta + 1} \frac{|D\varphi|^2}{\varphi}.$$ \hspace{1em}

Следовательно, (24.9) принимает вид

$$\int_{\mathbb{R}^N} \left(\frac{\alpha}{2} \lambda v^2 |Du|^2 + \frac{\beta}{2} \mu u^2 |Dv|^2 \right) u^{\alpha - 1} v^{\beta - 1} A \varphi dx + \int_{\mathbb{R}^N} (\lambda v f + \mu u g) u^\alpha v^\beta \varphi dx \leq$$

$$\leq \frac{1}{2} \left(\frac{\lambda}{|\alpha|} + \frac{\mu}{|\beta|} \right) \int_{\mathbb{R}^N} u^{\alpha + 1} v^{\beta + 1} A \frac{|D\varphi|^2}{\varphi} dx.$$ \hspace{1em} (24.10)

В правой части (24.10) снова применим неравенство Юнга, что даст

$$\frac{1}{2} \int_{\mathbb{R}^N} \left(|\lambda| v^2 |Du|^2 + |\beta| \mu u^2 |Dv|^2 \right) u^{\alpha - 1} v^{\beta - 1} A \varphi dx + \int_{\mathbb{R}^N} (\lambda v f + \mu u g) u^\alpha v^\beta \varphi dx \leq$$

$$\leq \frac{1}{2} \left(\frac{\lambda}{|\alpha|} + \frac{\mu}{|\beta|} \right) C_1 \int_{\mathbb{R}^N} u^{\alpha + 1} v^{\beta + 1} A \frac{|D\varphi|^2}{\varphi} dx + \frac{1}{2} \left(\frac{\lambda}{|\alpha|} + \frac{\mu}{|\beta|} \right) C_1 \int_{\mathbb{R}^N} \frac{|D\varphi|^{\gamma}}{\varphi^{\gamma - 1}} dx,$$ \hspace{1em} (24.11)

где $C_1 > 0$ — соответствующая константа.

Выбирая $C_1 > 0$ достаточно малым, из (24.11) получаем

$$\int_{\mathbb{R}^N} (\lambda v^2 |Du|^2 + \mu u^2 |Dv|^2) u^{\alpha - 1} v^{\beta - 1} A \varphi dx + \int_{\mathbb{R}^N} (\lambda v f + \mu u g) u^\alpha v^\beta \varphi dx \leq C \int_{\mathbb{R}^N} \frac{|D\varphi|^{\gamma}}{\varphi^{\gamma - 1}} dx.$$ \hspace{1em} (24.12)

где $C > 0$.

Теперь доказательство можно завершить теми же рассуждениями, что и в случае теоремы 12.1. Доказательство закончено. □
Пример 24.1. Рассмотрим следующую задачу:

\[
\begin{cases}
-\Delta u \geq \frac{u^p}{v^{q+1}}, & x \in \mathbb{R}^N, \\
-\Delta v \geq \frac{u^{p-1}}{v^q}, & x \in \mathbb{R}^N, \\
\end{cases}
\]

где \(1 < p, 0 < q \) и \(N > 2\).

Легко проверить, что предположения теоремы 24.1 выполнены при \(\gamma = N > 2\). Следовательно, справедлива

Теорема 24.2. Если \(1 < p < \frac{N}{N-2} \) и \(q > 0\), то задача (24.13) не имеет положительного решения, удовлетворяющего условиям \(\int_{\Omega} u^p v^q dx < \infty\), \(\int_{\Omega} |Du|^2 dx < \infty\) для любой ограниченной области \(\Omega \subset \mathbb{R}^N\).

Пример 24.2. Рассмотрим задачу

\[
\begin{cases}
-\sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left(u \frac{\partial u}{\partial x_i} \right) \geq u^p v^{q-1}, & x \in \mathbb{R}^N, \\
-\sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left(u \frac{\partial v}{\partial x_i} \right) \geq u^{p-1} v^q, & x \in \mathbb{R}^N, \\
\end{cases}
\]

Как следствие теоремы 24.1 имеет место

Теорема 24.3. Если \(N > 2, 1 < q < \frac{N}{N-2}\) и \(1 < p < \frac{2(N-1)}{N-2}\), то задача (24.14) не имеет решения такого, что \(\int_{\Omega} u^{\frac{(N-2)q}{2}} v^{\frac{(q-1)N}{2}} dx < \infty\), \(\int_{\Omega} u^{\frac(N-2)q(N-2)} v^{\frac(N-2)q(N-2)} |Du|^2 dx < \infty\) для любой ограниченной области \(\Omega \subset \mathbb{R}^N\).
Часть II

ЭВОЛЮЦИОННЫЕ ЗАДАЧИ
ПЕРВОГО ПОРЯДКА

25. ВВЕДЕНИЕ

Эта часть посвящена изучению так называемых теорем типа Фужиты для эволюционных уравнений и неравенств первого (по времени) порядка [10, 118, 13, 1, 17, 127, 35, 36, 125, 18]. Одно из основных различий между нашим подходом и известными методами состоит в том, что мы априори не налагаем условий на знак решений. Для нас важно, что нет принципиального различия между задачами, изучавшимися в предыдущей части, и эволюционными задачами. Таким образом, нашей главной целью является доказательство такой оценки решений задачи, чтобы в дальнейшем выбрать подходящую пробную функцию в определении слабого решения рассматриваемой задачи. Конечно, это означает что наша пробная функция теперь зависит от (x, t), переменная t — временная, x — пространственная.

Изучив некоторые из приведенных ниже доказательств, можно заметить, что мы не делаем специальных предположений о типе оператора. Это позволяет исследовать, например, две принципиально разные задачи

\[
\frac{du}{dt} - \Delta u \geq |u|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty),
\]

и

\[
\frac{du}{dt} + \Delta u \geq |u|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty),
\]

одинаковым способом. Однако для (25.2) в предположении о неотрицательности u можно доказать, что (25.2) не имеет решения для всех $q > 1$.

Содержание настоящей части следующее. В разд. 26 мы описываем наш метод применительно к достаточно общему полулинейному параболическому неравенству и приводим некоторые классические примеры, которые служат модельными задачами для дальнейшего изложения.

В разд. 28 мы рассматриваем модельную задачу

\[
\begin{cases}
\frac{du}{dt} - \Delta u \geq |x|^q u^q, & (x, t) \in \Omega \setminus \{0\} \times (0, \infty), \\
u(x, t) \geq 0, & (x, t) \in \Omega \setminus \{0\} \times (0, \infty), \\
u(x, 0) = u_0(x), & x \in \Omega \setminus \{0\}.
\end{cases}
\]
миссимент классическок модели

зилинейных эволюционных неравенств первого порядка в конусе

где $q > q^*$ операторы высокого порядка Джакомони (25.4) ну переменных

$\partial u / \partial t - |x|^p \Delta u \geq |u|^q, \quad (x, t) \in \mathbb{R}^N \setminus \{0\} \times (0, \infty),$

$u(x, 0) = u_0(x), \quad x \in \mathbb{R}^N \setminus \{0\},$

где $q > 1$ и $u_0 \in L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\}).$

С помощью подходящего выбора пробных функций и используя логарифмическую замену переменных, мы доказываем, что при некоторых условиях положительности начальных данных задача (25.4) не имеет решения для $1 < q \leq 3$. Как следует из результатов Джакомони [85], критический показатель $q^* = 3$ является точным.

Разделы 29–31 обобщают полученные в предыдущих разделах результаты на соответствующие операторы высокого (по пространственной переменной x) порядка, раздел 32 посвящен задачам второго порядка в конусе.

Раздел 33 содержит некоторые оценки и результаты об отсутствии решений для квазилинейных эволюционных неравенств первого (по времени) порядка. В качестве примера мы исследуем классическую модель, рассмотренную впервые Левинным, Либерманом и Мейером [123]:

\[
\begin{aligned}
\frac{\partial u}{\partial t} - \text{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) \geq u^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, t) \geq 0, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x) \geq 0, \quad x \in \mathbb{R}^N.
\end{aligned}
\]

Мы доказываем, что в случае

\[
q \leq q^* = 1 + \frac{2}{N}
\]

задача не имеет глобального решения (если u_0 — неотрицательная локально суммируемая функция). В случае $u_0 \equiv 0$ возможно только тривиальное решение. Подчеркнем, что отсутствие решения доказано и в критическом случае $q = q^*$ без всяких дополнительных (по сравнению с $q < q^*$) предположений. Известно, что если $q > q^*$, то задача (25.5) имеет глобальное решение для достаточно быстро убывающих при $|x| \to \infty$ начальных данных u_0 (см. также [123]). Докритический случай $1 < q < q^*$ впервые рассмотрен в [237], где было показано, что всякое положительное решение задачи (25.5) не может быть глобальным.

Задача (25.5) является интересной модельной задачей, для исследования которой нельзя применить технику автомодельных решений [237, 31, 12, 11, 14, 76]. Это, конечно, является следствием неоднородности задачи (25.5). Чтобы преодолеть это препятствие, мы систематически используем умножение на подходящие отрицательные степени решения. Это, однако, ограничивает применимость наших результатов только неотрицательными решениями.

В разд. 34 мы начинаем изучение систем эволюционных неравенств [15, 16, 54, 65, 64]. Вообще говоря, все задачи, которые мы изучаем, можно условно разделить на два класса. Первые из них (“полулинейные”) допускают двукратное интегрирование по частям умножения на пробную функцию, в то время как во вторых (“квазилинейных”) это можно сделать лишь один раз. Большая часть результатов для систем обобщает аналогичные результаты для скалярного случая, поэтому мы отметим лишь разд. 42, в котором рассмотрен частный
Глава 3. ЭВОЛЮЦИОННЫЕ НЕРАВЕНСТВА

26. ПОЛУЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА ВТОРОГО ПОРЯДКА

В этом разделе мы рассмотрим уравнения и неравенства вида

\[
\begin{aligned}
\frac{\partial u}{\partial t} - \sum_{i,j=1}^{N} \frac{\partial^2}{\partial x_i \partial x_j} a_{ij}(x,t,u) \geq b(x,t)|u|^q, \quad (x,t) \in \mathbb{R}^N \times (0, \infty), \\
u(x,0) = u_0(x), \quad x \in \mathbb{R}^N,
\end{aligned}
\]

(26.1)

с \(u_0 \in L^1_{\text{loc}}(\mathbb{R}^N)\).

Здесь \(a_{ij} : \mathbb{R}^{N+1} \times \mathbb{R} \to \mathbb{R}, i, j = 1, \ldots, N\), суть каратаеворные функции, удовлетворяющие неравенствам

\[|a_{ij}(x,t,u)| \leq a_0(x,t)|u|^p, \quad (x,t,u) \in \mathbb{R}^{N+1} \times \mathbb{R},\]

(26.2)

с \(p > 0\) и измеримой неотрицательной функцией \(a_0\); \(b(x,t)\) — положительная измеримая функция такая, что \(b > 0\) п.в. в \(\mathbb{R}^{N+1}\), и \(q > \max\{1,p\}\).

Далее предполагается, что измеримые функции \(a_0 \geq 0\) и \(b > 0\) удовлетворяют условию

\[\frac{a_0^{\lambda'}}{b^{q'}} \cdot \frac{1}{b^{q'}} \in L^1_{\text{loc}}(\mathbb{R}^{N+1} \setminus Q(R))\]

(26.4)

с

\[Q(R) = \{(x,t) \in \mathbb{R}^{N+1} \mid R^\mu \leq t^{\kappa} + |x|^\mu \leq 2R^\mu\}\]

при \(R \gg 1, \lambda' = q/(q-p) > 0, \quad q' = q/(q-1)\) и с параметрами \(\kappa \geq 1\) и \(\mu \geq 2\), которые определены ниже через параметр \(\theta = \kappa/\mu\).

Определение 26.1. Под слабым решением задачи (26.1) понимается функция \(u : \mathbb{R}^{N+1} \to \mathbb{R}\) такая, что

\[a_0(x,t)|u|^p, \quad b(x,t)|u|^q \in L^1_{\text{loc}}(\mathbb{R}^{N+1})\]

и удовлетворяет неравенству

\[\int_{0}^{\infty} \int_{\mathbb{R}^N} \frac{\partial \varphi}{\partial t} dx dt - \int_{0}^{\infty} \int_{\mathbb{R}^N} \sum_{i,j=1}^{N} a_{ij}(x,t,u) \frac{\partial^2 \varphi}{\partial x_i \partial x_j} dx dt \geq \int_{0}^{\infty} \int_{\mathbb{R}^N} b(x,t)|u|^q \varphi dx dt + \int_{\mathbb{R}^N} u_0(x) \varphi(x,0) dx\]

для любой функции \(\varphi(x,t) \geq 0\) с компактным носителем из класса \(C^{2,1}_{x,t}(\mathbb{R}^{N+1})\).

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 3. ЭВОЛЮЦИОННЫЕ НЕРАВЕНСТВА

Критический показатель \(q \) для задачи (26.1) определяется асимптотиками при \(R \to \infty \) следующих выражений:

\[
A_\theta(R) = \int_{1 \leq |\xi|, |\eta| \leq 2} \frac{(a_0(R \xi, R^\theta \tau))^\lambda}{(b(R \xi, R^\theta \tau))^{\lambda-1}} d\xi d\tau, \quad B_\theta(R) = \int_{1 \leq |\xi|, |\eta| \leq 2} \frac{1}{(b(R \xi, R^\theta \tau))^{\theta q^{-1}}} d\xi d\tau
\]

с \(\lambda' = q/(q-p) \) (что соответствует \(\lambda = q/p \)) и параметром \(\theta = \mu/\kappa > 0 \).

Величины \(A_\theta(R) \) и \(B_\theta(R) \) в свою очередь порождают определяющую величину

\[
c_\theta(R) := \left(R^N+\theta-2\lambda' A_\theta(R) + R^N+\theta-\theta q'B_\theta(R)\right).
\]

Теорема 26.1. Пусть \(q \) удовлетворяет неравенству (26.3) с \(p > 0 \) и

\[
\lim_{R \to \infty} \int_{|x| \leq R} u_0(x) \, dx \geq 0.
\]

Пусть существует \(\theta_0 > 0 \) такое, что

\[
\lim_{R \to \infty} c_\theta_0(R) < \infty.
\]

Тогда не существует глобального нетривиального слабого решения \(u(x,t) \) задачи (26.1) в \(\mathbb{R}^{N+1}_+ \).

Доказательство. В силу определения решения и неравенства (26.2) имеем

\[
\int_0^\infty \int_{\mathbb{R}^N} b(x,t)|u|^q \varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} a_0(x,t)|u|^p L_2(\varphi) \, dx \, dt - \int_0^\infty \int_{\mathbb{R}^N} u_0(x) \varphi(x,0) \, dx
\]

с \(L_2(\varphi) = \sum_{i,j=1}^N \left| \frac{\partial^2 \varphi}{\partial x_i \partial x_j} \right| \).

Отсюда на основании параметрических неравенств Юнга получаем

\[
\int_0^\infty \int_{\mathbb{R}^N} b(x,t)|u|^q \varphi \, dx \, dt \leq c_1 \int_0^\infty \int_{\mathbb{R}^N} \frac{(a_0(x,t)L_2(\varphi))^\lambda}{(b(x,t)\varphi)^{\lambda-1}} dx \, dt + c_2 \int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right| (b(x,t)\varphi)'^{q'} dx \, dt - c_3 \int_{\mathbb{R}^N} u_0(x) \varphi(x,0) \, dx
\]

с \(\lambda' = q/(q-p) > 0 \) и с положительными постоянными \(c_1, c_2, c_3 > 0 \).

Введем теперь пробную функцию \(\varphi \) вида

\[
\varphi(x,t) = \varphi_R(x,t) = \varphi_0 \left(\frac{t^\kappa + |x|^\mu}{R^\kappa} \right)
\]

с параметрами \(\kappa \geq 1 \) и \(\mu \geq 2 \), которые будут определены ниже.

Здесь \(\varphi_0 \geq 0 \) есть \(C^2_0(\mathbb{R}) \)-функция такая, что

\[
\varphi_0(s) = \begin{cases} 1, & 0 \leq s \leq 1, \\ 0, & s \geq 2. \end{cases}
\]
Часть II. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ПЕРВОГО ПОРЯДКА

В соответствии с (26.9) сделаем замену переменных \(t \to \tau, \ x \to \xi \) по формулам

\[
t = R^\theta \tau, \quad x = R \xi
\]

с неопределенным параметром \(\theta = \mu / \kappa > 0 \).

Тогда неравенство (26.8) принимает вид

\[
\begin{align*}
\int_0^\infty \int_{\mathbb{R}^N} b(x, t) |u|^q \varphi_R \, dx \, dt & \leq c_1 R^{N+\theta-2\lambda'} \int_1^{\tau+|\xi|^\mu} \left(a_0(R \xi, R^{\theta} \tau) \right)^{\lambda'} \frac{(L_2^\lambda(\varphi_0))^{\lambda'} (b(R \xi, R^{\theta} \tau) \varphi_0)^{\lambda'-1}} {b(R \xi, R^{\theta} \tau) \varphi_0} \, d\xi \, d\tau + \\
+ c_2 R^{N+\theta-\theta q'} & \int_1^{\tau+|\xi|^\mu} \left(b(R \xi, R^{\theta} \tau) \varphi_0 \right)^{1-q'} \, d\xi \, d\tau - c_3 \int_{\mathbb{R}^N} u_0(x) \varphi_R(x, 0) \, dx
\end{align*}
\]

с \(L_2(\varphi_0) = \sum_{i,j=1}^{\mathbb{N}} \left| \frac{\partial^2 \varphi_0}{\partial \xi_i \partial \xi_j} \right| \).

Выберем теперь пробную функцию \(\varphi_0 \) так, чтобы

\[
\begin{align*}
\frac{(L_2^\lambda(\varphi_0))^{\lambda'}} {\varphi_0^{\lambda'-1}}, \quad \left| \frac{\partial \varphi_0}{\partial \tau} \right|^{q'} \varphi_0^{1-q'} & \leq \text{const}
\end{align*}
\]

при \(1 \leq \tau+|\xi|^\mu \leq 2 \).

Тогда из неравенства (26.10) следует, что

\[
\begin{align*}
\int_0^\infty \int_{\mathbb{R}^N} b(x, t) |u|^q \varphi_R \, dx \, dt & \leq c_1^1 R^{N+\theta-2\lambda'} A_\theta(R) + c_2^1 R^{N+\theta-\theta q'} B_\theta(R) - c_3 \int_{\mathbb{R}^N} u_0(x) \varphi_R(x, 0) \, dx
\end{align*}
\]

с постоянными \(c_1^1, c_2^1 > 0 \).

Рассмотрим теперь при \(\theta = \theta_0 > 0 \) нижний предел при \(R \to \infty \) в (26.11).

Если

\[
\lim_{R \to \infty} c_{\theta_0}(R) = 0,
\]

то в силу условия (26.6) из (26.11) получаем

\[
\lim_{R \to \infty} \int_0^\infty \int_{\mathbb{R}^N} b(x, t) |u|^q \varphi_R \, dx \, dt = 0,
\]

т.е.

\[
\int_0^\infty \int_{\mathbb{R}^N} b(x, t) |u|^q \, dx \, dt = 0.
\]

В силу неравенства \(b > 0 \) п.в. в \(\mathbb{R}_{+}^{N+1} \) отсюда следует, что \(u = 0 \) п.в. в \(\mathbb{R}_{+}^{N+1} \). Итак, в этом случае теорема 26.1 доказана.

В случае

\[
0 < \lim_{R \to \infty} c_{\theta_0}(R) < \infty
\]
получаем сначала ограниченность интеграла
\[
\int_0^\infty \int_{\mathbb{R}^N} b(x,t)|u|^q \, dx \, dt < \infty.
\]

Далее используем аргументы, аналогичные соответствующим аргументам в эллиптическом случае, т.е. вместо аддитивных неравенств используем мультипликативные неравенства и свойство абсолютной непрерывности интеграла \(\int_0^\infty \int_{\mathbb{R}^N} b(x,t)|u|^q \, dx \, dt. \) □

Замечание 26.1. Теорема 26.1 показывает, как критический показатель \(q \) зависит от размерности \(N \) и асимптотического поведения при \(R \to \infty \) коэффициентов уравнения или неравенства (26.1).

Однако критический показатель \(q \) зависит также от асимптотического поведения начальной функции \(u_0(x) \) при \(|x| \to \infty \).

Теорема 26.2. Пусть \(q \) удовлетворяет неравенству (26.3) с \(p > 0 \), и пусть

\[
u\geq \frac{\lim_{R \to \infty} \int_{|x| \leq R} u_0(x) \, dx \geq c_0 R^\nu}{c_0 > 0 \text{ и } \nu \geq 0. \text{ Пусть существует } \theta_0 > 0 \text{ такое}}, \text{ что}
\]

\[
\lim_{R \to \infty} R^{-\nu} c_{\theta_0}(R) = 0. \tag{26.13}
\]

Тогда не существует глобального нетривиального слабого решения \(u(x,t) \) задачи (26.1) в \(\mathbb{R}^{N+1}_+ \), где \(c_{\theta}(R) \) определено формулой (26.5).

Замечание 26.2. В условиях теорем 26.1 и 26.2 отсутствует условие эллиптичности главного оператора, так же как и условие положительности рассматриваемого слабого решения.

Приведем примеры применения доказанного утверждения. Начнем естественно с классического примера Фужиты (1966) [68].

Пример 26.1.

\[
\begin{cases}
\frac{\partial u}{\partial t} \geq \Delta u + u^q, & (x,t) \in \mathbb{R}^N \times (0, \infty), \\
u(x,0) = u_0 \geq 0, & x \in \mathbb{R}^N,
\end{cases} \tag{26.14}
\]

с \(q > 1 \) и \(u_0 \in L^1_{\text{loc}}(\mathbb{R}^N) \).

Здесь в терминах теоремы 26.1 имеем

\[
p = 1, \quad a_0(x,t) \equiv 1, \quad b(x,t) \equiv 1.
\]

Тогда для этой задачи

\[
A_{\theta}(R) = A_{\theta}, \quad B_{\theta}(R) = B_{\theta},
\]

где \(A_{\theta} > 0 \) и \(B_{\theta} > 0 \) не зависят от \(R \).

Далее имеем

\[
c_{\theta}(R) = R^{N+\theta-2q} A_{\theta} + R^{N+\theta-\theta q} B_{\theta}. \tag{26.15}
\]
Часть II. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ПЕРВОГО ПОРЯДКА

Чтобы определить оптимальное значение $\theta_0 > 0$, положим

$$N + \theta - 2q' = N + \theta - \theta q'.$$

Отсюда находим

$$\theta = \theta_0 = 2.$$

Подставив это значение $\theta_0 = 2$ в (26.15), получим

$$c_2(R) = R^{N+2-2q'}(A_2 + B_2).$$

Условие (26.7) теоремы 26.1 принимает вид

$$N + 2 - 2q' \leq 0,$$

t.e.

$$q \leq 1 + \frac{2}{N},$$

Таким образом мы получили сразу критический показатель Фужиты [68] $q < 1 + \frac{2}{N}$ и показатель Хаякавы (1973) [101] $q = 1 + \frac{2}{N}$.

В следующем примере мы покажем, как на основании описанного подхода можно уточнить критический показатель Фужиты–Хаякавы в зависимости от поведения начальной функции.

Замечание 26.3. Итак, мы видим, что в отличие от эллиптических задач в параболическом случае критические показатели для уравнений и неравенств совпадают.

Снова рассмотрим задачу (26.14), но с дополнительным условием на начальную функцию

$$\int_{|x|\leq R} u_0(x) dx \geq c_0 R^\nu$$

при $R \gg 1$ с $N \geq \nu \geq 0$ и положительной константой $c_0 > 0$.

Здесь мы воспользуемся неравенством (26.10) с ранее найденными величинами $\theta = \theta_0 = 2$, $A_\theta(R) = A_2$, $B_\theta(R) = B_2$ и $c_2(R)$.

Тогда неравенство (26.10) для задачи (26.14) с условием (26.17) влечет

$$\int_0^\infty \int_{R^N} |u|^q \varphi_R \, dx \, dt \leq \text{const} \cdot R^{N+2-2q'} - c_4 R^\nu$$

с положительной постоянной c_4.

Отсюда получаем критический показатель $q = q_\nu$, а именно

$$N + 2 - 2q' < \nu \quad \text{при } \nu > 0, \quad N + 2 - 2q' = 0 \quad \text{при } \nu = 0,$$

t.e.

$$1 < q < q_\nu = 1 + \frac{2}{N - \nu} \quad \text{при } \nu > 0, \quad 1 < q \leq 1 + \frac{2}{N} \quad \text{при } \nu = 0.$$

Замечание 26.4. При $\nu > 0$ существует постоянная $c_0 > 0$ такая, что в случае $c_0 > c_0^*$ решение отсутствует при $1 < q \leq q_\nu$.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Пример 26.2. Рассмотрим задачу

\[
\begin{cases}
\frac{\partial u}{\partial t} \pm \Delta u \geq |x|^\gamma |u|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0 \geq 0, \quad x \in \mathbb{R}^N,
\end{cases}
\tag{26.18}
\]

с \(q > 1, -2 < \gamma < N(q-1) \) и \(u_0 \in L^1_{\text{loc}}(\mathbb{R}^N) \).

Для этой задачи в терминах теоремы 26.1 имеем

\[p = 1, \quad \lambda = q, \quad a_0(x) = 1, \quad b(x) = |x|^\gamma. \]

Тогда для этой задачи

\[
A_\theta(R) = B_\theta(R) = \int_{1 \leq \tau^\sigma + |\xi|^\theta \leq 2} \frac{1}{|R\xi|^{q(q'-1)}} \, d\xi \, d\tau = \frac{1}{R^{q(q'-1)c_1}}.
\]

Здесь \(c_1 > 0 \) не зависит от \(R \).

Далее имеем при оптимальном значении \(\theta = \theta_0 = 2 \)

\[c_\theta(R) = c_2(R) = 2c_2 R^{N^+2-2q'-\gamma(q'-1)}. \]

Тогда условие (26.7) отсутствия глобального нетривиального решения задачи (26.18) принимает вид

\[N + 2 - 2q' - \gamma(q'-1) \leq 0, \]

т.е.

\[1 < q \leq 1 + \frac{2 + \gamma}{N}. \]

Пример 26.3. Рассмотрим следующую задачу:

\[
\begin{cases}
\frac{\partial u}{\partial t} \pm |x|^\sigma \Delta u \geq |u|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0 \geq 0, \quad x \in \mathbb{R}^N,
\end{cases}
\tag{26.19}
\]

с \(u_0 \in L^1_{\text{loc}}(\mathbb{R}^N) \), \(q > 1 \) и \(2 > \sigma > -\frac{2-1}{q}N \).

Для этой задачи в терминах теоремы 26.1 имеем

\[p = 1, \quad \lambda = q, \quad a_0(x, t) = |x|^\sigma, \quad b(x) \equiv 1. \]

Тогда

\[
A_\theta(R) = R^{\sigma q'} \int_{1 \leq \tau^\sigma + |\xi|^\theta \leq 2} |\xi|^{\sigma q'} \, d\xi \, d\tau = A_1 R^{\sigma q'}, \quad B_\theta(R) = \int_{1 \leq \tau^\sigma + |\xi|^\theta \leq 2} 1 \, d\xi \, d\tau = B_1.
\]

Здесь \(A_1 \) и \(B_1 \) не зависят от \(R \).

Тогда имеем

\[c_\theta(R) = R^{N+\theta-2q'+\sigma q'} A_1 + R^{N+\theta-\theta q'} B_1. \tag{26.20} \]

Оптимальное значение \(\theta = \theta_0 \) определяется из условия “равновесия” на бесконечности \((R \to \infty) \) двух слагаемых в правой части равенства, т.е.

\[N + \theta - 2q' + \sigma q' = N + \theta - \theta q'. \]
Часть II. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ПЕРВОГО ПОРЯДКА

Отсюда находим сингулярный “параболический” вес

\[\theta = \theta_0 = 2 - \sigma > 0. \]

Подставляя это значение \(\theta_0 \) в \(c_\theta(R) \), находим, что условие (26.7) отсутствия глобального нетривиального решения задачи (26.19) принимает вид

\[N + 2 - \sigma \leq (2 - \sigma)q', \]

t.e.

\[1 < q \leq 1 + \frac{2 - \sigma}{N}. \]

Замечание 26.5. В примерах 26.2 и 26.3 при дополнительном условии (26.17) на начальную функцию \(u_0(x) \) критические показатели увеличиваются при \(\nu > 0 \).

27. ЭВОЛЮЦИОННЫЕ НЕРАВЕНСТВА ВТОРОГО ПОРЯДКА С КРИТИЧЕСКИМ ВЫРОЖДЕНИЕМ

Рассмотрим вопросы отсутствия решений некоторых полулинейных параболических неравенств, возникающих при исследовании неравенств типа Харди (см., например, [80]).

Отличительной особенностью этих задач в случае второго порядка является присутствие вырождающегося коэффициента диффузии \(|x|^2 \). Аналогичные результаты для уравнений второго порядка в ограниченной области и в \(\mathbb{R}^N \) были получены соответственно Брезисом и Кабре [32] и Джакомони [85] разными методами. В частности, эти авторы рассматривали только положительные решения.

Настоящий результат улучшает результат Джакомони [85] в плане отказа от поточечной положительности начальных данных.

Начнем с дифференциального неравенства второго порядка. Пусть \(N \geq 1 \) и \(q > 1 \), и рассмотрим задачу

\[
\begin{aligned}
\frac{\partial u}{\partial t} - |x|^2 \Delta u \geq |u|^q, \quad (x, t) \in \mathbb{R}^N \setminus \{0\} \times (0, \infty), \\
u(x, 0) = u_0(x), \quad x \in \mathbb{R}^N \setminus \{0\},
\end{aligned}
\]

где \(u_0 \in L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\}) \).

Определение 27.1. Функция \(u \in L^q_{\text{loc}}(\mathbb{R}^N \setminus \{0\} \times (0, \infty)) \) называется слабым решением задачи (27.1), если

\[
\int_0^\infty \int_{\mathbb{R}^N} \frac{|u|^q}{|x|^N} \varphi \, dx \, dt \leq - \int_0^\infty \int_{\mathbb{R}^N} u \Delta(|x|^{2-N} \varphi) \, dx - \int_0^\infty \int_{\mathbb{R}^N} \frac{u}{|x|^N} \frac{\partial}{\partial t} \varphi \, dx \, dt - \int_{\mathbb{R}^N} \frac{u_0(x)}{|x|^N} \varphi(x, 0) \, dx
\]

для любой неотрицательной функции \(\varphi \in C^{2,1}_0(\mathbb{R}^N \setminus \{0\} \times (0, \infty)) \).

Справедлива

Теорема 27.1. Пусть \(u_0 \in L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\}) \) и

\[
\lim_{R \to \infty} \int_{e^{-R} \leq |x| \leq e^R} \frac{u_0(x)}{|x|^N} \, dx \geq 0 \quad (\text{возможно, бесконечно}).
\]

Если \(1 < q \leq 3 \), то задача (27.1) не имеет глобального нетривиального слабого решения.
Замечание 27.1. Известно [85], что для положительных начальных данных u_0 и для уравнения

$$\frac{\partial u}{\partial t} - |x|^2 \Delta u = u^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty),$$

результат этой теоремы точен. То есть, если $3 < q$, это уравнение имеет решение при некоторых дополнительных условиях убывания начальных данных u_0.

Отметим, что, если $3 < q$, тот же самый результат справедлив для (27.1), т.е. возможно построить нетривиальное решение задачи (27.1) в предположении

$$0 \leq \int_{e^{-R} \leq |x| \leq e^R} \frac{u_0(x)}{|x|^N} dx.$$

Доказательство теоремы 27.1 проведем только для случая $N > 2$. Доказательство для $N = 1, 2$ полностью аналогично.

Итак, пусть $N > 2$ и u — слабое решение задачи (27.1). Из (27.2) и неравенства Юнга следует, что

$$\int_0^\infty \int_{\mathbb{R}^N} |u|^q \varphi dx dt \leq \int_0^\infty \int_{\mathbb{R}^N} |x|^2 \Delta \varphi + 2(2 - N)(x, D\varphi) + \frac{\partial \varphi}{\partial t} |q^' \varphi^{1-q'} |x|^N dx dt -$$

$$- q' \int_{\mathbb{R}^N} u_0 |x|^N \varphi(x, 0) dx,$$

где $\frac{1}{q} + \frac{1}{q'} = 1$ и $\varphi \in C^2_0(\mathbb{R}^N \setminus \{0\} \times (0, \infty))$ неотрицательна.

Выбирая

$$\varphi(x, t) = \psi(|x|, t)$$

и вводя замену переменных

$$\ln |x| = s, \quad -\infty < s < \infty,$$

из (27.3) получим

$$\int_0^\infty \int_{\mathbb{R}^N} |u|^q \varphi(x, t) dx dt \leq S^{N-1} \int_0^\infty \int_{-\infty}^\infty \left(\frac{\partial^2 \psi}{\partial s^2} + (2 - N) \frac{\partial \psi}{\partial s} + \frac{\partial \psi}{\partial t} \right) |q^' \psi^{1-q'} |s^{N-1} ds dt -$$

$$- q' \int_{-\infty}^\infty \int_{s^{N-1}} u_0(e^s, \omega) \psi(e^s, 0) ds d\omega,$$

где $\omega = \frac{x}{|x|}$, $x \neq 0$.

Уточним наш выбор ψ. Берем функцию ψ в виде

$$\psi(e^s, t) = \psi_0 \left(\frac{t}{R^2} \right) \psi_1 \left(\frac{a(s, t)}{R} \right),$$

где ψ_0, ψ_1 и $a(s, t)$ — гладкие функции, определенные ниже, и $R > 0$.

Вводя оператор

$$\Gamma = \frac{\partial^2}{\partial s^2} + (2 - N) \frac{\partial}{\partial s} + \frac{\partial}{\partial t},$$

Труды математического института им. В.А. Стеклова, 2001, т. 234
действующий на функции из $C^\infty (\mathbb{R}^2)$, имеем

$$
\Gamma_{s,t}(\psi) = \frac{1}{R^2} \left[\psi_0 \left(\frac{t}{R^2} \right) \psi_1' \left(\frac{a(s, t)}{R} \right) \left(\frac{\partial a}{\partial s} \right)^2 + \psi'_0 \left(\frac{t}{R^2} \right) \psi_1 \left(\frac{a(s, t)}{R} \right) \right] +
\frac{1}{R} \left[\frac{\partial^2 a}{\partial s^2} + (2 - N) \frac{\partial a}{\partial s} + \frac{\partial a}{\partial t} \right] \psi_0 \left(\frac{t}{R^2} \right) \psi_1' \left(\frac{a(s, t)}{R} \right).
$$

Далее выбираем функцию a такую, что

$$
\frac{\partial^2 a}{\partial s^2} + (2 - N) \frac{\partial a}{\partial s} + \frac{\partial a}{\partial t} = 0.
$$

Допустимо выбрать

$$
a(s, t) = s + (N - 2)t.
$$

Затем возьмем $\psi_0, \psi_1 \in C^\infty_0 (\mathbb{R})$ такие, что

$$
\psi_0(y) = \begin{cases} 1, & 0 \leq y \leq 1, \\ 0, & y \geq 2, \end{cases} \quad \psi_1(y) = \begin{cases} 1, & |y| \leq 1, \\ 0, & |y| \geq 2, \end{cases}
$$

и положим

$$
\psi(e^s, t) = \psi_0 \left(\frac{t}{R^2} \right) \psi_1 \left(\frac{s + (N - 2)t}{R} \right).
$$

Вводя замену переменных $t = R^2 \tau$, $s = R \xi$, получим

$$
\psi(e^s, t) = \psi_0(\tau) \psi_1(\xi + (N - 2)R\tau),
$$

$$
\Gamma_{\xi,s}(\psi) = \frac{1}{R^2} [\psi_0(\tau) \psi'_1(\xi + (N - 2)R\tau) + \psi'_0(\tau) \psi_1(\xi + (N - 2)R\tau)],
$$

$$
\int_{A_{R,t}} \frac{|u|^q}{|x|^N} dx dt \leq C' R^{3q - 2q' - \infty} \int_{-\infty}^{\infty} \int_{S^{N-1}} u_0(e^s, \omega) \psi_1 \left(\frac{s}{R} \right) ds d\omega,
$$

где

$$
A_{R,t} = \{(x, t) \in \mathbb{R}^N \times \mathbb{R}_+: t \leq R^2, |\ln |x| + (2 - N)t| \leq R \}
$$

и

$$
C' = |S^{N-1}| \int_{B_{\xi,\tau}} \int |\psi_0(\tau) \psi'_1(\xi + (N - 2)R\tau) + \psi'_0(\tau) \psi_1(\xi + (N - 2)R\tau)|^q \psi^{1-q} \psi^q' d\tau d\xi,
$$

$$
B_{\xi,\tau} = \{ (\xi, \tau) \in \mathbb{R} \times \mathbb{R}_+: |\xi + (2 - N)R\tau| \leq 2 \}.
$$

Рассуждая стандартно, получим $C' < \infty$. Таким образом, переходя к пределу в (27.6), получаем

$$
\int_0^\infty \int_{\mathbb{R}^N} \frac{|u|^q}{|x|^N} dx dt \leq - \lim_{R \to \infty} \int_{e^{-R} \leq |x| \leq e^R} \frac{u_0}{|x|^N} dx \leq 0
$$

(27.7)

в случае $1 < q < 3$ и

$$
\int_0^\infty \int_{\mathbb{R}^N} \frac{|u|^q}{|x|^N} dx dt \leq \text{const}
$$

(27.8)

в случае $q = 3$.

Теперь в случае $1 < q < 3$ неравенство (27.7) дает требуемое утверждение, а для $q = 3$ оценка (27.8) позволяет повторить наш стандартный способ изучения предельного случая. □
Замечание 27.2. Приведенное доказательство показывает, что мы можем изучать различные обобщения теоремы 27.1 на другие вырождающиеся задачи. Например, можно рассмотреть слабо связанный систему вида

\[
\begin{cases}
\frac{\partial u}{\partial t} - |x|^2 \Delta u \geq f(x, u, v), \\
\frac{\partial v}{\partial t} - |x|^2 \Delta v \geq g(x, u, v), \\
u(x, 0) = u_0(x), \\
v(x, 0) = v_0(x),
\end{cases}
\]

где \(f, g: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}\) суть караэдориевы функции такие, что для всех \((x, u, v) \in \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}\) выполнено

\[
f(x, u, v) \geq |x|^\sigma_1 |u|^{q_1} + |x|^\sigma_2 |v|^{p_1}, \quad g(x, u, v) \geq |x|^\sigma_3 |u|^{q_2} + |x|^\sigma_4 |v|^{p_2},
\]

где \(\sigma_1, \sigma_2, \sigma_3, \sigma_4 \in \mathbb{R}\) и \(p_1, q_2 > 1, q_1, p_2 > 1\). Для краткости опускаем детали.

28. ПАРАБОЛИЧЕСКИЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА С ЛОКАЛЬНЫМ (ПОЛНЫМ И МГНОВЕННЫМ) РАЗРУШЕНИЕМ РЕШЕНИЯ

В этом разделе мы изучаем проблему отсутствия решения следующей параболической задачи:

\[
\begin{cases}
\frac{\partial u}{\partial t} - \Delta u \geq |x|^\sigma u^q, \\
u(x, t) \geq 0, \\
u(x, 0) = u_0(x), \\
u(x, 0) = u_0(x),
\end{cases}
\]

где \(\sigma \leq -2, q > 1\) и

\[
0 \leq u_0 \in L^1_{loc}(\Omega \setminus \{0\}), \quad \Omega \subset \mathbb{R}^N, \quad N \geq 2.
\]

Определение 28.1. Под нетривиальным неотрицательным решением \(u\) задачи (28.1) мы понимаем функцию \(u \in L^q_{loc}(\Omega \setminus \{0\} \times (0, T))\), удовлетворяющую неравенству \(u \geq 0\) почти всюду в \(\Omega \times (0, T)\), \(u \neq 0\), и задаче (28.1) в смысле интегрального неравенства

\[
- \int_\Omega u\psi(x, 0) \, dx - \int_0^T \int_\Omega u \left(\frac{\partial \psi}{\partial t} + \Delta \psi \right) \, dx \, dt \geq \int_0^T \int_\Omega u^q |x|^\sigma \psi \, dx \, dt
\]

для любой \(\psi \geq 0, \psi \in C^2_{x,t}(\Omega \setminus \{0\} \times [0, T])\), с компактным носителем \(\text{supp} \psi \subset (\Omega \setminus \{0\}) \times [0, T]\).

Замечание 28.1. По-видимому, первые задача (28.1) с \(\sigma = 2\) и \(q = 2\) была рассмотрена в работе [32] на основании метода сравнения. Мы не используем метод сравнения и рассматриваем в отличие от работы [32] пробные неотрицательные функции с компактным носителем в \((\Omega \setminus \{0\}) \times (0, T)\), так что \(\psi|_{t=0} \neq 0\). Это дает нам возможность получить условия как полного, так и мгновенного разрушения решения в зависимости от локального поведения начальной функции.
Для решения задачи (28.1) мы получаем два результата. Первый результат утверждает разрушение за конечное время решений, рассматриваемых в сколь угодно малой “выколотой” окрестности нуля. Это разрушение имеет место для любого нетривиального неотрицательного решения.

Второй результат относится к мгновенному (т.е. за сколь угодно малое время) разрушению решения, рассматриваемого в сколь угодно малой “выколотой” окрестности нуля. Это разрушение имеет место для определенного класса начальных данных.

Приведем доказательство сформулированной ниже теоремы 28.1. Выберем пробную функцию ψ в виде

$$\psi(x, t) = \chi(t)\zeta(|x|),$$

где $\chi \in C^1[0, T]$ с $\chi(0) = 1$, $\chi(T) = 0$ и функция $\zeta = \zeta(r)$ определена формулой (6.2) для эллиптической задачи (6.1) с критическим и суперкритическим показателями сингулярности $\sigma \leq -2$.

Тогда, подставляя эту функцию в (28.2), получим

$$\int_0^T \int_\Omega u^q \chi |x|^\sigma \zeta dx dt \leq - \int_0^T \int_\Omega u \Delta \zeta dx dt - \int_0^T \int_\Omega u \zeta dx dt - \int_\Omega u_0 \zeta dx.$$

(28.3)

Подчеркнем еще раз, что мы используем здесь пробную функцию $\zeta = \zeta(r)$, определенную формулой (6.2) при тех же допустимых параметрах μ и κ, что и для эллиптической задачи с $\sigma \leq -2$.

Введем оператор $L(\varphi_0, \varphi)$ по формуле (6.10). Действуя как в разд. 6, из (28.4) получаем аналог неравенства (6.12):

$$\int_0^T \int_\Omega u^q \chi |x|^\sigma \zeta dx dt \leq A_1 \int_0^{r_0} \frac{\chi |L(\varphi_0, \varphi)|^{q'}}{(\varphi_0 \varphi^{N-1+\kappa+\sigma})^{q'}} dt + A_2 \int_0^{r_0} \frac{|\chi|^{q'} \zeta r^{N-1}}{(\chi |x|^\sigma)^q \zeta} dr dt - A_3 \int_\Omega u_0 \zeta dx.$$

(28.5)

Здесь постоянные $A_1 > 0$, $A_2 > 0$, $A_3 > 0$ зависят только от $q > 1$ и размерности N.

Для первого интеграла в правой части неравенства (28.5) в силу оценки (6.13) из эллиптического случая мы имеем

$$\int_0^T \int_\Omega \frac{|L(\varphi_0, \varphi)|^{q'} \chi}{(\varphi_0 \varphi^{N-1+\kappa+\sigma})^{q'}} dr dt \leq c_1 \varepsilon \int_0^T \chi dt,$$

(28.6)

где $c_1 = c_1(\varphi_0, \varphi) > 0$ и величина θ определена формулой (6.14).

Выбиря параметры κ и μ, как в эллиптическом случае, оптимальным образом, т.е. $\kappa + \mu = -(N - 2)$ с $\mu < 0$, мы получаем

$$\theta = \theta_0 = -(\sigma + 2)(q' - 1) > 0$$

при $\sigma < -2$.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Далее для второго интеграла в правой части неравенства (28.5) имеем

\[\int_0^T \int_0^{r_0} \frac{|x'|^q \zeta r^{N-1}}{(x|x'|^\sigma)^{q'-1}} \, dr \, dt = \int_0^T \frac{|x'|^q}{x^{q-1}} \, dt \int_0^{r_0} \zeta r^{N-1} \, dr. \]

(28.7)

Подставляя выражение (6.2) для \(\zeta \), находим

\[\int_0^{r_0} \frac{\zeta r^{N-1}}{|x|^\sigma(q'-1)} \, dr = \int_0^{r_0} r^{\kappa-\sigma(q'-1)+N-1} \varphi(r) \varphi(r) \, dr = \int_0^{r_0} r^{\kappa-\sigma(q'-1)+N-1} (r^\mu - r_0^\mu) \varphi(r) \, dr \leq \int_0^{r_0} r^{\kappa-\sigma(q'-1)+N-1} (r^\mu - r_0^\mu) \, dr < \int_0^{r_0} r^{\kappa+\mu-\sigma(q'-1)+N} \, dr \leq \frac{\zeta_0^{\kappa+\mu-\sigma(q'-1)+N}}{\zeta + \mu - (q'-1) + N}. \]

Отсюда при выбранных значениях \(\kappa \) и \(\mu \): \(\kappa + \mu = 2 - N \), получаем

\[\int_0^{r_0} \frac{\zeta r^{N-1}}{|x|^\sigma(q'-1)} \, dr \leq \frac{\zeta_0^{2-\sigma(q'-1)}}{2 - \sigma(q'-1)}. \]

(28.8)

Заметим, что в силу неравенства \(\sigma \leq -2 \) имеем

\[2 - \sigma(q'-1) \geq 2q' > 2. \]

Выберем теперь функцию \(\chi(t) \) следующим образом:

\[\chi(t) = \chi_0 \left(\frac{t}{T} \right), \]

где \(\chi_0(\tau) \in C^1(\mathbb{R}) \) и удовлетворяет условиям

\[\chi_0(\tau) = \begin{cases} 1, & 0 \leq \tau \leq 1/2, \\ 0, & \tau \geq 1, \end{cases} \]

и

\[A_0 := \int_0^1 \frac{\chi_0'(\tau)|q'|}{\chi_0(\tau)^{q'-1}} \, d\tau < \infty. \]

(28.9)

Существование такой функции \(\chi_0 \) является очевидным фактом.

Тогда получаем

\[\int_0^T \frac{|\chi'(t)|^q}{(\chi(t))^{q'-1}} \, dt = A_0 T^{1-q'}. \]

(28.10)

Подставляя оценки (28.8) и (28.10) в формулу (28.7), получаем

\[\int_0^T \int_0^{r_0} \frac{|x'|^q \zeta r^{N-1}}{(x|x'|^\sigma)^{q'-1}} \, dr \, dt \leq \frac{A_0}{2 - \sigma(q'-1)} T^{1-q'}. \]

(28.11)
На основании неравенства (28.6) с выбранной функцией χ и неравенства (28.11) из соотношения (28.5) находим

$$\int_0^T \int_\Omega u^d |x|^\sigma \zeta \, dx \, dt \leq B_1 \varepsilon^{\theta_0} T + B_2 r_0^{2-\sigma(q'-1)} T^{1-q'} - A_3 \int_\Omega u_0 \zeta \, dx. \quad (28.12)$$

Здесь

$$B_1 = A_1 c_1 \int_0^1 \chi_0(\tau) \, d\tau, \quad B_2 = \frac{A_0 A_2}{2 - \sigma(q' - 1)}.$$

Замечание 28.2. Формула (28.12) является ключевой в наших рассуждениях. В самом деле, если мы укажем $T_0 > 0$ (в зависимости от начальных данных u_0), при некотором значении σ справедливое неравенство (28.12) обращается в нуль (или меньше нуля), то получим, что решение не существует при этом значении T_0 и, следовательно, на промежутке $(0, T)$ с $T \geq T_0$.

Замечание 28.3. Ясно, что получить противоречие в неравенстве (28.12), т.е. неположительную правую часть неравенства (28.12) при всех $T > T_0$, невозможно. Это обусловлено наличием положительного слагаемого $B_1 \varepsilon^{\theta_0} T$.

Однако если мы рассмотрим пробную функцию $\chi(t)$, зависящую от параметра, например $\chi(t) = \chi_3(t) = \left(\frac{T-t}{T-l}\right)^\lambda$ с $\lambda > q' - 1$, то ситуация меняется. Именно существует оптимальные значения $\lambda_* \text{ и } T_* = T(\lambda_*)$ такие, что правая часть неравенства (28.12) обращается в нуль при T_* и для любого $T > T_*$ найдется λ такое, что эта правая часть отрицательна при этом значении T.

Правая часть формулы (28.12) как функция аргумента T достигает минимума при

$$T = T_0 = \left[\left(\frac{q'-1}{2-\sigma(q'-1)}\right)^{1/q'}\right]^{1/(q'-1)}$$

с $\theta_0 = -(\sigma + 2)(q' - 1)$, и этот минимум $m_0 = m_0(T_0)$ равен

$$m_0 = q B_1 \varepsilon^{\theta_0} T_0 - A_3 \int_\Omega u_0 \zeta \, dx. \quad (28.14)$$

Подставляя это значение $T_0 > 0$ в правую часть неравенства (28.12), получаем следующее обще утверждение.

Стема 28.1. Пусть существует $T_0 > 0$ такое, что

$$m_0(T_0) \leq 0. \quad (28.15)$$

Тогда не существует нетривиального слабого решения $u(x, t)$ задачи (28.1) на промежутке $(0, T_0)$ с $T > T_0$. \hspace{1cm} \Box

Рассмотрим теперь условия применения этой теоремы. Выпишем неравенство (28.15) в явном виде. Получим

$$B_3 \varepsilon^{\theta_0/q} r_0^{2-\sigma(q+2)/q} \leq \int_\Omega u_0 \zeta \, dx, \quad (28.16)$$

где $B_3 = q(q'-1)^{1/q'} B_1^{1/q'} B_2^{1/q'} A_3^{-1}$, так что постоянная B_3 не зависит ни от ε, ни от r_0, ни от решения u.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Теорема 28.2. Пусть в некоторой окрестности точки \(0 \in \mathbb{R}^N \) начальная функция \(u_0 \geq 0 \) п.в. и \(u_0 \neq 0 \) п.в. в этой окрестности.
Тогда не существует глобального по \(t \) неотрицательного нетривиального слабого решения \(u(x, t) \) задачи (28.1) при \(\sigma < -2 \) в любой сколь угодно малой “выколотой” окрестности точки \(0 \in \mathbb{R}^N \).

Доказательство. Выберем \(r_0 > 0 \) так, чтобы область \(\Omega_{\varepsilon, r_0} = \{ x \in \mathbb{R}^N : \varepsilon < |x| < r_0 \} \) содержалась внутри окрестности точки \(0 \in \mathbb{R}^N \), где \(u_0 \geq 0 \) п.в. и \(u_0 \neq 0 \).

Рассмотрим интеграл в правой части (28.16) (с учетом нашего выбора \(\zeta \)):
\[
\int_{\Omega} u_0 \zeta \, dx = \int_{\Omega_{\varepsilon, r_0}} u_0 r^{-\kappa} \varphi_0(r) \varphi(r) r^{N-1} \, d\omega dr.
\]

Этот интеграл монотонно возрастает при \(\varepsilon \to 0 \).

С другой стороны, в силу условия \(\sigma < -2 \) имеем
\[
\theta_0 = - (\sigma + 2)(q' - 1) > 0.
\]

Следовательно, левая часть неравенства (28.16) стремится к нулю при \(\varepsilon \to 0 \).

В то же время правая часть этого неравенства положительна и возрастает при \(\varepsilon \to 0 \). Отсюда следует, что неравенство (28.16) при указанном выше (сколько угодно малом фиксированном \(r_0 > 0 \)) имеет решение относительно \(\varepsilon > 0 \).

Тогда из теоремы 28.1 следует, что не существует решения при \(t \in (0, T) \) с \(T > T_0 \), где \(T_0 \) определено формулой (28.13) с указанными \(r_0 \) и \(\varepsilon \). Теорема 28.2 доказана. □

Рассмотрим теперь случай мгновенного разрушения решения, т.е. когда “время жизни” решения \(T_0 \) становится исчезающе малым. Для этого оценим интеграл \(\int_{\Omega} u_0 \zeta \, dx \) снизу. Имеем
\[
\int_{\Omega} u_0 \zeta \, dx = \int_{\Omega_{\varepsilon, r_0}} u_0 r^{-\kappa-1} (r^\mu - r_0^\mu) \varphi(r) \, d\omega dr \geq \int_{\Omega_{\varepsilon, r_0}} u_0 r^{-\kappa-1} (r^\mu - r_0^\mu) \, d\omega dr,
\]

поскольку \(\varphi(r) \geq 0 \) и \(\varphi(r) = 1 \) при \(r \geq 2\varepsilon \). Напомним, что \(\mu < 0 \).

Далее, полагая \(r = r_0 \rho, r_0 < 2\varepsilon \), получаем
\[
\int_{\Omega} u_0 \zeta \, dx \geq r_0^{\mu + \kappa + N} \int_{2\varepsilon / r_0}^{1} u_0 (r_0 \rho, \omega) \rho^{N + \kappa - 1} (\rho^N - 1) \, d\omega d\rho.
\]

Отсюда
\[
\int_{\Omega} u_0 \zeta \, dx \geq r_0^{2} \int_{1/2}^{1} u_0 (r_0 \rho, \omega) \rho^{N + \kappa - 1} (\rho^N - 1) \, d\omega d\rho
\]
при \(r_0 \geq 4\varepsilon \) и \(\mu + \varpi = 2 - N \).

Предположим теперь, что
\[
\int_{|\omega| = 1} u_0(s, \omega) \, d\omega \geq \Gamma_0 s^\gamma, \quad s \to 0,
\]
с \(\Gamma_0 > 0 \) и некоторым \(\gamma \).

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть II. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ПЕРВОГО ПОРЯДКА

Тогда неравенство (28.17) влечет

$$\int_\Omega u_0 \zeta \, dx \geq \Gamma_1 r_0^{2+\gamma}$$ \hspace{1cm} (28.19)

с

$$\Gamma_1 = \frac{1}{\Gamma_0} \int_{1/2}^{1} \rho^{N+\gamma+\kappa-1} (\rho^\mu - 1) \, d\rho. \hspace{1cm} (28.20)$$

Таким образом, при условии (28.18) неравенство (28.16) будет выполнено, если

$$\varepsilon^{\theta_0 / q} r_0^{-(\sigma + 2) / q - \gamma} \leq \Gamma_2 \hspace{1cm} (28.21)$$

с $\Gamma_2 = \Gamma_1 B_3^{-1}$.

Отметим, что неравенство (28.19) для любого γ и при любом фиксированном $r_0 > 0$ будет выполнено, если ε является достаточно малым, поскольку $\theta_0 > 0$ при $\sigma < -2$. При этом “время жизни” T_0 решения определяется формулой (28.13).

Чтобы получить условия мгновенного разрушения решения, положим

$$r_0 = 4\varepsilon. \hspace{1cm} (28.22)$$

Тогда неравенство (28.21) при условии (28.18) принимает вид

$$\varepsilon^{\theta_1} \leq \Gamma_3, \hspace{1cm} (28.23)$$

где

$$\theta_1 = -\frac{\sigma + 2}{q - 1} - \gamma, \hspace{1cm} \Gamma_3 = \Gamma_2 \cdot 4^{(\sigma + 2) / q + \gamma}. \hspace{1cm} (28.24)$$

Тогда для “времени жизни” T_0 решения при условии (28.22) из формулы (28.13) получаем

$$T_0 = B_4 \varepsilon^2 \hspace{1cm} (28.25)$$

с

$$B_4 = \left[(q' - 1) \frac{\overline{B_2}}{B_1} \cdot 4^{2 - \sigma (q' - 1)} \right]^{1/q'}. \hspace{1cm} (28.26)$$

Следовательно, если начальная функция удовлетворяет условию (28.18) с

$$\gamma < -\frac{\sigma + 2}{q - 1}, \hspace{1cm} (28.26)$$

мы получаем $T_0 = T_0(\varepsilon) \to 0$ при $\varepsilon \to 0$. Таким образом мы приходим к следующему результату.

Теорема 28.3. Пусть в некоторой окрестности точки $0 \in \mathbb{R}^N$ начальная функция $u_0 \geq 0$ п.о. и выполнено условие (28.18) с γ, удовлетворяющим неравенству (28.26).

Тогда не существует локального нетривиального решения $u(x,t)$ задачи (28.1) в ограниченной области $(\Omega \setminus \{0\}) \times (0,T_0)$, т.e. ни в какой “выколотой” окрестности $\Omega \setminus \{0\}$ ни при каком $T_0 > 0$ задача (28.1) при указанных условиях не имеет локального нетривиального решения.
Доказательство. В самом деле, предположив противное, получим некоторую “выколотую” окрестность \(\Omega_0 \setminus \{0\} \) и некоторое \(T_0 > 0 \) такое, что задача (28.1) имеет решение \(u(x, t) \) в \((\Omega_0 \setminus \{0\}) \times (0, T_0) \).

Выберем достаточно малое \(\varepsilon > 0 \) так, чтобы

\[
B_4 \varepsilon^2 < T_0, \quad \Omega_{\varepsilon_0, 4\varepsilon_0} \subset \Omega.
\]

Тогда на основании предыдущих рассуждений получаем противоречие со сделанным предположением. Действительно, в силу приведенных рассуждений задача (28.1) не имеет решения в \(\Omega_{\varepsilon_0, 4\varepsilon_0} \times (0, T_0) \). □

Замечание 28.4. Отметим, что теорема 28.3 включает и случай критической сингулярности \(\sigma = -2 \). В этом случае условие (28.26) принимает вид \(\gamma < 0 \).

В случае же суперкритического, т.е. при \(\sigma < -2 \), условие (28.26) выполняется при \(\gamma = 0 \), т.е. когда

\[
\lim_{s \to 0} \int_{|\omega| = 1} u_0(s, \omega) d\omega \geq \Gamma_0
\]

с некоторой положительной постоянной \(\Gamma_0 \).

В качестве следствия получаем следующее утверждение.

Теорема 28.4. Пусть \(\sigma < -2 \) и в некоторой окрестности \(\Omega_0 \subset \mathbb{R}^N \) начальная функция удовлетворяет условию

\[
u_0(x) \geq \delta \quad \text{н.е. в} \quad \Omega_0
\]

с некоторой положительной константой \(\delta > 0 \).

Тогда справедливо утверждение теоремы 28.3 о моментном и полном разрушении решения задачи (28.1). □

Отметим также, что при \(\sigma < -2 \) начальная функция \(u_0(x) \) может обращаться в ноль при \(x = 0 \) со скоростью \(|x|^\gamma \), где \(0 < \gamma < -\frac{\sigma + 2}{q - 1} \).

Рассмотрим теперь более подробно критический случай \(\sigma = -2 \). В этом случае, как следует из анализа, проведенного для эллиптической задачи при \(\sigma = -2 \) и указанных там параметрах (см. разд. 6), имеем соотношение (28.6) с \(\theta = 0 \), т.е.

\[
\int_{\varepsilon}^{r_0} \frac{|L(\varphi_0, \varphi)|^q'}{(\varphi_0 \varphi'|N-1+\gamma\sigma)^{q'-1}} dr \leq c_1,
\]

где \(c_1 = c_1(\varphi_0, \varphi) > 0 \) и не зависит ни от \(\varepsilon > 0 \), ни от \(r_0 > \varepsilon \).

Тогда из неравенства (28.12) с \(\theta_0 = 0 \) и \(\sigma = -2 \) получаем

\[
\frac{1}{A_3} \int_{\Omega} u_0 \zeta dx \leq B_1 T + B_2 \frac{r_0^{2q'}}{T^{q'-1}} - A_3 \int_{\Omega} u_0 \zeta dx.
\]

Отсюда при \(\varepsilon \to 0 \) следует, что несобственный интеграл

\[
\lim_{\varepsilon \to 0} \int_0^T \int_{B_0 \setminus B_\varepsilon} u^q \chi \frac{|x|^\sigma \zeta}{\varepsilon} dx dt
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
существует и конечен. Тогда в силу абсолютной непрерывности интеграла имеем при фиксированном $T > 0$

$$
\delta^q(\varepsilon) := \int_0^T \int_{B_{2\varepsilon} \setminus B_{\varepsilon}} \varepsilon^q |x|^\sigma \chi \zeta \, dx \, dt \to 0, \quad \varepsilon \to 0.
$$

(28.29)

Учитывая, что $\text{supp} L(\varphi_0, \varphi) \subset B_{2\varepsilon} \setminus B_{\varepsilon}$, и используя теперь при выводе оценки, аналогичной (28.5), вместо неравенства Юнга неравенство Гельдера, из (28.4) получим

$$
\frac{T}{\int_{B_{n^2}} \int_{B_{2\varepsilon} \setminus B_{\varepsilon}} u^q |x|^\sigma \chi \zeta \, dx \, dt} \leq c_1^{1/q'} \left(\frac{T}{\int_{B_{n^2}} \int_{B_{2\varepsilon} \setminus B_{\varepsilon}} u^q |x|^\sigma \chi \zeta \, dx \, dt} \right)^{1/q'} + \left(\frac{T}{\int_{B_{n^2}} \int_{B_{2\varepsilon} \setminus B_{\varepsilon}} u^q |x|^\sigma \chi \zeta \, dx \, dt} \right)^{1/q'} - A_3 \int_{B_{n^2}} u_0 \zeta \, dx.
$$

Отсюда в силу неравенства Юнга следует, что

$$
\frac{T}{\int_{B_{n^2}} \int_{B_{2\varepsilon} \setminus B_{\varepsilon}} u^q |x|^\sigma \chi \zeta \, dx \, dt} \leq \delta(\varepsilon) q' c_1^{1/q'} + \left(\frac{T}{\int_{B_{n^2}} \int_{B_{2\varepsilon} \setminus B_{\varepsilon}} u^q |x|^\sigma \chi \zeta \, dx \, dt} \right)^{1/q'} - q' A_3 \int_{B_{n^2}} u_0 \zeta \, dx.
$$

Подставляя сюда предыдущие функции

$$
\chi = \chi(t) = \chi_0 \left(t/T \right), \quad \zeta = \zeta(r) = r^\kappa \varphi_0(r) \varphi(r)
$$

c $\kappa + \mu + N = 2$ и $\sigma = -2$, получим

$$
\frac{T}{\int_{B_{n^2}} \int_{B_{2\varepsilon} \setminus B_{\varepsilon}} u^q |x|^\sigma \chi \zeta \, dx \, dt} \leq \delta(\varepsilon) q' c_1^{1/q'} + A_0 \frac{1}{2q'} (\kappa - 1 - q') r_0^{2q'} - q' A_3 \int u_0 \zeta \, dx.
$$

(28.30)

Здесь коэффициенты c_1, A_0 и A_3 не зависят ни от решения $u(x, t)$, ни от $\varepsilon > 0$, ни от $r_0 > \varepsilon$.

Следовательно, при $r_0 > 0$ и $T > 0$ таких, что правая часть неравенства (28.30) является неположительной, получаем противоречение с положительностью левой части этого неравенства при условии существования нетривиального решения $u(x, t)$ нашей задачи.

Таким образом, условие отсутствия решения принимает следующий вид:

$$
A_0 \frac{T}{2q'} r_0^{2q'} \leq q' A_3 \int u_0 \zeta \, dx - \delta(\varepsilon) q' c_1^{1/q'}.
$$

(28.31)

Замечая, что $\delta(\varepsilon) \to 0$ при $\varepsilon \to 0$, получаем следующую теорему отсутствия решений.

Теорема 28.5. Пусть $\sigma = -2$ и начальная функция u_0 удовлетворяет следующему условию:

$$
\lim_{\varepsilon \to 0} \int_{B_{2\varepsilon} \setminus B_{\varepsilon}} u_0 \zeta \, dx \geq \frac{1}{2q'} A_0 \frac{T}{2q'} r_0^{2q'}.
$$

(28.32)

Тогда не существует локального решения $u(x, t)$ (из указанного класса) на множестве $(B_{r_0} \setminus \{0\}) \times (0, T_0)$. □
Глава 3. ЭВОЛЮЦИОННЫЕ НЕРАВЕНСТВА

Следствие 28.1. Пусть начальная функция u_0 удовлетворяет условию (28.18), т.е.

$$
\int_{|\omega|=1} u_0(s, \omega) \, d\omega \geq \Gamma_0 s^\gamma, \quad s \to 0,
$$

с некоторыми $\Gamma_0 > 0$ и γ.

Тогда, если

$$
\gamma < 2(q' - 1),
$$

имеет место мгновенное (т.е. при сколь угодно малом $T > 0$) разрушение решения задачи (28.1) с $\sigma = -2$.

Доказательство. В самом деле, в этом случае условие (28.32) отсутствия решения в силу (28.19) принимает вид

$$
T^{q'-1} > \frac{1}{2(q')^2 A_0 A_1} r_0^{2q'-2-\gamma}.
$$

В силу (28.33) имеем

$$
r_0^{2q'-2-\gamma} \to 0, \quad r_0 \to 0.
$$

Следовательно, для любого (сколь угодно малого $T > 0$) найдется $T_0 > 0$ такое, что будет выполнено (28.32). □

Замечание 28.5. В этом случае мы имеем мгновенное и полное разрушение решений задачи (28.1).

Замечание 28.6. В силу $q' > 1$ условие (28.33) содержит не только функции

$$
u_0(x) \sim \text{const} > 0, \quad |x| \to 0,
$$

но и

$$
u_0(x) \sim c|x|^{-\gamma}, \quad 0 < \gamma < 2(q' - 1), \quad |x| \to 0.
$$

В заключение отметим, что более общий случай сингулярной параболической задачи

$$
\frac{\partial u}{\partial t} - \Delta u \geq \lambda \left(\frac{x}{|x|} \right) (\nabla u) |x|^{\nu} + |x|^\sigma u^q, \quad u \geq 0,
$$

в $(\Omega \setminus \{0\}) \times (0, T)$ рассмотрен в работе [234].

29. ПОЛУЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА ВЫСОКОГО ПОРЯДКА

Здесь мы приводим результаты, полученные совместно с В.А. Галактионовым, Ю.В. Егоровым, В.А. Кондратьевым [58, 189].

Пусть L — линейный дифференциальный оператор порядка m:

$$
L(v) := \sum_{|\alpha|=m} D^\alpha(a_\alpha(x, t)v),
$$

$a_\alpha(x, t)$ — ограниченные измеримые функции, определенные при $t \geq 0$, $x \in \mathbb{R}^N$. И пусть $p \geq 1$, $q > 1.$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Рассмотрим множество положительных функций \(u \), удовлетворяющих неравенству

\[
\begin{cases}
\frac{\partial u}{\partial t} \geq L(u^p) + u^q, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x) \geq 0, & x \in \mathbb{R}^N,
\end{cases}
\tag{29.1}
\]

в слабом смысле: если \(\varphi \in C^m_0(\mathbb{R}^{N+1}) \), \(\varphi(x, t) \geq 0 \), то

\[
- \int \int_0^T \frac{\partial \varphi}{\partial t} u \, dx \, dt - \int \int_0^T u_0 \varphi(x, 0) \, dx \geq \int \int_0^T u^p L^*(\varphi) \, dx \, dt + \int \int_0^T u^q \varphi \, dx \, dt.
\tag{29.2}
\]

Здесь

\[
L^*(\varphi) = \sum_{|\alpha|=m} a_\alpha(x, t)(-D)^\alpha \varphi.
\]

Основным результатом является

Теорема 29.1. Если неотрицательная функция \(u(x, t) \) из класса \(L^1_{\text{loc}}(\mathbb{R}^N) \cap L^q_{\text{loc}}(\mathbb{R}^N) \) такая, что \(u(x, 0) \in L^1_{\text{loc}}(\mathbb{R}^N) \), удовлетворяет (29.2) у \(1 \leq p < q \leq p + m/N \), то \(u(x, t) \equiv 0 \).

В теореме 29.1 не делаются никаких предположений о типе оператора \(L \).

В работе [113] впервые были получены необходимые условия существования положительного решения квазилинейного уравнения \(L(u) = u^p \) в пространстве \(\mathbb{R}^N \) без каких-либо предположений о типе оператора \(L \).

Доказательство теоремы 29.1. Пусть \(\varphi_0 \in C^\infty_0(\mathbb{R}) \), \(\varphi_0 \geq 0 \), \(\varphi_0(s) = 1 \) при \(s \leq 1 \) и \(\varphi_0(s) = 0 \) при \(s \geq 2 \). Будем предполагать, что

\[
|\varphi'_0(s)| \leq C_1 \varphi_0^{1/q}(s), \quad |\varphi''_0(s)| \leq C_2 \varphi_0^{p/q}(s).
\]

Пусть

\[
\varphi(x, t) = \varphi_0\left(\frac{t^2 + |x|^2}{R^2}\right), \quad R > 0,
\]

значение параметра \(\kappa > 0 \) будет указано ниже. Подставим в (29.2) эту функцию \(\varphi \). Поскольку

\[
- \int \int_0^T u_0 \varphi(x, 0) \, dx \leq 0,
\]

мы получаем

\[
- \int \int_0^\infty \frac{\partial \varphi}{\partial t} u \, dx \, dt - \int \int_0^\infty u^p L^*(\varphi) \, dx \, dt \geq \int \int_0^\infty u^q \varphi \, dx \, dt.
\tag{29.3}
\]

Оценим интегралы в левой части неравенства (29.3) через интеграл

\[
I = \int_0^\infty \int \Phi \, dx \, dt.
\]

Используя неравенство Юнга, можно показать, что

\[
- \int \int_0^\infty \frac{\partial \varphi}{\partial t} u \, dx \, dt \leq \frac{1}{4} I + C(q) \int \int_0^\infty \left(\frac{\partial \varphi}{\partial t} \right)^q \, dx \, dt
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 3. ЭВОЛЮЦИОННЫЕ НЕРАВЕНСТВА

и потому

\[- \int_0^\infty \int_{\mathbb{R}^N} \frac{\partial \varphi}{\partial t} u \, dx \, dt \leq \frac{1}{4} I + C_1 R^{N+\kappa-q'\kappa}. \tag{29.4}\]

Аналогично

\[- \int_0^\infty \int_{\mathbb{R}^N} u^p L^*(\varphi) \, dx \, dt \leq \frac{1}{4} I + C_2 R^{N+\kappa-mq/(q-p)}. \tag{29.5}\]

Из неравенств (29.3)–(29.5) следует, что

\[I \leq C_3 R^{N+\kappa}(R^{-q\kappa/(q-1)} + R^{-mq/(q-p)}). \tag{29.6}\]

Выберем \(\kappa \) так, что

\[\frac{q\kappa}{q-1} = \frac{mq}{q-p}, \]

t.e. положим

\[\kappa = \frac{m}{q-p}. \]

Если

\[N + \kappa \frac{mq}{q-p} = N - \frac{m}{q-p} < 0, \tag{29.7}\]

tо, устремляя \(R \) к бесконечности, мы получаем из (29.6), что \(I = 0 \), t.e. \(u \equiv 0 \). Неравенство (29.7) означает, что \(q < p + m/N \).

В случае, когда \(q = p + N/m \), из неравенства (29.6) следует, что интеграл \(I \) ограничен равномерно по \(R \), т.e. интеграл

\[\int_0^T \int_{\mathbb{R}^N} u^q \, dx \, dt \]

сходится. Тогда

\[\left| - \int_0^\infty \int_{\mathbb{R}^N} \frac{\partial \varphi}{\partial t} u \, dx \, dt - \int_0^\infty \int_{\mathbb{R}^N} u^p L^*(\varphi) \, dx \, dt \right| \leq C \left[\left(\int_{\Omega} u^q \, dx \, dt \right)^{1/q} + \left(\int_{\Omega} u^q \, dx \, dt \right)^{p/q} \right], \tag{29.8} \]

где

\[\Omega = \left\{ (x,t) : t > 0, \frac{\partial \varphi}{\partial t} \neq 0 \text{ или } D^\alpha \varphi(x,t) \neq 0 \text{ для некоторого } \alpha, |\alpha| = m \right\}. \]

Ясно, что

\[\Omega \subset \{ (x,t) : t > 0, t^{2/\kappa} + |x|^2 > R^2 \}\]

и потому

\[\int_{\Omega} u^q \, dx \, dt \to 0, \quad R \to \infty. \]

Из неравенств (29.3) и (29.8) следует, что

\[\int_{\Omega} u^q \varphi \, dx \, dt \to 0 \]

при \(R \to \infty \), t.e. \(u \equiv 0 \). □
Замечание 29.1. Теорема 29.1 легко обобщается на операторы L вида

$$L(v) = \sum_{\alpha n = m} D^\alpha (a_\alpha(x,t)v),$$

где $n = (n_1, \ldots, n_k)$, $n_j \in \mathbb{N}$, $\alpha n = \alpha_1 n_1 + \ldots + \alpha_k n_k$. Формулировка теоремы при этом сохраняется.

Замечание 29.2. Вместо неравенства (29.1) можно рассмотреть неравенство

$$\frac{\partial u}{\partial t} \geq L(a(x,t,u)u^p) + b(x,t,u)u^q, \quad p \geq 1, \quad q > 1,$$

предполагая, что при $|x| + t > 1$

$$|a(x,t,u)| \leq A(t^{1/p} + |x|)^\alpha, \quad b(x,t,u) \geq B(t^{1/p} + |x|)^{-\beta},$$

где $\alpha \geq 0, \beta \geq 0, A \geq 0, B > 0$ и $\rho > 0$ такое, что

$$\rho = \frac{q - 1}{q - p} \left(m - \alpha - \frac{p \beta}{q} \right).$$

В этом случае теорема 29.1 верна при $\rho \geq N(q - 1)$, т.е. при

$$p \geq q \left(1 + \frac{\alpha + \beta - m}{Nq - \beta} \right).$$

30. ЭВОЛЮЦИОННЫЕ НЕРАВЕНСТВА ВЫСОКОГО ПОРЯДКА

С ДОКРИТИЧЕСКИМ ВЫРОЖДЕНИЕМ

Начнем с одной теоремы для эволюционных задач вида

$$\begin{cases}
\frac{\partial u}{\partial t} - L_m(u) \geq |x|^{-\sigma}|u|^q, & (x,t) \in \mathbb{R}^N \times (0, \infty), \\
u(x,0) = u_0(x), & x \in \mathbb{R}^N,
\end{cases} \quad (30.1)$$

где $\sigma \in \mathbb{R}_+$ и $q > 1$. Здесь L_m — дифференциальный оператор вида

$$L_m(u) = \sum_{l \leq |\alpha| \leq m} D^\alpha A_\alpha(x,t,\cdot),$$

где $l \geq 1$. Относительно карацедориевых функций $A_\alpha : \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R} \rightarrow \mathbb{R}$ предполагаем, что для всех $\alpha : l \leq |\alpha| \leq m$ существует $p > 0$ такое, что $0 < p < q$ и

$$|A_\alpha(x,t,u)| \leq a_\alpha(x,t)|u|^p$$

для п.в. $(x,t,u) \in \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}$, (30.2)

где функции $a_\alpha : \mathbb{R}^N \times \mathbb{R}_+ \rightarrow \mathbb{R}_+$, $a_\alpha \in L^\infty_{\text{loc}}(\mathbb{R}^N \times [0, \infty))$, удовлетворяют неравенству

$$a_\alpha(x,t) \leq C (1 + |x|^\sigma + t^\theta)$$

для п.в. $(x,t) \in \mathbb{R}^N \times (0, \infty)$ (30.3)

с некоторыми $\sigma, \theta \in \mathbb{R}_+$ и $C > 0$.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Определение 30.1. Пусть \(u_0 \in L_{\text{loc}}^1(\mathbb{R}^N) \). Функция \(u \in L_{\text{loc}}^q(\mathbb{R}^N \times (0, \infty)) \) такая, что

\[
|u|^q |x|^{-\sigma} \in L_{\text{loc}}^1(\mathbb{R}^N \times (0, \infty))
\]

и для всех \(\alpha, \lambda \leq |\alpha| \leq m \),

\[
A_{\alpha}(x, t, u) \in L_{\text{loc}}^1(\mathbb{R}^N \times (0, \infty)),
\]

называется слабым решением задачи (30.1), если

\[
\int_0^\infty \int_{\mathbb{R}^N} \frac{|u|^q}{|x|^\sigma} \varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} \sum_{l \leq |\alpha| \leq m} (-1)^{|\alpha|+1} A_{\alpha}(x, t, u) D^\alpha \varphi \, dx \, dt - \\
- \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial \varphi}{\partial t}(x, t) \, dx \, dt - \int_{\mathbb{R}^N} u_0 \varphi(x, 0) \, dx
\]

для любой неотрицательной функции \(\varphi \in C_{x,t}^{m,1}(\mathbb{R}^N \times (0, \infty)) \) с компактным носителем.

Замечание 30.1. Интересно отметить, что мы не предполагаем, что дифференциальный оператор в (30.1) имеет параболический тип.

Чтобы сформулировать следующий результат, введем параметр \(\gamma > 0 \),

\[
\theta^* = \max_{l \leq |\alpha| \leq m} \theta_\alpha, \quad \sigma^* = \max_{l \leq |\alpha| \leq m} \sigma_\alpha, \quad m(\gamma) = \max\{\gamma \theta^*, \sigma^*\}
\]

и

\[
M_1(\gamma) = \frac{m(\gamma)q - lq + \sigma p + (N + \gamma)(q - p)}{q - p}, \quad M_2(\gamma) = (\sigma - \gamma)(q^* - 1) + N,
\]

где \(\frac{1}{q} + \frac{1}{q^*} = 1 \).

Теорема 30.1. Пусть выполнено неравенство (30.2). Предположим, что существует положительное решение \(\gamma_0 \) уравнения

\[
M_1(\gamma) = M_2(\gamma)
\]

с

\[
M_1(\gamma_0) \leq 0.
\]

Если

\[
0 \leq \lim_{R \to \infty} \int_{|x| \leq R} u_0(x) \, dx,
\]

то (30.1) не имеет глобального нетривиального слабого решения.

Доказательство. Пусть \(u \) — слабое решение задачи (30.1). Из (30.4) следует, что

\[
\int_0^\infty \int_{\mathbb{R}^N} \frac{|u|^q}{|x|^\sigma} \varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} \sum_{l \leq |\alpha| \leq m} |A_{\alpha}(x, t, u)| \cdot |D^\alpha \varphi| \, dx \, dt - \\
- \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial \varphi}{\partial t}(x, t) \, dx \, dt - \int_{\mathbb{R}^N} u_0(x) \varphi(x, 0) \, dx,
\]

где

\[
\frac{1}{q} + \frac{1}{q^*} = 1.
\]
и из неравенства Юнга получим

\[
C_1 \int_0^\infty \int_{\mathbb{R}^N} \left| \frac{u^q}{|x|^\gamma} \varphi \right| dx \, dt \leq C_2 \int_0^\infty \int_{\mathbb{R}^N} |B(\varphi)| \frac{q}{\sigma - \tau} \varphi^{\frac{q}{\sigma - \tau}} |x|^{\frac{\sigma q}{\sigma - \tau}} dx \, dt + \\
+ C_3 \int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t}(x, t) \right|^{q'} \varphi^{1-q'} |x|^\sigma (q'-1) dx \, dt - \int_{\mathbb{R}^N} u_0(x) \varphi(x, 0) dx,
\]

где \(C_1, C_2 \) и \(C_3\) — положительные постоянные, не зависящие от \(u\), и

\[
B(\varphi) := \sum_{l \leq |\alpha| \leq m} a_{\alpha}(x, t)|D^\alpha \varphi|.
\]

Тогда из неравенств (30.7) и (30.3) вытекает

\[
C_1 \int_0^\infty \int_{\mathbb{R}^N} \left| \frac{u^q}{|x|^\gamma} \varphi \right| dx \, dt \leq I_1 + I_2 - \int_{\mathbb{R}^N} u_0(x) \varphi(x, 0) dx,
\]

где

\[
I_1 = C_4 \int_0^\infty \int_{\mathbb{R}^N} \sum_{l \leq |\alpha| \leq m} (1 + |x|^\sigma \frac{q}{\sigma - \tau} + t^\beta \frac{q}{\sigma - \tau}) |D^\alpha \varphi| \frac{q}{\sigma - \tau} \varphi^{\frac{q}{\sigma - \tau}} |x|^{\frac{\sigma q}{\sigma - \tau}} dx \, dt
\]

и

\[
I_2 = C_5 \int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t}(x, t) \right|^{q'} \varphi^{1-q'} |x|^\sigma (q'-1) dx \, dt
\]

с некоторыми положительными постоянными \(C_4 \) и \(C_5\).

Далее выбираем пробную функцию \(\varphi \geq 0\) в виде

\[
\varphi(x, t) = \varphi_0 \left(\frac{t^\mu + |x|^\mu}{R^\mu} \right), \quad \mu \geq 1, \quad \mu \geq m,
\]

где \(\varphi_0 \in C_0^m(\mathbb{R})\) и

\[
\varphi_0(\xi) = \begin{cases}
1, & 0 \leq \xi \leq 1, \\
0, & \xi \geq 2,
\end{cases}
\]

и вводим замену переменных

\[
t = R^{\gamma_0} \tau, \quad x = R \xi
\]

с \(\gamma_0 = \frac{\mu}{\sigma}\). Легко проверить, что для достаточно больших \(R\) имеем

\[
I_1 \leq a M_1(\gamma_0), \quad I_2 \leq b M_2(\gamma_0),
\]

где аналогично эллиптическому случаю (см. разд. 7)

\[
a = \iiint_{E_{r, \xi}} \sum_{l \leq |\alpha| \leq m} (1 + |\xi|^\sigma \frac{q}{\sigma - \tau} + \tau^\beta \frac{q}{\sigma - \tau}) |D^\alpha \varphi_0| \frac{q}{\sigma - \tau} |\varphi_0| \frac{q}{\sigma - \tau} |\xi|^\sigma dx \, dt \, d\xi < \infty
\]

и

\[
b = \iiint_{E_{r, \xi}} \left| \frac{\partial \varphi_0}{\partial \tau} \right|^{q'} \varphi_0^{1-q'} |\xi|^\sigma (q'-1) d\xi \, dt < \infty
\]
Глава 3. ЭВОЛЮЦИОННЫЕ НЕРАВЕНСТВА

с

\[E_{\tau, \xi} = \{ (\tau, \xi) : 1 \leq \tau^\kappa + |\xi|^\mu \leq 2 \}. \]

Наконец, по нашему предположению \(M_1(\gamma_0) = M_2(\gamma_0) \). Тогда

\[
\int \int_{C_{R, \gamma_0}} \frac{|u|^q}{|x|^{q'}} \, dx \, dt \leq C_6 R^{M_1(\gamma_0)} - \int_{D_{R, \gamma_0}} u_0(x) \varphi_0 \left(\frac{|x|^\gamma}{R^{\kappa_0}} \right) \, dx,
\]

где

\[C_{R, \gamma_0} = \{ (x, t) \in \mathbb{R}^N \times (0, \infty) : t^\kappa + |x|^\mu \leq R^\mu \} \]

и

\[D_{R, \gamma_0} = \{ x \in \mathbb{R}^N : |x| \leq 2^{1/\mu} R \}. \]

Теперь, если \(M_1(\gamma_0) < 0 \), получаем требуемое, а в предельном случае \(M_1(\gamma_0) = 0 \) используем наше стандартное рассуждение. Теорема доказана. □

Обобщим предшествующий результат. Пусть \(L_m \) — дифференциальный оператор, определяемый формулой

\[L_m(\cdot) := \sum_{l \leq |\alpha| \leq m} D^\alpha A_\alpha(x, t, \cdot), \]

где \(1 \leq l, (x, t) \in \mathbb{R}^N \times (0, \infty) \) и \(A_\alpha \) — заданные функции, удовлетворяющие неравенству (30.2).

Рассмотрим неравенство

\[
\left\{ \begin{array}{l}
\frac{\partial u}{\partial t} - L_m(u) \geq b(x, t, u), \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x), \quad x \in \mathbb{R}^N,
\end{array} \right.
\]

где \(u_0 \in L_{1, loc}^1(\mathbb{R}^N) \).

Кроме того, предположим, что существуют \(q > \max\{p, 1\} \) и локально ограничена функция

\[b_0 : \mathbb{R}^N \times (0, \infty) \to \mathbb{R} \]

такие, что \(b_0 \geq 0 \) п.в. и

\[b(x, t, s) \geq b_0(x, t)|s|^q \]

для почти всех \((x, t, s) \in \mathbb{R}^N \times (0, \infty) \times \mathbb{R}\).

Кроме того, если \(u \in L_{q, loc}^q(\Omega) \), где \(\Omega \subset \subset \mathbb{R}^N \times (0, \infty) \), такое, что

\[
\int \int_{\Omega} b_0(x, t)|u(x, t)|^q \, dx \, dt = 0,
\]

то \(u = 0 \) п.в. в \(\Omega \).

Введем некоторые количественные характеристики, играющие важную роль в доказательстве последующих результатов.

Пусть \(T \) и \(L \) — фиксированные положительные параметры. Пусть \(\psi_0 \in C_0^m(\mathbb{R}_+^2) \), и рассмотрим функцию \(\varphi : \mathbb{R}^N \times (0, \infty) \to \mathbb{R}_+ \), определяемую формулой

\[
\varphi(x, t) := \psi_0(|\xi|, \tau),
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
где

\[t = T \tau, \quad x = L \xi. \]

Очевидно, \(\varphi \in C_0^m(\mathbb{R}^N \times (0, \infty)) \). Введем \(A_{\tau,\xi}, B_{\tau,\xi} \) и \(C_{\tau,\xi} \) следующим образом:

\[
A_{\tau,\xi} := \sum_{l \leq |\alpha| \leq m} \frac{1}{L^{|\alpha|}} a_\alpha(L \xi, T \tau) |D^\alpha \varphi_0|, \quad (30.10)
\]

\[
B_{\tau,\xi} := \frac{q - p}{q} A_{\tau,\xi} \left| \frac{1}{\tau} \left(b_0 \varphi_0 \right)^{-\frac{1}{q}} \right|, \quad (30.11)
\]

\[
C_{\tau,\xi} = \gamma T^{-q'} \left| \frac{\partial \varphi_0}{\partial \tau} \right| (b_0 \varphi_0)^{1-q'}, \quad (30.12)
\]

где \(\gamma = \frac{1}{q} \left(\frac{2}{q-p} \right)^{q'-1} \) и \(q' \) — сопряженный показатель к \(q \).

Поскольку \(\varphi_0 \in C_0^m(\mathbb{R}_+^2) \), легко видеть, что

\[\mathbb{R}_+^2 = \{ (|\xi|, \tau) \in \mathbb{R}^2 : \xi \in \mathbb{R}^N, \tau \geq 0 \}. \]

Определим множества \(D_1 \) и \(D_2 \):

\[
D_1 = \{ (\xi, \tau) \in \mathbb{R}^N \times [0, \infty) : |\xi| \leq 1, \tau \in [0, 1] \}, \quad (30.13)
\]

\[
D_2 = \{ (\xi, \tau) \in \mathbb{R}^N \times [0, \infty) : |\xi| \leq 2, \tau \in [0, 2] \}. \quad (30.14)
\]

Сформулируем наш результат.

Теорема 30.2. Пусть выполнены неравенства (30.2), (30.9) и существует непрерывная кривая

\[P : \mathbb{R}_+ \to \mathbb{R}_+ \times \mathbb{R}_+, \quad P(R) = (T(R), L(R)), \]

такая, что

\[
\lim_{R \to \infty} T(R) = \lim_{R \to \infty} L(R) = \infty
\]

и

\[
\lim_{R \to \infty} T(R)L^N(R) \int_{D_2} (B_{\tau,\xi} + C_{\tau,\xi}) \, d\xi \, d\tau = 0, \quad (30.15)
\]

где \(B_{\tau,\xi}, C_{\tau,\xi} \) определены (30.11) и (30.12) соответственно, \(\varphi_0 \in C_0^m(\mathbb{R}_+^2) \) удовлетворяет

\[
\psi_0 = 1, \quad (|\xi|, \tau) \in D_1; \quad \psi_0 = 0, \quad (|\xi|, \tau) \in \mathbb{R}_+^2 \setminus D_2.
\]

Если

\[
\lim_{R \to \infty} L^N(R) \int_{|\xi| \leq 2} u_0(L(R)\xi) \psi_0(|\xi|, 0) \, d\xi \geq 0, \quad (30.16)
\]

то (30.8) не имеет слабого решения в смысле определения 30.1.
Доказательство. Пусть u — слабое решение задачи (30.8), и пусть $\psi_0 \in C^m_0(\mathbb{R}^N)$. Положим $\varphi(x, t) := \psi_0(|\xi|, \tau)$. Умножая неравенство (30.8) на φ и интегрируя по частям, получаем

$$
\int_0^\infty \int \int_0^\infty b(x, t, u)|\varphi| dx dt \leq \int_0^\infty \int \int_0^\infty \sum_{l \leq |\alpha| \leq m} (-1)^{|\alpha|+1} A_{\alpha}(x, t, u) D^\alpha \varphi dx dt - \int_0^\infty \int \int_0^\infty u \frac{\partial \varphi}{\partial t} dx dt - \int_{\mathbb{R}^N} u_0 \varphi(x, 0) dx.
$$

Далее по нашему определению D_2 из неравенства выше получаем

$$
TL^N \int_D \int b(L\xi, T\tau, u)\psi_0(|\xi|, \tau) d\xi d\tau \leq TL^N \int_D \int \sum_{l \leq |\alpha| \leq m} |A_{\alpha}(L\xi, T\tau, u)| \frac{1}{L_{|\alpha|}} |D^\alpha \psi_0(|\xi|, \tau)| d\xi d\tau - \int_{\mathbb{R}^N} u \frac{\partial \psi_0}{\partial \tau} dx dt - \int_{\mathbb{R}^N} u_0 \varphi(x, 0) dx.
$$

Используя неравенства (30.2) и (30.9), из (30.17) выводим

$$
\int_D \int b_0(L\xi, T\tau)|u|^q \psi_0(|\xi|, \tau) d\xi d\tau \leq \int_D \int \sum_{l \leq |\alpha| \leq m} \frac{1}{L_{|\alpha|}} a_{\alpha}(L\xi, T\tau) |D^\alpha \psi_0| \cdot |u|^p d\xi d\tau - \frac{1}{T} \int_D \int u \frac{\partial \psi_0}{\partial \tau} d\xi d\tau - \frac{1}{TL^N} \int_{\mathbb{R}^N} u_0 \varphi(x, 0) dx,
$$

т.е.

$$
\int_D \int b_0(L\xi, T\tau)|u|^q \psi_0(|\xi|, \tau) d\xi d\tau \leq \int_D \int A_{r, \xi} |u|^p d\xi d\tau - \frac{1}{T} \int_D \int u \frac{\partial \psi_0}{\partial \tau} d\xi d\tau - \frac{1}{TL^N} \int_{\mathbb{R}^N} u_0 \varphi(x, 0) dx.
$$

(30.18)

Далее заметим, что из неравенства Юнга

$$
A_{r, \xi}|u|^p = (b_0\psi_0)^{p/q}|u|^p(b_0\psi_0)^{-p/q}A_{r, \xi} \leq \frac{p}{q}|u|^q b_0\psi_0 + \frac{q-p}{p}|A_{r, \xi}|\frac{u}{\|u\|_{L^p}} (b_0\psi_0)^{-\frac{p}{q}} = \frac{p}{q}|u|^q b_0\psi_0 + B_{r, \xi}.
$$

Используя это неравенство, из (30.18) получим

$$
\frac{q-p}{q} \int_D \int b_0|u|^q \psi_0 d\xi d\tau \leq \int_D \int B_{r, \xi} d\xi d\tau - \frac{1}{T} \int_D \int u \frac{\partial \psi_0}{\partial \tau} d\xi d\tau - \frac{1}{TL^N} \int_{\mathbb{R}^N} u_0 \varphi(x, 0) dx
$$

(30.19)

и снова применяем неравенство Юнга с параметром $\varepsilon > 0$

$$
\frac{1}{T} u \frac{\partial \psi_0}{\partial \tau} = \varepsilon (b_0\psi_0)^{1/q} \frac{1}{\varepsilon^q} \frac{\partial \psi_0}{\partial \tau} (b_0\psi_0)^{-1/q} \leq \frac{\varepsilon^q}{q} |u|^q b_0\psi_0 + \frac{1}{\varepsilon^q (b_0\psi_0)^{1/q}} \frac{1}{\|b_0\psi_0\|_{L^q}} \frac{\partial \psi_0}{\partial \tau}^{q'},
$$

где $\frac{1}{q} + \frac{1}{q'} = 1$.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Выбирая $\varepsilon = \left(\frac{q-1}{2}\right)^{1/q}$, мы видим, что второй интеграл в правой части (30.19) можно оценить константой $C_{\tau,\xi}$, определенной в (30.12), т.е.

$$
\frac{1}{2q}(q-p) \int_0^{T(R)} \int_{|x| \leq L(R)} b_0|u|^q dx dt \leq \frac{1}{2q}(q-p)T(R)L^N(R) \int_0^{T(R)} \int_{B_{\tau,\xi} + C_{\tau,\xi}} b_0|u|^q d\xi d\tau \leq \frac{1}{2q}(q-p)T(R)L^N(R) \int_0^{T(R)} \int_{B_{\tau,\xi} + C_{\tau,\xi}} b_0|u|^q d\xi d\tau \leq T(R)L^N(R) \int_{B_{\tau,\xi} + C_{\tau,\xi}} b_0|u|^q d\xi d\tau - L^N(R) \int_{|\xi| \leq 2} u_0(L(R)\psi_0(|\xi|, 0) d\xi. \quad (30.21)
$$

Очевидно, это последнее неравенство означает, что для любого компактного множества $\Omega \subset \mathbb{R}^N \times [0, \infty)$ имеем

$$
\frac{1}{2q}(q-p) \int_{\Omega} b_0|u|^q dx dt \leq T(R)L^N(R) \int_{B_{\tau,\xi} + C_{\tau,\xi}} b_0|u|^q d\xi d\tau - L^N(R) \int_{|\xi| \leq 2} u_0(L(R)\psi_0(|\xi|, 0) d\xi. \quad (30.22)
$$

Наконец, в силу (30.15) и (30.16) правая часть неравенства (30.22) сходится к некоторому $\Theta \leq 0$, когда $R \to \infty$. Итак, на любом компактном множестве $\Omega \subset \mathbb{R}^N \times [0, \infty)$ имеем $u = 0$ в Ω. Получили противоречие с нашим предположением, что завершает доказательство теоремы.

Приведем приложения этой теоремы к вырождающимся параболическим неравенствам.

При мер 30.1. Пусть $0 \leq \tau < 2$ и $q > 1$. Рассмотрим задачу

$$
\left\{ \begin{array}{ll}
\frac{\partial u}{\partial t} - |x|^\tau \Delta u \geq |u|^q, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x), & x \in \mathbb{R}^N,
\end{array} \right. \quad (30.23)
$$

где $u_0 \in L^1_{\text{loc}}(\mathbb{R}^N)$. Говоря о решении u задачи (30.23), мы подразумеваем, что $v = |x|^{-\tau}u$ — слабое решение в смысле определения 30.1 задачи

$$
\left\{ \begin{array}{ll}
\frac{\partial v}{\partial t} - \Delta(|x|^\tau v) \geq |x|^{\tau(q-1)}|v|^q, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
v(x, 0) = v_0(x)|x|^{-\tau}, & x \in \mathbb{R}^N.
\end{array} \right. \quad (30.24)
$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Используя введенные при доказательстве теоремы 30.1 обозначения, видим, что
\[b_0(x, t) = |x|^{\tau(q-1)}, \quad a_\alpha(x, t) = |x|^\tau, \quad |\alpha| = 2, \quad p = 1 \]
и
\[A_{\tau, \xi} = \text{const} \cdot L^{\tau-2}, \quad B_{\tau, \xi} = \text{const} \cdot L^{(\tau-2)q' - \tau}, \quad C_{\tau, \xi} = \text{const} \cdot T^{q'} L^{1-q'}, \tag{30.25} \]
t.e. соответствующее условие (30.15) теоремы 30.2 принимает вид
\[\lim_{R \to \infty} T(R)L^N(R) \{ (L(R))^{(\tau-2)q' - \tau} + (T(R))^{-q'} (L(R))^{-\tau} \} = 0. \tag{30.26} \]
Выбирая \(L(R) = R, \ R > 0, \) и \(P(R) = (T(R), L(R)), \ T(R) = (L(R))^{2-\tau}, \) видим, что (30.26) удовлетворяется, если
\[1 < q < 1 + \frac{2 - \tau}{N - \tau}. \]

В случае \(q = 1 + \frac{2 - \tau}{N - \tau} \) действуем нашим стандартным способом.

Таким образом доказана

Теорема 30.3. Пусть \(0 < \tau < 2 \) и \(q > 1. \) Предположим, что \(u_0 \in L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\}), \)
\[\lim_{R \to \infty} \int_{|x| \leq R} \frac{u_0(x)}{|x|^\tau} \, dx \geq 0, \quad 1 < q \leq 1 + \frac{2 - \tau}{N - \tau}. \]
Тогда (30.23) не имеет глобального нетривиального слабого решения. \(\square \)

Замечание 30.2. В специальном случае \(\tau = 0 \) неравенство (30.23) сводится к
\[\frac{\partial u}{\partial t} - \Delta u \geq |u|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty). \tag{30.27} \]
Из теоремы 30.3 следует, что если
\[1 < q \leq 1 + \frac{2}{N} \tag{30.28} \]
и
\[\lim_{R \to \infty} \int_{|x| \leq R} u_0(x) \, dx \geq 0, \tag{30.29} \]
то задача (30.27) не имеет глобального нетривиального решения.

Для поточечного решения уравнения \(\frac{\partial u}{\partial t} - \Delta u = \partial^d \) в \(\mathbb{R}^N \times (0, \infty) \) это классический результат Фуки (68).

Замечание 30.3. Случай \(\tau < 0 \) рассматривается аналогичным методом.

Приведем еще одно следствие теоремы 30.1.

Пример 30.2. Пусть \(N \geq 2 \) и дифференциальный оператор \(L_k \) задан формулой
\[L_k(\cdot) := \sum_{k \leq |\alpha| \leq m} D^\alpha (a_\alpha(x, t)) \cdot. \]
Здесь \(a_\alpha : \mathbb{R}^N \times [0, \infty) \to \mathbb{R} \) — измеримые функции, удовлетворяющие условию: существует \(K > 0 \) такое, что для всех \(\alpha : 1 \leq k \leq |\alpha| \leq m \) и почти всех \((x, t) \in \mathbb{R}^N \times [0, \infty) \) имеем
\[|a_\alpha(x, t)| \leq K. \]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть II. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ПЕРВОГО ПОРЯДКА

Пусть \(u \) — решение неравенства

\[
\begin{align*}
\frac{\partial u}{\partial t} & \geq |x|^\tau L_k(u) + |u|^q, & (x, t) & \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) & = u_0(x), & x & \in \mathbb{R}^N,
\end{align*}
\]

где \(u_0|x|^{-\tau} \in L^1_{loc}(\mathbb{R}^N) \) и \(0 \leq \tau < k \).

Функция \(u \) называется решением (30.30), если \(u \) — слабое решение неравенства

\[
|x|^{-\tau} \frac{\partial u}{\partial t} - L_k(u) \geq |x|^{-\tau}|u|^q, & (x, t) & \in \mathbb{R}^N \times (0, \infty).
\]

Вводя

\[
v := |x|^{-\tau} u,
\]

мы видим, что (30.30) эквивалентно

\[
\frac{\partial v}{\partial t} \geq L_k(|x|^\tau v) + |x|^\tau(q-1)|v|^q, & (x, t) & \in \mathbb{R}^N \times (0, \infty),
\]

в задаче (30.32), для любой \(\varphi \in C^m_0(\mathbb{R}^N \times (0, \infty)) \) выполнено

\[
- \int_0^\infty \int_{\mathbb{R}^N} v \frac{\partial \varphi}{\partial t} dx dt - \int_{\mathbb{R}^N} v_0(x) \varphi(x, 0) dx \geq \int_0^\infty \int_{\mathbb{R}^N} |x|\tau v L_k^*(\varphi) dx dt + \int_0^\infty \int_{\mathbb{R}^N} |x|\tau(q-1)|v|^q \varphi dx dt,
\]

где \(L_k^* \) — формально сопряженный к \(L_k \), т.е.

\[
L_k^*(\cdot) := \sum_{k \leq |\alpha| \leq m} (-1)^{|\alpha|} a_\alpha(x, t) D^\alpha(\cdot).
\]

Пусть \(\varphi_0 \in C^m_0(\mathbb{R}^N \times (0, \infty)) \) такая, что

\[
\varphi_0(s) = \begin{cases}
1, & 0 \leq s \leq 1, \\
0, & s \geq 2.
\end{cases}
\]

Определим

\[
\varphi(x, t) = \varphi_0(\xi),
\]

где

\[
\xi = \frac{t^\theta \lambda + |x|^{2\lambda}}{R^{2\lambda}}
\]

и \(\theta > 0 \) будет определено ниже. Запишем неравенство (30.33) с выбранной функцией \(\varphi \) в виде

\[
- \int_0^\infty \int_{\mathbb{R}^N} |x|\tau(q-1)|v|^q \varphi dx dt \leq - \int_0^\infty \int_{\mathbb{R}^N} \left(v \frac{\partial \varphi}{\partial t} + |x|^\tau v L_k^*(\varphi) \right) dx dt - \int_{\mathbb{R}^N} v_0(x) \varphi(x, 0) dx.
\]

Полагая

\[
M^*(\varphi) = \frac{\partial \varphi}{\partial t} + |x|^\tau L_k^*(\varphi),
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 3. ЭВОЛЮЦИОННЫЕ НЕРАВЕНСТВА

можем переписать (30.34) как

\[\int_0^\infty \int_{\mathbb{R}^N} |x|^{\tau(q-1)} |v|^q \varphi \, dx \, dt \leq - \int_0^\infty \int_{\mathbb{R}^N} v M^*(\varphi) \, dx \, dt - \int_{\mathbb{R}^N} u_0(x) \varphi(x, 0) \, dx. \]

С использованием неравенства Юнга последняя оценка означает

\[\int_0^\infty \int_{\mathbb{R}^N} |x|^{\tau(q-1)} |v|^q \varphi \, dx \, dt \leq - \int_0^\infty \int_{\mathbb{R}^N} v M^*(\varphi) \, dx \, dt - \frac{q}{q-1} \int_{\mathbb{R}^N} u_0(x) \varphi(x, 0) \, dx, \quad (30.35) \]

gде \(\frac{1}{q} + \frac{1}{q'} = 1 \). Оценивая правую часть (30.35) в зависимости от \(R \) и выбирайя \(\theta = \frac{2}{k-\tau} \), из (30.35) получаем

\[\int_0^\infty \int_{\mathbb{R}^N} \frac{|M^\ast_k|^q}{\varphi^{q'-1}} |x|^{-\tau} \, dx \, dt \cong R^2 R^N R^{-\tau} R^{-\frac{2q'}{q'}}. \quad (30.36) \]

Таким образом, правая часть (30.36) стремится к нулю при \(R \to \infty \), если

\[q(N - \tau) < N + k - 2\tau, \]

или ограничена при условии

\[q(N - \tau) = N + k - 2\tau. \]

Тогда, переходя к пределу при \(R \to \infty \), из (30.35) окончательно получаем

\[\int_0^\infty \int_{\mathbb{R}^N} |x|^{\tau(q-1)} |v|^q \varphi \, dx \, dt \leq - \lim_{R \to \infty} \int_{|x| \leq R} \frac{u_0(x)}{|x|^{\tau}} \, dx \]

при \(q(N - \tau) < N + k - 2\tau \) и

\[\int_0^\infty \int_{\mathbb{R}^N} |x|^{\tau(q-1)} |v|^q \varphi \, dx \, dt \leq C - \lim_{R \to \infty} \int_{|x| \leq R} \frac{u_0(x)}{|x|^{\tau}} \, dx \]

при \(q(N - \tau) = N + k - 2\tau \). Очевидно, если

\[\lim_{R \to \infty} \int_{|x| \leq R} \frac{u_0(x)}{|x|^{\tau}} \, dx \geq 0, \]

tо требуемое заключение следует аналогично доказательству теоремы 30.3.

Итак, доказано

Предложение 30.1. Пусть \(0 \leq \tau < k \) и \(q > 1 \). Предположим, что \(u_0 \in L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\}) \),

\[\lim_{R \to \infty} \int_{|x| \leq R} \frac{u_0(x)}{|x|^{\tau}} \, dx \geq 0, \quad q(N - \tau) \leq N + k - 2\tau. \]

Тогда (30.30) не имеет глобального нетривиального слабого решения. \(\square \)
Задачи с полигармоническим оператором. Рассмотрим некоторые параболические неравенства с критическим вырождением, содержащие полигармонический оператор. Для краткости изучена только модельная задача и показаны некоторые возможные обобщения. Главным моментом является независимость критического показателя от порядка оператора и рассмотрим задачу

\[\begin{cases} \frac{\partial u}{\partial t} + (-1)^m |x|^{2m} \Delta^m u \geq |u|^q, & (x, t) \in \mathbb{R}^N \setminus \{0\} \times (0, \infty), \\ u(x, 0) = u_0(x), & x \in \mathbb{R}^N \setminus \{0\}, \end{cases} \]

где \(u_0 \in L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\}) \).

Определение 31.1. Функция \(u \in L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\} \times (0, \infty)) \) называется слабым решением задачи (31.1), если

\[\int_0^\infty \int_{\mathbb{R}^N} \frac{|u|^q}{|x|^N} \varphi \, dx \, dt \leq (-1)^m \int_0^\infty \int_{\mathbb{R}^N} u \Delta^m(|x|^{2m-N} \varphi) \, dx \, dt - \int_0^\infty \int_{\mathbb{R}^N} \frac{u}{|x|^N} \frac{\partial \varphi}{\partial t} \, dx \, dt - \int_{\mathbb{R}^N} \frac{u_0(x)}{|x|^N} \varphi(x, 0) \, dx \]

для любой неотрицательной функции \(\varphi \in C^2_0(\mathbb{R}^N \setminus \{0\} \times (0, \infty)) \).

Следующее утверждение является естественным обобщением теоремы 27.1 на полигармонические неравенства c критическим вырождением.

Теорема 31.1. Пусть \(u_0 \in L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\}) \) и

\[0 \leq \lim_{R \to \infty} \int_{e^{-R} \leq |x| \leq e^R} \frac{u_0(x)}{|x|^N} \, dx \] (возможно, бесконечем).

Если \(1 < q \leq 3 \), то задача (31.1) не имеет нетривиального слабого решения.

Доказательство для краткости проведем только для \(N > 2m \). Пусть \(u \) — нетривиальное решение задачи (31.1). Применение неравенства Юнга к правой части (31.2) дает

\[\int_0^\infty \int_{\mathbb{R}^N} \frac{|u|^q}{|x|^N} \varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} \frac{1}{|x|^N} |M_m(\varphi)|^{q'} \, dx \, dt - \int_{\mathbb{R}^N} \frac{u_0(x)}{|x|^N} \varphi(x, 0) \, dx \]

где \(\frac{1}{q} + \frac{1}{q'} = 1 \) и

\[M_m(\varphi) = (-1)^m \Delta^m(|x|^{2m-N} \varphi) - \frac{\partial \varphi}{\partial t}, \quad \varphi \in C^2_0(\mathbb{R}^N \setminus \{0\} \times (0, \infty)). \]

Выбирая \(\varphi(x, t) = \psi(|x|, t) \) (функция \(\psi \) будет определена ниже) и вводя замену переменных

\[\ln |x| = s, \quad -\infty < s < \infty, \]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 3. ЭВОЛЮЦИОННЫЕ НЕРАВЕНСТВА

из (31.3) следует

\[\int_0^\infty \int_{\mathbb{R}^N} \frac{|u|^q}{|x|^N} \varphi \, dx \, dt \leq |S^{N-1}| \int_{-\infty}^\infty \left| \sum_{j=1}^{2m} c_j \psi_j(e^s, t) \right| \left| q' \varphi \right| \psi^{1-q'} \, ds \, dt - q'|S^{N-1}| \int_{-\infty}^{S^{N-1}} u_0(e^s, \omega) \varphi(e^s, 0) \, d\omega \, ds, \tag{31.4} \]

где \(\omega = \frac{x}{|x|}, x \neq 0. \) Далее положим

\[\psi(e^s, t) = \psi_0 \left(\frac{t}{R^2} \right) \psi_1 \left(s + c_1 t \right), \]

где \(c_1 \) — коэффициент при члене первого порядка в \(\sum_{j=1}^{2m} c_j \psi_j(e^s, t) \) в правой части (31.4) и \(\psi_0, \psi_1 \) выбраны, как в случае \(m = 1 \) (см. (27.5)). Повторяя те же самые рассуждения, получаем

\[\int_{A_{R,t}} \frac{|u|^q}{|x|^N} \, dx \, dt \leq C_1 R^{3-2q'} - q' \int_{e^{-R} \leq |x| \leq e^R} u_0(x) \frac{1}{|x|^N} \, dx, \tag{31.5} \]

gде \(C_1 > 0 \) и

\[A_{R,t} = \{(x, t) \in \mathbb{R}^N \times \mathbb{R}^+ : t \leq R^2, |\ln |x| + c_1 t| \leq R\}. \]

Отсюда следует требуемое утверждение. \(\square \)

Замечание 31.1. Разумеется, возможны многочисленные обобщения приведенных выше результатов. Отметим лишь возможность изучения слабо связанных систем полигармонических неравенств различного порядка с правыми частями, зависящими от пространственных переменных. Детали оставляем интересующимся читателям.

32. ПОЛУЛИНЕЙНЫЕ НЕРАВЕНСТВА В КОНУСЕ

Аналогично, используя построения разд. 11 для эллиптического оператора, можно доказать отсутствие решений параболических неравенств в конусах, причем в отличие от известных ранее утверждений [121] без всяких предположений о поведении решения на бесконечности.

Здесь мы приводим некоторые из полученных Г. Г. Лаптевым [219] результатов.

Оценки некоторых интегралов емкостного типа. Пробные функции мы строим методом разделения переменных, поэтому сначала рассмотрим соответствующую функцию по переменной \(t \), а затем по \(x \).

Как и в других разделах, используем бесконечно дифференцируемую стандартную срезающую функцию \(\zeta(y) \in C^\infty(\mathbb{R}^+) \) со следующими свойствами:

\[0 \leq \zeta(y) \leq 1, \quad \zeta(y) = \begin{cases} 1, & 0 \leq y \leq 1, \\ 0, & y \geq 2. \end{cases} \]
Следующим шагом является построение функции $\eta(y)$ такой, чтобы при фиксированном p_0 для всех $1 < p \leq p_0$ были выполнены поточечные неравенства

$$|\eta'(y)|^p \leq c_\eta \eta^{p-1}(y), \quad |\eta''(y)|^p \leq c_\eta \eta^{p-1}(y)$$

с некоторой постоянной c_η. Достаточно взять $\eta(y) = (\zeta(y))^{2p_0}$.

Введем параметр ρ, который в последующих построениях будет неограниченно возрастать, и положительную степень θ. Введем также функцию $\eta(t/\rho^\theta)$ переменной $t \geq 0$. Для используемого в дальнейшем интеграла с помощью замены переменных получаем оценку

$$\int_{\text{supp} \left[d\eta(t/\rho^\theta) \right]} \left| \frac{d\eta(t/\rho^\theta)}{dt} \right|^p \eta^{1-p} \left(\frac{t}{\rho^\theta} \right) \, dt \leq c_\eta \rho^{-\theta(p-1)}. \quad (32.1)$$

При этом

$$\text{supp} \left[\eta \left(\frac{t}{\rho^\theta} \right) \right] = \{ t < 2\rho^\theta \}, \quad \text{supp} \left[\frac{d\eta(t/\rho^\theta)}{dt} \right] = \{ \rho^\theta < t < 2\rho^\theta \}.$$

Аналогичные построения проведем и для пробной функции по переменной x. Однако в данном случае в силу того, что мы рассматриваем коническую область, возникает произведение двух функций

$$r^s \eta \left(\frac{r}{\rho} \right) \quad (32.2)$$

с некоторым положительным s. Отсюда

$$\frac{\partial (r^s \eta(r/\rho))}{\partial r} = s r^{s-1} \eta \left(\frac{r}{\rho} \right) + r^s \eta' \left(\frac{r}{\rho} \right) \frac{1}{\rho},$$

$$\left| \frac{\partial (r^s \eta(r/\rho))}{\partial r} \right|^p \leq c_{\rho^s} r^{p(s-1)} \eta^p \left(\frac{r}{\rho} \right) + c_{\rho^s} r^{p} \eta' \left(\frac{r}{\rho} \right) \rho^p \frac{1}{\rho^p} \leq c_{\rho^s} \eta^{p-1} \left(\frac{r}{\rho} \right) r^{p(s-1)} \left(1 + \frac{r^p}{\rho^p} \right)$$

с не зависящей от ρ и r постоянной $c_{\rho^s \eta}$. Такого же рода оценку можно установить и для второй производной):

$$\frac{\partial^2 (r^s \eta(r/\rho))}{\partial r^2} = r^{s-2} \left(s(s-1) \eta \left(\frac{r}{\rho} \right) + 2 s \eta' \left(\frac{r}{\rho} \right) \frac{r}{\rho} + \eta'' \left(\frac{r}{\rho} \right) \frac{r^2}{\rho^2} \right),$$

$$\left| \frac{\partial^2 (r^s \eta(r/\rho))}{\partial r^2} \right|^p \leq c_{\rho^s} \eta^{p-1} \left(\frac{r}{\rho} \right) r^{p(s-2)} \left(1 + \frac{r^p}{\rho^p} + \frac{r^{2p}}{\rho^{2p}} \right).$$

Теперь примем смысл проведенных оценок. Для этого обратимся уже непосредственно к рассматриваемому нами конусу и оператору Лапласа Δ. Введем функцию

$$r^s \Phi(\omega),$$

где $\Phi(\omega)$ — собственная функция оператора Δ_ω на сфере, т.е. решение задачи (11.2).
Глава 3. ЭВОЛЮЦИОННЫЕ НЕРАВЕНСТВА

Вычисляя $\Delta(r^s\Phi(\omega))$, с учетом равенства $\Delta_\omega \Phi = -\lambda_\omega \Phi$ приходим к выражению

$$
\Delta(r^s\Phi(\omega)) = r^{s-2}\Phi(\omega)\{s(s-1) + s(N-1) - \lambda_\omega\}.
$$

Как и в эллиптическом случае (см. (11.5) и лемму 11.4), введем параметры

$$
s^* = \frac{N-2}{2} + \sqrt{\left(\frac{N-2}{2}\right)^2 + \lambda_\omega}, \quad s_s = \frac{N-2}{2} + \sqrt{\left(\frac{N-2}{2}\right)^2 + \lambda_\omega}.
$$

(32.3)

Числа s_s и $-s^*$ являются корнями многочлена в фигурных скобках в предыдущем выражении для $\Delta(r^s\Phi(\omega))$. Заметим, что $s^* - s_s = N - 2$. Введем функцию

$$
\xi(x) \equiv \xi(r, \omega) = r^{s^*}\Phi(\omega).
$$

(32.4)

Главным ее свойством является тождество $\Delta \xi = 0$ в K. Очевидно также, что она обращается в нуль на ∂K. Ее один из используемых далее свойств функции (32.4) является неположительность производной $\frac{\partial \Phi}{\partial n}$ по внешней нормали к границе конуса ∂K. Действительно,

$$
\frac{\partial \xi}{\partial n} = r^{s^*}\frac{\partial \Phi(\omega)}{\partial n} \leq 0,
$$

где n_ω — внешняя нормаль к границе области K_ω, а неположительность производной $\frac{\partial \Phi(\omega)}{\partial n}$ следует из леммы Хопфа (так как сама функция $\Phi(\omega)$ положительна в K_ω и обращается в нуль на границе).

Теперь установим аналогичную (32.1) оценку для "срезающей" функции

$$
\psi_p(x) = \xi(x)\eta\left(\frac{|x|}{\rho}\right) = r^{s^*}\eta\left(\frac{r}{\rho}\right)\Phi(\omega).
$$

Для этого сначала заметим, что в сферических координатах

$$
\Delta \psi_p = \frac{\partial^2 \psi_p}{\partial r^2} + \frac{N-1}{r}\frac{\partial \psi_p}{\partial r} + \frac{1}{r^2}\Delta_\omega \psi_p, \quad \Delta_\omega \psi_p = r^{s^*}\eta\left(\frac{r}{\rho}\right)\left(-\lambda_\omega \Phi\right) = -\lambda_\omega \psi_p.
$$

С учетом установленных выше оценок для производных от произведения $r^{s^*}(r/\rho)$ будем иметь

$$
|\Delta \psi_p(x)|^p \leq \left|\left(\frac{\partial^2 \psi_p}{\partial r^2} + \frac{N-1}{r}\frac{\partial \psi_p}{\partial r} - \frac{\lambda_\omega}{r^2}\right)\left(r^{s^*}\eta\left(\frac{r}{\rho}\right)\right)\right|^p \Phi^p(\omega) \leq c\rho^{p-1}\left(\frac{r}{\rho}\right)^\rho \Phi^p(\omega) \frac{r^{p-1}r^{s^*}}{r^{2p-s^*}} \left(1 + \frac{r^p}{\rho^p} + \frac{r^{2p}}{\rho^{2p}}\right) \leq c\rho^{p-1}(x)\frac{1}{r^{2p-s^*}} \left(1 + \frac{r^p}{\rho^p} + \frac{r^{2p}}{\rho^{2p}}\right).
$$

По построению функция $\eta(|x|/\rho) \equiv 1$ при $|x| \leq \rho$, поэтому $\Delta \psi_p(x) = \Delta \xi(x) = 0$ и $\text{supp} |\Delta \psi_p(x)| = \{K \cap \{|\rho| < |x| < 2\rho\}\}$. Отсюда следует, что на множестве $\text{supp} |\Delta \psi_p(x)|$ в предыдущей оценке выражение в круглых скобках ограничено. Далее, на этом множестве $r^{s^*-2p} \leq \text{const} \cdot \rho^{s^*-2p}$ (независимо от знака $s_s - 2p$), поэтому

$$
|\Delta \psi_p(x)|^p \leq c\rho^{p-1}(x)\rho^{s^*-2p}
$$

с некоторой постоянной $c > 0$.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть II. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ПЕРВОГО ПОРЯДКА

Теперь можем окончательно записать

$$\int_{\supp |\Delta \psi_\rho|} |\Delta \psi_\rho(x)|^p \, dx \leq c \int_{\rho K_\omega} \frac{\psi_\rho^{-p-1}(x) \, r^{N-1}}{\psi_\rho^{-p-1}(x) \rho^{2p-s}} \, dr \, d\omega \leq c_\rho \rho^{-2p+s+N}. \quad (32.5)$$

Общую пробную функцию возьмем в виде произведения

$$\varphi_\rho(x, t) = \eta \left(\frac{t}{\rho^\theta}\right) \psi_\rho(x). \quad (32.6)$$

С учетом изложенного выше очевидны оценки

$$\int \int_{\supp (\frac{\varphi_\rho}{\varphi_\rho})} \left| \frac{\partial \varphi_\rho(x, t)}{\partial t} \right|^p \varphi_\rho^{1-p}(x, t) \, dx \, dt \leq$$

$$\leq \int_{K \cap \{r<2\rho\}} \psi_\rho(x) \, dx \int_{\supp \left[\frac{\varphi_\rho}{\varphi_\rho}\right]} \left| \frac{d\eta(t/\rho^\theta)}{dt} \right|^p \eta^{1-p} \left(\frac{t}{\rho^\theta}\right) \, dt \leq c_\rho \rho^{s+N-\theta(p-1)}, \quad (32.7)$$

$$\int \int_{\supp |\Delta \varphi_\rho|} \left| \frac{\Delta \varphi_\rho(x, t)}{\varphi_\rho} \right|^p \varphi_\rho^{1-p} \, dx \, dt \leq \int_0^{2\rho} \rho^\theta \left(\frac{t}{\rho^\theta}\right) \, dt \int_{\supp |\Delta \varphi_\rho|} \left| \frac{\Delta \psi_\rho}{\psi_\rho} \right|^p \, dx \leq c_\rho \rho^{\theta-2p+s+N}. \quad (32.8)$$

При $\theta = 2$ степени в правых частях неравенств (32.7) уравниваются, поэтому окончательно получаем оценку

$$\int \int_{\supp \left[\frac{\varphi_\rho}{\varphi_\rho} + \Delta \varphi_\rho\right]} \left| \frac{\partial \varphi_\rho}{\partial t} + \Delta \varphi_\rho \right|^p \varphi_\rho^{1-p} \, dx \, dt \leq c_0 \rho^{-2p+s+N+2}. \quad (32.9)$$

Замечание 32.1. Приведенные построения можно провести различными способами. Идея заключается в нахождении функций, на которых рассматриваемый оператор обращается в нуль, и построении на их основе срезающих функций таким образом, чтобы они становились финитными и в дальнейшем при интегрировании по частям не порождали граничных интегралов.

В простейшем случае одной производной, которая мы имеем по переменной t, в качестве такой функции берется тождественная единица. Для оператора Лапласа (в данном контексте) мы вынуждены использовать уже более сложные функции типа фундаментальных решений.

Само построение в виде произведения на стандартную срезающую функцию придает некоторую наглядность дальнейшим оценкам, однако можно и явно построить требуемую функцию в виде степеней некоторого многочлена второго порядка и оценить все получаемые интегралы, как это проделано для эллиптической задачи в разд. 11.

Замечание 32.2. Параметр θ, который в данном построении взят равным 2, в дальнейшем будет варьироваться в зависимости от главного оператора. Мы будем делать соответствующие замечания по ходу изложения, не останавливаясь детально на построении соответствующих функций и оценках интегралов вида (32.8).
Модельная задача: отсутствие глобального решения. Рассмотрим проблему отсутствия глобальных нетривиальных слабых решений задачи

\[
\begin{align*}
\partial u &= \Delta u - u^q, \quad (x, t) \in K \times (0, \infty), \\
u &= 0, \quad (x, t) \in K \times (0, \infty).
\end{align*}
\] (32.9)

Далее слабое решение будет пониматься в следующем смысле.

Определение 32.1. Пусть \(u(x, t) \in C(\overline{K} \times [0, \infty))\). Неотрицательная функция \(u(x, t)\) называется слабым решением задачи (32.9), если для любой неотрицательной пробной функции \(\varphi(x, t) \in W^{2,1,\infty}(K \times (0, \infty))\), такой, что \(\varphi|_{\partial K \times (0, \infty)} = 0\), и фиiniteй по переменным \(r = |x|\) и \(t\), выполнено интегральное неравенство

\[
\int_0^\infty \int_{\partial K} u \varphi \frac{\partial u}{\partial n} dx dt - \int_0^\infty \int_K u \left(\frac{\partial \varphi}{\partial t} + \Delta \varphi \right) dx dt \geq \int_0^\infty \int_K u^q \varphi dx dt + \int_K u(x, 0) \varphi(x, 0) dx.
\]

Замечание 32.3. Приведенное определение обобщенного решения может быть расширено, в частности, рассмотрением пространства локально суммируемых функций \(L^q_{\text{loc}}(K)\) вместо пространства непрерывных функций. При этом нужно делать дополнительные предположения о следе функции \(u(x, t)\) на границе конуса и при \(t = 0\), однако в общем случае это не отразится на получаемом критическом показателе.

Теорема 32.1. При

\[
1 < q \leq q^* = 1 + \frac{2}{s^* + 2},
\]

где \(s^*\) определена в (32.3), задача (32.9) не имеет глобального нетривиального слабого решения.

Замечание 32.4. Параметры \(s^*\) и \(q^*\) (см. (32.3)) возникают при построении фундаментальных решений эллиптического оператора \(\Delta\) в конусе \(K\). Как будет видно в дальнейшем, фундаментальных решений эллиптического оператора достаточно для получения неулучшаемого критического показателя \(q^*\), т.е. нет необходимости переходить к существенно более сложному фундаментальному решению оператора теплопроводности \(\frac{\partial^2}{\partial t^2} - \Delta\) (см. также [215]).

Доказательство теоремы 32.1 проведем от противного. Пусть \(u(x, t)\) — нетривиальное решение задачи (32.9) с \(1 < q \leq q^*\). Согласно определению 32.1 с пробной функцией \(\varphi(x, t) = \varphi_p(x, t)\), введенной по формуле (32.6) с \(p = q' > 1\) и \(\theta = 2\), это означает, что

\[
\int_K u(x, 0) \varphi_p(x, 0) dx + \int_0^\infty \int_K u^q \varphi_p dx dt \leq \int_0^\infty \int_{\partial K} u \frac{\partial \varphi_p}{\partial n} dx dt - \int_{\sup \{\frac{\partial \varphi_p}{\partial t} + \Delta \varphi_p\}} \int_K u \left(\frac{\partial \varphi_p}{\partial t} + \Delta \varphi_p \right) dx dt. \quad (32.10)
\]

Как уже отмечалось ранее, производная функции \(\xi\) (см. (32.4)), а следовательно и \(\varphi_p\), по нормали к границе конуса будет неположительна, и поскольку функции \(u\) и \(\frac{\partial \varphi_p}{\partial n}\) непрерывны на границе \(\partial K \times [0, \infty)\), включая вершину \(x = 0\), то первый интеграл в правой части (по границе) не будет иметь особенностей и будет неположительным.

10 ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть II. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ПЕРВОГО ПОРЯДКА

Для оценки второго интеграла справа применим неравенство Гельдера. Получим

\[\int_{K} u(x,0)\varphi_{p}(x,0)\, dx + \int_{0}^{\infty} u^{q}\varphi_{p}\, dx\, dt = \]

\[= \int_{K} u(x,0)\varphi_{p}(x,0)\, dx + \iint_{\text{supp}\left| \frac{\partial \varphi_{p}}{\partial t} + \Delta \varphi_{p}\right|} u^{q}\varphi_{p}\, dx\, dt + \iint_{\varphi_{p}(x,t)=\xi(x)} u^{q}(x)\, dx\, dt \leq \]

\[\leq \iint_{\text{supp}\left| \frac{\partial \varphi_{p}}{\partial t} + \Delta \varphi_{p}\right|} u\left| \frac{\partial \varphi_{p}}{\partial t} + \Delta \varphi_{p}\right| q^{'} \varphi_{p}^{1-q'}\, dx\, dt \leq c_{0}\rho^{-2q'+s_{*}+N+2}. \] (32.11)

откуда, отбрасывая неотрицательные начальные условия (т.е. первый интеграл в левой части) и с учетом оценки (32.8) (при \(p = q' \)) для последнего интеграла справа, будем иметь

\[\iint_{\varphi_{p}(x,t)=\xi(x)} u^{q}(x)\, dx\, dt \leq \iint_{\text{supp}\left| \frac{\partial \varphi_{p}}{\partial t} + \Delta \varphi_{p}\right|} \left| \frac{\partial \varphi_{p}}{\partial t} + \Delta \varphi_{p}\right| q^{'} \varphi_{p}^{1-q'}\, dx\, dt \leq c_{0}\rho^{-2q'+s_{*}+N+2}. \] (32.12)

Так как подынтегральное выражение в левой части не зависит от \(\rho \), можем перейти к пределу по \(\rho \to \infty \). В случае

\[-2q' + s_{*} + N + 2 \leq 0 \]

это приводит к соотношению

\[\int_{0}^{\infty} u^{q} \xi\, dx\, dt \leq c_{0}. \]

Тогда в силу абсолютной непрерывности интеграла Лебега по мере и ввиду оценки \(\varphi_{p} \leq \xi \)

\[\iint_{\text{supp}\left| \frac{\partial \varphi_{p}}{\partial t} + \Delta \varphi_{p}\right|} u^{q}\varphi_{p}\, dx\, dt \leq \iint_{\text{supp}\left| \frac{\partial \varphi_{p}}{\partial t} + \Delta \varphi_{p}\right|} u^{q}\xi\, dx\, dt = \varepsilon(\rho) \to 0, \quad \rho \to \infty. \]

Возвращаясь теперь к неравенству (32.11), получим

\[\iint_{\varphi_{p}(x,t)=\xi(x)} u^{q}\xi\, dx\, dt \leq \varepsilon^{1/q}(\rho)c_{0}^{1/q'} \to 0 \]

при \(\rho \to \infty \), т.е. в пределе

\[\int_{0}^{\infty} u^{q} \xi\, dx\, dt = \varepsilon \to 0, \quad \rho \to \infty, \]

откуда в силу положительности \(\xi \) в \(K \) следует \(u \equiv 0 \), что противоречит нашему предположению о существовании нетривиального решения.

Элементарными преобразованиями из неравенства

\[-2q' + s_{*} + N + 2 \leq 0 \]

получаем условие отсутствия нетривиального решения: \(1 < q \leq q^{*} \). □
Замечание 32.5. Полученный критический показатель является неулучшаемым, т.е. в случае \(q > q^* \) существуют глобальные нетривиальные положительные решения рассматриваемой задачи и даже соответствующего уравнения.

Задача с переменными коэффициентами. Приведем пример применения описанного метода к исследованию отсутствия решения параболических задач с переменными коэффициентами.

Рассмотрим проблему отсутствия глобальных нетривиальных слабых решений задачи

\[
\begin{cases}
\frac{\partial u}{\partial t} - \text{div}(|x|^\alpha Du) \geq u^q, & (x,t) \in K \times (0, \infty), \\
u \geq 0, & (x,t) \in K \times (0, \infty).
\end{cases}
\]

(32.13)

Здесь \(2 > \alpha > 1 - N \). Далее слабое решение будет пониматься в следующем смысле.

Определение 32.2. Пусть \(u(x,t) \in C(\overline{K} \times [0, \infty)) \). Неотрицательная функция \(u(x,t) \) называется слабым решением задачи (32.13), если для любой неотрицательной пробной функции \(\varphi(x,t) \in W^{2,1,\infty}(K \times (0,\infty)) \), такой, что \(\varphi|_{\partial K \times (0,\infty)} = 0 \), и фиксированного по переменным \(r = |x| \) и \(t \), выполнено интегральное неравенство

\[
\int_0^\infty \int_0^\infty u|x|^{\alpha} \frac{\partial \varphi}{\partial n} dx dt - \int K \int_0^\infty u \left(\frac{\partial \varphi}{\partial t} + \text{div}(|x|^\alpha D\varphi) \right) dx dt \geq \int_0^\infty \int K u^q \varphi dx dt + \int K u(x,0)\varphi(x,0) dx.
\]

Введем параметры

\[
s^*_\alpha = \frac{\alpha + N - 2}{2} + \sqrt{\left(\frac{\alpha + N - 2}{2}\right)^2 + \lambda_\omega},
s_{s^*_\alpha} = -\frac{\alpha + N - 2}{2} + \sqrt{\left(\frac{\alpha + N - 2}{2}\right)^2 + \lambda_\omega}.
\]

(32.14)

Теорема 32.2. При

\[
1 < q \leq q^* = 1 + \frac{2 - \alpha}{s^*_\alpha + 2 - \alpha}
\]

задача (32.13) не имеет глобального нетривиального слабого решения.

Доказательство. Пусть \(u \) — нетривиальное слабое решение задачи (32.13). Выберем пробную функцию в виде, аналогичной модельной задаче, однако в качестве функции \(\xi \) вместо (32.4) возьмем

\[
\xi_\alpha(x) \equiv \xi_\alpha(r, \omega) = r^{s^*_\alpha} \Phi(\omega).
\]

Тогда функции \(\psi_\rho(x) \) и \(\varphi_\rho(x,t) \) принимают вид

\[
\psi_\rho(x) = \xi_\alpha(x) \eta \left(\frac{|x|}{\rho} \right), \quad \varphi_\rho(x,t) = \psi_\rho(x) \eta \left(\frac{t}{\rho^2} \right).
\]

В данном случае вместо оператора Лапласа мы имеем оператор

\[
A_\alpha \equiv \text{div}(|x|^\alpha D) = r^\alpha \left(\frac{\partial^2}{\partial r^2} + \frac{\alpha + N - 1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \Delta_\omega \right).
\]
Непосредственной подстановкой легко убедиться, что

\[A_\alpha (\xi_\alpha) \equiv \text{div}(|x|^{\alpha} D\xi_\alpha) = |x|^{\alpha} s^{\alpha - 2}(s_\alpha(a - 1) + s_\alpha(a + N - 1) - \lambda_\alpha)\Phi(\omega) \equiv 0, \quad x \in K. \]

Можно получить аналоги оценок (32.7):

\[
\iint_{\supp A_\alpha(\varphi_\rho)} |\frac{\partial \varphi_\rho(x,t)}{\partial t}|^p \varphi_\rho^{1-p}(x,t) \, dx \, dt \leq \\
\leq \int_{K \setminus \{r < 2\rho\}} \psi_\rho(x) \, dx \int_{\supp A_\alpha(\varphi_\rho)} \left| \frac{\partial \varphi_\rho(x,t)}{\partial t} \right|^p \eta^{1-p} \left(\frac{t}{\rho^\theta} \right) \, dt \leq c \rho^{s_\alpha + N - \theta(p-1)}, \\
\iint_{\supp A_\alpha(\varphi_\rho)} |\frac{\partial \varphi_\rho(x,t)}{\partial t} + A_\alpha(\varphi_\rho)|^p \varphi_\rho^{1-p} \, dx \, dt \leq c \rho^{\theta-(2-\alpha)p + s_\alpha + N}. \]

При \(\theta = 2 - \alpha > 0 \) степени в правых частях оценок совпадают и тогда

\[
\iint_{\supp A_\alpha(\varphi_\rho)} |\frac{\partial \varphi_\rho}{\partial t} + A_\alpha(\varphi_\rho)|^p \varphi_\rho^{1-p} \, dx \, dt \leq c \rho^{-(2-\alpha)p + s_\alpha + N + 2 - \alpha}. \quad (32.15)
\]

Далее действуем по схеме доказательства теоремы 32.1. Из определения слабого решения

\[
\int_K u(x,0)\psi_\rho(x) \, dx + \int_0^\infty \int_K u^q \varphi_\rho \, dx \, dt \leq \\
\leq \int_0^\infty \int_0^\infty u^q \varphi_\rho(\alpha) \, dx \, dt + \iint_{\supp A_\alpha(\varphi_\rho)} u \left| \frac{\partial \varphi_\rho}{\partial t} + A_\alpha(\varphi_\rho) \right| \, dx \, dt, \quad (32.16)
\]

откуда (с учетом неположительности первого интеграла в правой части) после применения неравенства Гельдера получаем

\[
\iint_{\varphi_\rho(x,t) = \xi_\alpha(x)} u^q \xi_\alpha \, dx \, dt \leq \\
\leq \iint_{\supp A_\alpha(\varphi_\rho)} \left| \frac{\partial \varphi_\rho}{\partial t} + A_\alpha(\varphi_\rho) \right|^q \varphi_\rho^{1-q} \, dx \, dt \leq c \rho^{-(2-\alpha)q + s_\alpha + N + 2 - \alpha}, \quad (32.17)
\]

что дает условие отсутствия нетривиального решения

\[-(2 - \alpha)q' + s_\alpha + N + 2 - \alpha \leq 0. \]

Отсюда \(q \leq 1 + \frac{2 - \alpha}{N + s_\alpha} \). Так как \(N + s_\alpha = s_\alpha^a - 2 - \alpha \), то приходим к утверждению теоремы. \(\Box \)

Труды математического института им. В.А. Стеклова, 2001, т. 234
Зависимость критического показателя от начальных данных. В процессе доказательства теоремы 32.2 при получении неравенства (32.16) была установлена по сути априорная оценка роста возможного решения задачи. Сформулируем ее в виде отдельного утверждения.

Лемма 32.1. Пусть \(u(x, t) \) — решение задачи (32.13). Тогда при достаточно больших \(\rho \) и при любом \(q > 1 \) справедлива оценка

\[
\int_{K \cap \{|x| < \rho\}} u(x, 0) \xi_\alpha(x) \, dx + \int_{(K \times (0, \infty)) \cap \{|x| < \rho\} \cap \{t < \rho^{2-\alpha}\}} u^q \xi_\alpha \, dx \, dt \leq c_1 \rho^{-(2-\alpha)q'+s_\alpha+N+2-\alpha}.
\]

Доказательство. Действуем аналогично доказательству теоремы 32.2, однако при переходе от формулы (32.16) к (32.17) учтем наличие в левой части интеграла от начального значения \(u(x, 0) \) и приведем явное выражение для множества \(\{(x, t) \mid \varphi_\rho(x, t) = \xi_\alpha(x)\} \).

Эта лемма позволяет исследовать вопрос о разрушении локального решения в зависимости от скорости роста при \(|x| \to \infty \) значений функции \(u(x, 0) \) (что соответствует в случае уравнения начальным данным). Приведем некоторые результаты в этом направлении.

Теорема 32.3. Пусть \(u(x, 0) \geq \frac{c_\gamma}{|x|^\alpha} \) при достаточно больших \(|x| \), где \(\gamma > 0 \), \(c_\gamma \) — постоянная. Тогда при

\[
1 - N < \alpha < 2, \quad 1 < q < q_c(\gamma), \quad q_c(\gamma) = \max \left\{ 1 + \frac{2 - \alpha}{\gamma}, 1 + \frac{2 - \alpha}{s_\alpha + 2 - \alpha} \right\},
\]

задача (32.13) не имеет глобального нетривиального решения.

Доказательство. Пусть \(\gamma \geq s_\alpha^* + 2 - \alpha = s_\alpha + N \). Тогда \(q_c(\gamma) = 1 + \frac{2 - \alpha}{s_\alpha + 2 - \alpha} \) и задача (32.13) не имеет глобального нетривиального решения по теореме 32.2. Поэтому рассмотрим оставшийся вариант: \(0 < \gamma < s_\alpha + N \), когда \(q_c = 1 + \frac{2 - \alpha}{\gamma} \).

Пусть \(u \) — глобальное решение, удовлетворяющее условиям теоремы. Для определенности считаем, что \(u(x, 0) \geq \frac{c_\gamma}{|x|^\alpha} \) при \(|x| > R \). Применяя лемму 32.1, получим при \(\rho > 2R \)

\[
c_1 \rho^{-(2-\alpha)q'+s_\alpha+N+2-\alpha} \geq \int_{K \cap \{|x| < \rho\}} u(x, 0) \xi_\alpha \, dx + \int_{(K \times (0, \infty)) \cap \{|x| < \rho\} \cap \{t < \rho^{2-\alpha}\}} u^q \xi_\alpha \, dx \, dt \geq c_\gamma \int_{\rho/2}^\rho r^{N-1} \Phi(\omega) \, d\omega \geq c_\gamma c_2 \rho^{s_\alpha-\gamma+N}.\]

Из приведенной оценки следует неравенство

\[
c_\gamma c_2 \rho^{(2-\alpha)(q'-1)-\gamma} \leq c_1, \quad (32.18)
\]

которое в условиях теоремы не может удовлетворяться при \(\rho \to \infty \), так как если \(q < 1 + \frac{2 - \alpha}{\gamma} \), то \((2 - \alpha)(q' - 1) - \gamma > 0 \).

Теорему 32.3 с использованием оценки (32.18) можно сформулировать также и в виде условия на рост начальных данных.

Теорема 32.4. Пусть \(u(x, 0) \geq \frac{c_\gamma}{|x|^\alpha} \) при достаточно больших \(|x| \). Тогда при

\[
1 - N < \alpha < 2, \quad q > 1, \quad 0 < \gamma < \frac{2 - \alpha}{q - 1},
\]

задача (32.13) не имеет глобального нетривиального решения.
Часть II. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ПЕРВОГО ПОРЯДКА

Неоднородная задача. Следуя работе [184], введем в систему (32.13) дополнительное слагаемое \(w(x) \geq 0, w(x) \in L^1_{\text{loc}}(K) \), т.е. рассмотрим задачу

\[
\begin{cases}
\frac{\partial u}{\partial t} - \text{div}(|x|^\alpha Du) \geq u^q + w(x), & (x,t) \in K \times (0, \infty), \\
u \geq 0, & (x,t) \in K \times (0, \infty).
\end{cases}
\]

Здесь, как и ранее, \(2 > \alpha > 1 - N \).

Нас интересует вопрос о том, как повлияет введение неоднородности на критический показатель отсутствия решения.

Слабое решение этой задачи понимается в смысле определения 32.2, т.е. предполагается выполненным интегральное неравенство

\[
\int_0^\infty \int_K u|x|^\alpha \frac{\partial \varphi}{\partial n} \, dx \, dt - \int_0^\infty \int_K u \left(\frac{\partial \varphi}{\partial t} + \text{div}(|x|^\alpha D\varphi) \right) \, dx \, dt \geq \int_0^\infty \int_K w(x)\varphi \, dx \, dt + \int u(x,0)\varphi(x,0) \, dx.
\]

Теорема 32.5. При

\[1 < q < q^* = 1 + \frac{2 - \alpha}{s_\alpha^*} \]

задача (32.19) не имеет глобального нетривиального слабого решения, каким бы малым ни было \(w(x) \neq 0 \).

Доказательство. Следуя доказательству теоремы 32.2 и леммы 32.1, получаем оценку

\[
\int_0^\rho^{2-\alpha} \int_{K \cap \{|x|<\rho\}} w(x)\xi_\alpha(x) \, dx \, dt + \int u(x,0)\xi_\alpha(x) \, dx + \int_{\varphi_\rho(x,t) = \xi_\alpha(x)} u^q \, dx \, dt \leq c_1 \rho^{-(2-\alpha)q+s_\alpha+N+2-\alpha},
\]

откуда

\[
c_1 \rho^{-(2-\alpha)q+s_\alpha+N+2-\alpha} \geq \int_0^\rho^{2-\alpha} \int_{K \cap \{|x|<\rho\}} w(x)\xi_\alpha(x) \, dx \, dt \geq \rho^{2-\alpha} c_w
\]

при \(\rho \) таких, что

\[
\int_{K \cap \{|x|<\rho\}} w(x)\xi_\alpha(x) \, dx \geq c_w \equiv \text{const} > 0.
\]

Для получения противоречия при \(\rho \to \infty \) достаточно предположить, что \(-(2-\alpha)q+s_\alpha+N<0\), т.е.

\[q < 1 + \frac{2 - \alpha}{s_\alpha^*} \]

Теорема доказана. □
Замечание 32.6. Сравнение с теоремой 32.2 показывает, что при введении в неравенство возмущения \(w(x) \geq 0 \) критический показатель изменяется в сторону увеличения. Интересным моментом в данном утверждении является отсутствие предположений о росте и носителе функции \(w(x) \), требуется только положительность интеграла по некоторой достаточно большой сфере в \(\mathbb{R}^N \). Объяснение этому кроется в интегрировании функции \(w(x) \) по переменной \(t \) в пределах от 0 до \(\rho^{2-\alpha} \), за счет чего для любой сколь угодно малой функции \(w(x) \) все равно получается стремящийся к бесконечности интеграл (при \(\rho \to \infty \)).

Теорема 32.6. Пусть \(w(x) \geq \frac{c}{|x|^{1/q}} \), где \(\gamma > 2 - \alpha > 0 \). Тогда задача (32.19) не имеет глобального нетривиального слабого решения при \(1 - N < \alpha < 2 \) и \(1 < q < \frac{2}{\gamma + \alpha - 2} \).

Доказательство. При условиях теоремы неравенство (32.20) принимает вид

\[
c_1 \rho^{-(2-\alpha)q'+s,\xi} \geq \rho^{2-\alpha} \rho^{s,\xi} \gamma c_w,
\]
откуда \(c_1 \geq c_w \rho^{(2-\alpha)q'-\gamma} \). Неравенство невозможно, если \((2-\alpha)q' - \gamma > 0 \), т.е. \(q < \frac{\gamma}{\gamma + \alpha - 2} \).

Можно рассмотреть неоднородную задачу с возмущением \(w(t) \geq 0 \), зависящим только от переменной \(t \):

\[
\begin{align*}
\frac{\partial u}{\partial t} - \text{div}([|x|^\alpha Du]) & \geq u^q + w(t), \quad (x,t) \in K \times (0, \infty), \\
 u & \geq 0, \quad (x,t) \in K \times (0, \infty).
\end{align*}
\]

(32.21)

Теорема 32.7. При всех \(q > 1 \) и \(2 > \alpha > 1 - N \) задача (32.21) не имеет глобального нетривиального слабого решения, каким бы малым ни было \(w(t) \).

Доказательство. Аналогично доказательству теоремы 32.5 получим оценку

\[
c_1 \rho^{-(2-\alpha)q'+s,\xi} \geq \int_{K \cap \{|x| < \rho\}} \xi_\alpha(x) \, dx \int_0^\rho t \, dt \geq \rho^{s,\xi} \gamma c_w
\]

(32.22)

для \(\rho \) таких, что

\[
\int_0^\rho t \, dt \geq c_w \equiv \text{const} > 0.
\]

В условиях теоремы справедливо неравенство \(-(2-\alpha)(q'-1) < 0 \), которое показывает, что соотношение (32.22) не может выполняться, следовательно, задача (32.21) не имеет нетривиального решения.

Квазилинейное неравенство типа медленной диффузии. В последнее время большой интерес вызывают дифференциальные неравенства вида

\[
\begin{align*}
\frac{\partial u}{\partial t} - \Delta u^m & \geq u^q, \quad (x,t) \in K \times (0, \infty), \quad m > 1, \quad q > m, \\
 u & \geq 0, \quad (x,t) \in K \times (0, \infty).
\end{align*}
\]

(32.23)

При внешней нелинейной структуре к их исследованию часто можно применить методы, разработанные для полулинейных задач.

Далее слабое решение будет пониматься в следующем смысле.
Определение 32.3. Пусть \(u(x,t) \in C(\mathbb{R} \times [0,\infty)) \). Неотрицательная функция \(u(x,t) \) на- зывается слабым решением задачи (32.23), если для любой неотрицательной пробной функции \(\varphi(x,t) \in W^{2,1,\infty}(\mathbb{R} \times (0,\infty)) \), такой, что \(\varphi|_{\partial K \times (0,\infty)} = 0 \), и финитной по переменным \(r = |x| \) и \(t \), выполнено интегральное неравенство

\[
\int_0^{\infty} \int_0^{\infty} u_m \frac{\partial \varphi}{\partial n} dx dt - \int_0^{\infty} \int_0^{\infty} u \frac{\partial \varphi}{\partial t} dx dt - \int_0^{\infty} \int_0^{\infty} u^m \Delta \varphi dx dt \geq \int_0^{\infty} \int_0^{\infty} u^q \varphi dx dt + \int K u(0) \varphi(x,0) dx.
\]

(32.24)

Теорема 32.8. При

\[
1 < m < q \leq q^* = m + \frac{2}{s^* + 2}
\]

задача (32.23) не имеет глобального нетривиального слабого решения. Число \(s^* \) определено в (32.3).

Доказательство аналогично теореме 32.1. Выбор пробной функции естественным обра- зом обобщает предыдущее построение, т.е. берем пробную функцию (32.6), и по переменной \(t \) вводится некоторый вес \(\theta > 0 \), который уточним позднее.

Пусть \(u(x,t) \) — нетривиальное решение задачи (32.23) с \(1 < q \leq q^* \). Рассмотрим неравенство (32.24) из определения 32.3 обобщенного решения с пробной функцией \(\varphi_p \). Первый интеграл в левой части (по границе \(\partial K \)) неположителен в силу приведенных в доказательстве теоремы 32.1 аргументов. Применяя неравенство Гельдера ко второму и третьему интегралам из левой части (32.24), получаем

\[
\int_K u(x,0)\psi_p(x) dx + \int_0^{\infty} \int_0^{\infty} u^q \varphi_p dx dt \leq \left(\int_{\text{supp } |\varphi_p|} u^q \varphi_p dx dt \right)^{1/q} \left(\int_{\text{supp } |\varphi_p|} \frac{\partial \varphi_p}{\partial t} |\varphi_p^1 - q \varphi_p^1 dx dt \right)^{1/q'} + \left(\int_{\text{supp } |\varphi_p|} u^q \varphi_p dx dt \right)^{m/q} \left(\int_{\text{supp } |\Delta \varphi_p|} \frac{\Delta \varphi_p}{\varphi_p^{m/(q-m)}} dx dt \right)^{(q-m)/q}.
\]

(32.25)

Оценки (32.7) в этом случае (заметим, что в первом неравенстве из (32.7) надо брать \(p = q' \), тогда как во втором \(p = q/(q-m) \)) принимают вид

\[
\int_{\text{supp } |\varphi_p(x,t)|} \frac{\partial \varphi_p(x,t)}{\partial t} |\varphi_p^1 - q \varphi_p^1 dx dt \leq cp^{-\delta q' + s + \theta + N},
\]

\[
\int_{\text{supp } |\Delta \varphi_p|} \frac{\Delta \varphi_p^{q/(q-m)}}{\varphi_p^{m/(q-m)}} dx dt \leq cp^{-2q/(q-m) + s + \theta + N}.
\]
ГЛАВА 3. ЭВОЛЮЦИОННЫЕ НЕРАВЕНСТВА

Теперь подбираем параметр θ таким образом, чтобы показатели сравнялись:

$$-\theta q' + s_* + \theta + N = -\frac{2q}{q - m} + s_* + \theta + N \quad \Rightarrow \quad \theta = \frac{2(q - 1)}{q - m}.$$

Заметим, что $\theta > 0$. При таком выборе θ из неравенства (32.25) будем иметь

$$\iint u^q \xi \, dx \, dt \leq c_0 \rho^{-2/(q - m) + s_* + N}.$$ \hspace{1cm} (32.26)

В случае

$$-\frac{2}{q - m} + s_* + N \leq 0$$

c использованием аналогичных предыдущим рассуждений это означает отсутствие глобального нетривиального решения при $1 < m < q \leq q' = m + \frac{2}{s_* + N} = m + \frac{2}{s_* + 2}$. □

Замечание 32.7. Можно обобщить представленную теорему на неравенства с переменными коэффициентами вида

$$\frac{\partial u}{\partial t} - \text{div}([x|^\alpha D(u^m))] \geq u^q,$$

а также установить зависимость критического показателя от поведения начальных данных и изменение критического показателя при введении в задачу неоднородности.

33. УРАВНЕНИЯ И НЕРАВЕНСТВА ВТОРОГО ПОРЯДКА

С НЕЛИНЕЙНОЙ ГЛАВНОЙ ЧАСТЬЮ

Мы рассмотрим класс скалярных параболических неравенств вида

$$\begin{cases}
\frac{\partial u}{\partial t} - \text{div} A(x, u, Du) \geq u^q, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u \geq 0, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x) \geq 0, & x \in \mathbb{R}^N.
\end{cases}$$ \hspace{1cm} (33.1)

Здесь $q > 1$ и

$$A : \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$$

есть картечедориева функция. Предполагается, что существуют $m > 1$ и $c > 0$ такие, что для всех $(x, u, w) \in \mathbb{R}^N \times \mathbb{R}^+ \times \mathbb{R}^N$

$$(A(x, u, w), w) \geq c |A(x, u, w)|^m',$$ \hspace{1cm} (33.2)

где m' обозначает сопряженный показатель к m.

Начнем с определения слабого решения задачи (33.1).

Определение 33.1. Пусть функция $u : \mathbb{R}^N \times (0, \infty) \to \mathbb{R}$ неотрицательна и принадлежит пространству $W^{1,m}_{\text{loc}}(\mathbb{R}^N \times (0, \infty)) \cap C^0(\mathbb{R}^N \times [0, \infty)) \cap L^q_{\text{loc}}(\mathbb{R}^N \times (0, \infty))$. Функция u называется слабым решением задачи (33.1), если $A(x, u, Du) \in L^m_{\text{loc}}(\mathbb{R}^N \times (0, \infty))$ и для любой неотрицательной функции $\varphi \in W^{1,m}_{\text{loc}}(\mathbb{R}^N \times (0, \infty))$ с компактным носителем выполнено неравенство

$$\int_0^\infty \int_{\mathbb{R}^N} u^q \varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} \sum_{i=1}^N A_i(x, u, Du) \frac{\partial \varphi}{\partial x_i} \, dx \, dt - \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial \varphi}{\partial t} \, dx \, dt.$$ \hspace{1cm} (33.3)

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Замечание 33.1. Здесь мы предполагаем, что начальные данные u_0 неотрицательны, так что (33.3) имеет смысл.

Важную роль в дальнейшем изложении играет следующий предварительный результат.

Лемма 33.1. Пусть A удовлетворяет неравенству (33.2). Пусть u — слабое решение (33.1), и пусть $\alpha < 0$ такое, что $\alpha > \max\{-1, 1 - m\}$.

Тогда для любой неотрицательной функции $\varphi \in W^{1,\infty}(\mathbb{R}^N \times (0, \infty))$ с компактным носителем выполнено следующее неравенство:

$$\int_0^\infty \int_{\mathbb{R}^N} u^{q+\alpha} \varphi \, dx \, dt + c \frac{|\alpha|}{2} \int_0^\infty \int_{\mathbb{R}^N} |A(x, u, Du)|^{m}\varphi^\alpha \, dx \, dt \leq$$

$$\leq c' \left(\int_0^\infty \int_{\mathbb{R}^N} u^{m-1+\alpha} |D\varphi|^m \varphi^{1-m} \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} u^{\alpha+1} \left| \frac{\partial \varphi}{\partial t} \right| \, dx \, dt \right),$$

где $c > 0$ и $c' = c'(|\alpha|) > 0$ при достаточно малых $\alpha < 0$.

Доказательство. Пусть $\alpha < 0$ и $\alpha > \max\{-1, 1 - m\}$. Пусть u — слабое решение (33.1), и положим

$$u_\varepsilon(x) = u(x) + \varepsilon, \quad \varepsilon > 0, \quad x \in \mathbb{R}^N.$$

Функцию φ_ε определим следующим образом:

$$\varphi_\varepsilon(x, t) = u_\varepsilon^\alpha(x, t) \varphi(x, t),$$

где $\varphi \in W^{1,\infty}(\mathbb{R}^N \times (0, \infty))$ — неотрицательная функция с компактным носителем, допустимая в качестве пробной функции в определении решения задачи (33.1).

Умножая (33.1) на φ_ε и интегрируя по частям, получим

$$\int_0^\infty \int_{\mathbb{R}^N} u^{q} u_\varepsilon^\alpha \varphi \, dx \, dt \leq -\alpha \int_0^\infty \int_{\mathbb{R}^N} \left(\sum_{i=1}^N A_i(x, u, Du) \frac{\partial u}{\partial x_i} \right) u_\varepsilon^\alpha \varphi \, dx \, dt +$$

$$+ \int_0^\infty \int_{\mathbb{R}^N} \left(\sum_{i=1}^N A_i(x, u, Du) \frac{\partial \varphi}{\partial x_i} \right) u_\varepsilon^\alpha \, dx \, dt - \frac{1}{\alpha + 1} \int_0^\infty \int_{\mathbb{R}^N} u_\varepsilon^{\alpha+1} \frac{\partial \varphi}{\partial t} \, dx \, dt.$$

Используя (33.2) и неравенство Юнга, получим

$$\int_0^\infty \int_{\mathbb{R}^N} u^{q} u_\varepsilon^\alpha \varphi \, dx \, dt + c \frac{|\alpha|}{2} \int_0^\infty \int_{\mathbb{R}^N} |A(x, u, Du)|^{m}\varphi^\alpha \, dx \, dt \leq$$

$$\leq c' \left(\int_0^\infty \int_{\mathbb{R}^N} u_\varepsilon^{m-1+\alpha} |D\varphi|^m \varphi^{1-m} \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} u_\varepsilon^{\alpha+1} \left| \frac{\partial \varphi}{\partial t} \right| \, dx \, dt \right),$$

где $c' = c'(|\alpha|) > 0$ при указанных $\alpha < 0$.

Применяя теоремы Фату и Лебега (при $\varepsilon \to 0$), получим требуемое утверждение. □

Лемма 33.2 (априорная оценка). Пусть выполнены предположения леммы 33.1. Пусть $q > \max\{1, m-1\}$ и $\alpha < 0$, $\alpha > \max\{-1, 1 - m, 1 - \frac{2}{m-1}\}$, α достаточно мало.
Глава 3. ЭВОЛЮЦИОННЫЕ НЕРАВЕНСТВА

Тогда для любой неотрицательной функции \(\varphi \in W^{1,\infty}(\mathbb{R}^N \times (0, \infty)) \) с компактным носителем выполнено следующее неравенство:

\[
\begin{align*}
&\int_{0}^{\infty} \int_{\mathbb{R}^N} u^{q} \varphi \, dx \, dt \\
&\leq c_1 \left[\int_{0}^{\infty} \int_{\mathbb{R}^N} |D \varphi|^{m \alpha'} \varphi^{1-m} \, dx \, dt \right]^{\frac{1}{m'}} \times \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} |A(x, u, Du)|^{m' \alpha^1-m} \varphi \, dx \, dt \right)^{\frac{1}{m}} + \\
&+ c_2 \left[\int_{0}^{\infty} \int_{\mathbb{R}^N} \frac{\partial \varphi}{\partial t} \varphi^{1-m} \, dx \, dt \right]^{\frac{1}{q'}} \times \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} |D \varphi|^{m' \alpha^1-m} \varphi \, dx \, dt \right)^{\frac{1}{m}} + \\
&+ c_3 \int_{0}^{\infty} \int_{\mathbb{R}^N} \frac{q-1}{q} \varphi^{\frac{1}{q'-1}} \, dx \, dt \right]^{\frac{q-1}{q}} \times \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} u^q \varphi \, dx \, dt \right)^{\frac{1}{q}}.
\end{align*}
\]

где \(c_i > 0, i = 1, 2, 3, \) и \(u, u', y', z' \) — сопряженные показатели к \(x, y, z, \) определяемым формулами

\[
\alpha = \frac{q}{m - 1 + \alpha}, \quad y = \frac{q}{1 + \alpha}, \quad z = \frac{q}{(1 - \alpha)(m - 1)}.
\]

Доказательство. Пусть \(\varphi \in W^{1,\infty}(\mathbb{R}^N \times (0, \infty)) \) — неотрицательная функция с компактным носителем. Так как \(u \) есть слабое решение задачи (33.1), то

\[
\begin{align*}
\int_{0}^{\infty} \int_{\mathbb{R}^N} u^{q} \varphi \, dx \, dt \leq \int_{0}^{\infty} \sum_{i=1}^{N} A_i(x, u, Du) \frac{\partial \varphi}{\partial x_i} \, dx \, dt + \int_{0}^{\infty} \int_{\mathbb{R}^N} u \frac{\partial \varphi}{\partial t} \, dx \, dt.
\end{align*}
\]

Используя неравенство Гёльдера, из (33.9) получаем

\[
\begin{align*}
\int_{0}^{\infty} \int_{\mathbb{R}^N} u^{q} \varphi \, dx \, dt \leq \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} |A(x, u, Du)|^{m' \alpha-1} \varphi \, dx \, dt \right)^{\frac{1}{m'}} \times \\
\times \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} u^{(1-\alpha)(m-1)} |D \varphi|^{m' \alpha-1-m} \, dx \, dt \right)^{\frac{1}{m}} + \\
+ \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} \frac{q-1}{q} \varphi^{\frac{1}{q'}-1} \, dx \, dt \right)^{\frac{q-1}{q}} \times \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} u^q \varphi \, dx \, dt \right)^{\frac{1}{q}}.
\end{align*}
\]

Из (33.4) вытекает

\[
\begin{align*}
\left(\int_{0}^{\infty} \int_{\mathbb{R}^N} |A(x, u, Du)|^{m' \alpha-1} \varphi \, dx \, dt \right)^{\frac{1}{m'}} \leq \\
\leq c'' \left[\left(\int_{0}^{\infty} \int_{\mathbb{R}^N} u^{m-1+\alpha} |D \varphi|^{m' \alpha-1-m} \, dx \, dt \right)^{\frac{1}{m'}} + \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} u^{1+\alpha} \left| \frac{\partial \varphi}{\partial t} \right| \, dx \, dt \right)^{\frac{1}{m'}} \right],
\end{align*}
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234

воэтому из (33.10) следует

\[
\int_0^\infty \int_{\mathbb{R}^N} u^q \varphi \, dx \, dt \leq c_2 \left[\left(\int_0^\infty \int_{\mathbb{R}^N} u^{m-1+\alpha} |D\varphi|^{\alpha} \varphi^{1-m} \, dx \, dt \right)^{1/m'} \times \\
\int_0^\infty \int_{\mathbb{R}^N} u^{(1-\alpha)(m-1)} |D\varphi|^{\alpha} \varphi^{1-m} \, dx \, dt \right]^{1/m} + \\
+ \left(\int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right| \varphi \, dx \, dt \right)^{1/m'} \left(\int_0^\infty \int_{\mathbb{R}^N} u^{(1-\alpha)(m-1)} |D\varphi|^{\alpha} \varphi^{1-m} \, dx \, dt \right)^{1/m} + \\
+ \left(\int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right| \varphi^{-\frac{1}{q-1}} \, dx \, dt \right)^{\frac{q^*}{q-1}} \left(\int_0^\infty \int_{\mathbb{R}^N} u^q \varphi \, dx \, dt \right)^{1/q}.
\]

(33.11)

Применение неравенства Гельдера с параметрами \(x, y, z\), определенными формулами (33.8), дает

\[
\int_0^\infty \int_{\mathbb{R}^N} u^q \varphi \, dx \, dt \leq c'_3 \left[\left(\int_0^\infty \int_{\mathbb{R}^N} u^q \varphi \, dx \, dt \right)^{\frac{m-1}{q}} \left(\int_0^\infty \int_{\mathbb{R}^N} |D\varphi|^{\alpha} \varphi^{1-m} \, dx \, dt \right)^{\frac{1}{m'\alpha}} \times \\
\int_0^\infty \int_{\mathbb{R}^N} |D\varphi|^{\alpha} \varphi^{1-m} \, dx \, dt \right]^{\frac{1}{m'\alpha}} + \\
\left(\int_0^\infty \int_{\mathbb{R}^N} u^q \varphi \, dx \, dt \right)^{2\frac{(m-1)}{m'}} \left(\int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right| \varphi^{1-q} \, dx \, dt \right)^{\frac{1}{m'q'}} + \\
+ \left(\int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right| \varphi^{-\frac{1}{q-1}} \, dx \, dt \right)^{\frac{q^*}{q-1}} \left(\int_0^\infty \int_{\mathbb{R}^N} u^q \varphi \, dx \, dt \right)^{1/q}.
\]

(33.12)

Применение неравенства Юнга к правой части (33.12) приводит к утверждению леммы.

Интересным следствием оценки (33.7) является следующий результат об отсутствии решения.

Теорема 33.1. Пусть \(A\) удовлетворяет неравенству (33.2). Пусть \(q > \max\{1, m-1\}\) и

\[
m > \frac{2N}{N+1}.
\]

Если

\[
q \leq m - 1 + \frac{m}{N} = q^*,
\]

то (33.1) не имеет глобального нетривиального слабого решения.

Замечание 33.2. См. также книгу [56, гл. 10, с. 309], где приводятся ограничения на \(m\), аналогичные (33.13), и их интерпретация.
Доказательство теоремы 33.1. Пусть \(\varphi_0 \in C^1_0(\mathbb{R}) \) такая, что

\[
\varphi_0(\xi) = \begin{cases}
1, & 0 \leq \xi \leq 1, \\
0, & \xi \geq 2.
\end{cases}
\]

Положим

\[
\varphi(x, t) = \varphi_0 \left(\frac{t^{\theta_1} + |x|^\theta_2}{R^\theta_2} \right),
\]

где \(\theta_1, \theta_2 > 0 \) определены ниже так, чтобы \(\varphi \in C^1_0(\mathbb{R}^N \times [0, \infty)) \).

Из (33.7) следует, что (после простых вычислений)

\[
\int \int u^\theta \, dx \, dt \leq c \{ R^{\alpha_1} + R^{\alpha_2} + R^{\alpha_3} \},
\]

где

\[
\begin{align*}
\alpha_1 &= \frac{N(q - m + 1) + \theta(q - m + 1) - mq}{q - m + 1}, \\
\alpha_2 &= \frac{N(mq - 2(m - 1)) + 2\theta(q - m + 1) - mq}{mq - 2(m - 1)}, \\
\alpha_3 &= \frac{N(q - 1) - \theta}{q - 1}
\end{align*}
\]

и \(\theta = \frac{\theta_2}{\theta_1} \). Далее выбираем \(\theta = N(m - 2) + m \). Заметим, что из (33.13) имеем \(\theta > 0 \). Это означает, в частности, что можем выбрать \(\theta_1 \) и \(\theta_2 \) большими, чтобы гарантировать принадлежность \(\varphi \in C^1_0(\mathbb{R}^N \times [0, \infty)) \).

Легко показать, что при таком выборе \(\theta \) имеем

\[
\begin{align*}
\alpha_1 &= \frac{m - 1}{q - m + 1} (qN - (N(m - 1) + m)), \\
\alpha_2 &= \frac{2(m - 1)}{mq - 2(m - 1)} (qN - (N(m - 1) + m)), \\
\alpha_3 &= \frac{1}{q - 1} (qN - (N(m - 1) + m)).
\end{align*}
\]

Если в (33.14) выполнено строгое неравенство, то из (33.17) следует \(\alpha_i < 0 \), \(i = 1, 2, 3 \). Этот факт вместе с (33.16) означает, что

\[
\int_0^\infty \int_{\mathbb{R}^N} u^\theta \, dx \, dt = 0,
\]

что в силу неотрицательности \(u \) противоречит предположению и завершает доказательство теоремы (для случая \(q < q^* \)).

Теперь предположим, что в (33.14) имеем равенство, т.е.

\[
q = q^* = m - 1 + \frac{m}{N}.
\]

Из (33.17) имеем \(\alpha_i = 0 \), \(i = 1, 2, 3 \), так что из (33.16) заключаем, что \(u \in L^q(\mathbb{R}^N \times (0, \infty)) \).
Теперь рассмотрим оценку (33.12). Принимая во внимание наш выбор функции \(\varphi \), тогда получим

\[
\iint_{t^0_1 + |x|^{2} \leq R^0_2} u^q \, dx \, dt \leq c^4 \left(\iint_{A_R} u^q \varphi \, dx \, dt \right)^{\frac{m-1}{p}} \left(\iint_{A_R} |D\varphi|^{m_\varphi} \varphi^{1-m_\varphi} \, dx \, dt \right)^{\frac{1}{m_\varphi}} \\
\times \left(\iint_{A_R} |D\varphi|^{m_\varphi} \varphi^{1-m_\varphi} \, dx \, dt \right)^{\frac{1}{m_\varphi}} + \left(\iint_{A_R} u^q \varphi \, dx \, dt \right)^{\frac{2(m-1)}{mq}} \left(\iint_{A_R} \left| \frac{\partial \varphi}{\partial t} \right|^q \varphi^{1-q} \, dx \, dt \right)^{\frac{1}{mq}} \\
+ \left(\iint_{A_R} \left| \frac{\partial \varphi}{\partial t} \right|^q \varphi^{1-q} \, dx \, dt \right)^{\frac{1}{mq}} \left(\iint_{A_R} u^q \varphi \, dx \, dt \right)^{1/q}, \quad (33.18)
\]

где

\[
A_R = \{(x, t) \in \mathbb{R}^N \times (0, \infty) : R^0_2 \leq t^0_1 + |x|^{2} \leq 2R^0_2 \}.
\]

Поскольку \(u \in L^q((\mathbb{R}^N \times (0, \infty)) \), то существует последовательность \(\{R_k\} \to \infty, k \to \infty \), такая, что

\[
\lim_{k \to \infty} \iint_{A_{R_k}} u^q \, dx \, dt = 0.
\]

Объединяя это предельное соотношение с полученным выше неравенством, приходим к

\[
\lim_{k \to \infty} \iint_{t^0_1 + |x|^{2} \leq R^0_k} u^q \, dx \, dt = \int_{0}^{\infty} \int_{\mathbb{R}^N} u^q \, dx \, dt = 0. \quad \square
\]

Рассмотрим специальные частные случаи теоремы 33.1 Пусть \(A : \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}^N \to \mathbb{R}^N \) — каратаедориева функция и компоненты \(A \), т.е. \(A_i, i = 1, \ldots, N \), имеют вид

\[
A_i(x, u, w) = \sum_{j=1}^{N} a_{ij}(x, u, w)w_j, \quad w \in \mathbb{R}^N.
\]

Тогда легко видеть, что \(A \) удовлетворяет неравенству (33.2) при условии, что существуют \(m > 1 \) и \(C_A > 0 \) такие, что

\[
\sum_{i,j=1}^{N} a_{ij}w_iw_j \geq C_A \left(\sum_{i=1}^{N} \left(\sum_{j=1}^{N} a_{ij}w_j \right)^2 \right)^{m'/2}. \quad (33.19)
\]

Пусть теперь \(A : \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}^N \to \mathbb{R}^N \) — каратаедориева функция и

\[
A_i(x, u, w) = \mathcal{A}(x, u, |w|)w_i, \quad w \in \mathbb{R}^N, \quad i = 1, \ldots, N,
\]

где \(\mathcal{A} : \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R} \) удовлетворяет неравенствам

\[
0 \leq \mathcal{A}(x, u, |w|) \leq M|w|^{m-2}, \quad (33.20)
\]

где \(M > 0 \) и \(m > 1 \). Очевидно, \(A \) удовлетворяет неравенству (33.2), если выполнено (33.20).
В частности, если усилить (33.20) до
\[M^{-1}|w|^{m-2} \leq A(x, u, |w|) \leq M|w|^{m-2}, \]
где \(M > 1 \), то \(A \) удовлетворяет более сильному условию
\[(A(x, u, w), w) \geq c_1|w|^m \geq c_2|A(x, u, w)|^{m'}, \]
где \(c_1, c_2 > 0 \).
Из приведенных выше примеров вытекает

Следствие 33.1. Пусть \(q > \max\{1, m - 1\}, m > 1 \). Если
\[q \leq m - 1 + \frac{m}{N}, \]
то задача
\[\begin{cases} \frac{\partial u}{\partial t} - \text{div}(|Du|^{m-2} Du) \geq u^q, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\ u(x, t) \geq 0, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\ u(x, 0) = u_0(x) \geq 0, & x \in \mathbb{R}^N, \end{cases} \]
не имеет глобального нетривиального слабого решения. □

Заметим, что (33.23) влечет условие \(m > \frac{2N}{N+1} \). Интересные следствия этого условия приведены в книге [56] (см. гл. 8 о неравенстве Гарнака для слабых решений однородной задачи \(\frac{\partial u}{\partial t} - \text{div}(|Du|^{m-2} Du) = 0 \)).

Используя метод доказательства теоремы 33.1, можно исследовать некоторые классы дважды нелинейных параболических неравенств. Приведем два примера.

Пример 33.1. Пусть функция \(A \) удовлетворяет неравенству (33.2). Пусть \(k > 0 \) и \(q > \max\{k, m - 1\}, m > 1 \). Рассмотрим задачу
\[\begin{cases} \frac{\partial u}{\partial t} - \text{div} A(x, u, Du) \geq u^q, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\ u(x, t) \geq 0, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\ u(x, 0) = u_0(x) \geq 0, & x \in \mathbb{R}^N. \end{cases} \]
Здесь решение понимается в слабом смысле аналогично определению 33.1 с очевидными изменениями.

Предложение 33.1. Пусть
\[\max\{m - 1, k\} < q \leq m - 1 + \frac{mk}{N}, \]
Тогда задача (33.25) не имеет глобального нетривиального слабого решения.
Если \(q > m - 1 + \frac{mk}{N} \), то всякое решение задачи (33.25) удовлетворяет априорной оценке
\[\int_{E_1 + |x|^2 \leq R^2} u^q(x, t) \, dx \, dt \leq c\{R^{\alpha_1} + R^{\alpha_2} + R^{\alpha_3}\}, \]
где
\[\frac{\theta_1}{\theta_2} = \frac{m(q - k)}{q - m + 1}. \]
□
Часть II. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ПЕРВОГО ПОРЯДКА

Отметим, что условие (33.26) влечет $m > \frac{N(k+1)}{N+k}$.

В частном случае

$$A(x,u,w) = |w|^{m-2}w, \quad w \in \mathbb{R}^N,$$

справедливо

Следствие 33.2. Пусть выполнено (33.26). Тогда задача

$$\begin{cases}
\frac{\partial}{\partial t} u^k - \text{div}(|Du|^{m-2}Du) \geq u^q, & (x,t) \in \mathbb{R}^N \times (0,\infty), \\
u(x,t) \geq 0, & (x,t) \in \mathbb{R}^N \times (0,\infty), \\
u(x,0) = u_0(x) \geq 0, & x \in \mathbb{R}^N,
\end{cases} \tag{33.28}$$

не имеет глобального нетривиального слабого решения. □

Замечание 33.3. Этот результат для соответствующего уравнения при $k = 1$ получен в книге [237].

Замечание 33.4. Известно, что это следствие является точным. То есть если

$$q > m - 1 + \frac{mk}{N}, \tag{33.29}$$

tо задача (33.28) имеет глобальное решение, если начальное условие u_0 выбрать достаточно быстро убывающим на бесконечности.

Пример 33.2 (неравенство типа пористой среды). Рассмотрим задачу

$$\begin{cases}
\frac{\partial u}{\partial t} - \Delta u^m \geq u^q, & (x,t) \in \mathbb{R}^N \times (0,\infty), \\
u(x,t) \geq 0, & (x,t) \in \mathbb{R}^N \times (0,\infty), \\
u(x,0) = u_0(x) \geq 0, & x \in \mathbb{R}^N.
\end{cases} \tag{33.30}$$

Формальная замена переменных

$$v := u^m$$

приводит (33.30) к виду

$$\frac{\partial}{\partial t} (v^{1/m}) - \Delta v \geq v^{q/m}, \quad (x,t) \in \mathbb{R}^N \times (0,\infty). \tag{33.31}$$

Применение предложения 33.1 даёт

Предложение 33.2. Пусть

$$\max \left\{ 1, \frac{1}{m} \right\} < \frac{q}{m} \leq 1 + \frac{2}{mN}. \tag{33.32}$$

Тогда (33.30) не имеет глобального нетривиального слабого решения.

Замечание 33.5. Докритический случай изучен в [237], критический — в работе [142]. Возможны также распространить утверждения лемм 33.1 и 33.2 на задачи вида

$$\frac{\partial u}{\partial t} - \text{div} A(x,u,Du) \geq t^\gamma|x|^\sigma|u|^q,$$
где \(\gamma, \sigma > -m, m > 1 \), и \(A \) удовлетворяет
\[
(A(x, u, w), w) \geq c|x|^\beta |A(x, u, w)|^{m'}.
\]

Замечание 33.6. Результат теоремы 33.1 зависит от класса решений, рассматриваемых в определении 33.1. Чтобы пролить свет на этот вопрос, введем сначала более широкий класс обобщенных решений задачи (33.1). Далее мы предполагаем, что \(q > \max\{1, m - 1\} \).

Определение 33.2. Пусть \(u : \mathbb{R}^N \times (0, \infty) \to \mathbb{R} \) неотрицательна. Функция \(u \) называется решением из класса \(P_\alpha \) неравенства (33.1), если существует \(\alpha > \max\{-1, 1 - m\} \) такое, что \(u^{q + \alpha} \in L^1_{\text{loc}}(\mathbb{R}^N \times (0, \infty)), |A(x, u, Du)|^{m'} u^{\alpha - 1} \in L^1_{\text{loc}}(\mathbb{R}^N \times (0, \infty)) \) и для любой неотрицательной пробной функции \(\varphi \in W^{1,m}_{\text{loc}}(\mathbb{R}^N \times (0, \infty)) \) с компактным носителем выполнено следующее неравенство:
\[
\begin{align*}
\int_0^\infty \int_{\mathbb{R}^N} u^{q + \alpha} \varphi \, dx \, dt + |\alpha| \int_0^\infty \int_{\mathbb{R}^N} A_i(x, u, Du) \frac{\partial u}{\partial x_i} u^{\alpha - 1} \varphi \, dx \, dt \\
\leq \int_0^\infty \int_{\mathbb{R}^N} \sum_{i=1}^N A_i(x, u, Du) \frac{\partial \varphi}{\partial x_i} u^{\alpha - 1} \, dx \, dt - \frac{1}{\alpha + 1} \int_0^\infty \int_{\mathbb{R}^N} u^{\alpha + 1} \frac{\partial \varphi}{\partial t} \, dx \, dt.
\end{align*}
\]

Используя технику доказательства леммы 33.1, устанавливается

Лемма 33.3. Пусть \(A \) удовлетворяет неравенству (33.2). Пусть \(u \) — слабое решение задачи (33.1) из класса \(P_\alpha \) с \(\max\{-1, 1 - m\} < \alpha < 0 \). Тогда выполнена априорная оценка
\[
\int\int_{A_R} u^{q + \alpha} \, dx \, dt \leq c R^{2N-\frac{m(q+\alpha)}{q-m} + \theta(q-2-\alpha)},
\]
где \(R > 0 \) и
\[
A_R = \{(x, t) : t^{\theta_1} + |x|^{\theta_2} \leq R^{\theta_2}\}, \quad \theta_1, \theta_2 > 0.
\]

Доказательство. Из (33.33) с использованием неравенства Юнга получаем
\[
c_3 \int_0^\infty \int_{\mathbb{R}^N} u^{q + \alpha} \varphi \, dx \, dt \leq c_4 \left[\int_0^\infty \int_{\mathbb{R}^N} |D\varphi|^{m\kappa} \varphi^{1-m\kappa} \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right| \varphi^y \, dx \, dt \right],
\]
где \(\kappa \) и \(y \) — сопряженные показатели к \(\varphi \) и \(y \), определенным формулами
\[
\kappa = \frac{q + \alpha}{m - 1 + \alpha}, \quad y = \frac{q + \alpha}{\alpha + 1},
\]
и \(c_3, c_4 > 0 \).

Выбирая
\[
\varphi(x, t) = \varphi_0 \left(\frac{t^{\theta_1} + |x|^{\theta_2}}{R^{\theta_2}} \right),
\]
где \(\varphi_0 \) — стандартная срезающая функция (см. доказательство теоремы 33.1) и \(\theta_1, \theta_2 > 0, R > 0 \), из (33.35) с помощью замены переменных следует
\[
\int\int_{A_R} u^{q + \alpha} \, dx \, dt \leq c R^{2N-\frac{m(q+\alpha)}{q-m} + \frac{\theta_2}{\theta_1}(q-2-\alpha)},
\]
откуда, полагая \(\theta = \frac{\theta_2}{\theta_1} \), получаем (33.34). \(\square \)

11 ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Следствием этой леммы является

Теорема 33.2. Пусть \(q > \max\{1, m - 1\} \), функция \(u_0 \in L^1_{\text{loc}}(\mathbb{R}^N) \) и неотрицательна, \(0 > \alpha > \max\{-1, 1 - m\} \).

Если

\[
\max\{1, m - 1\} < q \leq m - 1 + \frac{m(\alpha + 1)}{N},
\]

то задача (33.1) не имеет неотрицательного решения из класса \(P_\alpha \).

Доказательство. Предположим сначала, что (33.36) выполнено со знаком строгого неравенства, т.е.

\[
\max\{1, m - 1\} < q < m - 1 + \frac{m(\alpha + 1)}{N},
\]

и положим \(\theta = \frac{m(q + \alpha) - N(q - m + 1)}{q - m + 1} \).

Простые вычисления показывают, что мы можем переписать (33.37) в виде

\[
\frac{N(q - 1)}{\alpha + 1} < \theta = \frac{m(q + \alpha) - N(q - m + 1)}{q - m + 1}.
\]

Далее заметим, что (33.34) означает

\[
\int_A u^{q+\alpha} \, dx \, dt \leq c R^\sigma,
\]

где

\[
\sigma = N + \theta - \frac{m(q + \alpha)}{q - m + 1} + N - \theta \left(\frac{1 + \alpha}{q - 1}\right).
\]

Из (33.38) следует, что \(\sigma < 0 \), поэтому, устремляя \(R \to \infty \) в (33.39), приходим к требуемому утверждению.

Случай \(q = m - 1 + \frac{m(\alpha + 1)}{N} \) рассматривается аналогично предыдущим утверждениям (см. (33.18) и далее). \(\square \)

Замечание 33.7. Ясно, что утверждение леммы 33.1 можно перефразировать следующим образом: если \(u \) — слабое решение задачи (33.1) в смысле определения 33.1, то \(u \) есть слабое решение из класса \(P_\alpha \) с \(\alpha \in \{\max\{-1, 1 - m\}, 0\} \). Конечно, поскольку класс \(P_\alpha \) шире рассматриваемого в определении 33.1, естественно, что значения критического показателя отсутствия решения для (33.1) в классе \(P_\alpha \) меньше “классического” показателя для неравенства (33.1).

Действительно, этот факт выражается простым неравенством

\[
q^*_\alpha := m - 1 + \frac{m(\alpha + 1)}{N} < q^* = m - 1 + \frac{m}{N}.
\]

Интересно было бы знать, является ли критическое значение \(q^*_\alpha \) точным для решений из класса \(P_\alpha \). Известно, что для \(q^* = m - 1 + m/N \) это действительно так, т.е. если \(q > q^* \), то задача (33.1) имеет глобальное решение при некоторых начальных данных [237].
Глава 3. ЭВОЛЮЦИОННЫЕ НЕРАВЕНСТВА

Параболические неравенства, порождаемые операторами типа средней кривизны. Рассмотрим некоторые параболические неравенства, связанные с операторами типа средней кривизны. Начнем с определения класса операторов.

Определение 33.3. Пусть \(A : \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}^N \rightarrow \mathbb{R}^N \) — заданная функция вида

\[
A(x, u, w) = A(x, u, w)w, \quad w \in \mathbb{R}^N,
\]

gде \(A : \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}^N \rightarrow \mathbb{R}_+ \) — каратеодориева функция такая, что существует \(C_A > 0 \), для которого

\[
0 < A(x, u, w) \leq C_A
\]

dля всех \((x, u, w) \in \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}^N\).

Говорят, что такой оператор \(A \) порождает оператор типа средней кривизны.

Важными частными случаями определения 33.3 являются

i) \(A \equiv 1 \) — оператор Лапласа;

ii) \(A(w) = \frac{1}{\sqrt{1 + |w|^2}}, \ w \in \mathbb{R}^N \) — оператор средней кривизны;

iii) \(A(w) = (1 + |w|^m)^{-n} \) — обобщенный оператор средней кривизны, где \(m, n \geq 0 \).

Рассмотрим эволюционное неравенство вида

\[
\begin{aligned}
&\frac{\partial u}{\partial t} - \text{div} A(x, u, Du) \geq u^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
&u \geq 0, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
&u(x, 0) = u_0(x) \geq 0, \quad x \in \mathbb{R}^N,
\end{aligned}
\tag{33.41}
\]

gде \(q > 1 \) и функция \(A \), определяющая оператор \(A \), удовлетворяет (33.40).

Введем понятие слабого решения задачи (33.41).

Определение 33.4. Неотрицательная функция \(u \in L_{\text{loc}}^q(\mathbb{R}^N \times (0, \infty)) \cap W_{\text{loc}}^{1,2}(\mathbb{R}^N \times (0, \infty)) \) называется слабым решением задачи (33.41), если для любой неотрицательной пробной функции \(\varphi \in W^{1,2}(\mathbb{R}^N \times (0, \infty)) \) с компактным носителем выполнено неравенство

\[
\int_0^\infty \int_{\mathbb{R}^N} u^q \varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} A(x, u, Du)(Du, D\varphi) \, dx \, dt - \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial \varphi}{\partial t} \, dx \, dt.
\tag{33.42}
\]

Следующие два утверждения и их доказательства аналогичны леммам 33.1 и 33.2.

Лемма 33.4. Пусть \(A \) удовлетворяет неравенству (33.40). Пусть \(u \) — слабое решение (33.41), и пусть \(-1 < \alpha < 0\).

Тогда для любой неотрицательной функции \(\varphi \in W^{1,2}(\mathbb{R}^N \times (0, \infty)) \) с компактным носителем выполнена оценка

\[
\int_0^\infty \int_{\mathbb{R}^N} u^{q+\alpha} \varphi \, dx \, dt \leq c(\alpha) \left[\int_0^\infty \int_{\mathbb{R}^N} \left(u^{1+\alpha} |D\varphi|^2 \varphi^{-1} + u^{\alpha+1} \left| \frac{\partial \varphi}{\partial t} \right|^2 \right) \, dx \, dt \right],
\tag{33.43}
\]

gде \(c(\alpha) > 0 \). □
Лемма 33.5 (априорная оценка). Пусть выполнены условия леммы 33.4. Пусть \(q > 1 \) и \(\alpha < 0 \) с достаточно малым \(\alpha > -1 \).

Если для любого \(\varphi \in W^{1,2}(\mathbb{R}^N \times (0, \infty)) \) с компактным множеством справедлива оценка

\[
\int_0^\infty \int_{\mathbb{R}^N} u^q \varphi \, dx \, dt \leq c_1 \left[\left(\int_0^\infty \left(\int_{\mathbb{R}^N} D\varphi \right)^{2q'} \varphi^{1-2q'} \, dx \, dt \right)^{\frac{1}{2q'}} \right]^{\frac{q}{q-1}} +
\]

\[
+ c_2 \left[\left(\int_0^\infty \left(\int_{\mathbb{R}^N} \frac{\partial \varphi}{\partial t} \right)^{2q'} \varphi^{1-2q'} \, dx \, dt \right)^{\frac{1}{2q'}} \right]^{\frac{q}{q-1}} +
\]

\[
+ c_3 \int_0^\infty \left(\int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right|^{\frac{q}{q-1}} \varphi^{-\frac{1}{q-1}} \, dx \, dt \right)^{\frac{q}{q-1}},
\]

(33.44)

где \(c_i > 0, i = 1, 2, 3 \), \(u^{\varphi} = q(1 + \alpha)^{-1} \), \(z = q(1 - \alpha)^{-1} \). □

Следующий результат вытекает непосредственно из этой леммы.

Теорема 33.3. Пусть \(A \) удовлетворяет неравенству (33.40). Если

\[
1 < q \leq 1 + \frac{2}{N},
\]

(33.45)

то (33.41) не имеет глобального непривязной слабого решения.

Доказательство следует схеме доказательства теоремы 33.1. Пусть \(\varphi_0 \in C_0^1(\mathbb{R}^N) \) — стандартная срезающая функция, и определим

\[
\varphi(x, t) = \varphi_0 \left(\frac{t + |x|^2}{R^2} \right).
\]

(33.46)

Тогда (33.44) дает

\[
\int_{t+|x|^2\leq R^2} u^q \, dx \, dt \leq cR^{\frac{qN-(N+2)}{q-1}}.
\]

(33.47)

Доказательство завершается аналогично доказательству теоремы 33.1. □

Следствие 33.3. Пусть \(q > 1 \). Если

\[
1 < q \leq 1 + \frac{2}{N},
\]

то задача

\[
\begin{cases}
\frac{\partial u}{\partial t} - \text{div} \left(\frac{D\varphi}{\sqrt{1 + |D\varphi|^2}} \right) \geq |u|^q, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, t) \geq 0, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x) \geq 0, & x \in \mathbb{R}^N,
\end{cases}
\]

(33.48)

не имеет непривязной слабого решения.
Глава 4. СИСТЕМЫ НЕРАВЕНСТВ

Замечание 33.8. Известно, что теорема 33.3 точна. Левин, Либерман и Мейер [123] показали, что если

$$ q > 1 + \frac{2}{N}, $$

то уравнение

$$ \begin{cases} \frac{\partial u}{\partial t} - \text{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) = |u|^q, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\ u(x, 0) = u_0(x), & x \in \mathbb{R}^N, \end{cases} $$

имеет положительное решение, если начальные данные достаточно быстро убывают на бесконечности.

Глава 4. СИСТЕМЫ НЕРАВЕНСТВ

34. СИСТЕМЫ ПОЛУЛИНЕЙНЫХ УРАВНЕНИЙ И НЕРАВЕНСТВ ВТОРОГО ПОРЯДКА

В этом разделе мы рассмотрим систему уравнений и неравенств вида

$$ \begin{cases} \frac{\partial u}{\partial t} - \sum_{i,j=1}^{N} \frac{\partial^2}{\partial x_i \partial x_j} a_{ij}(x, t, u, v) \geq c(x, t)|v|^r, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\ \frac{\partial v}{\partial t} - \sum_{i,j=1}^{N} \frac{\partial^2}{\partial x_i \partial x_j} b_{ij}(x, t, u, v) \geq d(x, t)|u|^s, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\ u(x, 0) = u_0(x), & x \in \mathbb{R}^N, \end{cases} $$

(34.1)

с $u_0, v_0 \in L^1_{\text{loc}}(\mathbb{R}^N)$.

Здесь $a_{ij}, b_{ij} : \mathbb{R}^{N+1} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}, i, j = 1, \ldots, N$, суть каратеодориевы функции, удовлетворяющие неравенствам

$$ |a_{ij}(x, t, u, v)| \leq a(x, t)|u|, \quad |b_{ij}(x, t, u, v)| \leq b(x, t)|v|, \quad (x, t, u, v) \in \mathbb{R}^{N+1}_+ \times \mathbb{R} \times \mathbb{R}, $$

(34.2)

$$ r, s > 1. $$

(34.3)

Функции $a(x, t), b(x, t) \geq 0$ и $c(x, t), d(x, t) > 0$ являются измеримыми в \mathbb{R}^{N+1}_+ и $b' c^{1-r'}, e^{1-r'}, a^s d^{1-s'}, d^{1-s'} \in L^1_{\text{loc}}(\mathbb{R}^{N+1}_+ \setminus Q(R))$, где

$$ Q(R) = \{(x, t) \in \mathbb{R}^{N+1}_+ | R^\mu \leq t^\nu + |x|^\mu \leq 2R^\mu \} $$

(34.4)

при $R \gg 1$ с параметрами $\nu \geq 1$ и $\mu \geq 2$, которые определены ниже через параметр $\theta = \nu/\mu$.

Определение 34.1. Под слабым решением задачи (34.1) понимается пара функций (u, v) такая, что

$$ u, a(x, t)u, d(x, t)|u|^s; \quad v, b(x, t)v, c(x, t)|v|^r $$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
принадлежит $L^1_{ \text{loc}}(\mathbb{R}^{N+1})$ и удовлетворяют неравенствам

$$
- \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial \varphi_1}{\partial t} \, dx \, dt - \int_0^\infty \int_{\mathbb{R}^N} \sum_{i,j=1}^N a_{ij}(x,t,u,v) \frac{\partial^2 \varphi_1}{\partial x_i \partial x_j} \, dx \, dt \\
\geq - \int_0^\infty \int_{\mathbb{R}^N} f(x,t) \, v(\varphi_1) \, dx \, dt + \int_{\mathbb{R}^N} u_0(x) \varphi_1(x,0) \, dx,
$$

$$
- \int_0^\infty \int_{\mathbb{R}^N} v \frac{\partial \varphi_2}{\partial t} \, dx \, dt - \int_0^\infty \int_{\mathbb{R}^N} \sum_{i,j=1}^N b_{ij}(x,t,u,v) \frac{\partial^2 \varphi_2}{\partial x_i \partial x_j} \, dx \, dt \\
\geq - \int_0^\infty \int_{\mathbb{R}^N} d(x,t) |v|^s \varphi_2 \, dx \, dt + \int_{\mathbb{R}^N} v_0(x) \varphi_2(x,0) \, dx
$$

при любых функциях $\varphi_1, \varphi_2 \geq 0$ с компактным носителем из класса $C^{2,1}_{x,t}(\mathbb{R}^{N+1})$.

Критические показатели r и s (критическая кривая в плоскости (r,s)) определяются асимптотикой следующих выражений:

$$
A_\theta(R) := R^{N-\theta-2
u'} \int_{1 \leq \tau^\alpha + |\xi|^\mu \leq 2} \frac{b'(R\xi, R^{\theta} \tau)}{\tau^{\nu'-1}(R\xi, R^{\theta} \tau)} \, d\xi \, d\tau + R^{N+\theta-\theta'} \int_{1 \leq \tau^\alpha + |\xi|^\mu \leq 2} \frac{1}{\tau^{\nu'-1}(R\xi, R^{\theta} \tau)} \, d\xi \, d\tau,
$$

$$
B_\theta(R) := R^{N-\theta-2\nu'} \int_{1 \leq \tau^\alpha + |\xi|^\mu \leq 2} \frac{a'(R\xi, R^{\theta} \tau)}{\tau^{\nu'-1}(R\xi, R^{\theta} \tau)} \, d\xi \, d\tau + R^{N+\theta-\theta'} \int_{1 \leq \tau^\alpha + |\xi|^\mu \leq 2} \frac{1}{\tau^{\nu'-1}(R\xi, R^{\theta} \tau)} \, d\xi \, d\tau. \tag{34.5}
$$

Здесь параметр $\theta = \alpha/\mu$ определяется ниже в условиях теоремы 34.1 ($\alpha = \theta_0$).

Замечание 34.1. Параметры θ и μ определяются только условиями $\theta/\mu = \theta > 0$ и $\theta \geq 1$, $\mu \geq 2$.

Теорема 34.1. Пусть выполнено условие (34.3) с $r, s > 0$ и

$$
u_0(x) \geq 0, \quad v_0(x) \geq 0. \tag{34.6}
$$

Пусть существует $\theta = \theta_0 > 0$ такое, что выполнено по крайней мере одно из следующих неравенства:

$$
\lim_{R \to \infty} C^{(1)}_\theta < \infty, \quad \lim_{R \to \infty} C^{(2)}_\theta < \infty, \tag{34.7}
$$

где

$$
C^{(1)}_\theta(R) := A^{1/r'}_\theta(R) B^{1/(rs')}_\theta(R), \quad C^{(2)}_\theta(R) := B^{1/s'}_\theta(R) A^{1/(sr')}_\theta(R). \tag{34.8}
$$

Тогда не существует глобального нетривиального слабого решения задачи (34.1).

Доказательство. Положим $\varphi_1 = \varphi_2 = \varphi$. Тогда в силу определения решения и неравенств ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234

166
Глава 4. СИСТЕМЫ НЕРАВЕНСТВ

167

\begin{equation}
\begin{aligned}
\int_{0}^{\infty} \int_{\mathbb{R}^{N}} d(x,t) |u|^s \varphi \, dx \, dt & \leq \int_{0}^{\infty} \int_{\mathbb{R}^{N}} b(x,t) |v|L_2(\varphi) \, dx \, dt - \int_{\mathbb{R}^{N}} v \frac{\partial \varphi}{\partial t} \, dx \, dt - \int_{\mathbb{R}^{N}} v_0(x) \varphi(x,0) \, dx, \\
\int_{0}^{\infty} \int_{\mathbb{R}^{N}} c(x,t) |v|^r \varphi \, dx \, dt & \leq \int_{0}^{\infty} \int_{\mathbb{R}^{N}} a(x,t) |u|L_2(\varphi) \, dx \, dt - \int_{\mathbb{R}^{N}} u \frac{\partial \varphi}{\partial t} \, dx \, dt - \int_{\mathbb{R}^{N}} u_0(x) \varphi(x,0) \, dx
\end{aligned}
\tag{34.9}
\end{equation}

с $L_2(\varphi) = \sum_{i,j=1}^{N} |\frac{\partial^2 \varphi}{\partial x_i \partial x_j}|$.

Введем теперь следующие обозначения:

\begin{equation}
X = \int_{0}^{\infty} \int_{\mathbb{R}^{N}} d(x,t) |u|^s \varphi \, dx \, dt, \quad Y = \int_{0}^{\infty} \int_{\mathbb{R}^{N}} c(x,t) |v|^r \varphi \, dx \, dt.
\end{equation}

Тогда на основании неравенств Гельдера из (34.9) получаем

\begin{equation}
\begin{aligned}
X & \leq \left(\int_{0}^{\infty} \int_{\mathbb{R}^{N}} \frac{(b(x,t)L_2(\varphi))^r}{(c(x,t)\varphi)^{r-1}} \, dx \, dt \right)^{1/r} \left(\int_{0}^{\infty} \int_{\mathbb{R}^{N}} (c(x,t)\varphi)^{1-r} \, dx \, dt \right)^{1/r'} Y^{1/r'} + \\
& \quad + \left(\int_{0}^{\infty} \int_{\mathbb{R}^{N}} \left| \frac{\partial \varphi}{\partial t} \right|^r \left(c(x,t)\varphi \right)^{1-r} \, dx \, dt \right)^{1/r'} \left(\int_{0}^{\infty} \int_{\mathbb{R}^{N}} \left(c(x,t)\varphi \right)^{1-r} \, dx \, dt \right)^{1/r'} Y^{1/r'} - \int_{\mathbb{R}^{N}} v_0(x) \varphi(x,0) \, dx,
\end{aligned}
\tag{34.10}
\end{equation}

\begin{equation}
\begin{aligned}
Y & \leq \left(\int_{0}^{\infty} \int_{\mathbb{R}^{N}} \frac{(a(x,t)L_2(\varphi))^{s'}}{(d(x,t)\varphi)^{s'-1}} \, dx \, dt \right)^{1/s'} \left(\int_{0}^{\infty} \int_{\mathbb{R}^{N}} \left| \frac{\partial \varphi}{\partial t} \right| \left(d(x,t)\varphi \right)^{1-s'} \, dx \, dt \right)^{1/s'} X^{1/s'} + \\
& \quad + \left(\int_{0}^{\infty} \int_{\mathbb{R}^{N}} \left| \frac{\partial \varphi}{\partial t} \right| \left(d(x,t)\varphi \right)^{1-s'} \, dx \, dt \right)^{1/s'} \left(\int_{0}^{\infty} \int_{\mathbb{R}^{N}} \left(d(x,t)\varphi \right)^{1-s'} \, dx \, dt \right)^{1/s'} X^{1/s'} - \int_{\mathbb{R}^{N}} u_0(x) \varphi(x,0) \, dx.
\end{aligned}
\end{equation}

Выберем теперь пробную функцию φ в виде

\begin{equation}
\varphi(x,t) = \varphi_0 \left(\frac{t^\kappa + |x|^{\mu}}{R^\theta} \right)
\end{equation}

с параметрами $\kappa \geq 1$ и $\mu \geq 2$, которые будут определены ниже.

Здесь $\varphi_0(\zeta) \geq 0$ есть $C_0^2(\mathbb{R})$-функция такая, что

\begin{equation}
\varphi_0(\zeta) = \begin{cases} 1, & 0 \leq \zeta \leq 1, \\ 0, & \zeta \geq 2. \end{cases}
\end{equation}

Сделаем замену переменных $t \rightarrow \tau$, $x \rightarrow \xi$ по формулам

\begin{equation}
t = R^\theta \tau, \quad x = R \xi
\end{equation}

с неопределенным параметром $\theta = \mu/\kappa > 0.$
Продолжение

Тогда неравенства (34.10) принимают вид

\[X \leq \text{const} \cdot A_{\theta}^{1/r}(R)Y^{1/r} - \int_{\mathbb{R}^N} u_0(x)\varphi(x,0) \, dx, \]

(34.12)

\[Y \leq \text{const} \cdot B_{\theta}^{1/s}(R)X^{1/s} - \int_{\mathbb{R}^N} u_0(x)\varphi(x,0) \, dx \]

с \(A_\theta(R) \) и \(B_\theta(R) \), определенными формулами (34.5). В силу (34.6) отсюда следует, что

\[X \leq \text{const} \cdot A_{\theta}^{1/r}(R)Y^{1/r}, \quad Y \leq \text{const} \cdot B_{\theta}^{1/s}(R)X^{1/s}. \]

(34.13)

Тогда находим

\[X^{1-1/(2s)} \leq \text{const} \cdot C_\theta^{(1)}(R), \quad Y^{1-1/(2s)} \leq \text{const} \cdot C_\theta^{(2)}(R), \]

(34.14)

где величины \(C_\theta^{(1)}(R) \) и \(C_\theta^{(2)}(R) \) определены формулами (34.8).

Теперь утверждение теоремы 34.1 следует в силу аргументов, аналогичных предыдущим, использованным при доказательстве теоремы 26.1 в скалярном случае.

Пусть выполнены условия теоремы 34.1 при предыдущих условиях с дополнительным предположением

\[\int_{|x| \leq R} u_0(x) \, dx \geq c_1 R^{\nu_1}, \quad \int_{|x| \leq R} v_0(x) \, dx \geq c_2 R^{\nu_2} \]

(34.15)

с \(c_1, c_2 > 0 \) и \(\nu_1, \nu_2 > 0 \).

Тогда имеет место

Теорема 34.2. Пусть выполнены условия теоремы 34.1 и неравенства (34.15). Пусть существует \(\theta = \theta_0 > 0 \) такое, что выполнено по крайней мере одно из неравенств

\[\lim_{R \to \infty} R^{-\tilde{\nu}_2} C_\theta^{(1)}(R) = 0, \quad \lim_{R \to \infty} R^{-\tilde{\nu}_1} C_\theta^{(2)}(R) = 0 \]

(34.16)

с

\[\tilde{\nu}_1 = \frac{rs - 1}{rs} \nu_1, \quad \tilde{\nu}_2 = \frac{rs - 1}{rs} \nu_2. \]

Здесь \(C_\theta^{(1)}(R) \) и \(C_\theta^{(2)}(R) \) определены формулами (34.8).

Тогда не существует глобального нетривиального слабого решения \((u,v)\) задачи (34.1).

Доказательство основано на неравенствах (34.12) и (34.15) и повторяет по существу доказательство предыдущей теоремы 34.1.

Замечание 34.2. Отметим, что нулевые правые части нижних пределов в (34.16) можно заменить положительными константами. Но тогда утверждение теоремы 34.2 будет справедливо, если константы \(c_1 > 0 \) и \(c_2 > 0 \) в неравенствах (34.15) будут больше соответствующих постоянных \(c_2^* > 0 \) и \(c_1^* > 0 \), определяемых нижними пределами правых частей неравенств (34.14).
Замечание 34.3. Аналогично можно рассмотреть системы вида (34.1) с условием на главные коэффициенты

\[|a_{ij}(x, t, u, v)| \leq a_{ij}(x, t)|u|^p, \quad |b_{ij}(x, t, u, v)| \leq b_{ij}(x, t)|v|^q \]

с \(p, q > 0 \) и \(r \geq \max\{1, p\} \), \(s \geq \max\{1, q\} \).

Пример 34.1. Рассмотрим следующую задачу:

\[
\frac{\partial u}{\partial t} - \sum_{i,j=1}^{N} \frac{\partial^2}{\partial x_i \partial x_j} (a_{ij}(x, t)u) \geq |v|^p, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial v}{\partial t} - \sum_{i,j=1}^{N} \frac{\partial^2}{\partial x_i \partial x_j} (b_{ij}(x, t)v) \geq |u|^s, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x) \geq 0, \quad v(x, 0) = v_0(x) \geq 0, \quad x \in \mathbb{R}^N, \tag{34.17}
\]

с \(r, s > 1 \) и \(u_0, v_0 \in L^1_{\text{loc}}(\mathbb{R}^N) \).

Здесь \(a_{ij}, b_{ij} : \mathbb{R}^N_{+} \rightarrow \mathbb{R}, \ i, j = 1, \ldots, N \), суть измеримые ограниченные коэффициенты, так что

\[|a_{ij}(x, t)|, \ |b_{ij}(x, t)| \leq c, \quad (x, t) \in \mathbb{R}^N_{+}. \]

Отметим, что мы не требуем условия эллиптичности соответствующих дифференциальных операторов второго порядка.

Для этой задачи в терминах теоремы 34.1 имеем

\[A_0(R) = \text{const} \cdot R^{N+\theta - 2r'} + \text{const} \cdot R^{N+\theta - 2s'}, \quad B_0(R) = \text{const} \cdot R^{N+\theta - 2s'} + \text{const} \cdot R^{N+\theta - 2s'}. \]

Из этих формул следует оптимальное значение \(\theta = \theta_0 = 2 \).

Тогда

\[A_0(R) = A_2(R) = \text{const} \cdot R^{N+2 - 2r'}, \quad B_0(R) = B_2(R) = \text{const} \cdot R^{N+2 - 2s'}. \]

В соответствии с этими формулами и \(\theta = 2 \) получаем

\[C^{(1)}_\theta(R) = C^{(1)}_2(R) = A_2^{1/r'}(R)B_2^{1/(rs')} (R) = \text{const} \cdot R^{\theta_1}, \quad C^{(2)}_\theta(R) = C^{(2)}_2(R) = B_2^{1/s'}(R)A_2^{1/(sr')} (R) = \text{const} \cdot R^{\theta_2}, \]

где

\[\theta_1 = \frac{N + 2 - 2r'}{r'}, \quad \theta_2 = \frac{N + 2 - 2s'}{s'}. \]

Тогда условие теоремы 34.1 о том, что по крайней мере выполнено одно из неравенств (34.7), принимает вид: или \(\theta_1 \leq 0 \), или \(\theta_2 \leq 0 \).

Это условие в свою очередь эквивалентно следующему:

\[\max \left\{ \frac{r + 1}{rs - 1}, \frac{s + 1}{rs - 1} \right\} \geq \frac{N}{2}. \tag{34.18} \]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Замечание 34.4. Это условие для системы уравнений

\[
\begin{align*}
\frac{\partial u}{\partial t} - \Delta u &= u^r, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial v}{\partial t} - \Delta v &= v^s, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) &= u_0(x) \geq 0, \quad x \in \mathbb{R}^N, \\
v(x, 0) &= v_0(x) \geq 0, \quad x \in \mathbb{R}^N,
\end{align*}
\]

с \(r, s > 1 \) было получено Эскобедо и Херреро [59] на основании свойств фундаментальных решений уравнения теплопроводности.

Пример 34.2. Рассмотрим снова задачу (34.17) при предыдущих условиях, но с дополнительным условием на начальные данные, именно

\[
\int_{|x| \leq R} u_0(x) \, dx \geq c_1 R^{\nu_1}, \quad \int_{|x| \leq R} v_0(x) \, dx \geq c_2 R^{\nu_2},
\]

где \(c_1, c_2 > 0 \) и \(\nu_1, \nu_2 > 0 \).

Тогда условие отсутствия глобального нетривиального слабого решения задачи (34.17) принимает вид

\[
\max \left\{ \frac{1 + r}{rs - 1} + \frac{\nu_1}{2} \frac{1 + s}{rs - 1} + \frac{\nu_2}{2} \right\} > \frac{N}{2}, \quad \nu_1, \nu_2 > 0,
\]

и

\[
\max \left\{ \frac{1 + r}{rs - 1} \frac{1 + s}{rs - 1} \right\} \geq \frac{N}{2}, \quad \nu_1 = \nu_2 = 0.
\]

Замечание 34.5. В случае \(\nu_1, \nu_2 > 0 \) существуют постоянные \(c_1^*, c_2^* > 0 \) такие, что условие (34.20) принимает вид

\[
\max \left\{ \frac{1 + r}{rs - 1} + \frac{\nu_1}{2} \frac{1 + s}{rs - 1} + \frac{\nu_2}{2} \right\} \geq \frac{N}{2},
\]

если коэффициенты \(c_1 \) и \(c_2 \) из неравенства (34.19) такие, что \(c_1 > c_1^*, c_2 > c_2^* \).

Примеры систем с сингулярными коэффициентами рассмотрены в следующих разделах.

Приведенные результаты для некоторых простых операторов в главной части переносятся и на задачи в конусах. Рассмотрим систему (Лаптев [219])

\[
\begin{align*}
\frac{\partial u}{\partial t} - \text{div}(|x|^\alpha Du) &\geq u^q, \quad (x, t) \in K \times (0, \infty), \\
\frac{\partial v}{\partial t} - \text{div}(|x|^\alpha Dv) &\geq v^q, \quad (x, t) \in K \times (0, \infty), \\
u &\geq 0, \quad v \geq 0, \quad (x, t) \in K \times (0, \infty),
\end{align*}
\]

где \(2 > \alpha > 1 - N \).

Понимая под решением пару непрерывных функций \((u, v)\), удовлетворяющих системе в слабом смысле, можно получить следующий результат об отсутствии решения.
положим выполнены неравенства для всех \(s^* \), решением задачи (35.1). Определение 35.1. Пусть \(u_0, v_0 \) ∈ \(L^1_{\text{loc}}(\mathbb{R}^{N+1}) \). Пара функций \((u, v) : \mathbb{R}^{N+1} \to \mathbb{R}\), что \(|v|^q x^{-s_1}, |u|^p x^{-s_2} \in L^1_{\text{loc}}(\mathbb{R}^{N+1})\) и \(|v| x^{-s_1}, u|x|^{-s_2} \in L^1_{\text{loc}}(\mathbb{R}^{N+1})\), называется слабым решением задачи (35.1), если для любой неотрицательной функции \(\varphi \in C^0_0(\mathbb{R}^N \times [0, \infty)) \) выполнены неравенства

\[
\int_0^\infty \int_{\mathbb{R}^N} |v|^q x^{-s_1} \varphi\,dx\,dt - \int_0^\infty \int_{\mathbb{R}^N} u \left(\Delta \varphi + |x|^{-s_1} \frac{\partial \varphi}{\partial t} \right)\,dx\,dt - \int_{\mathbb{R}^N} u_0 |x|^{-s_1} \varphi(x, 0)\,dx, \tag{35.2}
\]

\[
\int_0^\infty \int_{\mathbb{R}^N} |u|^p x^{-s_2} \varphi\,dx\,dt - \int_0^\infty \int_{\mathbb{R}^N} v \left(\Delta \varphi + |x|^{-s_2} \frac{\partial \varphi}{\partial t} \right)\,dx\,dt - \int_{\mathbb{R}^N} v_0 |x|^{-s_2} \varphi(x, 0)\,dx. \tag{35.3}
\]

Рассмотрим проблему отсутствия глобальных нетривиальных слабых решений системы неравенств (35.1). Введем некоторые обозначения. Пусть задана \(\gamma > 0 \) и \(R > 0 \). Для любой функции \(\varphi_0 \in C^0_0(\mathbb{R}) \) такой, что \(0 \leq \varphi_0(s) \leq 1 \) и

\[
\varphi_0(s) = \begin{cases} 1, & 0 \leq s \leq 1, \\ 0, & s \geq 2, \end{cases}
\]

положим

\[
\varphi_{\gamma}(x, t) = \varphi_0 \left(\frac{t}{R^\gamma} + \frac{|x|^2}{R^2} \right). \tag{35.4}
\]

Для всех \(u, v : \mathbb{R}^{N+1} \to \mathbb{R} \) таких, что \(|v|^q |x|^{-s_1}, |u|^p |x|^{-s_2} \in L^1_{\text{loc}}(\mathbb{R}^{N+1})\), положим

\[
I_1 = \int_0^\infty \int_{\mathbb{R}^N} |v|^q |x|^{-s_1} \varphi_{\gamma} dx\,dt, \quad I_2 = \int_0^\infty \int_{\mathbb{R}^N} |u|^p |x|^{-s_2} \varphi_{\gamma} dx\,dt. \tag{35.5}
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Введем для $\gamma > 0$ следующие соотношения:

$$\alpha_1 = -\gamma - \left(\frac{\tau_1 - \tau_2}{p} \right) + \frac{\gamma + N}{p'}, \quad \alpha_2 = -2 + \frac{\tau_2}{p} + \frac{\gamma + N}{p'},$$

$$\alpha_3 = -\gamma - \left(\frac{\tau_2 - \tau_1}{q} \right) + \frac{\gamma + N}{q'}, \quad \alpha_4 = -2 + \frac{\tau_1}{q} + \frac{\gamma + N}{q'}.$$ \hspace{1cm} (35.6)

Предложение 35.1. Пусть $v_0|x|^{-\tau_2}$, $u_0|x|^{-\tau_1} \in L^1_{\text{loc}}(\mathbb{R}^N)$ и (u, v) — слабое решение задачи (35.1). Тогда для любой $\varphi_\gamma \in C^2_0(\mathbb{R}^N \times [0, \infty))$, определенной формулой (35.4), выполнены оценки

$$I_1 \leq C(R^{\alpha_1} + R^{\alpha_2})I_2^{1/p} - \int_{\mathbb{R}^N} u_0|x|^{-\tau_1} \varphi_\gamma(x, 0) \, dx,$$ \hspace{1cm} (35.7)

$$I_2 \leq C(R^{\alpha_3} + R^{\alpha_4})I_1^{1/q} - \int_{\mathbb{R}^N} v_0|x|^{-\tau_2} \varphi_\gamma(x, 0) \, dx.$$ \hspace{1cm} (35.8)

Доказательство. Пусть (u, v) — слабое решение задачи (35.1). Применяя неравенство Гельдера к правым частям (35.2) и (35.3) с $\varphi = \varphi_\gamma$, получим

$$I_1 \leq \left(\int_{\mathbb{R}^N} \left(\int_0^\infty \frac{\partial \varphi_\gamma}{\partial t} \right)^{p'} |x|^{-\left(\tau_1 - \tau_2/p\right)} \varphi_\gamma^{1-p'} \, dx \, dt \right)^{1/p'} +$$

$$+ \left(\int_0^\infty \left(\int_{\mathbb{R}^N} |\Delta \varphi_\gamma|^{p'} |x|^{\tau_2(p'-1)} \varphi_\gamma^{1-p'} \, dx \right)^{1/p'} \right)^{1/p} I_2^{1/p} - \int_{\mathbb{R}^N} u_0|x|^{-\tau_1} \varphi_\gamma(x, 0) \, dx,$$ \hspace{1cm} (35.9)

$$I_2 \leq \left[\left(\int_{\mathbb{R}^N} \left(\int_0^\infty \frac{\partial \varphi_\gamma}{\partial t} \right)^{q'} |x|^{-\left(\tau_2 - \tau_1/q\right)} \varphi_\gamma^{1-q'} \, dx \, dt \right)^{1/q'} \right] I_1^{1/q} - \int_{\mathbb{R}^N} v_0|x|^{-\tau_2} \varphi_\gamma(x, 0) \, dx.$$ \hspace{1cm} (35.10)

Используя определение φ_γ и примения замену переменных

$$t = R^\gamma s, \quad x = R \xi$$

в интегралах в (35.9) и (35.10), из (35.9) получаем

$$\int_0^\infty \int_{\mathbb{R}^N} \left(\int_0^\infty \frac{\partial \varphi_\gamma}{\partial t} \right)^{p'} |x|^{-\left(\tau_1 - \tau_2/p\right)} \varphi_\gamma^{1-p'} \, dx \, dt \leq C R^{-\gamma p' - \left(\tau_1 - \tau_2/p\right) p' + \gamma + N},$$ \hspace{1cm} (35.11)

$$\int_0^\infty \int_{\mathbb{R}^N} |\Delta \varphi_\gamma|^{p'} |x|^{\tau_2(p'-1)} \varphi_\gamma^{1-p'} \, dx \, dt \leq C R^{-2p' + \gamma_2 + \gamma + N}.$$ \hspace{1cm} (35.12)
Аналогично из (35.10)

\[
\int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right|^q x^{-(\tau_2 - \tau_1)/q} \varphi^{1-q} x^\gamma dx dt \leq CR^{-\gamma q^{1-q}/2 \gamma + N}, \tag{35.13}
\]

\[
\int_0^\infty \int_{\mathbb{R}^N} |\Delta \varphi| x^{\tau_1(q'-1)} \varphi^{1-q'} x^\gamma dx dt \leq CR^{-2q^{1-q}/2 \gamma + N}. \tag{35.14}
\]

Завершаем доказательство оценок (35.7) и (35.8), подставляя (35.11)–(35.14) в (35.9) и (35.10). □

Введем для краткости следующие обозначения: для любых \(v_0|x|^{-\tau_2}, u_0|x|^{-\tau_1} \in L^1_{\text{loc}}(\mathbb{R}^N)\) и \(\varphi, \gamma\) положим

\[i_1(R) = \int_{\mathbb{R}^N} v_0|x|^{-\tau_2} \varphi(x,0) dx, \quad i_2(R) = \int_{\mathbb{R}^N} u_0|x|^{-\tau_1} \varphi(x,0) dx. \tag{35.15}\]

Из предложения 35.1 вытекает

Следствие 35.1. Пусть пара функций \((u,v)\) — слабое решение задачи (35.1). Пусть \(v_0|x|^{-\tau_2}, u_0|x|^{-\tau_1} \in L^1_{\text{loc}}(\mathbb{R}^N)\).

Тогда для всех \(\varphi, \gamma \in C_0^\infty(\mathbb{R}^N \times [0, \infty))\), определенных (35.4), выполнены следующие оценки:

\[
I_1 \leq C(R^{\alpha_1 + \alpha_2}) \left((R^{\alpha_3 + \alpha_4}) I_1^{1/q} - i_1(R) \right)^{1/p} - i_2(R), \tag{35.16}
\]

\[
I_2 \leq C(R^{\alpha_3 + \alpha_4}) \left((R^{\alpha_1 + \alpha_2}) I_2^{1/q} - i_2(R) \right)^{1/p} - i_1(R). \tag{35.17}
\]

Доказательство получается подстановкой обозначений в (35.7), (35.8). □

Основным результатом является

Теорема 35.1. Пусть \(p, q > 1\) и \(0 \leq \tau_1 \leq \tau_2 < 2\). Пусть \(v_0|x|^{-\tau_2}, u_0|x|^{-\tau_1} \in L^1_{\text{loc}}(\mathbb{R}^N)\) и

\[
\lim_{R \to \infty} \int_{|x| < R} u_0|x|^{-\tau_1} dx \geq 0, \quad \lim_{R \to \infty} \int_{|x| < R} v_0|x|^{-\tau_2} dx \geq 0. \tag{35.18}
\]

Если

\[
\min\{(N - \tau_1)(pq - 1) - (2 - \tau_1) - q(2 - \tau_2), (N - \tau_2)(pq - 1) - (2 - \tau_2) - p(2 - \tau_2), (N - \tau_1)(pq - 1) - (2 - \tau_2) - p(2 - \tau_1)\} \leq 0, \tag{35.19}
\]

tо задача (35.1) не имеет нетривиального слабого решения.

Доказательство. Пусть \((u,v)\) — слабое решение задачи (35.1), и пусть \(i_1(R) \geq 0\) и \(i_2(R) \geq 0\) для достаточно больших \(R\) (это не ограничивает общности). Из следствия 35.1 вытекает, что

\[
I_1 \leq C(R^{\alpha_1 + \alpha_2})(R^{\alpha_3 + \alpha_4})^{1/p}, \quad I_2 \leq C(R^{\alpha_3 + \alpha_4})(R^{\alpha_1 + \alpha_2})^{1/q}. \tag{35.20}
\]

Получаем, что если существует \(\gamma > 0\) такое, что выполнено одно из следующих условий:

\[
\max\{\alpha_1 p + \alpha_3, \alpha_1 p + \alpha_4, \alpha_2 p + \alpha_3, \alpha_2 p + \alpha_4\} < 0,
\]

\[
\max\{\alpha_1 + \alpha_3 q, \alpha_1 + \alpha_4 q, \alpha_2 + \alpha_3 q, \alpha_2 + \alpha_4 q\} < 0, \tag{35.21}
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
то, переходя к пределу при $R \to \infty$ в (35.20), получаем

$$
\int_{A_{\gamma,R}} |u|^q |x|^{-\gamma_1} \, dx \, dt \to 0, \quad \int_{A_{\gamma,R}} |u|^p |x|^{-\gamma_2} \, dx \, dt \to 0,
$$

gде $A_{\gamma,R} = \{(x,t) \in D : tR^{-\gamma} + |x|^2R^{-2} \leq 1\}$. Это противоречит нашему предположению. Теперь положим

$$
f_1(\gamma) \equiv \alpha_1p + \alpha_3, \quad f_2(\gamma) \equiv \alpha_1p + \alpha_4, \quad f_3(\gamma) \equiv \alpha_2p + \alpha_3, \quad f_4(\gamma) \equiv \alpha_2p + \alpha_4
$$

и

$$
h_1(\gamma) \equiv \alpha_1 + \alpha_3q, \quad h_2(\gamma) \equiv \alpha_1 + \alpha_4q, \quad h_3(\gamma) \equiv \alpha_2 + \alpha_3q, \quad h_4(\gamma) \equiv \alpha_2 + \alpha_4q.
$$

Используя (35.6), легко проверить, что прямые $f_i(\gamma)$ и соответственно $h_i(\gamma)$ пересекаются:

$$
f_1(2 - \tau_1) = f_3(2 - \tau_1) = ((N - \tau_1)(pq - 1) - (2 - \tau_1) - q(2 - \tau_1))/q, \quad f_2(2 - \tau_1) = f_4(2 - \tau_1) = ((N - \tau_1)(pq - 1) - (2 - \tau_1) - q(2 - \tau_2))/q,
$$

$$
f_1(2 - \tau_2) = f_2(2 - \tau_2) = ((N - \tau_1)(pq - 1) - (2 - \tau_2) - q(2 - \tau_2))/q, \quad f_3(2 - \tau_2) = f_4(2 - \tau_2) = ((N - \tau_2)(pq - 1) - (2 - \tau_1) - q(2 - \tau_2))/q.
$$

И

$$
h_1(2 - \tau_1) = h_3(2 - \tau_1) = ((N - \tau_2)(pq - 1) - (2 - \tau_1) - p(2 - \tau_1))/p,
$$

$$
h_2(2 - \tau_1) = h_4(2 - \tau_1) = ((N - \tau_1)(pq - 1) - (2 - \tau_2) - p(2 - \tau_1))/p,
$$

$$
h_1(2 - \tau_2) = h_2(2 - \tau_2) = ((N - \tau_2)(pq - 1) - (2 - \tau_2) - p(2 - \tau_2))/p,
$$

$$
h_3(2 - \tau_2) = h_4(2 - \tau_2) = ((N - \tau_2)(pq - 1) - (2 - \tau_2) - p(2 - \tau_2))/p.
$$

Следовательно, оптимальные условия на параметры p, q, τ_1, τ_2 для того, чтобы одно из неравенств (35.21) удовлетворялось для некоторого $\gamma (\gamma = 2 - \tau_1$ или $\gamma = 2 - \tau_2$), следующие:

$$
\min_{i=1,4} \left\{ \max_{i=1,4} f_i(2 - \tau_1), \max_{i=1,4} f_i(2 - \tau_2), \max_{i=1,4} h_i(2 - \tau_1), \max_{i=1,4} h_i(2 - \tau_2) \right\} < 0. \tag{35.22}
$$

Из явных выражений для $f_i(2 - \tau_j)$ и $h_i(2 - \tau_j)$, $i = 1,4$ и $j = 1,2$, которые могут быть получены из (35.6), выводим, поскольку $\tau_1 \leq \tau_2$,

$$
f_3(2 - \tau_2) \leq f_2(2 - \tau_2), \quad f_1(2 - \tau_1) \leq f_2(2 - \tau_1), \quad h_3(2 - \tau_2) \leq h_2(2 - \tau_2), \quad h_1(2 - \tau_1) \leq h_2(2 - \tau_1).
$$

Кроме того, можно проверить, что f_2 убывает и поэтому (35.22) эквивалентно

$$
\min\{f_2(2 - \tau_1), h_2(2 - \tau_2), h_2(2 - \tau_1)\} < 0,
$$

t.e.

$$
\min\{(N - \tau_1)(pq - 1) - (2 - \tau_1) - q(2 - \tau_2), (N - \tau_2)(pq - 1) - (2 - \tau_2) - p(2 - \tau_2),
\quad (N - \tau_1)(pq - 1) - (2 - \tau_2) - p(2 - \tau_1)\} < 0,
$$

что завершает доказательство теоремы 35.1 для случая, когда выполнено строгое неравенство (35.19).
Теперь предположим, что

$$\min\{(N - \tau_1)(pq - 1) - (2 - \tau_1) - q(2 - \tau_2), (N - \tau_2)(pq - 1) - (2 - \tau_2) - p(2 - \tau_2),$$

$$(N - \tau_1)(pq - 1) - (2 - \tau_2) - p(2 - \tau_1)\} = (N - \tau_1)(pq - 1) - (2 - \tau_1) - q(2 - \tau_2) = 0. \quad (35.23)$$

Другие случаи рассматриваются аналогично.

Так как

$$(N - \tau_1)(pq - 1) - (2 - \tau_1) - q(2 - \tau_2) = \max_{i=1,4} f_i(2 - \tau_1) = 0,$$

то для всех $i = 1, 4$ имеем $f_i(2 - \tau_1) \leq 0$. Положим $\gamma = 2 - \tau_1$. Из следствия 35.1 получим

$$\int_0^\infty \int_{\mathbb{R}^N} |v|^q |x|^{-\tau_1} \, dx \, dt < \infty. $$

(35.24)

По определению слабого решения и с учетом равенства $\varphi_0(s) = 1$ и, значит, $\frac{d\varphi(s)}{ds} = 0$ для $s \in [0, 1]$ имеем

$$\int_0^\infty \int_{\mathbb{R}^N} |v|^q |x|^{-\tau_1} \varphi_{2-\tau_1} \, dx \, dt \leq \int_{D_R} u \left(\Delta \varphi_{2-\tau_1} + |x|^{-\tau_1} \frac{\partial \varphi_{2-\tau_1}}{\partial t} \right) \, dx \, dt - \int_{\mathbb{R}^N} u_0 |x|^{-\tau_1} \varphi_{2-\tau_1} \, dx,$$

(35.25)

$$\int_0^\infty \int_{\mathbb{R}^N} |u|^p |x|^{-\tau_2} \varphi_{2-\tau_1} \, dx \, dt \leq \int_{D_R} v \left(\Delta \varphi_{2-\tau_1} + |x|^{-\tau_2} \frac{\partial \varphi_{2-\tau_1}}{\partial t} \right) \, dx \, dt - \int_{\mathbb{R}^N} v_0 |x|^{-\tau_2} \varphi_{2-\tau_1} \, dx,$$

(35.26)

где

$$D_R = \{(x, t) \in \mathbb{R}^N \times (0, \infty) : 1 < tR^\gamma - 2 + |x|^2R^{-2} < 2\}.$$

Применяя неравенство Гельдера и действуя аналогично доказательствам предложения 35.1 и следствия 35.1, находим

$$\int_{A_{\gamma, R}} |v|^q |x|^{-\tau_1} \, dx \, dt \leq C \left(\int_{D_R} |v|^q |x|^{-\tau_1} \, dx \, dt \right)^{\frac{1}{q}}. $$

(35.27)

Здесь мы использовали, что $\varphi_{2-\tau_1}(\cdot, \cdot) \leq 1$. Из (35.24) имеем

$$\int_{D_R} |v|^q |x|^{-\tau_1} \, dx \, dt \to 0, \quad R \to \infty,$$

поэтому в пределе при $R \to \infty$ в (35.27) получаем противоречие, что завершает доказательство. \hfill \square

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Замечание 35.1. В специальном случае $\tau_1 = \tau_2 = 0$ система (35.1) сводится к

\[
\begin{aligned}
\frac{\partial u}{\partial t} - \Delta u \geq |v|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial v}{\partial t} - \Delta v \geq |u|^p, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x), \quad x \in \mathbb{R}^N, \\
v(x, 0) = v_0(x), \quad x \in \mathbb{R}^N,
\end{aligned}
\]

и условия теоремы 35.1 совпадают с условиями Эскобедо и Херреро [59], т.е.

\[
\max \left\{ \frac{p + 1}{p - 1}, \frac{q + 1}{pq - 1} \right\} \geq \frac{N}{2}.
\]

Рассмотрим теперь следующую задачу с критическим показателем $\tau_2 = 2$:

\[
\begin{aligned}
\frac{\partial u}{\partial t} - |x|^\tau_1 \Delta u \geq |v|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial v}{\partial t} - |x|^2 \Delta v \geq |u|^p, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x), \quad x \in \mathbb{R}^N, \\
v(x, 0) = v_0(x), \quad x \in \mathbb{R}^N,
\end{aligned}
\]

где $0 \leq \tau_1 < 2$, $p, q > 1$ и $v_0|x|^{-2}$, $u_0|x|^{-\tau_1} \in L^1_{\text{loc}}(\mathbb{R}^N)$.

Определение 35.2. Пусть u_0, $v_0 \in L^1_{\text{loc}}(\mathbb{R}^{N+1})$. Пара функций $(u, v) : \mathbb{R}^{N+1} \to \mathbb{R}$ таких, что $|v|^q|x|^{-\tau_1}$, $|u|^p|x|^{-2} \in L^1_{\text{loc}}(\mathbb{R}^{N+1})$ и $v|x|^{-2}$, $u|x|^{-\tau_1} \in L^1_{\text{loc}}(\mathbb{R}^{N+1})$, называется слабым решением задачи (35.28), если для любой неотрицательной функции $\varphi \in C^2_0(\mathbb{R}^N \times [0, \infty))$ выполнены неравенства

\[
\begin{aligned}
\int_0^\infty \int_{\mathbb{R}^N} |v|^q|x|^{-\tau_1} \varphi \, dx \, dt \leq - \lim_{R \to \infty} \int_{|x| < R} u \left(\Delta \varphi + |x|^{-\tau_1} \frac{\partial \varphi}{\partial t} \right) \, dx \, dt - \int_{\mathbb{R}^N} u_0|x|^{-\tau_1} \varphi(x, 0) \, dx,
\end{aligned}
\]

(35.29)

\[
\begin{aligned}
\int_0^\infty \int_{\mathbb{R}^N} |u|^p|x|^{-2} \varphi \, dx \, dt \leq - \lim_{R \to \infty} \int_{|x| < R} v \left(\Delta \varphi + |x|^{-2} \frac{\partial \varphi}{\partial t} \right) \, dx \, dt - \int_{\mathbb{R}^N} v_0|x|^{-2} \varphi(x, 0) \, dx.
\end{aligned}
\]

(35.30)

Теорема 35.2. Пусть $p, q > 1$ и $0 \leq \tau_1 < 2$. Пусть $u_0|x|^{-\tau_1}$, $v_0|x|^{-2} \in L^1_{\text{loc}}(\mathbb{R}^N)$ и

\[
\lim_{R \to \infty} \int_{|x| < R} u_0|x|^{-\tau_1} \, dx \geq 0, \quad \lim_{R \to \infty} \int_{|x| < R} v_0|x|^{-2} \, dx \geq 0.
\]

(35.31)

Если

\[
(N - \tau_1)(pq - 1) - (2 - \tau_2) - p(2 - \tau_1) \leq 0,
\]

(35.32)

то задача (35.28) не имеет нетривиального слабого решения.
Доказательство аналогично доказательству теоремы 35.1. В этом случае выбираем \(\gamma = 2 - \tau_1 \). Следовательно, оптимальным условием, гарантирующим выполнение одного из неравенств (35.21), будет

\[
\min \left\{ \max_{i=1,4} f_i(2 - \tau_1), \max_{i=1,4} h_i(2 - \tau_1) \right\} < 0,
\]

что, принимая во внимание явные выражения для \(f_i(2 - \tau_1) \) и \(f_i(2 - \tau_2) \), эквивалентно

\[
(N - \tau_1)(pq - 1) - p(2 - \tau_1) < 0.
\]

Случай \((N - \tau_1)(pq - 1) - p(2 - \tau_1) = 0 \) рассматривается аналогично теореме 35.1. \(\square \)

36. СИСТЕМЫ ПОЛУЛИНЕЙНЫХ УРАВНЕНИЙ И НЕРАВЕНСТВ ВТОРОГО ПОРЯДКА С КРИТИЧЕСКИМ ВЫРАЖЕНИЕМ

Приводимые ниже результаты получены Г. Каристи [39].

Рассмотрим задачу

\[
\begin{cases}
\frac{\partial u}{\partial t} - |x|^2 \Delta u \geq |v|^q, & (x, t) \in \mathbb{R}^N \setminus \{0\} \times (0, \infty), \\
\frac{\partial v}{\partial t} - |x|^2 \Delta v \geq |u|^p, & (x, t) \in \mathbb{R}^N \setminus \{0\} \times (0, \infty), \\
u(x, 0) = u_0(x), & x \in \mathbb{R}^N \setminus \{0\}, \\
v(x, 0) = v_0(x), & x \in \mathbb{R}^N \setminus \{0\},
\end{cases}
\]

где \(p, q > 1 \) и \(v_0, u_0 \in L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\}) \).

Расширим определение слабого решения на случай задач с критическим вырождением.

Определение 36.1. Пусть \(u_0, v_0 \in L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\}) \). Пара функций \((u, v)\) таких, что \(|v|^q, |u|^p \in L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\} \times (0, \infty))\), называется слабым решением задачи (36.1), если для любой неотрицательной функции \(\varphi \in C^0_0(\mathbb{R}^N \setminus \{0\} \times [0, \infty)) \) выполнены неравенства

\[
\int_0^\infty \int_{\mathbb{R}^N} |v|^q |x|^{-N} \varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} u \left(\Delta(|x|^{2-N} \varphi) + |x|^{-N} \frac{\partial \varphi}{\partial t} \right) \, dx \, dt - \int_{\mathbb{R}^N} u_0 |x|^{-N} \varphi(x, 0) \, dx, \quad (36.2)
\]

\[
\int_0^\infty \int_{\mathbb{R}^N} |u|^p |x|^{-N} \varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} v \left(\Delta(|x|^{2-N} \varphi) + |x|^{-N} \frac{\partial \varphi}{\partial t} \right) \, dx \, dt - \int_{\mathbb{R}^N} v_0 |x|^{-N} \varphi(x, 0) \, dx. \quad (36.3)
\]

В доказательствах мы будем выбирать срезающую функцию \(\varphi \) в виде

\[
\varphi(x, t) = \psi_0 \left(\frac{t}{R^2} \right) \psi_1 \left(\frac{\ln |x| + (N - 2)t}{R} \right), \quad (36.4)
\]

где \(\psi_0, \psi_1 \) определены формулами (27.5). Для краткости введем следующие обозначения: для всех \(u, v : \mathbb{R}^N \setminus \{0\} \times (0, \infty) \to \mathbb{R} \) таких, что \(|v|^q, |u|^p \in L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\} \times (0, \infty))\) и \(\varphi \in C^0_0(\mathbb{R}^N \setminus \{0\} \times [0, +\infty)) \), положим

\[
J_1 = \int_0^\infty \int_{\mathbb{R}^N} |v|^q |x|^{-N} \varphi(x, t) \, dx \, dt, \quad J_2 = \int_0^\infty \int_{\mathbb{R}^N} |u|^p |x|^{-N} \varphi(x, t) \, dx \, dt. \quad (36.5)
\]
Предложение 36.1. Пусть \(v_0, u_0 \in L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\}) \) и \((u, v)\) — слабое решение задачи (36.1). Тогда для любых \(\varphi \in C^0_0(\mathbb{R}^N \setminus \{0\} \times [0, +\infty)) \), определенных формулой (36.4), справедливы оценки

\[
J_1 \leq CR^{(3-2p')/p'} J_2^{1/p} - \int_{\mathbb{R}^N} u_0|x|^{-N} \varphi(x, 0) \, dx,
\]

(36.6)

\[
J_2 \leq CR^{(3-2q')/q'} J_1^{1/q} - \int_{\mathbb{R}^N} v_0|x|^{-N} \varphi(x, 0) \, dx.
\]

(36.7)

Доказательство. Пусть \(N > 2 \) и \((u, v)\) — слабое решение задачи (36.1). Действуя аналогично доказательству предложения 35.1, применим неравенство Гельдера к правым частям (36.2) и (36.3) с \(\varphi \), определенной формулой (36.4). Получим

\[
J_1 \leq J_2^{1/p} \left(\int_0^\infty \int_{\mathbb{R}^N} \Delta(|x|^{2-N} \varphi) + \frac{\partial \varphi}{\partial t} |x|^{-N} |\varphi|^{p'} |x|^{N(p'-1)} \, dx \, dt \right)^{1/p'} - \int_{\mathbb{R}^N} u_0|x|^{-N} \varphi(x, 0) \, dx,
\]

(36.8)

\[
J_2 \leq J_1^{1/q} \left(\int_0^\infty \int_{\mathbb{R}^N} \Delta(|x|^{2-N} \varphi) + \frac{\partial \varphi}{\partial t} |x|^{-N} |\varphi|^{q'} |x|^{N(q'-1)} \, dx \, dt \right)^{1/q'} - \int_{\mathbb{R}^N} v_0|x|^{-N} \varphi(x, 0) \, dx.
\]

(36.9)

Чтобы оценить интеграл

\[
\int_0^\infty \int_{\mathbb{R}^N} \Delta(|x|^{2-N} \varphi) + \frac{\partial \varphi}{\partial t} |x|^{-N} |\varphi|^{p'} |x|^{N(p'-1)} \, dx \, dt,
\]

сделаем замену переменных

\[
\sigma = \ln(|x|), \quad |x| > 0,
\]

и получим

\[
\int_0^\infty \int_{\mathbb{R}^N} \Delta(|x|^{2-N} \varphi) + \frac{\partial \varphi}{\partial t} |x|^{-N} |\varphi|^{p'} |x|^{N(p'-1)} \, dx \, dt \leq
\]

\[
\leq C \int_0^\infty \int_{-\infty}^\infty \left| \frac{\partial^2 \varphi}{\partial \sigma^2} + (2-N) \frac{\partial \varphi}{\partial \sigma} + \frac{\partial \varphi}{\partial t} \right|^{p'} \varphi^{1-p'} \, d\sigma \, dt.
\]

Далее введем замену переменных

\[
t = R^2 \tau, \quad \sigma = R \xi
\]

и получим

\[
\int_0^\infty \int_{-\infty}^\infty \left| \frac{\partial^2 \varphi}{\partial \sigma^2} + (2-N) \frac{\partial \varphi}{\partial \sigma} + \frac{\partial \varphi}{\partial t} \right|^{p'} \varphi^{1-p'} \, d\sigma \, dt \leq CR^{3-2p'} \int_0^\infty \int_{-\infty}^\infty \frac{\Gamma^p(\xi, \tau)}{\varphi^{p-1}(\xi, \tau)} d\xi \, d\tau,
\]

(36.10)
Выберем функции $u_0, v_0 \in L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\})$, и пусть (u, v) — слабое решение задачи (36.1).

Тогда для любой функции $\varphi \in C^0_0(\mathbb{R}^N \setminus \{0\} \times [0, +\infty))$, определенной формулой (36.4), справедливы оценки

$$J_1 \leq CR^{3-2q'} \left(CR^{\frac{3-2q'}{q'}} J_1^{1/q} - j_1(R) \right)^{1/p} - j_2(R),$$

$$J_2 \leq CR^{3-2q'} \left(CR^{\frac{3-2q'}{q'}} J_2^{1/p} - j_2(R) \right)^{1/q} - j_1(R).$$

Теорема 36.1. Пусть $p, q > 1$. Предположим, что $u_0, v_0 \in L^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\})$ и

$$\lim_{R \to \infty} \int_{|x| < R} u_0|x|^{-N} \, dx > 0, \quad \lim_{R \to \infty} \int_{|x| < R} v_0|y|^{-N} \, dx > 0.$$

Если выполнено одно из следующих условий:

$$q(p - 2) \leq 3, \quad p(q - 2) \leq 3,$$

то задача (36.1) не имеет глобального нетривиального слабого решения.

Доказательство. Пусть (u, v) — слабое решение задачи (36.1). Предположим, что $j_1(R) > 0$ и $j_2(R) > 0$ для достаточно больших R. Из следствия 36.1 вытекает

$$(\int_{B_R} |v|^q |y|^{-N} \, dx \, dt)^{1-rac{1}{pq}} \leq CR^{\frac{3-2q'}{q'}} \left(\int_{B_R} |u|^p |y|^{-N} \, dx \, dt \right)^{1-rac{1}{pq}} \leq CR^{\frac{3-2q'}{q'}} + \frac{3-2q'}{q'},$$

(36.15)
где \(D_R = \{(x, t) \in \mathbb{R}^N \setminus \{0\} \times (0, \infty) : |\ln |x| + (N - 2)t| \leq R \text{ и } t \leq R^2\} \). Если \(q(p - 2) < 3 \), то

\[
\frac{3 - 2p'}{p'} + \frac{3 - 2q'}{q'p} < 0.
\]

Из первого неравенства (36.15) следует, что

\[
\int \frac{|v|^q |x|^{-N}}{|x| < R} \, dx \, dt \to 0, \quad R \to \infty,
\]

t.е. противоречие. Случай \(q(p - 2) = 3 \) рассматривается аналогично теореме 35.1. Аналогично изучается и второе условие (36.14). Теорема доказана. \(\square \)

37. СИСТЕМЫ ПОЛУЛИНЕЙНЫХ СИНГУЛЯРНЫХ НЕРАВЕНСТВ ВТОРОГО ПОРЯДКА

В настоящем разделе мы приводим часть результатов Г. Каристи [39] по системам с сингулярностями вида

\[
\begin{align*}
\frac{\partial u}{\partial t} - \Delta u & \geq t^{k_1}|x|^{-\sigma_1}|v|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial v}{\partial t} - \Delta v & \geq t^{k_2}|x|^{-\sigma_2}|u|^p, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) & = u_0(x), \quad x \in \mathbb{R}^N, \\
v(x, 0) & = v_0(x), \quad x \in \mathbb{R}^N,
\end{align*}
\]

(37.1)

где мы предполагаем \(k_i, \sigma_i \in \mathbb{R} \) для \(i = 1, 2 \), \(p, q > 1 \) и \(u_0, v_0 \in L^1_{\text{loc}}(\mathbb{R}^N) \).

Определение 37.1. Пары функций \((u, v) : \mathbb{R}^{N+1}_+ \to \mathbb{R} \) таких, что \(u, v \in L^1_{\text{loc}}(\mathbb{R}^{N+1}) \) и

\[
|v|^{q_1}t^{k_1}|x|^{-\sigma_1}, \quad |u|^{p_1}t^{k_2}|x|^{-\sigma_2} \in L^1_{\text{loc}}(\mathbb{R}^{N+1}_+),
\]

называется слабым решением задачи (37.1), если для любой неотрицательной функции \(\varphi \in C_0^\infty(\mathbb{R}^N \times [0, \infty)) \) справедливы неравенства

\[
\begin{align*}
&\int_0^\infty \int_{\mathbb{R}^N} |v|^{q_1}t^{k_1}x^{-\sigma_1} \varphi \, dx \, dt \leq - \int_0^\infty \int_{\mathbb{R}^N} u \left(\Delta \varphi + \frac{\partial \varphi}{\partial t} \right) \, dx \, dt - \int_{\mathbb{R}^N} u_0 \varphi(x, 0) \, dx, \\
&\int_0^\infty \int_{\mathbb{R}^N} |u|^{p_1}t^{k_2}x^{-\sigma_2} \varphi \, dx \, dt \leq - \int_0^\infty \int_{\mathbb{R}^N} v \left(\Delta \varphi + \frac{\partial \varphi}{\partial t} \right) \, dx \, dt - \int_{\mathbb{R}^N} v_0 \varphi(x, 0) \, dx.
\end{align*}
\]

(37.2)

(37.3)

Теорема 37.1. Пусть \(p, q > 1 \). Пусть \(u_0, v_0 \in L^1_{\text{loc}}(\mathbb{R}^N) \) и

\[
\lim_{R \to \infty} \int_{|x| < R} u_0 \, dx \geq 0, \quad \lim_{R \to \infty} \int_{|x| < R} v_0 \, dx \geq 0.
\]

Если \(\sigma_2 > -N(p - 1), \; k_2 < p - 1, \; \sigma_1 > -N(q - 1), \; k_1 < q - 1 \) и

\[
\min \{ N(pq - 1) - 2(q + 1 + k_1 + k_2q) + \sigma_1 + q\sigma_2, N(pq - 1) - 2(p + 1 + k_2 + k_1p) + \sigma_2 + p\sigma_1 \} \leq 0,
\]

(37.4)

то не существует глобального нетривиального слабого решения задачи (37.1).
Доказательство. Пусть \((u, v)\) — слабое решение задачи (37.1). Доказательство анало- гично доказательству теоремы 35.1, поэтому опустим детали. Пусть \(\varphi = \varphi_\gamma\), где \(\varphi_\gamma\) определяется формулой (35.4), и положим

\[
I_1 = \int_0^\infty \int_{\mathbb{R}^N} |v|^{q'} |x|^{-\sigma_1 t^{k_1}} \varphi_\gamma dx dt, \quad I_2 = \int_0^\infty \int_{\mathbb{R}^N} |u|^{p'} |x|^{-\sigma_2 t^{k_2}} \varphi_\gamma dx dt.
\]

Далее предположим, что для всех достаточно больших \(R > 0\)

\[
i_1(R) = \int_{\mathbb{R}^N} u_0 \varphi_\gamma(x, 0) dx \geq 0, \quad i_2(R) = \int_{\mathbb{R}^N} v_0 \varphi_\gamma(x, 0) dx \geq 0.
\]

Применяя неравенство Гельдера к (37.2) и (37.3), получим

\[
I_1 \leq I_2^{\frac{1}{p'}} \left[\left(\int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi_\gamma}{\partial t} \right|^{q'} |x|^{\sigma_1 t^{k_1}} \varphi_\gamma dx dt \right)^{\frac{1}{q'}} + \left(\int_0^\infty \int_{\mathbb{R}^N} \left| \Delta \varphi_\gamma \right|^{q'} |x|^{\sigma_2 t^{k_2}} \varphi_\gamma dx dt \right)^{\frac{1}{q'}} \right],
\]

(37.5)

\[
I_2 \leq I_1^{\frac{1}{q'}} \left[\left(\int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi_\gamma}{\partial t} \right|^{p'} |x|^{\sigma_1 t^{k_1}} \varphi_\gamma dx dt \right)^{\frac{1}{p'}} + \left(\int_0^\infty \int_{\mathbb{R}^N} \left| \Delta \varphi_\gamma \right|^{p'} |x|^{\sigma_2 t^{k_2}} \varphi_\gamma dx dt \right)^{\frac{1}{p'}} \right].
\]

(37.6)

Подставляя (37.6) в (37.5) и действуя аналогично доказательству предложения 35.1 и следст- вия 35.1, для оценки первого интеграла получим

\[
I_1^{1 - \frac{1}{q'}} \leq C (R^{\alpha_1} + R^{\alpha_2}) (R^{\alpha_3} + R^{\alpha_4})^{\frac{1}{p'}},
\]

где

\[
\alpha_1 = \frac{N + \gamma}{p'} - \gamma + \frac{\sigma_2}{p} \frac{k_2}{1}, \quad \alpha_2 = \frac{N + \gamma}{p'} - \gamma + \frac{\sigma_2}{p} \frac{k_2}{1},
\]

\[
\alpha_3 = \frac{N + \gamma}{q'} - \gamma + \frac{\sigma_1}{q} \frac{k_1}{1}, \quad \alpha_4 = \frac{N + \gamma}{q'} - \gamma + \frac{\sigma_1}{q} \frac{k_1}{1}.
\]

Легко проверить, что если \(\gamma = 2\), то

\[
\alpha_1 p + \alpha_3 = \alpha_1 p + \alpha_4 = \alpha_2 p + \alpha_3 = \alpha_2 p + \alpha_4 = \frac{N(pq - 1) - 2(q + 1 + k_1 + k_2q) + \sigma_1 + q\sigma_2}{q}.
\]

Из (37.7) выводим, что если

\[
N(pq - 1) - 2(q + 1 + k_1 + k_2q) + \sigma_1 + q\sigma_2 < 0,
\]

то задача (37.1) не имеет решения. Аналогично, подставляя (37.5) в (37.6), доказываем, что слабого решения не существует, если

\[
N(pq - 1) - 2(p + 1 + k_2 + k_1p) + \sigma_2 + p\sigma_1 < 0.
\]
Случай

\[\min \{ N(pq - 1) - 2(q + 1 + k_1 + k_2q) + \sigma_1 + q\sigma_2, N(pq - 1) - 2(p + 1 + k_2 + k_1p) + \sigma_2 + p\sigma_1 \} = 0 \]

исследуется аналогично теореме 35.1, что завершает доказательство. □

Замечание 37.1. Условия отсутствия решений в теореме 37.1 включают все параметры \(k_i \) и \(\sigma_i, i = 1, 2 \), и сводятся к аналогичным условиям, найденным в [141] и [176] в случаях \(k_i = 0 \) и \(\sigma_i = 0, i = 1, 2 \), соответственно.

38. СИСТЕМЫ ПОЛУЛИНЕЙНЫХ УРАВНЕНИЙ И НЕРАВЕНСТВ
ВЫСОКОГО ПОРЯДКА

Здесь мы рассмотрим квазилинейные системы вида

\[
\begin{align*}
\frac{\partial u}{\partial t} & \geq L_{m_1}(u, v) + f_1(x, t, u, v), \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial v}{\partial t} & \geq L_{m_2}(u, v) + f_2(x, t, u, v), \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) &= u_0(x), \quad x \in \mathbb{R}^N, \\
v(x, 0) &= v_0(x), \quad x \in \mathbb{R}^N.
\end{align*}
\] (38.1)

Операторы \(L_{m_i}, i = 1, 2 \), имеют следующий вид:

\[L_{m_i}(u, v) = \sum_{l_i \leq |\alpha| \leq m_i} D^\alpha A_{i,\alpha}(x, t, u, v), \] (38.2)

где \(A_{i,\alpha} : \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, 1 \leq l_i \leq |\alpha| \leq m_i, i = 1, 2 \), суть каратеодориевы функции, удовлетворяющие условию

\[|A_{i,\alpha}(x, t, u, v)| \leq a_{i1}(x, t)|u|^{p_1} + a_{i2}(x, t)|v|^{p_2} \] (38.3)

с измеримыми локально ограниченными функциями \(a_{ik}(x, t), i, k = 1, 2 \). Здесь показатели \(p_{ik} > 0 \).

Функции \(f_i : \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, i = 1, 2 \), суть также каратеодориевы функции, удовлетворяющие неравенствам

\[|f_i(x, t, u, v)| \geq b_{i1}(x, t)|u|^{q_1} + b_{i2}(x, t)|v|^{q_2} \] (38.4)

с

\[\max\{q_{11}, q_{21}\} > \max\{1, p_{11}, p_{21}\}, \quad \max\{q_{12}, q_{22}\} > \max\{1, p_{12}, p_{22}\}. \] (38.5)

Здесь \(b_{ik}, i, k = 1, 2 \), суть измеримые локально ограниченные функции такие, что

\[b_{ik} > 0 \quad \text{п.в. в} \quad \mathbb{R}^{N+1}. \]

Относительно начальных данных предполагаем, что \(u_0, v_0 \in L^1_{loc}(\mathbb{R}^N) \) и

\[\lim_{R \to \infty} \int_{|x| < R} (u_0(x) + v_0(x)) \, dx \geq 0. \] (38.6)
Определение 38.1. Под слабым решением системы (38.1) мы понимаем пару функций \((u, v) \in L^1_{\text{loc}}(\mathbb{R}^{N+1}) \times L^1_{\text{loc}}(\mathbb{R}^{N+1})\) таких, что

\[A_{i,\alpha}(x, t, u(x,t), v(x,t)), f_i(x, t, u(x, t), v(x, t)) \in L^1_{\text{loc}}(\mathbb{R}^{N+1}), \quad 1 \leq \alpha \leq |\alpha| \leq m_i, \quad i = 1, 2, \]

и для любых неотрицательных функций \(\varphi_1 \geq 0, \varphi_2 \geq 0, \varphi_1, \varphi_2 \in C^m_{x,t}(\mathbb{R}^{N+1}), m = \max\{m_1, m_2\}\), с компактным носителем выполнены неравенства

\[- \int_{\mathbb{R}^N} u_0(x) \varphi_1(x,0) \, dx - \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial \varphi_1}{\partial t} \, dx \, dt \geq \sum_{l_1 \leq |\alpha| \leq m_1} (-1)^{|\alpha|} \int_0^\infty \int_{\mathbb{R}^N} A_{1,\alpha}(x, t, u, v) D^\alpha \varphi_1 \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} f_1(x, t, u, v) \varphi_1 \, dx \, dt, \]

\[- \int_{\mathbb{R}^N} v_0(x) \varphi_2(x,0) \, dx - \int_0^\infty \int_{\mathbb{R}^N} v \frac{\partial \varphi_2}{\partial t} \, dx \, dt \geq \sum_{l_2 \leq |\alpha| \leq m_2} (-1)^{|\alpha|} \int_0^\infty \int_{\mathbb{R}^N} A_{2,\alpha}(x, t, u, v) D^\alpha \varphi_2 \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} f_2(x, t, u, v) \varphi_2 \, dx \, dt. \]

Основная априорная оценка. В силу неравенств (38.3), (38.4) из определения решения при \(\varphi_1 = \varphi_2 = \varphi\) непосредственно следует, что

\[\int_0^{\infty} \int_{\mathbb{R}^N} (b_{11}(x,t)|u|^{q_{11}} + b_{12}(x,t)|v|^{q_{12}}) \varphi \, dx \, dt \leq - \int_{\mathbb{R}^N} u \frac{\partial \varphi}{\partial t} \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} (a_{11}(x,t)|u|^{p_{11}} + a_{12}(x,t)|v|^{p_{12}}) \sum_{l_1 \leq |\alpha| \leq m_1} |D^\alpha \varphi| \, dx \, dt - \int_{\mathbb{R}^N} u_0(x) \varphi(x,0) \, dx, \tag{38.7} \]

\[\int_0^{\infty} \int_{\mathbb{R}^N} (b_{21}(x,t)|u|^{q_{21}} + b_{22}(x,t)|v|^{q_{22}}) \varphi \, dx \, dt \leq - \int_{\mathbb{R}^N} v \frac{\partial \varphi}{\partial t} \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} (a_{21}(x,t)|u|^{p_{21}} + a_{22}(x,t)|v|^{p_{22}}) \sum_{l_2 \leq |\alpha| \leq m_2} |D^\alpha \varphi| \, dx \, dt - \int_{\mathbb{R}^N} v_0(x) \varphi(x,0) \, dx. \tag{38.8} \]

Введем обозначения

\[q_1 = \max\{q_{11}, q_{21}\}, \quad q_2 = \max\{q_{12}, q_{22}\}. \tag{38.9} \]

Далее рассмотрим следующий случай ("потенциальная система"):

\[q_1 = q_{11}, \quad q_2 = q_{22}. \tag{38.10} \]

Тогда в силу параметрических неравенств Юнга и Гельдера из (38.7) следует, что

\[\int_0^{\infty} \int_{\mathbb{R}^N} b_{11}(x,t)|u|^{q_{11}} \varphi \, dx \, dt \leq c_1 \int_0^{\infty} \int_{\mathbb{R}^N} a_{12}(x,t)|v|^{p_{12}} \sum_{l_1 \leq |\alpha| \leq m_1} |D^\alpha \varphi| \, dx \, dt + J_{11}(\varphi) + J_{12}(\varphi) - \int_{\mathbb{R}^N} u_0(x) \varphi(x,0) \, dx \tag{38.11} \]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
с постоянной $c_1 > 0$ и

$$J_{11}(\varphi) = \iint_{\mathbb{R}^N} \left(\frac{a_{11}(x,t) \sum_{l_1 \leq |\alpha| \leq m_1} |D^\alpha \varphi|'}{(b_{11}(x,t)\varphi)^{r_{11}-1}} \right) dx dt,$$

$$J_{12}(\varphi) = \iint_{\mathbb{R}^N} \left| \frac{\partial \varphi'}{\partial t} \right| (b_{11}(x,t)\varphi)^{1-q} dx dt,$$

где r_{11}' — показатель, сопряженный к $r_{11} = \frac{q_1}{p_{11}} = \frac{q}{p_{11}}$ (в рассматриваемом случае).

Аналогично из неравенства (38.8) находим

$$\iint_{\mathbb{R}^N} b_{22}(x,t)|v|^{q_2} \varphi dx dt \leq \left[\int_{\mathbb{R}^N} a_{21}(x,t)|u|^{p_{21}} \sum_{l_2 \leq |\alpha| \leq m_2} |D^\alpha \varphi| dx dt + \right.$$

$$+ J_{21}(\varphi) + J_{22}(\varphi) - \int_{\mathbb{R}^N} v_0(x)\varphi(x,0) dx \right]$$

(38.12)

с постоянной $c_2 > 0$ и

$$J_{22}(\varphi) = \iint_{\mathbb{R}^N} \left(\frac{a_{22}(x,t) \sum_{l_2 \leq |\alpha| \leq m_2} |D^\alpha \varphi|'}{(b_{22}(x,t)\varphi)^{r_{22}-1}} \right) dx dt,$$

$$J_{21}(\varphi) = \iint_{\mathbb{R}^N} \left| \frac{\partial \varphi'}{\partial t} \right| (b_{22}(x,t)\varphi)^{1-q_2} dx dt,$$

где r_{22}' — показатель, сопряженный к $r_{22} = \frac{q_2}{p_{22}} = \frac{q_{22}}{p_{22}}$ (в рассматриваемом случае).

Далее в силу параметрического неравенства Юнга имеем

$$\int_{\mathbb{R}^N} a_{21}(x,t)|u|^{p_{21}} \sum_{l_2 \leq |\alpha| \leq m_2} |D^\alpha \varphi| dx dt \leq \varepsilon \int_{\mathbb{R}^N} b_{11}(x,t)|u|^q \varphi dx dt + C_\varepsilon J_2(\varphi)$$

(38.13)

с $\varepsilon > 0$, $C_\varepsilon > 0$ и

$$J_2(\varphi) = \iint_{\mathbb{R}^N} \left(\frac{a_{21}(x,t) \sum_{l_2 \leq |\alpha| \leq m_2} |D^\alpha \varphi|'}{(b_{11}(x,t)\varphi)^{r_2'}-1} \right) dx dt,$$

(38.14)

где r_2' — сопряженный показатель к $r_2 = \frac{q_1}{p_{21}}$.

Тогда неравенство (38.12) влечет следующее неравенство:

$$\int_{\mathbb{R}^N} b_{22}(x,t)|v|^{q_2} \varphi dx dt \leq \varepsilon \int_{\mathbb{R}^N} b_{11}(x,t)|u|^q \varphi dx dt +$$

$$+ C_\varepsilon J_2(\varphi) + J_{21}(\varphi) + J_{22}(\varphi) - \int_{\mathbb{R}^N} v_0(x)\varphi(x,0) dx \right].$$

(38.15)
Глава 4. СИСТЕМЫ НЕРАВЕНСТВ

Аналогично из неравенства (38.11) получим

$$\int_0^\infty \int_{\mathbb{R}^N} b_{11}(x,t)|u|^{q_1}\varphi \, dx \, dt \leq c_1 \left[\varepsilon \int_0^\infty \int_{\mathbb{R}^N} b_{22}(x,t)|v|^{q_2}\varphi \, dx \, dt + C\varepsilon J_1(\varphi) + J_{11}(\varphi) + J_{12}(\varphi) - \int_{\mathbb{R}^N} u_0(x)\varphi(x,0) \, dx \right].$$

(38.16)

Здесь

$$J_1(\varphi) = \int_0^\infty \int_{\mathbb{R}^N} \frac{\left(a_{12}(x,t) \sum_{1 \leq |\alpha| \leq m_3} |D^\alpha \varphi| \right)^{r'_1}}{(b_{22}(x,t)\varphi)^{r'_1 - 1}} \, dx \, dt,$$

где r'_1 — сопряженный показатель к $r_1 = \frac{q_2}{p_1^2}$.

Выберем теперь $\varepsilon > 0$ достаточно малым так, чтобы $\varepsilon c_1 < 1$ и $\varepsilon c_2 < 1$. Тогда на основании неравенств (38.15) и (38.16) окончательно получим основную априорную оценку

$$\int_0^\infty \int_{\mathbb{R}^N} |b_{11}(x,t)|u|^{q_1} + b_{22}(x,t)|v|^{q_2}\varphi \, dx \, dt \leq c_3[J_1(\varphi) + J_2(\varphi) + J_{11}(\varphi) + J_{12}(\varphi) + J_{21}(\varphi) + J_{22}(\varphi)] - c_4 \int_{\mathbb{R}^N} [u_0(x) + v_0(x)]\varphi(x,0) \, dx$$

(38.17)

с постоянными $c_3, c_4 > 0$.

\textbf{Асимптотическая оценка.} Выберем в неравенстве (38.17) пробную функцию $\varphi(x,t)$ следующего вида:

$$\varphi(x,t) = \varphi_0(s),$$

(38.18)

где $\varphi_0 \in C_0^m(\mathbb{R})$, $\varphi_0 \geq 0$ и такая, что

$$\varphi_0(s) = \begin{cases} 1, & 0 \leq s \leq 1, \\ 0, & s \geq 2. \end{cases}$$

Положим

$$s = \frac{t^{\theta_1} + |x|^{\theta_2}}{R^{\theta_2}}$$

(38.19)

с положительными показателями $\theta_1, \theta_2 > 0$, которые будут определены ниже.

В соответствии с (38.19) введем новые переменные (τ, ξ) по формулам

$$t = R^{\theta_2} \tau, \quad x = R \xi$$

(38.20)

с $\theta = \theta_2/\theta_1$.

Теперь сделаем замену переменных в интегралах $J_i(\varphi)$ и $J_{ik}(\varphi), i, k = 1, 2$. Тогда получим

$$J_i(R, \theta) = J_i(\varphi), \quad J_{ik}(R, \theta) = J_{ik}(\varphi).$$

Обозначим через

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Тогда оценка (38.17) принимает вид
\[
\int_0^\infty \int_{\mathbb{R}^N} [b_1(x,t)|u|^{q_1} + b_{22}(x,t)|v|^{q_2}] \varphi \, dx \, dt \leq c_1 \int_0^\infty \int_{\mathbb{R}^N} [u_0(x) + v_0(x)] \varphi(x,0) \, dx.
\] (38.21)

Отсюда получаем следующий результат.

Теорема 38.1 (первая теорема об отсутствии решения — неявная форма). Пусть существует \(\theta > 0 \) такое, что \(K(R, \theta) < \infty \) и
\[
K(R, \theta) \to 0 \quad \text{при} \quad R \to \infty.
\] (38.22)

Тогда задача (38.1) не имеет глобального нетривиального слабого решения.

Доказательство. Достаточно перейти в (38.21) к пределу при \(R \to \infty \) с учетом условия (38.6). \(\square \)

Замечание 38.1. Теорема остается справедливой, если вместо условия (38.22) выполняется следующее:
\[
K(R, \theta) \leq C < \infty
\] (38.23)
при \(R \to \infty \).

Для доказательства необходимо вместо аддитивных неравенств Юнга использовать множительно-интегрированное неравенство Гельдера аналогично предельному случаю в эллиптических задачах.

Вторая теорема отсутствия. Рассмотрим теперь задачу (38.1) в случае "гамильтоновой системы", т.е.
\[
q_1 = \max\{q_{11}, q_{21}\} = q_{21}, \quad q_2 = \max\{q_{12}, q_{22}\} = q_{12}.
\] (38.24)

В этом случае из неравенства (38.7) имеем
\[
\int_0^\infty \int_{\mathbb{R}^N} b_{12}(x,t)|v|^{q_2} \varphi \, dx \, dt \leq c_1 \left[\int_0^\infty \int_{\mathbb{R}^N} a_{11}(x,t)|u|^{p_{11}} \sum_{l_1 \leq |\alpha| \leq m_1} |D^\alpha \varphi| \, dx \, dt + \right.
\]
\[
+ \left. J_{11}^*(\varphi) - \int_0^\infty \int_{\mathbb{R}^N} \frac{\partial \varphi}{\partial t} \, dx \, dt - \int_{\mathbb{R}^N} u_0(x) \varphi(x,0) \, dx \right]
\] (38.25)
с постоянной \(c_1 > 0 \) и
\[
J_{11}^*(\varphi) = \int_0^\infty \int_{\mathbb{R}^N} \frac{\left(a_{12}(x,t) \sum_{|\alpha| \leq m_1} |D^\alpha \varphi| \right)^{\rho_{11}}}{(b_{12}(x,t))^{\rho_{11}-1}} \, dx \, dt,
\]
gде \(\rho_{11} \) — показатель, сопряженный к \(\rho_{11} = q_2/p_{12} \).

Аналогично из неравенства (38.8) находим
\[
\int_0^\infty \int_{\mathbb{R}^N} b_{21}(x,t)|u|^{q_1} \varphi \, dx \, dt \leq c_2 \left[\int_0^\infty \int_{\mathbb{R}^N} a_{22}(x,t)|v|^{p_{22}} \sum_{l_2 \leq |\alpha| \leq m_2} |D^\alpha \varphi| \, dx \, dt + \right.
\]
\[
+ \left. J_{22}^*(\varphi) - \int_0^\infty \int_{\mathbb{R}^N} \frac{\partial \varphi}{\partial t} \, dx \, dt - \int_{\mathbb{R}^N} v_0(x) \varphi(x,0) \, dx \right]
\] (38.26)
с постоянной $c_2 > 0$ и

$$J^*_2(\varphi) = \int_{0}^{\infty} \int_{\mathbb{R}^N} \frac{(a_{21}(x,t) \sum_{|\alpha| \leq m_2} |D^\alpha \varphi|)^{\rho_2}}{(b_{21}(x,t) \varphi)^{\rho_2-1}} \, dx \, dt,$$

где ρ^{*}_{22} — показатель, сопряженный к $\rho_{22} = q_1/p_{21}$.

Вернемся теперь к неравенству (38.25) и оценим интегралы в его правой части.

Используя неравенство Гельдера, имеем

$$\int_{0}^{\infty} \int_{\mathbb{R}^N} a_{11}(x,t)|u|^{p_{11}} \sum_{l_1 \leq |\alpha| \leq m_1} |D^\alpha \varphi| \, dx \, dt \leq$$

$$\leq \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} b_{21}(x,t)|u|^{q_1} \varphi \, dx \, dt \right)^{1/\rho_{12}} \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} \frac{(a_{11}(x,t) \sum_{l_1 \leq |\alpha| \leq m_1} |D^\alpha \varphi|)^{\rho_{12}}}{(b_{21}(x,t) \varphi)^{\rho_{12}-1}} \, dx \, dt \right)^{1/\rho'_{12}}. \quad (38.27)$$

Здесь $\rho_{12} = q_1/p_{11}$ и ρ'_{12} — показатель, сопряженный к ρ_{12}.

Далее

$$\left| \int_{0}^{\infty} \int_{\mathbb{R}^N} u \frac{\partial \varphi}{\partial t} \, dx \, dt \right| \leq \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} b_{21}(x,t)|u|^{q_1} \varphi \, dx \, dt \right)^{1/q_1} \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right|^{q'_2} (b_{21}(x,t) \varphi)^{1-q'_2} \, dx \, dt \right)^{1/q'_2}. \quad (38.28)$$

Для сокращения записи следующих неравенств введем обозначения:

$$X = \int_{0}^{\infty} \int_{\mathbb{R}^N} b_{21}(x,t)|u|^{q_1} \varphi \, dx \, dt, \quad Y = \int_{0}^{\infty} \int_{\mathbb{R}^N} b_{12}(x,t)|v|^{q_2} \varphi \, dx \, dt,$$

$$J^*_1(\varphi) = \int_{0}^{\infty} \int_{\mathbb{R}^N} \frac{(a_{11}(x,t) \sum_{l_1 \leq |\alpha| \leq m_1} |D^\alpha \varphi|)^{\rho_{12}}}{(b_{12}(x,t) \varphi)^{\rho_{12}-1}} \, dx \, dt, \quad J^*_1(\varphi) = \int_{0}^{\infty} \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right|^{q'_2} (b_{12}(x,t) \varphi)^{1-q'_2} \, dx \, dt,$$

$$J^*_2(\varphi) = \int_{0}^{\infty} \int_{\mathbb{R}^N} \frac{(a_{22}(x,t) \sum_{l_2 \leq |\alpha| \leq m_2} |D^\alpha \varphi|)^{\rho_{21}}}{(b_{22}(x,t) \varphi)^{\rho_{21}-1}} \, dx \, dt, \quad J^*_2(\varphi) = \int_{0}^{\infty} \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right|^{q'_2} (b_{22}(x,t) \varphi)^{1-q'_2} \, dx \, dt,$$

где $\rho_{21} = q_2/p_{22}$ и ρ'_{21} — сопряженный показатель к ρ_{21}.

Тогда неравенство (38.25) с учетом (38.27) и (38.28) принимает вид

$$Y \leq c_1 \left[X^{1/\rho_{12}} (J^*_1(\varphi))^{1/\rho_{12}} + J^*_1(\varphi) + X^{1/q_1} (J^*_1(\varphi))^{1/q'_1} - \int_{\mathbb{R}^N} u_0(x) \varphi(x,0) \, dx \right]. \quad (38.29)$$

Аналогично из неравенства (38.26) получаем

$$X \leq c_2 \left[Y^{1/\rho_{21}} (J^*_2(\varphi))^{1/\rho_{21}} + J^*_2(\varphi) + Y^{1/q_2} (J^*_2(\varphi))^{1/q'_2} - \int_{\mathbb{R}^N} u_0(x) \varphi(x,0) \, dx \right]. \quad (38.30)$$
Дальнейший анализ системы (38.29), (38.30) проводится по аналогии с квазилинейной параболической системой, содержащей p- и q-лапласианы (см. разд. 40).

Мы ограничимся здесь частным случаем, именно

\[p_{11} = p_{22} = 1, \]

(38.31)
t.е. рассмотрим систему (38.1) при условиях

\[|A_{1,1}(x, t, u, v)| \leq a_{11}(x, t)|u| + a_{12}(x, t)|v|^{p_{12}}, \]

\[|A_{2,2}(x, t, u, v)| \leq a_{21}(x, t)|u|^{p_{21}} + a_{22}(x, t)|v|. \]

(38.32)

Напоминаем, что мы рассматриваем случай "гамильтоновой системы" (38.1), т.е. при условии (38.24).

Из условия (38.31) следует, что

\[\rho_{12} = q_1, \quad \rho_{21} = q_2. \]

Тогда неравенства (38.29), (38.30) принимают вид

\[Y \leq c_1^* \left[X^{1/q_1} (J_1^*(\varphi) + J_{12}^*(\varphi))^1/q_1 + J_{11}^*(\varphi) - \int_{\mathbb{R}^N} u_0(x)\varphi(x, 0) \, dx \right], \]

(38.33)

\[X \leq c_2^* \left[Y^{1/q_2} (J_2^*(\varphi) + J_{21}^*(\varphi))^1/q_2 + J_{22}^*(\varphi) - \int_{\mathbb{R}^N} v_0(x)\varphi(x, 0) \, dx \right]. \]

(38.34)

Выберем теперь пробную функцию \(\varphi(x, t) \), определенную формулой (38.18) с (38.19), и сделаем замену переменных (38.20). Тогда для интегралов, входящих в неравенства (38.33) и (38.34), получим

\[J_i^*(\varphi) = K_i^*(R, \theta), \quad J_{ik}^*(\varphi) = K_{ik}^*(R, \theta), \quad i, k = 1, 2, \quad t = R^\theta \tau, \quad x = R \xi. \]

При дополнительном предположении относительно начальных данных

\[u_0 \geq 0, \quad v_0 \geq 0, \quad x \in \mathbb{R}^N, \]

(38.35)

неравенства (38.33) и (38.34) принимают вид

\[Y \leq \text{const} \cdot \left\{ [K_i^*(R, \theta) + K_{12}^*(R, \theta)]^{1/q_1} X^{1/q_1} + K_{11}^*(R, \theta) \right\}, \]

\[X \leq \text{const} \cdot \left\{ [K_i^*(R, \theta) + K_{21}^*(R, \theta)]^{1/q_2} Y^{1/q_2} + K_{22}^*(R, \theta) \right\}. \]

Отсюда получаем

\[X \leq \text{const} \cdot \Gamma_1(R, \theta), \quad Y \leq \text{const} \cdot \Gamma_2(R, \theta), \]

(38.36)

gде

\[\Gamma_1(R, \theta) = \left[(K_2^*(R, \theta) + K_{21}^*(R, \theta))^{1/q_2} (K_1^*(R, \theta) + K_{12}^*(R, \theta))^{1/(q_2 q_1)} \right]^{\frac{q_1}{q_1 + q_2}} + \]

\[+ (K_2^*(R, \theta) + K_{21}^*(R, \theta))^{1/q_2} (K_{12}^*(R, \theta) + K_{11}^*(R, \theta))^{1/q_2} + K_{22}^*(R, \theta), \]

(38.37)

\[\Gamma_2(R, \theta) = \left[(K_1^*(R, \theta) + K_{12}^*(R, \theta))^{1/q_1} (K_2^*(R, \theta) + K_{21}^*(R, \theta))^{1/(q_1 q_2)} \right]^{\frac{q_2}{q_1 + q_2}} + \]

\[+ (K_1^*(R, \theta) + K_{12}^*(R, \theta))^{1/q_1} (K_{22}^*(R, \theta) + K_{11}^*(R, \theta))^{1/q_1} + K_{11}^*(R, \theta). \]

(38.38)
Глава 4. СИСТЕМЫ НЕРАВЕНСТВ

На основании соотношений (38.36) получаем следующий результат.

Теорема 38.2 (вторая теорема об отсутствии решения — неявная форма). Пусть для задачи (38.1) выполнены следующие условия: \(u_0 \geq 0 \) и \(v_0 \geq 0 \), \(p_{11} = p_{22} = 1 \), \(q_{21} = \max\{q_{11}, q_{21}\} \) и \(q_{12} = \max\{q_{12}, q_{22}\} \).

Далее, пусть существует \(\theta > 0 \) такое, что выполнено по крайней мере одно из условий:

либо функция \(\Gamma_1(R, \theta) < \infty \) у
\[\Gamma_1(R, \theta) \to 0, \quad R \to \infty, \tag{38.39} \]

либо функция \(\Gamma_2(R, \theta) < \infty \) у
\[\Gamma_2(R, \theta) \to 0, \quad R \to \infty. \tag{38.40} \]

Тогда задача (38.1) не имеет глобального нетривиального слабого решения.

Доказательство аналогично доказательству теоремы 38.1. \(\square \)

Замечание 38.2. Вторая теорема об отсутствии решения остается справедливой, если вместо (38.39) или (38.40) выполнено по крайней мере одно из условий: существует \(c_1 < \infty \) такое, что
\[\Gamma_1(R, \theta) \leq c_1 \quad \text{при любом} \quad R > 0, \]

либо существует \(c_2 < \infty \) такое, что
\[\Gamma_2(R, \theta) \leq c_2 \quad \text{при любом} \quad R > 0. \]

Доказательство основано на систематическом использовании мультипликативных неравенств Гельдера и свойств абсолютной непрерывности интегралов из \(L^1(\mathbb{R}_{+}^{N+1}) \).

Пример 38.1. Рассмотрим задачу
\[
\begin{aligned}
\frac{\partial u}{\partial t} &\geq \sum_{|\alpha|=2} D^\alpha c_\alpha(x, t, u) + |u|^p, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial v}{\partial t} &\geq \sum_{|\alpha|=2} D^\alpha d_\alpha(x, t, u) + |u|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) &= u_0(x), \quad x \in \mathbb{R}^N, \\
v(x, 0) &= v_0(x), \quad x \in \mathbb{R}^N.
\end{aligned} \tag{38.41}
\]

Здесь \(p, q > 1 \) и \(u_0, v_0 \in L^1_{\text{loc}}(\mathbb{R}^N) \) и
\[u_0 \geq 0, \quad v_0 \geq 0. \tag{38.42} \]

Относительно измеримых коэффициентов \(c_\alpha, d_\alpha, \quad |\alpha| = 2, \) предполагаем равномерную ограниченность:
\[|c_\alpha(x, t)| \leq a_0 < \infty, \quad |d_\alpha(x, t)| \leq b_0 < \infty, \quad (x, t) \in \mathbb{R}_{+}^{N+1}. \]

Для этой задачи в обозначениях настоящего раздела имеем
\[l_1 = l_2 = m_1 = m_2 = 2, \]
\[p_{11} = 1, \quad p_{12} = 0, \quad p_{21} = 0, \quad p_{22} = 1, \]
\[q_{11} = 0, \quad q_{12} = p, \quad q_{21} = q, \quad q_{22} = 0, \]
\[a_{11}(x, t) = a_0, \quad a_{12}(x, t) = 0, \quad a_{21}(x, t) = 0, \quad a_{22}(x, t) = b_0, \]
\[b_{11}(x, t) = 0, \quad b_{12}(x, t) = 1, \quad b_{21}(x, t) = 1, \quad b_{22}(x, t) = 0. \]
Этот пример относится к второй теореме отсутствия, поскольку

\[q_1 = \max\{q_{11}, q_{21}\} = q_{21} = q, \quad q_2 = \max\{q_{12}, q_{22}\} = q_{12} = p. \]

Вычислим теперь определяющие интегралы \(J_i^* \), \(i, k = 1, 2 \). Имеем

\[
\begin{align*}
J_1^*(\varphi) &= \int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right|^{q'} \varphi^{1-q'} \, dx \, dt, \\
J_2^*(\varphi) &= \int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right| \varphi^{1-q'} \, dx \, dt, \\
J_{11}^*(\varphi) &= 0, \\
J_{12}^*(\varphi) &= \int_0^\infty \int_{\mathbb{R}^N} \frac{\left| \sum_{|\alpha|=2} |D^\alpha \varphi| \right|^{q'}}{\varphi'} \, dx \, dt, \\
J_{22}^*(\varphi) &= 0, \\
J_{21}^*(\varphi) &= \int_0^\infty \int_{\mathbb{R}^N} \frac{\left| \sum_{|\alpha|=2} |D^\alpha \varphi| \right| \varphi'}{\varphi'} \, dx \, dt.
\end{align*}
\]

Здесь \(\varphi(x, t) \) — пробная функция из доказательства теоремы 38.2.

После замены переменных в соответствии с формулой (38.20) получим

\[
K_{11}^*(R, \theta) = c_1 R^{N+\theta-2q'}, \quad K_{12}^*(R, \theta) = c_2 R^{N+\theta-2p'}, \quad K_{21}^*(R, \theta) = c_{12} R^{N+\theta-2q'}, \quad K_{22}^*(R, \theta) = c_{21} R^{N+\theta-2p'}, \quad K_{11}^*(R, \theta) = K_{22}^*(R, \theta) = 0.
\]

Здесь \(c_i, c_{ik}, i, k = 1, 2 \), суть положительные постоянные.

Подставляя полученные выражения в (38.37) и (38.38) соответственно, с учетом равенств

\[q_1 = q, q_2 = p \quad \text{и} \quad \theta = 2 \quad \text{находим}
\]

\[
\Gamma_1(R, \theta) = \text{const} \cdot R^{N\left(pq-1 \right) \frac{N \left(pq \right)^{-1} - 2\left(pq \right)^{-1}}{pq-1}}, \quad \Gamma_2(R, \theta) = \text{const} \cdot R^{N\left(pq-1 \right) \frac{N \left(pq \right)^{-1} - 2\left(pq \right)^{-1}}{pq-1}}.
\]

Таким образом получаем, что если

\[
\max \left\{ \frac{p+1}{pq-1}, \frac{q+1}{pq-1} \right\} \geq \frac{N}{2}, \tag{38.43}
\]

то рассматриваемая задача (38.41) не допускает глобального нетривиального слабого решения.

Замечание 38.3. Условие положительности начальных данных можно заменить на следующее:

\[
\lim_{R \to \infty} \int_{|x| < R} u_0(x) \, dx \geq 0, \quad \lim_{R \to \infty} \int_{|x| < R} v_0(x) \, dx \geq 0.
\]

Замечание 38.4. Условие отсутствия решения задачи (38.41) при \(p, q > 1 \) совпадает с условием Эскобедо–Херреро, полученным для задачи

\[
\begin{align*}
\frac{\partial u}{\partial t} &= \Delta u + v^p, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial v}{\partial t} &= \Delta v + u^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u \geq 0, \quad & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
v \geq 0, \quad & (x, t) \in \mathbb{R}^N \times (0, \infty).
\end{align*}
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 4. СИСТЕМЫ НЕРАВЕНСТВ

Отметим, что в случае задачи (38.41) мы не требуем условия параболичности, так что коэффициенты $c_\alpha(x,t)$ и $d_\alpha(x,t)$, $|\alpha| = 2$, могут иметь произвольный знак.

Пример 38.2. Рассмотрим систему параболических уравнений (неравенств) высокого порядка

$$
\begin{aligned}
\frac{\partial u}{\partial t} & \geq \sum_{|\alpha| = m} D^\alpha(a_\alpha(x,t,u)) + |v|^p, \quad (x,t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial v}{\partial t} & \geq \sum_{|\alpha| = m} D^\alpha(b_\alpha(x,t,u)) + |u|^q, \quad (x,t) \in \mathbb{R}^N \times (0, \infty),
\end{aligned}$$

(38.44)

с $p, q > 1$ и начальными данными $u_0, v_0 \in L^1_{\text{loc}}(\mathbb{R}^N)$. Здесь $a_\alpha, b_\alpha, |\alpha| = m \geq 1$, — измеримые равномерно ограниченные функции в \mathbb{R}^{N+1} такие, что

$$|a_\alpha(x,t)|, |b_\alpha(x,t)| \leq c < \infty.$$

Применяя теорему 38.2, получаем следующий результат.

Пусть

$$\max \left\{ \frac{p + 1}{pq}, \frac{q + 1}{pq} \right\} \geq \frac{N}{m}.$$

Тогда задача (38.44) при указанных условиях не имеет глобального нетривиального слабого решения.

Пример 38.3. Рассмотрим теперь систему параболических уравнений (неравенств) разных порядков $m_1, m_2 \geq 1$:

$$
\begin{aligned}
\frac{\partial u}{\partial t} & \geq \sum_{|\alpha| = m_1} D^\alpha(a_\alpha(x,t,u)) + |v|^p, \quad (x,t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial v}{\partial t} & \geq \sum_{|\alpha| = m_2} D^\alpha(b_\alpha(x,t,u)) + |u|^q, \quad (x,t) \in \mathbb{R}^N \times (0, \infty),
\end{aligned}$$

(38.45)

с $p, q > 1$ и начальными данными $u_0, v_0 \in L^1_{\text{loc}}(\mathbb{R}^N)$. Здесь, как и в предыдущем примере, $a_\alpha, |\alpha| = m_1$, и $b_\alpha, |\alpha| = m_2$, — измеримые равномерно ограниченные функции в \mathbb{R}^{N+1} такие, что

$$|a_\alpha(x,t)| \leq c < \infty, \quad |\alpha| = m_1 \geq 1, \quad |b_\alpha(x,t)| \leq c < \infty, \quad |\alpha| = m_2 \geq 1.$$

Применяя теорему 38.2, получаем следующий результат.

Пусть

$$\max\{m_1(1+p), m_2(1+q), m_1g + m_2, m_2p + m_1, m_2(1+p) - |m_2 - m_1|pq, \quad m_1(1+q) - |m_2 - m_1|pq \} \geq N(pq - 1).$$

(38.46)

Тогда задача (38.45) при указанных условиях не имеет глобального нетривиального слабого решения.
Доказательство основано на использовании пробных функций вида (38.18)–(38.20) двух типов: с $\theta = m_1$ и $\theta = m_2$. Последующий оптимальный выбор параметров приводит к формуле (38.46) для критической кривой в плоскости (p, q).

Замечание 38.5. В примерах 38.2 и 38.3, так же как и в примере 38.1, мы не требуем выполнения принципа максимума. Этот момент является важным для параболических уравнений высокого порядка, где, как известно, принцип максимума не имеет места.

39. СИСТЕМЫ ПАРАБОЛИЧЕСКИХ НЕРАВЕНСТВ С ОПЕРАТОРАМИ ТИПА СРЕДНЕЙ КРИВИЗНЫ

Рассматриваются вопросы оценок и отсутствия решений систем параболических неравенств вида

$$
\begin{align*}
\frac{\partial u}{\partial t} - \text{div} A(x, u, Du) &\geq v^p, \\
\frac{\partial v}{\partial t} - \text{div} B(x, v, Dv) &\geq u^q,
\end{align*}
$$

где $p, q > 1$. Мы интересуемся неотрицательными решениями.

Определение 39.1. Будем говорить, что (39.1) является системой параболических неравенств для системы средней кривизны, если операторы $A, B : \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}^N \rightarrow \mathbb{R}^N$, включенные в (39.1), имеют вид $A(x, u, w) = \mathcal{A}(x, u, w)u$, $B(x, v, z) = \mathcal{B}(x, v, z)z$, где

$$
\mathcal{A}, \mathcal{B} : \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}^N \rightarrow \mathbb{R}_+
$$

суть карацедориевы функции такие, что существует $C > 0$, для которого

$$
0 < \mathcal{A}(x, u, w) \leq C, \quad 0 < \mathcal{B}(x, v, z) \leq C
$$

для всех $(x, u, w), (x, v, z) \in \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}^N$.

Начнем с аналога определения 33.4 для системы (39.1).

Определение 39.2. Пусть функции $u, v : \mathbb{R}^N \times (0, \infty) \rightarrow \mathbb{R}$ неотрицательны, $p, q > 1$ и $u \in L^p_{\text{loc}}(\mathbb{R}^N \times (0, \infty)), v \in L^p_{\text{loc}}(\mathbb{R}^N \times (0, \infty))$ и $u, v \in W^{1,2}_{\text{loc}}(\mathbb{R}^N \times (0, \infty))$. Пара (u, v) называется слабым решением задачи (39.1), если $\mathcal{A}(x, u, Du), \mathcal{B}(x, v, Dv) \in L^2_{\text{loc}}(\mathbb{R}^N \times (0, \infty))$ и для любой пары неотрицательных пробных функций $\varphi_1, \varphi_2 \in W^{1,2}(\mathbb{R}^N \times (0, \infty))$ с компактными носителями выполнены неравенства

$$
\begin{align*}
\int_0^\infty \int_{\mathbb{R}^N} v^p \varphi_1 \, dx \, dt \leq & \int_0^\infty \int_{\mathbb{R}^N} \mathcal{A}(x, u, Du)(Du, D\varphi_1) \, dx \, dt - \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial \varphi_1}{\partial t} \, dx \, dt, \\
\int_0^\infty \int_{\mathbb{R}^N} u^q \varphi_2 \, dx \, dt \leq & \int_0^\infty \int_{\mathbb{R}^N} \mathcal{B}(x, v, Dv)(Dv, D\varphi_2) \, dx \, dt - \int_0^\infty \int_{\mathbb{R}^N} v \frac{\partial \varphi_2}{\partial t} \, dx \, dt.
\end{align*}
$$

Замечание 39.1. В этом определении мы предполагаем, что слецы функций u и v при $t = 0$ определены и совпадают с u_0 и v_0.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Следующие два предварительных результата можно получить, используя технику, аналогичную доказательствам лемм 40.1 и 40.2 (см. ниже).

Лемма 39.1. Пусть A и B — операторы типа средней кривизны. Пусть (u, v) — слабое решение задачи (39.1), и пусть $\alpha \in (-1, 0)$. Пусть (φ_1, φ_2) — пара неотрицательных функций из $W^{1,2}(\mathbb{R}^N \times (0, \infty))$ с компактными носителями.

Тогда

$$
\int_0^\infty \int_{\mathbb{R}^N} v^p u^\alpha \varphi_1 \, dx \, dt + c_1 \int_0^\infty \int_{\mathbb{R}^N} A(x, u, Du) |Du|^2 u^{\alpha - 1} \varphi_1 \, dx \, dt \leq
$$

$$
\leq c_2 \left(\int_0^\infty \int_{\mathbb{R}^N} u^{\alpha + 1} \left(|D \varphi_1|^2 \varphi_1^{-1} + \left| \frac{\partial \varphi_1}{\partial t} \right| \right) \, dx \, dt \right) - \frac{1}{\alpha + 1} \int_{\mathbb{R}^N} u_0^{\alpha + 1}(x) \frac{\partial \varphi_1}{\partial t}(x, 0) \, dx,
$$

(39.4)

$$
\int_0^\infty \int_{\mathbb{R}^N} u^q v^\alpha \varphi_2 \, dx \, dt + c_3 \int_0^\infty \int_{\mathbb{R}^N} B(x, v, Du) |Du|^2 v^{\alpha - 1} \varphi_2 \, dx \, dt \leq
$$

$$
\leq c_4 \left(\int_0^\infty \int_{\mathbb{R}^N} v^{\alpha + 1} \left(|D \varphi_2|^2 \varphi_2^{-1} + \left| \frac{\partial \varphi_2}{\partial t} \right| \right) \, dx \, dt \right) - \frac{1}{\alpha + 1} \int_{\mathbb{R}^N} v_0^{\alpha + 1}(x) \frac{\partial \varphi_2}{\partial t}(x, 0) \, dx. \quad \Box (39.5)
$$

Лемма 39.2. Пусть A и B удовлетворяют определению 39.1. Пусть (u, v) — слабое решение задачи (39.1) и $\alpha \in (-1, 0)$.

Тогда для любых допустимых пробных функций φ_1, φ_2 имеем

$$
\int_0^\infty \int_{\mathbb{R}^N} v^p u^\alpha \varphi_1 \, dx \, dt + c_1 \int_0^\infty \int_{\mathbb{R}^N} A(x, u, Du) |Du|^2 u^{\alpha - 1} \varphi_1 \, dx \, dt \leq
$$

$$
\leq c_2 \left(\int_0^\infty \int_{\mathbb{R}^N} u^{\alpha + 1} \left(|D \varphi_1|^2 \varphi_1^{-1} + \left| \frac{\partial \varphi_1}{\partial t} \right| \right) \, dx \, dt \right) - \int_{\mathbb{R}^N} u_0(x) \frac{\partial \varphi_1}{\partial t}(x, 0) \, dx,
$$

(39.6)

$$
\int_0^\infty \int_{\mathbb{R}^N} u^q v^\alpha \varphi_2 \, dx \, dt + c_3 \int_0^\infty \int_{\mathbb{R}^N} B(x, v, Du) |Du|^2 v^{\alpha - 1} \varphi_2 \, dx \, dt \leq
$$

$$
\leq c_4 \left(\int_0^\infty \int_{\mathbb{R}^N} v^{\alpha + 1} \left(|D \varphi_2|^2 \varphi_2^{-1} + \left| \frac{\partial \varphi_2}{\partial t} \right| \right) \, dx \, dt \right) - \int_{\mathbb{R}^N} v_0(x) \frac{\partial \varphi_2}{\partial t}(x, 0) \, dx. \quad \Box (39.7)
$$

Лемма 39.3. Пусть A и B удовлетворяют определению 39.1. Пусть (u, v) — слабое решение задачи (39.1), $p, q > 1$, $u_0, v_0 \in L^1_{loc}(\mathbb{R}^N)$ и неотрицательны.

Тогда выполнены следующие априорные оценки:

$$
\left(\int_{A_R} v^p \, dx \, dt \right)^{1/p} \leq c R^{N(pq - 1) - 2(p + 1)}, \quad \left(\int_{A_R} u^q \, dx \, dt \right)^{1/p} \leq c R^{N(pq - 1) - 2(q + 1)},
$$

(39.8)

где

$$
A_R = \{(x, t) : t + |x|^2 \leq R^2\}. \quad \Box
$$

13 ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Замечание 39.2. Оценки (39.8) получаются методом, используемым при доказательстве (40.12) и (40.13) (см. ниже), при выборе \(\varphi_1 = \varphi_2 = \varphi_0\left(\frac{1+|x|^2}{R^2}\right)\), где \(\varphi_0 \) — стандартная срезающая функция.

Теорема 39.1. Пусть \(p, q > 1, u_0, v_0 \in L^1_{\text{loc}}(\mathbb{R}^N) \) и неотрицательны и

\[
\max\left\{ \frac{p+1}{pq-1}, \frac{q+1}{pq-1} \right\} > \frac{N}{2} \tag{39.9}
\]

Тогда (39.1) не имеет нетривиального решения.

Доказательство следует непосредственно из (39.8). Действительно, пусть выполнено строгое неравенство

\[
\max\left\{ \frac{p+1}{pq-1}, \frac{q+1}{pq-1} \right\} > \frac{N}{2}.
\]

Тогда (при \(p \geq q \)) из первого неравенства (39.8) следует, что

\[
\lim_{R \to \infty} \intint_{A_R} v^p \, dx \, dt = \intint_0^\infty v^p \, dx \, dt = 0.
\]

В случае

\[
\max\left\{ \frac{p+1}{pq-1}, \frac{q+1}{pq-1} \right\} = \frac{N}{2} \tag{39.10}
\]

оценка (39.8) означает \(v \in L^p(\mathbb{R}^N \times (0, \infty)) \). Действуя аналогично доказательству теоремы 40.1 (см. ниже), завершаем доказательство. \(\square \)

Простым приложением теоремы 39.1 является следующее обобщение задачи, рассмотренной Левинским, Либерманом и Мейером [123].

Пусть \(p, q > 1 \). Рассмотрим систему

\[
\begin{align*}
\frac{\partial u}{\partial t} - \text{div} \left(\frac{Dv}{\sqrt{1+|Dv|^2}} \right) & \geq v^p, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial v}{\partial t} - \text{div} \left(\frac{Du}{\sqrt{1+|Du|^2}} \right) & \geq u^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x,0) = u_0(x), \ v(x,0) = v_0(x), & \quad x \in \mathbb{R}^N.
\end{align*}
\]

Здесь \(u_0, v_0 \in L^1_{\text{loc}}(\mathbb{R}^N) \) и неотрицательны.

Справедливо

Предложение 39.1. Пусть выполнено (39.9). Тогда задача (39.11) не имеет глобального нетривиального слабого решения.

Доказательство. Достаточно заметить, что операторы в (39.11) удовлетворяют определению 39.1, поэтому применим теорему 39.1. \(\square \)

Естественно, утверждение предложения 39.1 остается в силе, если в (39.11) заменить оператор типа средней кривизны на классический оператор Лапласа. Например, для задачи

\[
\begin{align*}
\frac{\partial u}{\partial t} - \text{div} \left(\frac{Dv}{\sqrt{1+|Dv|^2}} \right) & \geq v^p, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial v}{\partial t} - \Delta v & \geq u^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x,0) = u_0(x), \ v(x,0) = v_0(x), & \quad x \in \mathbb{R}^N,
\end{align*}
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
справедлив тут же самый результат, что и в предложении 39.1. Этот факт показывает, что если мы рассматриваем операторы типа средней кривизны, значения критических показателей определяются формулой (39.10). В некотором смысле это дает основание предполагать, что все системы вида (39.1) с операторами A и B типа средней кривизны ведут себя аналогично полуплинейной системе

$$
\begin{align*}
\frac{\partial u}{\partial t} - \Delta u & \geq v^p, \\
\frac{\partial v}{\partial t} - \Delta v & \geq u^q.
\end{align*}
$$

(39.13)

Это наблюдение, конечно, неприменимо к смешанным системам, например, вида

$$
\begin{align*}
\frac{\partial u}{\partial t} - \operatorname{div} A(x, u, Du) & \geq v^p, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial v}{\partial t} - \operatorname{div} B(x, v, Dv) & \geq u^q, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) & = u_0(x), \ v(x, 0) = v_0(x), & x \in \mathbb{R}^N,
\end{align*}
$$

(39.14)

gде A — оператор типа m-лапласиана (см. условие (33.2)) и B — оператор типа средней кривизны (определение 39.1). Эти системы требуют отдельного исследования, которое будет проведено в последующих разделах.

40. СИСТЕМЫ ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ И НЕРАВЕНСТВ С НЕЛИНЕЙНОЙ ГЛАВНОЙ ЧАСТЬЮ

Рассмотрим систему параболических неравенств вида

$$
\begin{align*}
\frac{\partial u}{\partial t} - \operatorname{div} A(x, u, Du) & \geq f(x, u, v), & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial v}{\partial t} - \operatorname{div} B(x, v, Dv) & \geq g(x, u, v), & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, t) & \geq 0, \ v(x, t) \geq 0, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) & = u_0(x) \geq 0, \ v(x, 0) = v_0(x) \geq 0, & x \in \mathbb{R}^N.
\end{align*}
$$

(40.1)

Здесь A и B удовлетворяют либо неравенству (33.2), либо определению 39.1.

Функции

$$
\begin{align*}
f : \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}_+ & \to \mathbb{R}_+, \ g : \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+
\end{align*}
$$

удовлетворяют неравенствам вида

$$
\begin{align*}
f(x, u, v) & \geq a_1(x)|u|^l + a_2(x)|v|^p, \ g(x, u, v) \geq a_3(x)|u|^q + a_4(x)|v|^s,
\end{align*}
$$

и $a_i, i = 1, \ldots, 4,$ — неотрицательные функции, удовлетворяющие некоторым условиям роста на бесконечности.

Чтобы сформулировать достаточные условия об отсутствии решения задачи (40.1), можно рассмотреть диагональную систему

$$
\begin{align*}
\frac{\partial u}{\partial t} - \operatorname{div} A(x, u, Du) & \geq a_2(x)|v|^p, \\
\frac{\partial v}{\partial t} - \operatorname{div} B(x, v, Dv) & \geq a_3(x)|u|^q.
\end{align*}
$$

(40.2)

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
и учесть результаты для двух несвязанных неравенств (см. теорему 33.3)

\[
\begin{align*}
\frac{\partial u}{\partial t} - \text{div} A(x, u, Du) & \geq a_1(x)|u|^p, \\
\frac{\partial v}{\partial t} - \text{div} B(x, v, Dv) & \geq a_4(x)|v|^q.
\end{align*}
\]

Сначала рассмотрим специальный случай (40.2), когда \(a_2 = a_3 = 1 \) и \(a_1 = a_4 = 0 \). Наша система (40.2) тогда принимает вид

\[
\begin{align*}
\frac{\partial u}{\partial t} - \text{div} A(x, u, Du) & \geq |v|^p, \\
\frac{\partial v}{\partial t} - \text{div} B(x, v, Dv) & \geq |v|^q,
\end{align*}
\]

(40.3)

\(u(x, t) \geq 0, \ v(x, t) \geq 0, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \quad u(0, x) = v(0, x) = 0, \quad x \in \mathbb{R}^N. \)

Замечание 40.1. Во многих задачах условия отсутствия решений неравенств являются точными и для соответствующих уравнений, т.е. критические показатели в обоих случаях совпадают. Этот факт не имеет места для эллиптических задач.

Случай, когда \(A \) и \(B \) удовлетворяют неравенству (33.2). Будем предполагать, что \(A, B : \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}^N \to \mathbb{R} \) — карацёдориевы функции и существуют \(m, n > 1 \) и \(c_1, c_2 > 0 \) такие, что для всех \((x, u, w), (x, v, z) \in \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R}^N \)

\[
(A(x, u, w), w) \geq c_1|A(x, u, w)|^m, \quad (B(x, v, z), z) \geq c_2|B(x, v, z)|^n,
\]

(40.4)

где \(m' = m/(m - 1), n' = n/(n - 1). \)

Рассмотрим систему неравенств вида

\[
\begin{align*}
\frac{\partial u}{\partial t} - \text{div} A(x, u, Du) & \geq |v|^p, \\
\frac{\partial v}{\partial t} - \text{div} B(x, v, Dv) & \geq |v|^q,
\end{align*}
\]

(40.5)

\(u(x, 0) = u_0(x) \geq 0, \ v(x, 0) = v_0(x) \geq 0, \quad x \in \mathbb{R}^N, \)

с \(p, q > 1. \)

Определение 40.1. Пара неотрицательных функций \((u, v)\) таких, что

\[
u \in W^{1,m}_{\text{loc}}(\mathbb{R}^N \times (0, \infty)) \cap L^p_{\text{loc}}(\mathbb{R}^N \times (0, \infty)), \quad v \in W^{1,n}_{\text{loc}}(\mathbb{R}^N \times (0, \infty)) \cap L^q_{\text{loc}}(\mathbb{R}^N \times (0, \infty)),
\]

\[A(x, u, Du) \in L^{m'}_{\text{loc}}(\mathbb{R}^N \times (0, \infty)), \quad B(x, v, Dv) \in L^{n'}_{\text{loc}}(\mathbb{R}^N \times (0, \infty)),\]

называется слабым решением задачи (40.5), если для всех неотрицательных пробных функций \(\varphi_1 \in W^{1,m}_{\text{loc}}(\mathbb{R}^N \times (0, \infty)) \) и \(\varphi_2 \in W^{1,n}_{\text{loc}}(\mathbb{R}^N \times (0, \infty)) \) с компактными носителями выполнены

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 4. СИСТЕМЫ НЕРАВЕНСТВ

неравенства

\[\int_0^\infty \int_{\mathbb{R}^N} v^p \varphi_1 \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} \sum_{i=1}^N A_i(x, u, Du) \frac{\partial \varphi_1}{\partial x_i} \, dx \, dt - \int_0^\infty u \frac{\partial \varphi_1}{\partial t} \, dx \, dt, \]

\[\int_0^\infty \int_{\mathbb{R}^N} u^q \varphi_2 \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} \sum_{i=1}^N B_i(x, v, Dv) \frac{\partial \varphi_2}{\partial x_i} \, dx \, dt - \int_0^\infty v \frac{\partial \varphi_2}{\partial t} \, dx \, dt. \]

Замечание 40.2. Начальные данные \(u_0 \) и \(v_0 \) неотрицательны, и неравенства в этом определении имеют смысл.

Следующее утверждение является аналогом леммы 33.1 для системы неравенств.

Лемма 40.1. Пусть \(A \) и \(B \) удовлетворяют определению 39.1. Пусть \((u, v)\) — слабое решение задачи (40.5) и \(\alpha < 0 \) такое, что \(\alpha > \max\{1-m, 1-n, -1\} \). Пусть \(\varphi = \varphi_1 = \varphi_2 \) — допустимая пробная функция.

Тогда

\[\int_0^\infty \int_{\mathbb{R}^N} v^p u^{\alpha} \varphi \, dx \, dt + \frac{c_1|\alpha|}{2} \int_0^\infty \int_{\mathbb{R}^N} |A(x, u, Du)|^m u^{\alpha-1} \varphi \, dx \, dt \leq \]

\[\leq c'_1 \int_0^\infty \int_{\mathbb{R}^N} \left(u^{m-1+\alpha} |D\varphi|^m v^{1-m} + u^{\alpha+1} \left| \frac{\partial \varphi}{\partial t} \right| \right) \, dx \, dt, \quad (40.6) \]

\[\int_0^\infty \int_{\mathbb{R}^N} u^q v^{\alpha} \varphi \, dx \, dt + \frac{c_2|\alpha|}{2} \int_0^\infty \int_{\mathbb{R}^N} |B(x, v, Dv)|^n v^{\alpha-1} \varphi \, dx \, dt \leq \]

\[\leq c'_2 \int_0^\infty \int_{\mathbb{R}^N} \left(v^{n-1+\alpha} |D\varphi|^n v^{1-n} + v^{\alpha+1} \left| \frac{\partial \varphi}{\partial t} \right| \right) \, dx \, dt. \quad (40.7) \]

Здесь \(c'_1 = c'_1(\alpha) > 0, c'_2 = c'_2(\alpha) > 0 \) при достаточно малых \(\alpha < 0 \). □

Чтобы сформулировать следующий результат, введем некоторые обозначения.

Пусть

\[p > \max\{n-1, 1\}, \quad q > \max\{m-1, 1\} \]

и \(\theta > 0 \).

Положим

\[\alpha_1 = \frac{(N + \theta)(pq - (m - 1)(n - 1)) - pn(m - 1) - qmp}{p}, \]

\[\alpha_2 = \frac{N(pq - m + 1) + \theta(pq - (p + 1)(m - 1)) - pqm}{p}, \]

\[\alpha_3 = \frac{N(pq - n + 1) - \theta(n - 1) - pn}{p}, \]

\[\alpha_4 = \frac{N(pq - 1) - \theta(p + 1)}{p}. \]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
и симметрично

\[
\beta_1 = \frac{(N + \theta)(pq - (m - 1)(n - 1)) - qm(n - 1) - pnm}{q},
\]
\[
\beta_2 = \frac{N(pq - n + 1) + \theta(pq - (q + 1)(n - 1)) - pqm}{q},
\]
\[
\beta_3 = \frac{N(pq - m + 1) - \theta(m - 1) - qm}{q},
\]
\[
\beta_4 = \frac{N(pq - 1) - \theta(q + 1)}{q},
\]

и

\[
a_1 = \frac{qp}{(m - 1)(n - 1)}, \quad a_2 = \frac{qp}{m - 1}, \quad a_3 = \frac{qp}{n - 1}, \quad a_4 = qp,
\]
\[
b_1 = \frac{qp}{(m - 1)(n - 1)}, \quad b_2 = \frac{qp}{n - 1}, \quad b_3 = \frac{qp}{m - 1}, \quad b_4 = qp.
\]

С учетом этих обозначений формулируется

Лемма 40.2 (основная априорная оценка). Пусть выполнено (40.8), и пусть \(u, v\) — слабое решение задачи (40.5).

Тогда выполнены оценки

\[
\iint_{A_R} v^p dx \, dt \leq c\{R^{a_1a'_1} + R^{a_2a'_2} + R^{a_3a'_3} + R^{a_4a'_4}\},
\]

(40.12)

\[
\iint_{A_R} u^q dx \, dt \leq c\{R^{b_1b'_1} + R^{b_2b'_2} + R^{b_3b'_3} + R^{b_4b'_4}\},
\]

(40.13)

где

\[
A_R = \{(x, t) : t^{\theta_1} + |x|^{\theta_2} \leq R^{\theta_2}\},
\]

(40.14)

и \(a'_i, b'_i, i = 1, \ldots, 4\), — сопряженные показатели к \(a_i, b_i\), определенным формулами (40.11).

Доказательство. Умножая (40.5) на \(\varphi\) и интегрируя по частям, получим

\[
\iint_{R^N} v^p \varphi dx \, dt \leq \int_0^\infty \int_{R^N} \sum_{i=1}^N A_i(x, u, Du) \frac{\partial \varphi}{\partial x_i} dx \, dt - \int_0^\infty \int_{R^N} u \frac{\partial \varphi}{\partial t} dx \, dt,
\]

(40.15)

\[
\iint_{R^N} u^q \varphi dx \, dt \leq \int_0^\infty \int_{R^N} \sum_{i=1}^N B_i(x, v, Dv) \frac{\partial \varphi}{\partial x_i} dx \, dt - \int_0^\infty \int_{R^N} v \frac{\partial \varphi}{\partial t} dx \, dt.
\]

(40.16)

Далее применяем неравенство Гельдера:

\[
\iint_{R^N} v^p \varphi dx \, dt \leq \left(\int_0^\infty \int_{R^N} |A(x, u, Du)|^{m'} u^{\sigma-1} dx dt\right)^{1/m'} \left(\int_0^\infty \int_{R^N} u^{(1-\sigma)(m-1)} |D\varphi|^m \varphi^{1-m} dx dt\right)^{1/m} +
\]

\[
+ \left(\int_0^\infty \int_{R^N} \left|\frac{\partial \varphi}{\partial t}\right|^{q' - 1} |\varphi| dx dt\right)^{q - 1} \left(\int_0^\infty \int_{R^N} u^q \varphi dx dt\right)^{1/q}.
\]

(40.17)
и

\[\int_0^\infty \int_{\mathbb{R}^N} u^\varphi \, dx \, dt \leq \left(\int_0^\infty \int_{\mathbb{R}^N} |B(x,v,Dv)|^{n^\varphi} \varphi^{\alpha-1} \, dx \, dt \right)^{1/n'} \left(\int_0^\infty \int_{\mathbb{R}^N} v^{(1-\alpha)(n-1)} |D\varphi|^{n^\varphi-1} \, dx \, dt \right)^{1/n} + \\
\left(\int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right| \varphi^{-\frac{1}{p-1}} \, dx \, dt \right)^{\frac{n-1}{p}} \left(\int_0^\infty \int_{\mathbb{R}^N} v^p \varphi \, dx \, dt \right)^{1/p} \right). \]

(40.18)

Введем параметры

\[\kappa_1 = \frac{q}{m - 1 + \alpha}, \quad y_1 = \frac{q}{\alpha + 1}, \quad z_1 = \frac{q}{(1 - \alpha)(m - 1)}, \]
\[\kappa_2 = \frac{p}{n - 1 + \alpha}, \quad y_2 = \frac{p}{\alpha + 1}, \quad z_2 = \frac{p}{(1 - \alpha)(n - 1)}. \]

Положим

\[X = \int_0^\infty \int_{\mathbb{R}^N} v^p \varphi \, dx \, dt, \quad Y = \int_0^\infty \int_{\mathbb{R}^N} u^\varphi \, dx \, dt. \]

Тогда из (40.6) и (40.7) получим

\[X \leq c \{ Y^\frac{m\kappa_1 + m\kappa_1}{m\kappa_1 + m\kappa_1} \tilde{A} + Y^{\frac{m\kappa_1 + m\kappa_1}{m\kappa_1 + m\kappa_1}} \tilde{B} + Y^{1/q} \tilde{C} \}, \]

(40.19)

\[Y \leq c \{ X^\frac{m\kappa_2 + m\kappa_2}{m\kappa_2 + m\kappa_2} \tilde{D} + X^{\frac{m\kappa_2 + m\kappa_2}{m\kappa_2 + m\kappa_2}} \tilde{E} + X^{1/p} \tilde{F} \}, \]

(40.20)

где

\[\tilde{A} = \left(\int_0^\infty \int_{\mathbb{R}^N} |D\varphi|^{m\kappa_1} \varphi^{1-m\kappa_1} \, dx \, dt \right)^{\frac{1}{m\kappa_1}}, \]

\[\tilde{B} = \left(\int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right| y_1 \varphi^{1-y_1} \, dx \, dt \right)^{\frac{1}{y_1}}, \]

\[\tilde{C} = \left(\int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right| \varphi^{-\frac{1}{p-1}} \, dx \, dt \right)^{\frac{p-1}{p}}, \]

(40.21)

\[\tilde{D} = \left(\int_0^\infty \int_{\mathbb{R}^N} |D\varphi|^{n\kappa_2} \varphi^{1-n\kappa_2} \, dx \, dt \right)^{\frac{1}{n\kappa_2}}, \]

\[\tilde{E} = \left(\int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right| y_2 \varphi^{1-y_2} \, dx \, dt \right)^{\frac{1}{y_2}}, \]

\[\tilde{F} = \left(\int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial \varphi}{\partial t} \right| \varphi^{-\frac{1}{p-1}} \, dx \, dt \right)^{\frac{p-1}{p}}. \]
Используя определение \(x_i, y_i, z_i, i = 1, 2 \):
\[
X \leq c\{Y^{\frac{m-1}{n}} \tilde{A} + Y^{\frac{2(m-1)}{n}} \tilde{B} + Y^{\frac{1}{2}} \tilde{C}\}, \quad Y \leq c\{X^{\frac{n-1}{n}} \tilde{D} + X^{\frac{2(n-1)}{n}} \tilde{E} + X^{\frac{1}{2}} \tilde{F}\}. \tag{40.22}
\]

Далее выберем специальную пробную функцию \(\varphi \), именно
\[
\varphi(x, t) = \varphi_0 \left(\frac{x^{\theta_1} + \vert x \vert^{\theta_2}}{R^2} \right), \tag{40.23}
\]
где \(\varphi_0 \in C^1(\mathbb{R}_+) \) такая, что
\[
\varphi_0(\xi) = \begin{cases}
1, & 0 \leq \xi \leq 1, \\
0, & \xi \geq 2,
\end{cases} \tag{40.24}
\]
и \(\theta_1, \theta_2 > 0 \) таковы, что \(\frac{\theta_2}{m} = \theta \) и функция \(\varphi(x, t) \) обладает требуемой в определении 40.1 гладкостью.

Используя стандартную замену переменных, получим
\[
\tilde{A} = \text{const} \cdot R^{L_1}, \quad \tilde{B} = \text{const} \cdot R^{L_2}, \quad \tilde{C} = \text{const} \cdot R^{L_3}, \quad \tilde{D} = \text{const} \cdot R^{M_1}, \quad \tilde{E} = \text{const} \cdot R^{M_2}, \quad \tilde{F} = \text{const} \cdot R^{M_3}, \tag{40.25}
\]
где
\[
L_1 = \frac{(N + \theta)(q - m + 1) - qm}{q}, \\
L_2 = \frac{(N + \theta)(qm - 2(m - 1)) - \theta q(m - 1) - mq}{mq}, \\
L_3 = \frac{N(q - 1) - \theta}{q}, \\
M_1 = \frac{(N + \theta)(p - n + 1) - pm}{p}, \\
M_2 = \frac{(N + \theta)(pn - 2(n - 1)) - \theta p(n - 1) - np}{np}, \\
M_3 = \frac{N(p - 1) - \theta}{p}, \\
\theta = \frac{\theta_2}{\theta_1}.
\]

Далее из (40.22) следует
\[
X^q \leq c\{Y^{m-1} \tilde{A}^q + Y^{\frac{2(m-1)}{m}} \tilde{B}^q + Y^{\frac{1}{2}} \tilde{C}^q\}, \quad Y^p \leq c\{X^{n-1} \tilde{D}^p + X^{\frac{2(n-1)}{n}} \tilde{E}^p + X^{\frac{1}{2}} \tilde{F}^p\} \tag{40.27}
\]
и в силу (40.25)
\[
X^q \leq c\{Y^{m-1} R^{L_1 q} + Y^{\frac{2(m-1)}{m}} R^{2L_2 q} + Y R^{L_3 q}\}, \\
Y^p \leq c\{X^{n-1} R^{M_1 p} + X^{\frac{2(n-1)}{n}} R^{2M_2 p} + X R^{M_3 p}\}. \tag{40.28}
\]

Заметим, что из (40.26) вытекает
\[
L_2 = \frac{1}{m} L_1 + \frac{1}{m'} L_3, \quad M_2 = \frac{1}{n} M_1 + \frac{1}{n'} M_3. \tag{40.29}
\]
С учетом этих равенств из (40.22), используя неравенство Юнга, получим

\[X^q \leq c \{ Y^{m-1} R^{L_1 q} + Y R^{L_2 q} \}, \quad Y^p \leq c \{ X^{n-1} R^{M_1 p} + X R^{M_2 p} \}. \]

(40.30)

Следовательно,

\[
X^q \leq c \left\{ \frac{(m-1)(n-1)}{p} R^{M_1 (m-1)+L_1 q} + \frac{(m-1)}{p} R^{M_2 (m-1)+L_1 q} + \frac{1}{p} R^{M_1 +L_2 q} + \frac{1}{p} R^{M_2 +L_2 q} \right\},
\]

и затем по неравенству Юнга

\[
X \leq c \left\{ R^{(M_1 (m-1)+L_1 q)} a'_1 + R^{(M_3 (m-1)+L_1 q)} a'_2 + R^{(M_1 +L_3 q)} a'_3 + R^{(M_2 +L_3 q)} a'_4 \right\},
\]

(40.31)

\[
Y \leq c \left\{ R^{(L_1 (n-1)+M_1 p)} b'_1 + R^{(L_3 (n-1)+M_1 p)} b'_2 + R^{(L_1 +M_3 p)} b'_3 + R^{(L_3 +M_3 p)} b'_4 \right\},
\]

(40.32)

где \(a'_i \) и \(b'_i, i = 1, \ldots, 4 \), — сопряженные показатели к \(a_i \) и \(b_i \), определенным формулами (40.11).

Непосредственное вычисление показывает, что

\[
\begin{align*}
\alpha_1 &= M_1 (m-1) + L_1 q, \\
\beta_1 &= L_1 (n-1) + M_1 p, \\
\alpha_2 &= M_3 (m-1) + L_1 q, \\
\beta_2 &= L_3 (n-1) + M_1 p, \\
\alpha_3 &= M_1 + L_3 q, \\
\beta_3 &= L_1 + M_3 p, \\
\alpha_4 &= M_3 + L_3 q, \\
\beta_4 &= L_3 + M_3 p,
\end{align*}
\]

(40.33)

откуда следуют (40.12) и (40.13), что завершает доказательство леммы 40.2. \(\square \)

Из леммы 40.2 вытекает

Теорема 40.1. Пусть выполнено (40.8). Если

\[
\begin{align*}
\begin{cases}
N(pq - (m-1)(n-1)) & \leq pm + m(n-1), \\
N(pq - 1) & \leq (N(m-2) + m)(p + 1)
\end{cases}
\]

или

\[
\begin{align*}
\begin{cases}
N(pq - (m-1)(n-1)) & \leq qm + n(m-1), \\
N(pq - 1) & \leq (N(m-2) + n)(q + 1),
\end{cases}
\]

(40.34)

(40.35)

to задача (40.5) не имеет нетривиального неотрицательного решения.

Доказательство. Из (40.33) следует, что если положить \(\alpha_1 = (m-1)\alpha_3 \), то

\[
\theta = N(m-2) + m
\]

(40.36)

и мы получим \(\alpha_2 = (m-1)\alpha_4 \).

Тогда (40.12) принимает вид

\[
\int_\Lambda R \nu^p(x,t) \, dx \, dt \leq c \{ R^{(m-1)\alpha_3 a'_1} + R^{(m-1)\alpha_4 a'_2} + R^{\alpha_3 a'_3} + R^{\alpha_4 a'_4} \}.
\]

(40.37)

Ясно, что если

\[
\max \{ \alpha_3, \alpha_4 \} < 0,
\]

(40.38)

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
то (40.37) означает
\[\int_0^\infty \int_{\mathbb{R}^N} v^p(x,t)\,dx\,dt = 0, \]
откуда с учетом эквивалентности (40.38) и (40.34) со строгим неравенством следует требуемый результат.

Теперь предположим, что (40.34) выполнено со знаком равенства. Тогда из (40.37) заключаем, что \(v \in L^p(\mathbb{R}^N \times (0,\infty)) \). Возвращаясь к (40.22), из второго неравенства получим (с пробной функцией, определенной формулой (40.23))
\[
\int \int_{A_R} u^q(x,t)\,dx\,dt \leq c \left\{ \left(\int \int_{Z_R} v^p(x,t)\,dx\,dt \right)^{\frac{n-1}{p}} \hat{D} + \right. \\
+ \left. \left(\int \int_{Z_R} v^p(x,t)\,dx\,dt \right)^{\frac{2(n-1)}{mp}} \hat{E} + \left(\int \int_{Z_R} v^p(x,t)\,dx\,dt \right)^{1/p} \hat{F} \right\}, \tag{40.39}
\]
где
\[Z_R = \{(x,t) : R^\theta_1 \leq t^\theta_1 + |x|^\theta_2 \leq 2R^\theta_2 \} \]
c \(\theta = \frac{\theta_1}{m} = N(m-2) + m \). Далее, поскольку \(v \in L^p(\mathbb{R}^N \times (0,\infty)) \), то существует последовательность \(\{R_k\}, R_k \to \infty \), такая, что
\[\lim_{k \to \infty} \int \int_{Z_{R_k}} v^p(x,t)\,dx\,dt = 0, \]
и тогда из (40.39) получаем
\[\int_0^\infty \int_{\mathbb{R}^N} u^q(x,t)\,dx\,dt = 0, \]
t.е. \(u(x,t) = 0 \) п.в. в \(\mathbb{R}^N \times (0,\infty) \).

Используя первое неравенство (40.22), заключаем также, что \(v(x,t) = 0 \) п.в. в \(\mathbb{R}^N \times (0,\infty) \).

Это завершает доказательство теоремы в случае выполнения (40.34). Доказательство для случая, когда выполнено (40.35), аналогично. □

Отметим важные частные случаи теоремы 40.1. Случай
\[A(x,u,Du) = Du, \quad B(x,v,Dv) = Dv, \tag{40.40} \]
который соответствует системе
\[
\begin{align*}
\frac{\partial u}{\partial t} - \Delta u &= v^p, \quad (x,t) \in \mathbb{R}^N \times (0,\infty), \\
\frac{\partial v}{\partial t} - \Delta v &= u^q, \quad (x,t) \in \mathbb{R}^N \times (0,\infty), \\
u(x,0) &= u_0(x), \quad v(x,0) = v_0(x), \quad x \in \mathbb{R}^N,
\end{align*} \tag{40.41}
\]
рассматривался в [59].

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Теорема 40.2 (Эскобедо–Херреро [59]). Пусть \(p, q > 1 \) и
\[
\max \left\{ \frac{p + 1}{pq - 1}, \frac{q + 1}{pq - 1} \right\} \geq \frac{N}{2},
\]
(40.42)
Тогда (40.41) не имеет нетривиального неотрицательного решения.

Доказательство. Действительно, в этом случае имеем \(m = n = 2 \). Тогда из (40.34) следует, что
\[
N(pq - 1) \leq 2(p + 1),
\]
и аналогично из (40.35)
\[
N(pq - 1) \leq 2(q + 1),
\]
откуда следует утверждение теоремы. □

Теорема 40.3 (Галактионов (см. [237])). Пусть
\[
\max\{1, m - 1\} < q \leq m - 1 + \frac{m}{N},
\]
(40.43)
Тогда задача
\[
\begin{aligned}
\frac{\partial u}{\partial t} - \text{div}(|Du|^{m-2}Du) &= u^q, \quad (x,t) \in \mathbb{R}^N \times (0, \infty), \\
u(x,t) &\geq 0, \quad (x,t) \in \mathbb{R}^N \times (0, \infty), \\
u(x,0) &= u_0(x), \quad x \in \mathbb{R}^N,
\end{aligned}
\]
(40.44)
не имеет глобального нетривиального решения.

Доказательство. В этом случае имеем \(m = n \) и \(p = q \) для системы
\[
\begin{aligned}
\frac{\partial u}{\partial t} - \text{div}(|Du|^{m-2}Du) &= v^q, \quad (x,t) \in \mathbb{R}^N \times (0, \infty), \\
v(x,t) &\geq 0, \quad (x,t) \in \mathbb{R}^N \times (0, \infty), \\
u(x,0) &= u_0(x), \quad x \in \mathbb{R}^N,
\end{aligned}
\]
(40.45)
Тогда (40.34) (или (40.35)) принимает вид
\[
\begin{aligned}
N(q^2 - (m - 1)^2) &\leq m(q + m - 1), \\
N(q^2 - 1) &\leq (N(m - 2) + m)(q + 1)
\end{aligned}
\]
(40.46)
и из теоремы 40.1 вытекает \(u \equiv v \equiv 0 \). Заметим, что (40.46) эквивалентно (40.43). □

Интересным следствием теоремы 40.1 является

Теорема 40.4. Пусть \(m, n > 1, N \geq 1 \) и
\[
p > \max\{1, n - 1\}, \quad q > \max\{1, m - 1\}.
\]
(40.47)
Тогда задача
\[
\begin{aligned}
\frac{\partial u}{\partial t} - \text{div}(|Du|^{m-2}Du) &\geq v^p, \quad (x,t) \in \mathbb{R}^N \times (0, \infty), \\
v(x,t) &\geq 0, \quad (x,t) \in \mathbb{R}^N \times (0, \infty), \\
u(x,0) &= u_0(x) \geq 0, \quad v(x,0) = v_0(x) \geq 0, \quad x \in \mathbb{R}^N,
\end{aligned}
\]
не имеет нетривиального неотрицательного решения, если

\[
\begin{cases}
N(pq - (m - 1)(n - 1)) \leq pm + m(n - 1), \\
N(pq - 1) \leq (N(m - 2) + m)(p + 1)
\end{cases}
\]

или

\[
\begin{cases}
N(pq - (m - 1)(n - 1)) \leq qm + n(m - 1), \\
N(pq - 1) \leq (N(n - 2) + n)(q + 1).
\end{cases}
\]

Общие условия отсутствия решения задачи (40.5). Общие условия отсутствия нетривиального решения задачи (40.5) можно получить, используя оценки вида (40.30) в общей форме. Введем некоторые обозначения. Пусть выполнено (40.8), и положим для \(\theta \in \mathbb{R} \)

\[
N_1 = N_1(p, q, m, n, \theta) := \frac{pm(m - 1) + pqm}{pq - (m - 1)(n - 1)} - \theta,
\]

\[
N_2 = N_2(p, q, m, n, \theta) := \frac{pq - (p + 1)(m - 1)}{pq - m + 1},
\]

\[
N_3 = N_3(p, q, m, n, \theta) := \frac{pn + \theta(n - 1)}{pq - n + 1},
\]

\[
N_4 = N_4(p, q, m, n, \theta) := \frac{\theta(p + 1)}{pq - 1}
\]

и

\[
N'_1 := N_1(q, p, n, m, \theta), \quad N'_2 := N_2(q, p, n, m, \theta),
\]

\[
N'_3 := N_3(q, p, n, m, \theta), \quad N'_4 := N_4(q, p, n, m, \theta).
\]

Обозначим через

\[
N_*(\theta) = \min\{N_1, N_2, N_3, N_4\}, \quad N'_*(\theta) = \min\{N'_1, N'_2, N'_3, N'_4\}.
\]

Следующий результат об отсутствии решения доказывается аналогично предыдущим теоремам.

Теорема 40.5 (об отсутствии решения — неявная форма). Пусть

\[
N \leq \max_{\theta > 0}\{N_*(\theta), N'_*(\theta)\}.
\]

Тогда задача (40.5) не имеет нетривиального решения.

Доказательство. Пусть \(\theta > 0 \) такое, что

\[
N \leq N_*(\theta).
\]

Тогда из (40.30) следует, что (в обозначениях (40.33))

\[
\iint_{A_R} v^p \, dx \, dt \leq c\{R^{\alpha_1^{\alpha_1'} + \alpha_2^{\alpha_2'} + \alpha_3^{\alpha_3'} + \alpha_4^{\alpha_4'}},
\]

где

\[
A_R = \{(x, t) \in \mathbb{R}^N \times (0, \infty) : t^{\theta_1} + |x|^{\theta_2} \leq R^{\theta_2}\}
\]

и \(\theta = \frac{\theta_1}{\theta_2} \).

Очевидно, из неравенства (40.52) следует \(\alpha_i \leq 0, i = 1, \ldots, 4 \), так что из (40.53) получаем \(v \in L^p(\mathbb{R}^N \times (0, \infty)) \). Далее действуем аналогично второй части доказательства теоремы 40.1, поэтому опускаем детали.

Рассуждая аналогично, можно рассмотреть вместо (40.52) условие \(N \leq N'_*(\theta) \). \(\square \)
Явная форма теоремы 40.5. Пусть выполнено (40.8). Из предыдущего очевидно, что достаточное условие отсутствия нетривиальных решений задачи (40.5) дается неравенством

$$\max_{1 \leq i \leq 4} \{ \alpha_i \} \leq 0,$$

где α_i, $i = 1, \ldots, 4$, определены формулами (40.33). Тогда

$$\max_{1 \leq i \leq 4} \{ \alpha_i \} \leq 0 \iff \begin{cases} M_1(m - 1) + L_1q \leq 0, \\ M_3(m - 1) + L_1q \leq 0, \\ M_1 + L_3q \leq 0, \\ M_3 + L_3q \leq 0. \end{cases} \quad (40.54)$$

Будем исследовать (40.54) в двух случаях

$$M_1 \leq M_3 \quad (40.55)$$

или

$$M_3 \leq M_1. \quad (40.56)$$

Очевидно, (40.54) эквивалентно двум наборам условий

$$\begin{cases} M_1 \leq M_3, \\ M_3(m - 1) + L_1q \leq 0, \\ M_1 + L_3q \leq 0. \end{cases} \quad (40.57)$$

$$\begin{cases} M_3 \leq M_1, \\ M_1(m - 1) + L_1q \leq 0, \\ M_3 + L_3q \leq 0. \end{cases}$$

Рассмотрим первый набор условий (40.57). Записывая выражения для L_1, L_3 и M_1, M_3 по формулам (40.26), находим, что (40.57) эквивалентно

$$\begin{cases} \theta \leq \frac{N(n - 2) + np}{p + 2 - n}, \\ \theta(pq - (p + 1)(m - 1)) \leq pqm - N(pq - m + 1), \\ \frac{N(pq - 1)}{p + 1} \leq \theta. \end{cases} \quad (40.58)$$

Далее будем изучать (40.58) в трех различных случаях:

$$pq > (p + 1)(m - 1),$$

$$pq < (p + 1)(m - 1),$$

$$pq = (p + 1)(m - 1). \quad (40.59)$$

В случае $pq > (p + 1)(m - 1)$ видим, что условия отсутствия решения сводятся к задаче нахождения $\theta > 0$ такого, что

$$\frac{N(pq - 1)}{p + 1} \leq \theta \leq \min \left\{ \frac{N(n - 2) + np}{p + 2 - n}, \frac{pqm - N(pq - m + 1)}{pq - (p + 1)(m - 1)} \right\}. \quad (40.60)$$

Таким образом, в данном случае можем сказать, что если

$$\frac{N(pq - 1)}{p + 1} \leq \min \left\{ \frac{N(n - 2) + np}{p + 2 - n}, \frac{pqm - N(pq - m + 1)}{pq - (p + 1)(m - 1)} \right\},$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
то оптимальный выбор \(\theta > 0 \) дается формулой

\[
\theta = \begin{cases}
\frac{N(n - 2) + np}{p + 2 - n}, & \text{если } \frac{N(n - 2) + np}{p + 2 - n} \leq \frac{pqm - N(pq - m + 1)}{pq - (p + 1)(m - 1)}, \\
\frac{pqm - N(pq - m + 1)}{pq - (p + 1)(m - 1)}, & \text{если } \frac{N(n - 2) + np}{p + 2 - n} \geq \frac{pqm - N(pq - m + 1)}{pq - (p + 1)(m - 1)}.
\end{cases}
\] (40.61)

Теперь рассмотрим случай \(1 < pq < (p + 1)(m - 1) \). Тогда условия (40.58) эквивалентны

\[
\begin{align*}
\frac{N(pq - 1)}{p + 1} & \leq \theta \leq \frac{N(n - 2) + np}{p + 2 - n}, \\
\frac{N(pq - m + 1) - pqm}{(p + 1)(m - 1) - pq} & \leq \theta,
\end{align*}
\] (40.62)

и поэтому если

\[
\max \left\{ \frac{N(pq - 1)}{p + 1}, \frac{N(pq - m + 1) - pqm}{(p + 1)(m - 1) - pq} \right\} \leq \frac{N(n - 2) + np}{p + 2 - n},
\]

то оптимальный выбор \(\theta > 0 \) определяется формулой

\[
\begin{align*}
\frac{N(pq - 1)}{p + 1}, & \text{если } \frac{N(pq - 1)}{p + 1} \geq \frac{N(pq - m + 1) - pqm}{(p + 1)(m - 1) - pq}, \\
\frac{N(pq - m + 1) - pqm}{(p + 1)(m - 1) - pq}, & \text{если } \frac{N(pq - 1)}{p + 1} \leq \frac{N(pq - m + 1) - pqm}{(p + 1)(m - 1) - pq}.
\end{align*}
\]

Наконец, рассмотрим случай \(pq = (p + 1)(m - 1) \). Тогда (40.58) принимает вид

\[
\begin{align*}
\frac{N(pq - m + 1)}{p + 1} & \leq pqm, \\
\frac{N(pq - 1)}{p + 1} & \leq \frac{N(n - 2) + np}{p + 2 - n}.
\end{align*}
\] (40.63)

Очевидно, этот случай сводится к выбору любого \(\theta > 0 \), при котором удовлетворяется (40.63). Точнее, пусть \(pq = (p + 1)(m - 1) \) и

\[
\begin{align*}
\frac{N(pq - m + 1)}{p + 1} & \leq pqm, \\
\frac{N(pq - 1)}{p + 1} & \leq \frac{N(n - 2) + np}{p + 2 - n}.
\end{align*}
\]

Тогда любое \(\theta > 0 \) такое, что

\[
\frac{N(pq - 1)}{p + 1} \leq \theta \leq \frac{N(n - 2) + np}{p + 2 - n},
\] (40.64)

подходит для наших целей.

Теперь рассмотрим случай (40.56). Тогда второй набор условий (40.57) эквивалентен

\[
\begin{align*}
\frac{N(n - 2) + np}{p + 2 - n} & \leq \theta, \\
\theta & \leq \frac{np(m - 1) + pqm}{pq - (m - 1)(n - 1)} - N, \\
\frac{N(pq - n + 1) - np}{n - 1} & \leq \theta.
\end{align*}
\] (40.65)
Таким образом, если

$$\max \left\{ \frac{N(n - 2) + np}{p + 2 - n} N(pq - n + 1) - np \right\} \leq \frac{np(m - 1) + pqm}{pq - (m - 1)(n - 1)} - N, \quad (40.66)$$

где правая часть предполагается положительной, то оптимальный выбор $\theta > 0$ осуществляется по формуле

$$\theta = \begin{cases} \frac{N(n - 2) + np}{p + 2 - n}, & \text{если} \quad \frac{np(m - 1) + pqm}{pq - (m - 1)(n - 1)} \geq \frac{N(n - 2) + np}{p + 2 - n}; \\ \frac{N(pq - n + 1) - np}{n - 1}, & \text{если} \quad \frac{N(pq - n + 1) - np}{n - 1} \leq \frac{np(m - 1) + pqm}{pq - (m - 1)(n - 1)}. \end{cases}$$

В итоге можем сформулировать условия отсутствия решения в явной форме.

Теорема 40.6 (об отсутствии решения — явная форма). Пусть $n, m > 1$ и $p > \max\{1, n - 1\}, q > \max\{1, m - 1\}$. Пусть выполнено хотя бы одно из следующих условий:

\begin{enumerate}
\item $pq > (p + 1)(m - 1)$,
\item $\frac{N(pq - 1)}{p + 1} \leq \min \left\{ \frac{N(n - 2) + np}{p + 2 - n}, \frac{pqm - N(pq - m + 1)}{pq - (p + 1)(m - 1)} \right\};$
\item $pq < (p + 1)(m - 1)$,
\item $\max \left\{ \frac{N(pq - 1)}{p + 1}, \frac{N(pq - m + 1) - pqm}{p + 1} \right\} \leq \frac{N(n - 2) + np}{p + 2 - n};$
\item $pq = (p + 1)(m - 1)$,
\item $\frac{N(pq - m + 1)}{p + 1} \leq \frac{N(n - 2) + np}{p + 2 - n};$
\item $\max \left\{ \frac{N(n - 2) + np}{p + 2 - n}, \frac{N(pq - n + 1) - np}{n - 1} \right\} \leq \frac{np(m - 1) + pqm}{pq - (m - 1)(n - 1)} - N,$
\end{enumerate}

где правая часть предполагается положительной.

Тогда задача (40.5) не имеет нетривиального решения. □

Заметим, что система

$$\max_{1 \leq i \leq 4} \{ \alpha_i \} \leq 0$$

эквивалентна системе

$$\max_{1 \leq i \leq 4} \{ \beta_i \} \leq 0$$

с заменой $p \leftrightarrow q$ и $m \leftrightarrow n$.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Отсюда следует

Теорема 40.7 (вторая теорема об отсутствии решения — явная форма). Пусть $m, n > 1$ и $q > \max\{1, m-1\}, p > \max\{1, n-1\}$. Пусть выполнено хотя бы одно из следующих условий:

(i) $qp > (q + 1)(n - 1)$,

\[
\frac{N(qp - 1)}{q + 1} \leq \min \left\{ \frac{N(m - 2) + mq}{q + 2 - m}, \frac{qpm - N(qp - n + 1)}{qp - (q + 1)(n - 1)} \right\};
\]

(ii) $q < (q + 1)(n - 1)$,

\[
\max \left\{ \frac{N(qp - 1)}{q + 1}, \frac{N(qp - n + 1) - qpm}{(q + 1)(n - 1) - qp} \right\} \leq \frac{N(m - 2) + mq}{q + 2 - m};
\]

(iii) $qp = (q + 1)(n - 1)$,

\[
\frac{N(qp - n + 1)}{q + 1} \leq \frac{N(m - 2) + mq}{q + 2 - m};
\]

(iv) $\max \left\{ \frac{N(m - 2) + mq}{q + 2 - m}, \frac{N(qp - m + 1) - mq}{m - 1} \right\} \leq \frac{mq(n - 1) + qpm}{qp - (n - 1)(m - 1) - N},
\]

где правая часть предполагается положительной.

Тогда задача (40.5) не имеет нетривиального решения. □

Некоторые обобщения. При доказательстве теоремы 40.5 мы использовали для двух неравенств одну и ту же пробную функцию

\[
\varphi(x, t) = \varphi_0 \left(\frac{t^{\theta_1} + |x|^{\theta_2}}{R^{\theta_2}} \right).
\]

Именно, мы умножали первое неравенство на $u_0^\alpha \varphi$ и φ

и второе неравенство на $v_0^\alpha \varphi$ и φ.

Однако можно использовать разные пробные функции, взяв φ_1 и φ_2 в виде

\[
\varphi_1(x, t) = \varphi_0 \left(\frac{t^{\theta_1} + |x|^{\theta_2}}{R^{\theta_2}} \right), \quad \varphi_2(x, t) = \varphi_0 \left(\frac{t^{\theta_1'} + |x|^{\theta_2'}}{R^{\theta_2'}} \right),
\]

где $\theta_i, \theta_i', i = 1, 2$, положительны и функция φ_0 выбрана по формуле (40.24).

Тогда первое неравенство умножим на

$u_0^\alpha \varphi_1$ и φ_1

и второе неравенство на

$v_0^\alpha \varphi_2$ и φ_2.

Действуя аналогично предыдущим доказательствам (например, (40.30)), получаем аналоги неравенств (40.30), т.е.

\[
X^q \leq c\{Y^{m-1}R^{L_1^q} + Y R^{L_2^q}\}, \quad Y^p \leq c\{X^{n-1}R^{M_1^p} + X R^{M_2^p}\},
\]

(40.67)

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Аналогичный анализ второго неравенства

где

\[X = \iint_{A_R} v^p(x, t) \, dx \, dt, \quad Y = \iint_{B_R} u^q(x, t) \, dx \, dt, \quad (40.68) \]

\[A_R = \{(x, t) : |x|^{\theta_1} \leq R^{\theta_2}\}, \quad B_R = \{(x, t) : |x|^{\theta_1} \leq R^{\theta_2}\}, \]

и

\[L'_1 = \frac{(N + \theta)(q - m + 1) - qm}{q}, \quad M'_1 = \frac{(N + \theta)(p - n + 1) - pn}{p}, \quad (40.69) \]

\[L'_3 = \frac{N(q - 1) - \theta}{q}, \quad M'_3 = \frac{N(p - 1) - \theta'}{p}, \]

\[\theta = \frac{\theta}{\sigma_1}, \quad \theta' = \frac{\theta'}{\sigma_1}. \]

Теперь, действуя аналогично (40.30), получим

\[X \leq c\{R^{\alpha'_1} + R^{\alpha'_2} + R^{\alpha'_3} + R^{\alpha'_4}\}, \quad Y \leq c\{R^{\beta'_1} + R^{\beta'_2} + R^{\beta'_3} + R^{\beta'_4}\}, \quad (40.70) \]

где

\begin{align*}
\alpha'_1 &= M'_1(m - 1) + L'_1 q, \\
\alpha'_2 &= M'_3(m - 1) + L'_1 q, \\
\alpha'_3 &= M'_1 + L'_3 q, \\
\alpha'_4 &= M'_3 + L'_3 q,
\end{align*}

\begin{align*}
\beta'_1 &= L'_4(n - 1) + M'_1 p, \\
\beta'_2 &= L'_4(n - 1) + M'_1 p, \\
\beta'_3 &= L'_1 + M'_3 p, \\
\beta'_4 &= L'_3 + M'_3 p,
\end{align*}

и \(\alpha'_i, \beta'_i, \ i = 1, \ldots, 4, \) — сопряженные показатели к \(a_i, b_i, \) определенным формулами (40.11).

Из (40.70) следует (см. доказательство теоремы 40.1), что достаточным условием отсутствия нетривиального решения задачи (40.5) является выполнение одного из неравенств

\[\max_{1 \leq i \leq 4} \{ \alpha'_i \} \leq 0, \quad \max_{1 \leq i \leq 4} \{ \beta'_i \} \leq 0. \quad (40.72) \]

\textbf{Частный случай отсутствия решения.} Рассмотрим первое неравенство (40.72). Из определения \(\alpha'_i \) (см. (40.71)) следует, что если выбрать \(L'_1 = L'_3, \) то первое неравенство (40.72) эквивалентно

\[L'_4(n - 1) + M'_1 p \leq 0, \quad L'_1 + M'_3 p \leq 0. \quad (40.73) \]

Тогда условие \(L'_1 = L'_3 \) с необходимостью означает

\[\theta = \frac{qm + N(m - 2)}{q - n + 2}. \quad (40.74) \]

Выписывая явно (40.73) и полагая \(\theta = \theta', \) видим, что они эквивалентны

\[\begin{cases}
N(pq - (m - 1)(n - 1)) \leq pm(q - m + 2), \\
N(pq - p(m - 2) - m + 1) \leq m(q + 1).
\end{cases} \quad (40.75) \]

Аналогичный анализ второго неравенства (40.72) с \(M'_1 = M'_3 \) и

\[\theta' = \frac{pm + N(n - 2)}{p - m + 2} \]
показывает, что второе неравенство (40.72) эквивалентно

\[
\begin{align*}
N(pq - (m - 1)(n - 1)) &\leq qm(p - n + 2), \\
N(pq - q(n - 2) - n + 1) &\leq n(p + 1).
\end{align*}
\]

(40.76)

Таким образом доказана

Теорема 40.8. Пусть

\[p > \max\{n - 1, 1\}, \quad q > \max\{m - 1, 1\} \]

и выполнено (40.75) или (40.76).

Тогда (40.5) не имеет нетривиального решения. □

Замечание 40.3. Нетрудно видеть, что теорема 40.8 содержит частные случаи, изученные Эскобедо и Херреро (см. теорему 40.2) и Галактионовым (см. теорему 40.3).

41. НЕКОТОРЫЕ ОБЩИЕ СИСТЕМЫ ПАРABELИЧЕСКИХ НЕРАВЕНСТВ С НЕЛИНЕЙНОЙ ГЛАВНОЙ ЧАСТЬЮ

Здесь приводятся полученные совместно с А. Тесеем [235] результаты о разрушении (blow-up) неотрицательных решений системы параболических неравенств следующего вида:

\[
\begin{align*}
\frac{\partial u}{\partial t} &\geq \sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left[A(x, t, u, v, \nabla u, \nabla v) \frac{\partial u}{\partial x_i} \right] + b(x, t, u, v, \nabla u, \nabla v)v^r, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial v}{\partial t} &\geq \sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left[A(x, t, u, v, \nabla u, \nabla v) \frac{\partial v}{\partial x_i} \right] + c(x, t, u, v, \nabla u, \nabla v)u^s, \quad (x, t) \in \mathbb{R}^N \times (0, \infty);
\end{align*}
\]

(41.1)

здесь \(r > 0, s > 0 \) и \(A, b, c \) — локально ограниченные положительные функции.

Цель состоит в нахождении критических показателей для отсутствия решений (см. [237, 121]). Для этого используется метод нелинейной емкости (см. [231]), использованный в [151] для случая одного параболического неравенства. В частном случае \(A = b = c = 1 \) результаты изложены в [59] (см. теорему 41.2 и следствие 41.1 ниже, а также [122, 60, 61]), однако предлагаемый метод применяется к более широкому классу задач (см. теорему 41.3).

Основные обозначения и результаты. Пусть \(S_T \) обозначает полусу \(\mathbb{R}^N \times (0, T], \) \(T \in (0, \infty]; \) положим \(S \equiv S_\infty. \) Под классическим решением системы (41.1) в \(S_T \) понимается любая пара положительных функций \((u, v) \in C^2(S_T) \cap C(S_T) \) таких, что система (41.1) удовлетворяется поточно в \(S_T \) (здесь функция \(A \) предполагается гладкой).

Ниже используются следующие более общие определения.

Определение 41.1. Под сильным решением системы (41.1) в \(S_T \) понимается любая пара неотрицательных функций \((u, v) \in C(S_T), \) производная которых в смысле распределений (первого порядка по времени и второго по пространственным переменным) определена почти всюду в \(S_T, \) такая, что система (41.1) удовлетворяется п.в. в \(S_T. \)

Определение 41.2. Пусть \(\alpha, \beta \in (-1, 0). \) Под решением из класса \(P_{\alpha, \beta} \) системы (41.1) в \(S_T \) понимается любая пара функций в \(S_T \) таких, что для любой пробной функции \(\psi \geq 0 \) с
Глава 4. СИСТЕМЫ НЕРАВЕНСТВ

Пусть выполняются следующие неравенства:

\[
\int_{S_T} \int Au^\alpha v^\beta |\nabla u| \cdot |\nabla v| \psi \, dx \, dt < \infty, \quad \int_{S_T} \int Au^\alpha v^{\beta+1} |\nabla u| \cdot |\nabla \psi| \, dx \, dt < \infty,
\]

\[
\int_{S_T} \int Au^{\alpha+1} v^\beta |\nabla v| \cdot |\nabla \psi| \, dx \, dt < \infty; \tag{41.2}
\]

\[
|\alpha|(|\alpha| + 1) \int_{S_T} \int Au^{\alpha-1} v^{\beta+1} |\nabla u|^2 \psi \, dx \, dt + |\beta|(|\beta| + 1) \int_{S_T} \int Au^{\alpha+1} v^{\beta-1} |\nabla v|^2 \psi \, dx \, dt +
\]

\[
+ (\alpha + 1) \int_{S_T} \int bu^\alpha v^{\beta+1+r} \psi \, dx \, dt + (\beta + 1) \int_{S_T} \int cu^{\alpha+1+s} v^\beta \psi \, dx \, dt \leq \]

\[
\leq 2(\alpha + 1)(\beta + 1) \int_{S_T} \int Au^\alpha v^\beta |\nabla u| \cdot |\nabla v| \psi \, dx \, dt + (\alpha + 1) \int_{S_T} \int Au^{\alpha+1} v^\beta |\nabla u| \cdot |\nabla \psi| \, dx \, dt +
\]

\[
+ (\beta + 1) \int_{S_T} \int Au^{\alpha+1} v^\beta |\nabla v| \cdot |\nabla \psi| \, dx \, dt dt - \int_{S_T} \int u^{\alpha+1} v^{\beta+1} \frac{\partial \psi}{\partial t} \, dx \, dt. \tag{41.3}
\]

Благодаря условиям (41.2) и предположениям \(\alpha > -1, \beta > -1\) все интегралы в правой части неравенства (41.3) конечны, т.е. определение 41.2 имеет смысл. Кроме того, все интегралы в левой части также конечны.

Очевидно, любое классическое решение является сильным. Рассматривая отношения между определениями 41.1 и 41.2, можно доказать следующий результат.

Предложение 41.1. Пусть \((u, v)\) — сильное решение системы (41.1) в \(S_T\) такое, что \(\frac{\partial u}{\partial t} \in L_{loc}^1(S_T), \frac{\partial v}{\partial t} \in L_{loc}^1(S_T)\) и поточный предел \((u(\cdot, 0), v(\cdot, 0)) := \lim_{t \rightarrow 0^+} (u(\cdot, t), v(\cdot, t))\) определен и непрерывен в \(\mathbb{R}^N\). Пусть выполнены условия (41.2).

Тогда \((u, v)\) является решением из класса \(P_{\alpha, \beta}, \alpha, \beta \in (-1, 0)\).

Положим

\[
D = D(x, t, u, v, \nabla u, \nabla v) := \left(\frac{a^\rho}{(\rho-1)c^\sigma} \right)^{\frac{1}{\rho-1}}, \tag{41.4}
\]

где \(\rho > 1, \sigma > 1\) и

\[
a = a(x, t, u, v, \nabla u, \nabla v) := \max\{A, 1\}. \tag{41.5}
\]

Главный результат этого раздела об отсутствии решений формулируется следующим образом.

Теорема 41.1. Пусть \(\alpha, \beta \in (-1, 0)\) удовлетворяют следующему условию:

\[
|\alpha| + |\beta| > 1. \tag{41.6}
\]

Пусть существует \(\rho > 1, \sigma > 1\) такое, что

\[
\left\{ \begin{array}{l}
|\alpha(\sigma - 1) + \sigma|\rho = 1 + s, \\
|\beta(\sigma - 1) + \sigma|\rho = (1 + r)(\rho - 1).
\end{array} \right. \tag{41.7}
\]

Кроме того, предположим, что

\[
R^N_{\frac{2^\alpha}{\sigma+1}} \int \sup_{1 \leq \eta \leq 2} D(R^2 \xi, R^2 \tau, u, v, p, q) d\xi d\tau \rightarrow 0 \tag{41.8}
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234 14*
Часть II. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ПЕРВОГО ПОРЯДКА

при \(R \to \infty \), где

\[
\eta := |\xi|^2 + \tau, \quad \xi \in \mathbb{R}^N, \quad \tau > 0.
\]

(41.9)

Тогда единственным глобальным решением системы (41.1) из класса \(P_{\alpha,\beta} \) является тривиальное решение.

Применяя эту теорему к системе

\[
\begin{aligned}
\frac{\partial u}{\partial t} &\geq \Delta u + v^r, \quad (x,t) \in \mathbb{R}^N \times (0,\infty), \\
\frac{\partial v}{\partial t} &\geq \Delta v + u^s, \quad (x,t) \in \mathbb{R}^N \times (0,\infty),
\end{aligned}
\]

(41.10)

где \(r > 0, \ s > 0 \), приходим к следующему результату.

Теорема 41.2 (Эскобедо и Херреро [59]). Пусть

\[
rs > 1,
\]

(41.11)

\[
\frac{\gamma + 1}{rs - 1} \geq \frac{N}{2},
\]

(41.12)

где \(\gamma := \max\{r, s\} \). Тогда существуют \(\alpha, \beta \in (-1,0] \) такие, что система (41.10) не имеет глобальных нетривиальных решений из класса \(P_{\alpha,\beta} \).

Замечание 41.1. Доказательство отсутствия решения в случае равенств \(\alpha = 0, \beta = 0 \) основано на дополнительных рассуждениях, аналогичных использованным в предыдущих разделах.

Следующее утверждение, применяемое, в частности, к задаче Коши для систем параболических уравнений, является прямым следствием теоремы 41.2 и предложения 41.1.

Следствие 41.1. Пусть выполнены условия теоремы 41.2. Тогда система (41.10) не имеет глобальных нетривиальных классических решений.

Легко видеть, что доказательство теоремы 41.2 остается справедливым для любой системы вида (41.1) такой, что

\[
\sup_{u,v \geq 0, p,q \in \mathbb{R}^N} A(R\xi, R^2\tau, u, v, p, q) \leq C \quad \text{для всех} \quad \xi \in \mathbb{R}^N, \quad \tau > 0
\]

с некоторой постоянной \(C > 0 \). Например, если функция \(A \) ограничена и \(b, \ c \) постоянны, как в следующей теореме.

Теорема 41.3. Пусть выполнены предложения теоремы 41.2. Тогда существуют \(\alpha, \beta \in (-1,0] \) такие, что система

\[
\begin{aligned}
\frac{\partial u}{\partial t} &\geq \sum_{i=1}^N \frac{\partial}{\partial x_i} \left[\frac{1}{(1 + |\nabla u|^2 + |\nabla v|^2)^{\theta}} \frac{\partial u}{\partial x_i} \right] + v^r, \quad (x,t) \in \mathbb{R}^N \times (0,\infty), \\
\frac{\partial v}{\partial t} &\geq \sum_{i=1}^N \frac{\partial}{\partial x_i} \left[\frac{1}{(1 + |\nabla u|^2 + |\nabla v|^2)^{\theta}} \frac{\partial v}{\partial x_i} \right] + u^s, \quad (x,t) \in \mathbb{R}^N \times (0,\infty),
\end{aligned}
\]

(41.13)

где \(r > 0, \ s > 0, \ \theta > 0 \), не имеет глобальных нетривиальных решений из класса \(P_{\alpha,\beta} \).

Доказательство аналогично доказательству теоремы 41.2.
Доказательство основных результатов. Докажем теорему 41.1. Предварительно установим следующую лемму.

Лемма 41.1. Пусть (u, v) — решение из класса $P_{\alpha, \beta}$ задачи (41.1) в S_T, где $\alpha, \beta \in (-1, 0]$ удовлетворяют условию (41.6).

Тогда существуют $k_1 > 0$, $k_2 > 0$ (зависящие от α, β) такие, что для всех $\rho > 1$, $\sigma > 1$, удовлетворяющих условию (41.7), и любой пробной функции $\psi \geq 0$ с носителем в \bar{S}_T справедливо неравенство

$$
\begin{align*}
&k_1 \int_{S_T} A^{\alpha-1} v^{\beta+1} |\nabla u|^2 \psi \, dx \, dt + k_2 \int_{S_T} A^{\alpha+1} v^{\beta-1} |\nabla v|^2 \psi \, dx \, dt + \\
&+ \int_{S_T} b u^{\alpha+1} v^{\beta+1} \psi \, dx \, dt + \int_{S_T} c u^{\alpha+1} v^{\beta+1} \psi \, dx \, dt \leq \left(\frac{1}{\delta} \right)^{\frac{\sigma-1}{\sigma}} \int \int D \left(\frac{\sigma}{\psi} \right)^{\frac{\sigma-1}{\sigma}} \, dx \, dt,
\end{align*}
$$

где

$$
\delta := \frac{1}{2} \min\{\alpha + 1, \beta + 1\},
$$

$$
\chi := \frac{1}{2} \left(\frac{\alpha + 1}{k_1} + \frac{\beta + 1}{k_2} \right) \frac{\nabla \psi^2}{\psi} + \left| \frac{\partial \psi}{\partial t} \right|
$$

и D — функция (41.4).

Доказательство приведем для случая $\alpha, \beta \in (-1, 0]$.

Рассмотрим подынтегральное выражение в первом слагаемом правой части неравенства (41.3). Согласно неравенству Юнга имеем

$$
A^{\alpha} v^{\beta} |\nabla u| \cdot |\nabla v| \psi \leq \frac{1}{2} \left\{ k A^{\alpha-1} v^{\beta+1} |\nabla u|^2 \psi + \frac{A}{k} u^{\alpha+1} v^{\beta-1} |\nabla v|^2 \psi \right\}
$$

для любого $k > 0$. Интегрируя обе части этого неравенства (не ограничивая общности, мы предполагаем $u, v > 0$) и подставляя полученную оценку в неравенство (41.3), получим

$$
\begin{align*}
&[|\alpha| - k(\beta + 1)] \int_{S_T} A^{\alpha-1} v^{\beta+1} |\nabla u|^2 \psi \, dx \, dt + \\
&+ \left(|\beta| - \frac{1}{k} (\alpha + 1) \right) (\beta + 1) \int_{S_T} A^{\alpha+1} v^{\beta-1} |\nabla v|^2 \psi \, dx \, dt + (\alpha + 1) \int_{S_T} b u^{\alpha+1} v^{\beta+1} \psi \, dx \, dt + \\
&+ (\beta + 1) \int_{S_T} c u^{\alpha+1} v^{\beta+1} \psi \, dx \, dt \leq (\alpha + 1) \int_{S_T} A^{\alpha} v^{\beta+1} |\nabla u| \cdot |\nabla v| \psi \, dx \, dt + \\
&+ (\beta + 1) \int_{S_T} A^{\alpha+1} v^{\beta} |\nabla v| \cdot |\nabla \psi| \, dx \, dt - \int \int u^{\alpha+1} v^{\beta+1} \frac{\partial \psi}{\partial t} \, dx \, dt.
\end{align*}
$$

В силу условия (41.6) интервал $\left(\frac{|\alpha|}{\beta+1}, \frac{\alpha+1}{|\beta|} \right)$ непуст. Зафиксируем k из этого интервала; положим

$$
k_1 := |\alpha| - k(\beta + 1), \quad k_2 := |\beta| - \frac{1}{k} (\alpha + 1).
$$
Тогда $k_1 > 0$, $k_2 > 0$ и неравенство (41.17) примет вид

$$(a + 1)k_1 \int_{S_T} A u^{a-1} v^{\beta+1} |\nabla u|^2 \, dx \, dt + (\beta + 1)k_2 \int_{S_T} A u^{a+1} v^{\beta-1} |\nabla v|^2 \, dx \, dt +$$

$$+ (\alpha + 1) \int_{S_T} b u^a v^{\beta+1+r} \, dx \, dt + (\beta + 1) \int_{S_T} c u^{a+1+s} v^\beta \, dx \, dt \leq$$

$$\leq (\alpha + 1) \int_{S_T} A u^{a} v^{\beta+1} |\nabla u| \cdot |\nabla \psi| \, dx \, dt + (\beta + 1) \int_{S_T} A u^{a+1} v^{\beta} |\nabla v| \cdot |\nabla \psi| \, dx \, dt -$$

$$- \int_{S_T} u^{a+1} v^{\beta+1} \frac{\partial \psi}{\partial t} \, dx \, dt. \quad (41.18)$$

Теперь рассмотрим первое слагаемое в правой части неравенства (41.18); по неравенству Юнга на множестве $\text{supp} \, u \cap \text{supp} \, \psi$ получаем

$$A u^{a} v^{\beta+1} |\nabla u| \cdot |\nabla \psi| \leq \frac{1}{2} \left\{ k_1 A u^{a-1} v^{\beta+1} |\nabla u|^2 \psi + \frac{A}{k_1} u^{a+1} v^{\beta+1} |\nabla \psi|^2 \psi \right\}.$$

Аналогично, рассматривая второе слагаемое в правой части неравенства (41.18), будем иметь

$$A u^{a+1} v^{\beta} |\nabla v| \cdot |\nabla \psi| \leq \frac{1}{2} \left\{ k_2 A u^{a+1} v^{\beta-1} |\nabla v|^2 \psi + \frac{A}{k_2} u^{a+1} v^{\beta+1} |\nabla \psi|^2 \psi \right\}$$

на множестве $\text{supp} \, v \cap \text{supp} \, \psi$. Интегрируя полученные выше неравенства и применяя результат к (41.18), приходим к оценке

$$\frac{\alpha + 1}{2} k_1 \int_{S_T} A u^{a-1} v^{\beta+1} |\nabla u|^2 \, dx \, dt + \frac{\beta + 1}{2} k_2 \int_{S_T} A u^{a+1} v^{\beta-1} |\nabla v|^2 \, dx \, dt +$$

$$+ (\alpha + 1) \int_{S_T} b u^a v^{\beta+1+r} \, dx \, dt + (\beta + 1) \int_{S_T} c u^{a+1+s} v^\beta \, dx \, dt \leq \int_{\text{supp} \, \psi} a u^{a+1} v^{\beta+1} \chi \, dx \, dt, \quad (41.19)$$

где a и χ — функции, определенные в (41.5) и (41.6) соответственно.

Наконец, оценим правую часть неравенства (41.19). Для любых $\sigma > 1, \delta > 0$ имеем

$$a u^{a+1} v^{\beta+1} \chi \leq \frac{\delta}{\sigma} E^{-(\sigma-1)} u^{(\alpha+1)\sigma} v^{(\beta+1)\sigma} \psi + \frac{\sigma - 1}{\sigma} a^{\sigma-\tau} E \left(\frac{\chi}{\delta \psi} \right)^{\frac{1}{\sigma-\tau}},$$

где

$$E = E(x, t, u, v) := \left(\frac{1}{b^{\rho-1} c} \right)^{\frac{1}{\rho(\sigma-1)}}.$$

Кроме того, для любого $\rho > 1$ по неравенству Юнга

$$u^{(\alpha+1)\sigma} v^{(\beta+1)\sigma} \leq u^{\alpha} v^{\beta} \left\{ \frac{1}{\rho} \left(\frac{c}{b} \right)^{\frac{\rho-1}{\rho}} u^{[\alpha(\sigma-1)+\sigma] \rho} + \frac{\rho - 1}{\rho} \left(\frac{b}{c} \right)^{\frac{1}{\rho}} v^{[\beta(\sigma-1)+\sigma] \rho} \right\} =$$

$$= \frac{1}{\rho} \left(\frac{c}{b} \right)^{\frac{\rho-1}{\rho}} u^{\alpha+1+s} v^{\beta} + \frac{\rho - 1}{\rho} \left(\frac{b}{c} \right)^{\frac{1}{\rho}} u^{\alpha+1+r}.$$
Глава 4. СИСТЕМЫ НЕРАВЕНСТВ

в силу условия (41.7). Объединяя эти два неравенства, получим

\[au^{\alpha+1}v^{\beta+1}\chi \leq \delta \left\{ bu^{\alpha}v^{\beta+1+\tau}\psi + cu^{\alpha+1+s}v^{\beta}\psi \right\} + D \left(\frac{\chi^\sigma}{(\partial\psi)^{\frac{1}{\sigma}}} \right)^{\frac{1}{1-r}}, \]

gде \(D = a^{\frac{\sigma}{r-1}}E \) определено в (41.4). Интегрируя это неравенство и подставляя результат в (41.19), окончательно будем иметь

\[
\begin{align*}
\frac{\alpha+1}{2} k_1 \int_{S_T} Au^{\alpha-1}v^{\beta+1}|\nabla u|^2 \psi \, dx \, dt + & \frac{\beta+1}{2} k_2 \int_{S_T} Au^{\alpha+1}v^{\beta-1}|\nabla v|^2 \psi \, dx \, dt + \\
+ (\alpha+1-\delta) \int_{S_T} bu^\alpha v^{\beta+1+\tau} \psi \, dx \, dt + (\beta+1-\delta) \int_{S_T} cu^{\alpha+1+s}v^{\beta} \psi \, dx \, dt \leq \\
& \leq \left(\frac{1}{\delta} \right)^{\frac{1}{1-r}} \int_{\supp \psi} D \left(\frac{\chi^\sigma}{\psi} \right)^{\frac{1}{1-r}} \, dx \, dt \tag{41.20}
\end{align*}
\]

dля любого \(\delta > 0 \); выбирая \(\delta \) по формуле (41.15), приходим к требуемому результату. \(\square \)

Доказательство теоремы 41.1. Пусть \((u, v)\) — глобальное решение класса \(P_{\alpha, \beta} \) задачи (41.1) с \(\alpha, \beta \in (-1, 0) \), удовлетворяющими условию (41.6). Будем доказывать следующее предложение: существует \(k_3 > 0 \) (зависящее от \(\alpha, \beta \) такое, что для всех \(R > 0 \)

\[
\begin{align*}
k_1 \int_{B_R} Au^{\alpha-1}v^{\beta+1}|\nabla u|^2 \, dx \, dt + k_2 \int_{B_R} Au^{\alpha+1}v^{\beta-1}|\nabla v|^2 \, dx \, dt + \int_{B_R} bu^\alpha v^{\beta+1+\tau} \, dx \, dt + \\
+ \int_{B_R} cu^{\alpha+1+s}v^{\beta} \, dx \, dt \leq k_3 R^{N-\frac{2\tau}{\sigma}} \int_{1 \leq \eta \leq 2} \left[\sup_{u,v \geq 0, p,q \in \mathbb{R}^N} D(R\xi, R^2\tau, u, v, p, q) \right] \, d\xi \, d\tau; \tag{41.21}
\end{align*}
\]

здесь \(\eta \) определяется по формуле (41.9) и

\[B_R := \supp u \cap \supp v \cap \{(x, t) \in S \mid |x|^2 + t \leq R^2\}, \quad R > 0. \]

Из неравенства (41.21) легко следует заключение теоремы (см., например, [151], где детально описан соответствующий скалярный случай).

Доказательство неравенства (41.21) использует неравенство (41.14) при соответствующем выборе пробной функции \(\psi \). Рассмотрим произвольную гладкую функцию \(\psi_0 : [0, \infty) \rightarrow [0, 1] \) такую, что \(\psi_0 \equiv 1 \) в \([0, 1], \psi_0 \equiv 0 \) в \([2, \infty), \psi_0 \) не возрастает и

\[\sup_{1 \leq \eta \leq 2} \frac{\chi^\delta(\eta)}{\psi_0(\eta)} < \infty, \]

где

\[\chi_0(\eta) := 2 \left(\frac{\alpha+1}{k_1} + \frac{\beta+1}{k_2} \right) \eta |\psi_0'(\eta)|^2 + |\psi_0'(\eta)|. \tag{41.22} \]

Заметим, что \(\chi_0(\eta) \equiv 0 \), если \(\eta \notin [1, 2] \).

Сделаем замену переменных

\[\xi := \frac{x}{R}, \quad \tau := \frac{t}{R^2}. \]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Мы будем доказывать следующее предложение.

Тогда \(|x|^2 + t = R^2 \eta\), т.е.

\[
\{(x,t) \in S \mid |x|^2 + t \leq R^2\} = \{(\xi,\tau) \in S \mid \eta \leq 1\}.
\]

Положим

\[
\psi_R(x,t) := \psi_0\left(\frac{|x|^2 + t}{R^2}\right) = \psi_0(\eta).
\]

Тогда \(\psi_R \geq 0, \psi_R \equiv 1 \in B_R, \supp \psi_R \subseteq \{\eta \leq 2\}\). Обозначим через \(\chi_R\) функцию (41.16) с \(\psi = \psi_R\).

Легко видеть, что

\[
\chi_R(x,t) = 2 \left(\frac{\alpha + 1}{k_1} + \frac{\beta + 1}{k_2}\right) \frac{\psi'_0(\eta)^2 |x|^2}{\psi_0(\eta)} \frac{|\psi'_0(\eta)|}{R^4} + \frac{|\psi'_0(\eta)|}{R^2} \leq \frac{\chi_0(\eta)}{R^2},
\]

где \(\chi_0\) — функция (41.22). Далее, полагая в неравенстве (41.14) \(\psi = \psi_R\), получим

\[
k_1 \int_{B_R} Au^{\alpha - 1} v^{\beta + 1} |\nabla u|^2 \, dx \, dt + k_2 \int_{B_R} Au^{\alpha + 1} v^{\beta - 1} |\nabla v|^2 \, dx \, dt +
\]

\[
+ \int_{B_R} bu^\alpha v^{\beta + 1 + r} \, dx \, dt + \int_{B_R} cu^{\alpha + 1 + s} \, dx \, dt \leq
\]

\[
\leq \left(\frac{1}{\delta}\right)^{\frac{\sigma}{\delta} - \frac{1}{\delta}} R^{N - \frac{2}{\delta}} \int \sup_{1 \leq \eta \leq 2} \frac{\chi_0(\eta)}{\psi_0(\eta)} \left\|D(R\xi, R^2 \tau, u, v, p, q)\right\|_1 \frac{\chi_0(\eta)}{\psi_0(\eta)} \frac{1}{\delta - 1} \, d\xi \, d\tau.
\]

Обозначив

\[
k_3 := \left(\frac{1}{\delta}\right)^{\frac{\sigma}{\delta} - \frac{1}{\delta}} \sup_{1 \leq \eta \leq 2} \frac{\chi_0(\eta)}{\psi_0(\eta)} \frac{1}{\delta - 1},
\]

приходим к требуемому заключению. \(\Box\)

Доказательство теоремы 41.2. В данном случае \(a = b = c = 1\), т.е. \(D \equiv 1\) и

\[
1 < \sigma < 1 + \frac{2}{N}.
\]

(41.23)

С другой стороны, складывая оба уравнения системы (41.7), получим

\[
H = H(\alpha, \beta, \sigma) := \frac{\alpha(\sigma - 1) + \sigma}{1 + s} + \frac{\beta(\sigma - 1) + \sigma}{1 + r} = 1.
\]

(41.24)

Положим

\[
T := \{\alpha, \beta \in (-1, 0) \mid |\alpha| + |\beta| > 1\}.
\]

Мы будем доказывать следующее предложение: существуют \((\tilde{\alpha}, \tilde{\beta}) \in T, \tilde{\sigma} \in (1, 1 + \frac{2}{N})\) такие, что

\[
H(\tilde{\alpha}, \tilde{\beta}, \tilde{\sigma}) = 1.
\]

Тогда решение второго уравнения системы (41.7) относительно \(\rho\) даёт

\[
\rho = \tilde{\rho} := \frac{1 + r}{1 + r - \beta(\sigma - 1) - \sigma} > 1.
\]
Глава 4. СИСТЕМЫ НЕРАВЕНСТВ

Следовательно, набор \((\bar{\alpha}, \bar{\beta}, \bar{\rho}, \bar{\sigma})\) удовлетворяет всем условиям теоремы 41.1, откуда будет следовать требуемое утверждение.

Для доказательства этого предложения заметим, что для любых \(\alpha, \beta \in (-1, 0)\)

\[
H(\alpha, \beta, 1) = \frac{1}{1+s} + \frac{1}{1+r} < 1
\]

в силу условия (41.11). С другой стороны,

\[
H\left(\alpha, \beta, 1 + \frac{2}{N}\right) = \frac{2}{N} \left(\frac{\alpha}{1+s} + \frac{\beta}{1+r}\right) + \left(1 + \frac{2}{N}\right) \left(\frac{1}{1+s} + \frac{1}{1+r}\right).
\]

Простые вычисления показывают, что

\[
\max_{(\alpha, \beta) \in T} H\left(\alpha, \beta, 1 + \frac{2}{N}\right) = \frac{2}{N} \frac{1}{1+\min\{r, s\}} + \frac{1}{1+s} + \frac{1}{1+r}.
\]

Тогда по условию (41.12) существует интервал \((\bar{\alpha}, \bar{\beta}) \in T\) такой, что

\[
H\left(\bar{\alpha}, \bar{\beta}, 1 + \frac{2}{N}\right) > 1.
\]

Вместе с тем поскольку

\[
\alpha(\sigma - 1) + \sigma = (\alpha + 1)\sigma - \alpha > 1, \quad \beta(\sigma - 1) + \sigma = (\beta + 1)\sigma - \beta > 1,
\]

то функция \(H(\alpha, \beta, \cdot)\) возрастает на интервале \((1, 1 + \frac{2}{N})\) для любого \(\alpha, \beta \in (-1, 0)\), откуда с помощью (41.25), (41.26) приходим к требуемому заключению, Доказательство завершено. \(\Box\)

Доказательство следствия 41.1. Каждое классическое решение системы (41.1) удовлетворяет условиям предложения 41.1 для любых \(\alpha, \beta \in (-1, 0)\). Поэтому требуемое следствие вытекает из предложения 41.1 и теоремы 41.2. \(\Box\)

Доказательство предложения 41.1. Достаточно показать, что выполнено неравенство (41.3). Чтобы доказать это, умножим второе уравнение в (41.1) на \(u^{\alpha+1}v^\beta \psi\) (где \(\alpha, \beta \in (-1, 0)\) и \(\psi \geq 0\) — произвольная пробная функция с носителем \(S_T\)) и проинтегрируем по частям. Получим

\[
\iint_{S_T} u^{\alpha+1}v^\beta \frac{\partial v}{\partial t} \psi \, dx \, dt \geq |\beta| \iint_{S_T} A u^{\alpha+1}v^\beta \cdot |\nabla v|^2 \psi \, dx \, dt -
\]

\[
-(\alpha + 1) \iint_{S_T} A u^\alpha v^\beta |\nabla u| \cdot |\nabla v| \psi \, dx \, dt - \iint_{S_T} A u^{\alpha+1}v^\beta |\nabla v| \cdot |\nabla \psi| \, dx \, dt +
\]

\[
+ \iint_{S_T} c u^{\alpha+1+s} v^\beta \psi \, dx \, dt.
\]

Заметим, что правая часть этого неравенства определена, поскольку второй и третий интегралы конечны по условиям (41.2).
Далее, умножая первое уравнение в (41.1) на \(u^{\alpha}v^{\beta+1}\psi \) и интегрируя по частям, получим

\[
\frac{\beta + 1}{\alpha + 1} \int_{\mathbb{R}^N} u^{\alpha+1}v^\beta \frac{\partial v}{\partial t} \psi \, dx \, dt + \frac{1}{\alpha + 1} \int_{\mathbb{R}^N} u^{\alpha+1}v^{\beta+1} \frac{\partial \psi}{\partial t} \, dx \, dt + \\
+ \frac{1}{\alpha + 1} \int_{\mathbb{R}^N} u^{\alpha+1}(x, 0)v^{\beta+1}(x, 0)\psi(x, 0) \, dx \leq \alpha \int_{\mathbb{R}^N} Au^{\alpha-1}v^{\beta+1}|\nabla u|^2 \psi \, dx \, dt + \\
+ (\beta + 1) \int_{\mathbb{R}^N} Au^{\alpha}v^\beta |\nabla u| \cdot |\nabla \psi| \, dx \, dt + \int_{\mathbb{R}^N} Au^{\alpha}v^{\beta+1}|\nabla u| \cdot |\nabla \psi| \, dx \, dt - \int_{\mathbb{R}^N} bu^{\alpha}v^{\beta+1+r} \psi \, dx \, dt,
\]

откуда

\[
(\beta + 1) \int_{\mathbb{R}^N} Au^{\alpha+1}v^\beta \frac{\partial v}{\partial t} \psi \, dx \, dt \leq \alpha(\alpha + 1) \int_{\mathbb{R}^N} Au^{\alpha-1}v^{\beta+1}|\nabla u|^2 \psi \, dx \, dt + \\
+ (\alpha + 1)(\beta + 1) \int_{\mathbb{R}^N} Au^{\alpha}v^\beta |\nabla u| \cdot |\nabla \psi| \, dx \, dt + (\alpha + 1) \int_{\mathbb{R}^N} Au^{\alpha}v^{\beta+1}|\nabla u| \cdot |\nabla \psi| \, dx \, dt - \\
- (\alpha + 1) \int_{\mathbb{R}^N} bu^{\alpha}v^{\beta+1+r} \psi \, dx \, dt - \int_{\mathbb{R}^N} u^{\alpha+1}v^{\beta+1} \frac{\partial \psi}{\partial t} \, dx \, dt. \tag{41.28}
\]

Из неравенств (41.27), (41.28) будем иметь

\[
|\beta|(\beta + 1) \int_{\mathbb{R}^N} Au^{\alpha+1}v^{\beta-1}|\nabla v|^2 \psi \, dx \, dt - (\alpha + 1)(\beta + 1) \int_{\mathbb{R}^N} Au^{\alpha}v^\beta |\nabla u| \cdot |\nabla \psi| \, dx \, dt - \\
- (\beta + 1) \int_{\mathbb{R}^N} Au^{\alpha+1}v^\beta |\nabla v| \cdot |\nabla \psi| \, dx \, dt + (\beta + 1) \int_{\mathbb{R}^N} cu^{\alpha+1+s}v^\beta \psi \, dx \, dt \leq \\
\leq \alpha(\alpha + 1) \int_{\mathbb{R}^N} Au^{\alpha-1}v^{\beta+1}|\nabla u|^2 \psi \, dx \, dt + \\
+ (\alpha + 1)(\beta + 1) \int_{\mathbb{R}^N} Au^{\alpha}v^\beta |\nabla u| \cdot |\nabla \psi| \, dx \, dt + (\alpha + 1) \int_{\mathbb{R}^N} Au^{\alpha}v^{\beta+1}|\nabla u| \cdot |\nabla \psi| \, dx \, dt - \\
- (\alpha + 1) \int_{\mathbb{R}^N} bu^{\alpha}v^{\beta+1+r} \psi \, dx \, dt - \int_{\mathbb{R}^N} u^{\alpha+1}v^{\beta+1} \frac{\partial \psi}{\partial t} \, dx \, dt. \tag{41.29}
\]

В силу условий (41.2) и предположений \(\alpha > -1, \beta > -1 \) левая часть этого неравенства либо конечна, либо стремится к \(+\infty\). Аналогично правая часть либо конечна, либо стремится к \(-\infty\). Следовательно, обе части неравенства (41.29), а тогда и каждый интеграл в (41.29) конечны, что завершает доказательство.

\[\square\]

Замечание 41.2. Отметим еще раз, что приведенные результаты остаются справедливыми и в предельном случае \(\alpha = \beta = 0 \). Для доказательства необходимо использовать рассуждения, аналогичные исследованию предельного случая в предыдущих разделах.
Глава 4. СИСТЕМЫ НЕРАВЕНСТВ

42. ОЦЕНКИ РЕШЕНИЙ ПАРАБОЛИЧЕСКИХ СИСТЕМ ВТОРОГО ПОРЯДКА
В ОКРЕСТНОСТИ ТОЧКИ РАЗРУШЕНИЯ

В этом разделе мы коснемся вопроса о характере разрушения решения систем параболических уравнений второго порядка.

Мы излагаем полученные совместно с Г. Каристи [41] оценки сверху в окрестности точки разрушения решения для одного класса положительных решений задачи

\[
\begin{aligned}
\frac{\partial u}{\partial t}(x,t) &= \Delta u(x,t) + v^p(x,t), \quad (x,t) \in B(0,R) \times (0,T), \\
\frac{\partial v}{\partial t}(x,t) &= \Delta v(x,t) + u^q(x,t), \quad (x,t) \in B(0,R) \times (0,T), \\
u(x,t) &= v(x,t) = 0, \quad (x,t) \in \partial B(0,R) \times (0,T), \\
u(x,0) &= u_0(x), \quad v(x,0) = v_0(x), \quad x \in B(0,R),
\end{aligned}
\]

(42.1)

где \(B(0,R)\) — открытый шар в \(\mathbb{R}^N\) с центром в начале координат радиуса \(R, T > 0, p > 1, q > 1; u_0, v_0 : \overline{B}(0,R) \rightarrow \mathbb{R}^N\) суть гладкие неотрицательные функции, обращающиеся в нуль на \(\partial B(0,R)\).

Известно, что для достаточно "больших" начальных данных \(u_0\) и \(v_0\) решение \((u,v)\) задачи (42.1) разрушается за конечное время, т.е. если \((0,T)\) обозначает максимальный интервал существования решения и \(T < +\infty\), то

\[
\lim_{t \to T} \sum_{B(0,R)} (|u(\cdot,t)| + |v(\cdot,t)|) = +\infty. \tag{42.2}
\]

Далее, разрушение решения происходит одновременно, т.е. если для некоторого \(x_0 \in B(0,R)\) имеем \(\lim_{t \to T} u(x_0,t) = +\infty\), то и \(\lim_{t \to T} v(x_0,t) = +\infty\), и наоборот.

Главным результатом настоящего раздела является естественное обобщение на систему (42.1) результата Вейсслера [180] (см. также [89]), который касается одного уравнения

\[
\frac{\partial u}{\partial t}(x,t) = \Delta u(x,t) + u^p(x,t), \quad (x,t) \in B(0,R) \times (0,T).
\]

Заметим, что показатели в (42.6) и (42.7) (см. ниже) получены из изучения системы обыкновенных дифференциальных уравнений

\[
\begin{aligned}
u &= v^p, \\
v' &= u^q,
\end{aligned}
\]

и в этом смысле они оптимальны.

Введем некоторое определение. Функция \(u : B(0,R) \rightarrow \mathbb{R}\) называется радиальной, если \(u(x) = u(|x|)\) для \(x \in B(0,R)\). Функция \(u : B(0,R) \rightarrow \mathbb{R}\) называется симметрично убывающей, если она радиальна и убывает как функция от \(r = |x|\).

Теорема 42.1. Пусть \(u_0, v_0 : \overline{B}(0,R) \rightarrow \mathbb{R}\) суть гладкие неотрицательные радиальные симметрично убывающие функции, равные нулю на \(\partial B(0,R)\); \((u,v)\) — классическое решение задачи (42.1), определенное на \(B(0,R) \times (0,T)\), где \((0,T)\) обозначает максимальный интервал существования решения, \(T < +\infty\). Пусть также \(\lim_{t \to T} u(0,t) = \lim_{t \to T} v(0,t) = +\infty\), \(\frac{\partial u}{\partial t}(x,t) \geq 0, \frac{\partial v}{\partial t}(x,t) \geq 0\) для \((x,t) \in B(0,R) \times (0,T)\) и \(\frac{\partial u}{\partial t}(\cdot,t), \frac{\partial v}{\partial t}(\cdot,t)\) достигают максимума в точке \(x = 0\) для всех \(t \in (0,T)\).

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Если выполнено одно из следующих условий:

\[N \leq 2 \quad u \quad 1 < q \leq p, \quad (42.3) \]
\[N \geq 3 \quad u \quad 1 < q \leq p, \quad 1/(p+1) + 1/(q+1) > (N-2)/N, \quad (42.4) \]
\[N \geq 5 \quad u \quad 1 = q < p < (N+4)/(N-4), \quad (42.5) \]

tо

\[u(x,t) \leq \text{const} \cdot (T-t)^{-(p+1)/(pq-1)}, \quad (42.6) \]
\[v(x,t) \leq \text{const} \cdot (T-t)^{-(q+1)/(pq-1)} \quad (42.7) \]

для \((x,t) \in B(0,R) \times (0,T)\).

Доказательство. Положим для \(t \in (0,T)\)

\[\alpha(t) = u^{1/\sigma_1}(0,t), \quad \beta(t) = v^{1/\sigma_2}(0,t), \]

где \(\sigma_1 = 2(p+1)/(pq - 1)\) и \(\sigma_2 = 2(q+1)/(pq - 1)\).

Полагая

\[w_1(r,t) = \frac{u(r/\gamma(t),t)}{\gamma^{\sigma_1}(t)}, \quad w_2(r,t) = \frac{u(r/\gamma(t),t)}{\gamma^{\sigma_2}(t)}, \quad r = |x|, \quad \gamma(t) = \alpha(t) + \beta(t), \]

с учетом предположений теоремы получаем

\[0 \leq \Delta w_1(r,t) + w_2^q(r,t) \leq \frac{1}{\gamma^{\sigma_1+2}(t)} \frac{\partial u}{\partial t}(0,t), \quad (42.8) \]
\[0 \leq \Delta w_2(r,t) + w_1^q(r,t) \leq \frac{1}{\gamma^{\sigma_2+2}(t)} \frac{\partial v}{\partial t}(0,t) \quad (42.9) \]

для всех \(t \in (0,T)\) и \(r \in [0,R\gamma(t)]\).

Используя предположение о симметричности решений, можем переписать (42.8), (42.9) в сферических координатах, откуда

\[0 \leq \frac{\partial^2 w_1}{\partial r^2} + \frac{N-1}{r} \frac{\partial w_1}{\partial r} + w_2^q \leq \frac{1}{\gamma^{\sigma_1+2}(t)} \frac{\partial u}{\partial t}(0,t), \quad (42.10) \]
\[0 \leq \frac{\partial^2 w_2}{\partial r^2} + \frac{N-1}{r} \frac{\partial w_2}{\partial r} + w_1^q \leq \frac{1}{\gamma^{\sigma_2+2}(t)} \frac{\partial v}{\partial t}(0,t) \quad (42.11) \]

для всех \(t \in (0,T)\) и \(r \in [0,R\gamma(t)]\).

Поскольку \(u(\cdot,t)\) и \(v(\cdot,t)\) достигают своих максимумов в точке 0, легко видеть, что \(w_1\) и \(w_2\) ограничены; действительно,

\[0 \leq w_1(r,t) \leq \frac{u(0,t)}{\gamma^{\sigma_1}(t)} \leq 1, \quad 0 \leq w_2(r,t) \leq \frac{v(0,t)}{\gamma^{\sigma_2}(t)} \leq 1. \quad (42.12) \]

Кроме того, складывая (42.10) и (42.11), находим

\[0 \leq \frac{\partial^2 (w_1 + w_2)}{\partial r^2} + \frac{N-1}{r} \frac{\partial (w_1 + w_2)}{\partial r} + w_1^q + w_2^q. \quad (42.13) \]
Умножая (42.13) на \(\frac{\partial(w_1 + w_2)}{\partial r} \), получаем

\[
\frac{1}{2} \frac{\partial}{\partial r} \left[\frac{\partial(w_1 + w_2)}{\partial r} \right]^2 + \frac{N - 1}{r} \left[\frac{\partial(w_1 + w_2)}{\partial r} \right]^2 + w_2 \frac{\partial w_2}{\partial r} + w_1 \frac{\partial w_1}{\partial r} + w_2 \frac{\partial w_1}{\partial r} + w_1 \frac{\partial w_2}{\partial r} \leq 0,
\]
откуда

\[
\frac{1}{2} \frac{\partial}{\partial r} \left[\frac{\partial(w_1 + w_2)}{\partial r} \right]^2 + w_2 \frac{\partial w_2}{\partial r} + w_1 \frac{\partial w_1}{\partial r} + w_2 \frac{\partial w_1}{\partial r} + w_1 \frac{\partial w_2}{\partial r} \leq 0. \tag{42.14}
\]

Интегрируя (42.14) на \((0, r)\), получим

\[
\frac{1}{2} \left[\frac{\partial(w_1 + w_2)}{\partial r} \right]^2 + \frac{1}{p + 1} w_2^{p+1} + \frac{1}{q + 1} w_1^{q+1} - \frac{1}{p + 1} w_2^{p+1}(0, t) - \frac{1}{q + 1} w_1^{q+1}(0, t) + w_2 w_1 + w_1 w_2 - w_2(0, t) w_1(0, t) - w_1(0, t) w_2(0, t) - \frac{r}{p} \int_0^r \frac{w_2^{-1}(s, t)}{\partial r} w_2(s, t) ds - q \int_0^r \frac{w_1^{-1}(s, t)}{\partial r} w_1(s, t) ds \leq 0. \tag{42.15}
\]

Из (42.12) и того факта, что \(\frac{\partial w_1}{\partial r}(r, t) \leq 0, \frac{\partial w_2}{\partial r}(r, t) \leq 0 \), следует оценка

\[
\frac{1}{2} \left(\frac{\partial(w_1 + w_2)}{\partial r} \right)^2 \leq \frac{1}{p + 1} + \frac{1}{q + 1} + 2,
\]
откуда вытекает

\[
\left| \frac{\partial w_1}{\partial r} + \frac{\partial w_2}{\partial r} \right| \leq \left| \frac{\partial w_1}{\partial r} \right| + \left| \frac{\partial w_2}{\partial r} \right| \leq \left(\frac{2}{p + 1} + \frac{2}{q + 1} + 4 \right)^{1/2} \tag{42.16}
\]
для всех \(t \in (0, T), r \in [0, R\gamma(t)] \).

Теперь действуем от противного [180]. Если

\[
\lim_{t \to T} \left(\frac{1}{\gamma^{\sigma_1+2}(t)} \frac{\partial u}{\partial t}(0, t) + \frac{1}{\gamma^{\sigma_2+2}(t)} \frac{\partial v}{\partial t}(0, t) \right) = 0,
\]
то существует последовательность \(\{t_m\} \subseteq (0, T) \) с \(t_m \to T \) такая, что

\[
\lim_{t \to T} \left(\frac{1}{\gamma^{\sigma_1+2}(t_m)} \frac{\partial u}{\partial t}(0, t_m) + \frac{1}{\gamma^{\sigma_2+2}(t_m)} \frac{\partial v}{\partial t}(0, t_m) \right) = 0.
\]
В силу (42.12) и (42.16) \(\{w_1(\cdot, t_m)\} \) и \(\{w_2(\cdot, t_m)\} \) равномерно ограничены в Липшицев-непрерывном с константой Липшица, меньшей или равной \((2/(p + 1) + 2/(q + 1) + 4)^{1/2} \), а тогда из теоремы Асколи–Арцела следует, что существует последовательность (также обозначаемая \(\{t_m\} \)) такая, что

\[
w_1(\cdot, t_m) \to \tilde{w}_1(\cdot), \quad w_2(\cdot, t_m) \to \tilde{w}_2(\cdot), \quad m \to +\infty, \tag{42.18}
\]
равномерно на компактных подмножествах \([0, +\infty)\). Кроме того, \(\tilde{w}_1, \tilde{w}_2 \subset C([0, +\infty), \mathbb{R}_+) \), \(\tilde{w}_1(0) = \tilde{w}_2(0) = 1 \) и \(\tilde{w}_1, \tilde{w}_2 \) убывают на \([0, +\infty)\). Далее, приняв во внимание Липшицевость \(\tilde{w}_1 \) и \(\tilde{w}_2 \), делаем вывод об их абсолютной непрерывности на \([0, +\infty)\). Рассматриваемая \(\tilde{w}_1, \tilde{w}_2 \)
в смысле общенных функций, легко видеть, что (42.18) выполняется также в обобщенном смысле и, следовательно,

\[
\frac{\partial w_1}{\partial r} (\cdot, t_m) \to \frac{\partial \bar{w}_1}{\partial r} (\cdot), \quad \frac{\partial^2 w_1}{\partial r^2} (\cdot, t_m) \to \frac{\partial^2 \bar{w}_1}{\partial r^2} (\cdot), \quad m \to +\infty, \quad (42.19)
\]

\[
\frac{\partial w_2}{\partial r} (\cdot, t_m) \to \frac{\partial \bar{w}_2}{\partial r} (\cdot), \quad \frac{\partial^2 w_2}{\partial r^2} (\cdot, t_m) \to \frac{\partial^2 \bar{w}_2}{\partial r^2} (\cdot), \quad m \to +\infty, \quad (42.20)
\]

в смысле общенных функций.

Тогда (42.18)–(42.20) означают

\[
\frac{\partial^2 \bar{w}_1}{\partial r^2} + \frac{N - 1}{r} \frac{\partial \bar{w}_1}{\partial r} + \bar{w}_2^p = 0, \quad \frac{\partial^2 \bar{w}_2}{\partial r^2} + \frac{N - 1}{r} \frac{\partial \bar{w}_2}{\partial r} + \bar{w}_2^q = 0 \quad (42.21)
\]

на (0, +\infty) в смысле общенных функций. Из (42.21) также следует, что \(\bar{w}_1 \) и \(\bar{w}_2 \) принадлежат \(C^2(0, +\infty) \), и в силу локального существования и единственности решения задачи Коши для (42.21) делаем вывод, что \(\bar{w}_1, \bar{w}_2 > 0 \) на (0, +\infty) с \(\bar{w}_1(0) = \bar{w}_2(0) = 0 \).

Теперь в случае \(N = 1 \) легко получаем противоречие, поскольку если выполнены (42.21), то \(\bar{w}_1 \) и \(\bar{w}_2 \) должны быть строго выпуклы на (0, +\infty), что невозможно.

Если \(N = 2 \), действуем следующим образом: из (42.21) делаем вывод, что \(r\bar{w}_1' \) и \(r\bar{w}_2' \) убывают и существуют \(M < 0 \) и \(r_0 > 0 \) такие, что

\[
r\bar{w}_1'(r) < M, \quad r \in (r_0, +\infty).
\]

Это неравенство означает

\[
-\bar{w}_1(s) < \bar{w}_1(t) - \bar{w}_1(s) < M[\ln(t) - \ln(s)]
\]

для \(r_0 \leq s \leq t \). Устревляем \(t \to +\infty \) в (42.22), приходим к противоречию.

Наконец, если выполнено (42.4) или (42.5), противоречие следует из теоремы 3.2 или теоремы 3.5 работы [138] соответственно. Таким образом, (42.17) не может выполняться; следовательно,

\[
\lim_{t \to T} \left(\frac{1}{\gamma^{\sigma_1+2}(t_m)} \frac{\partial u}{\partial t} (0, t_m) + \frac{1}{\gamma^{\sigma_2+2}(t_m)} \frac{\partial v}{\partial t} (0, t_m) \right) = c > 0. \quad (42.23)
\]

Из (42.23) следует, что существует \(t_1 \in (0, T) \) такое, что для всех \(t \in (t_1, T) \) имеем

\[
c \leq \frac{1}{\gamma^{\sigma_1+2}(t)} \frac{\partial u}{\partial t} (0, t) + \frac{1}{\gamma^{\sigma_2+2}(t)} \frac{\partial v}{\partial t} (0, t) \leq \frac{1}{(u(0, t))^{(q+1)/(p+1)}} \frac{\partial u}{\partial t} (0, t) + \frac{1}{(v(0, t))^{(q+1)/(q+1)}} \frac{\partial v}{\partial t} (0, t).
\]

Интегрируя (42.24) на \((t, s) \subseteq (t_1, T) \), получим

\[
c(s-t) \leq \frac{p+1}{pq-1} (u(0, t))^{(1-pq)/(p+1)} + \frac{q+1}{pq-1} (v(0, t))^{(1-pq)/(q+1)} - \frac{p+1}{pq-1} (u(0, s))^{(1-pq)/(p+1)} - \frac{q+1}{pq-1} (v(0, s))^{(1-pq)/(q+1)} \quad (42.25)
\]

Переходя к пределу при \(s \to T \) в обеих частях (42.25), будем иметь

\[
c(T-t) \leq \frac{p+1}{pq-1} (u(0, t))^{(1-pq)/(p+1)} + \frac{q+1}{pq-1} (v(0, t))^{(1-pq)/(q+1)} \quad (42.26)
\]
для $t \in (t_1, T)$.

Тогда, если $p \geq q$, из леммы 3.2 работы [67] следует

$$v \leq k(u^{(q+1)/(p+1)} + 1), \quad (x, t) \in B(0, R) \times (0, T),$$

с некоторой постоянной $k > 0$. Поскольку $v(0, t) \to +\infty$ при $t \to T$, то в левой окрестности T имеем $v(0, t) \geq k$ и тогда

$$u(x, t) \geq k^{- (p+1)/(q+1)}[v(x, t) - k]^{(p+1)/(q+1)}.$$ (42.28)

Используя (42.26) и (42.28), приходим к оценке

$$c(T - t) \leq \frac{p + 1}{pq - 1} k'(v(0, t) - k)^{(1-pq)/(q+1)} + \frac{q + 1}{pq - 1} (v(0, t))^{(1-pq)/(q+1)}$$

для некоторого $k' > 0$. Следовательно,

$$v(0, t) \leq c(T - t)^{(q+1)/(1-pq)}$$

для всех $(x, t) \in B(0, R) \times (0, T)$.

Чтобы получить аналогичную оценку на u, заметим, что из предположения симметрии следует $\Delta u \leq 0$. Далее из (42.1) и (42.30) находим

$$\frac{\partial u}{\partial \ell}(0, t) \leq c^p(T - t)^{(p+1)/(1-pq)}.$$}

Интегрируя последнее неравенство на $(0, t)$, получаем

$$u(0, t) \leq c(T - t)^{(p+1)/(1-pq)}, \quad t \in (0, T),$$

и, поскольку $u(x, t) \leq u(0, t)$, справедливо (42.6). Теорема доказана. □
Часть III
ЭВОЛЮЦИОННЫЕ ЗАДАЧИ
ВТОРОГО ПОРЯДКА

43. ВВЕДЕНИЕ

Исследование существования и несуществования глобальных решений полулинейных волновых уравнений восходит к XVII столетию и интенсивно развивается (см. [112, 91, 109, 92–94, 107, 100, 95, 111, 104]). Простейшей модельной задачей является уравнение

\[\frac{\partial^2 u}{\partial t^2} - \Delta u = f(u) \]

(43.1)

в \(\mathbb{R}^N \times \mathbb{R}_+ \), где \(f \) — непрерывная вещественнозначная функция. Существует широкий класс нелинейностей \(f \), для которых задача Коши для уравнения (43.1) локально по времени разрешима с заданными начальными данными \(u(\cdot, 0) = u_0 \) и \(\frac{\partial u}{\partial t}(\cdot, 0) = u_1 \).

Полагая \(F(r) = \int_0^r f(s) \, ds \), легко заметить, что функция энергии решения \(u \)

\[E(u) = \int_{\mathbb{R}^N} \left(\left(\frac{\partial u}{\partial t} \right)^2 + |\nabla u|^2 - 2F(u) \right) \, dx \]

(43.2)

не зависит от времени. Поэтому классический подход к доказательству существования глобального решения основан на изучении этой энергии. В случаях, когда нелинейный член \(\int_{\mathbb{R}^N} F(u) \, dx \) может быть сохранен “под контролем” квадратичного слагаемого \(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \), существует глобальное решение. В других случаях это невозможно. Например, если \(f \) удовлетворяет неравенству

\[rf(r) \leq (2 + \varepsilon)F(r) \quad \forall r \in \mathbb{R} \]

(43.3)

dля некоторого \(\varepsilon > 0 \), Левин [120] доказал, что решение не существует для тех значений времени, при которых энергия отрицательна. Доказательство основано на получении нелинейного неравенства второго порядка, которому удовлетворяет \(||u(t)||_{L^2}^2 \). Другой подход к доказательству несуществования глобального решения развивался Ф. Джоном, Т. Като и Р. Глассе. Он основан на усреднении положительного решения, обычно с компактным носителем и при конечной скорости распространения. Большинство исследований посвящено
случаю уравнения

\[\frac{\partial^2 u}{\partial t^2} - \Delta u = |u|^p. \]

(43.4)

Определяя функцию \(\gamma \) как

\[\gamma := 2^{-1} + (N - 1)^{-1} + \sqrt{(2^{-1} + (N - 1)^{-1})^2 + 2(N - 1)^{-1}}, \]

(43.5)

Джон первый доказал в работе [105], что при \(1 < p \leq \gamma(N - 1) \) существуют такие гладкие начальные данные, произвольно малые в \(C_0^\infty(\mathbb{R}^N) \), что глобальное решение задачи отсутствует. При \(N = 3 \), т.e. при \(1 < p < \gamma(2) = 1 + \sqrt{2} \), все решения с положительными начальными данными из \(C_0^\infty(\mathbb{R}^N) \) взрываются за конечное время. Позднее для критического показателя \(p = \gamma(2) \) Глассе [99] было доказано отсутствие глобального решения в предположении, что начальные данные \(u_0 \) и \(u_1 \) положительны. Техника Глассе основана на получении дифференциальных неравенств, которым удовлетворяет функция \(t \mapsto \int_{\mathbb{R}^N} u(x, t) \, dx \).

несколько менее общий результат при более общих предположениях был получен Като [110] с помощью существенно другого метода. В частности, Като отметил роль критического показателя \(p = p_0 = (N + 1)/(N - 1) \) в случае более общих начальных данных, но уже с компактным носителем.

Сидерис [166] и Шеффер [159] получили обобщение результатов Глассе на произвольные размерности \(N \) при условии компактности носителя начальных данных с положительным средним значением. Тот факт, что носитель \(u(\cdot, t) \) заключен в конусе \(\{x : |x| \leq t + R\} \), играет фундаментальную роль в получении соответствующих дифференциальных неравенств. Полностью эти результаты и их обобщения приведены в работах [4, 171, 108, 173, 168].

В общей теории отсутствия глобальных решений нелинейных гиперболических уравнений можно выделить три основных направления.

1. Метод характеристик (в основном для пространственно-одномерных гиперболических уравнений). Этот метод основан на использовании инвариантов или квазиинвариантов Римана и установлении факта появления сильного разрыва — ударной волны. С этим методом можно познакомиться по известным работам П. Лакса, О. Олейник, С. Годунова, Р. Джонсона, Р. Ди Перна и других математиков.

2. Энергетический метод. Основан на использовании энергетических тождеств. Первые общие теоремы отсутствия решения для абстрактных слabo нелинейных гиперболических уравнений в гильбертовом пространстве были получены в [120] на базе неравенств для вогнутых функций. Эти результаты были применены к некоторым типам слabo нелинейных волновых уравнений [126]. Некоторые обобщения в этом направлении можно найти в обзоре [121] (см. более поздние результаты в [182, 148, 150, 153, 149, 154]).

3. Метод нелинейной емкости (пробных функций). Этот подход основан на концепции нелинейной гиперболической емкости. Асимптотический анализ этой емкости позволяет получить теоремы отсутствия решения для широкого класса слabo нелинейных гиперболических задач.

4. Метод вариационных тождеств. Этот метод основан на использовании специальных “гиперболических” вариационных тождеств.

В этой части мы рассматриваем различные классы гиперболических неравенств. Наша цель — показать, что метод получения априорных оценок и теорем отсутствия решения, описанный в предыдущих частях, легко переносится на случай гиперболических неравенств и систем.
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

Модельной задачей здесь является нелинейное волновое неравенство

\[
\begin{cases}
\frac{\partial^2 u}{\partial t^2} - \Delta u \geq |u|^q, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x), & x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(x, 0) = u_1(x), & x \in \mathbb{R}^N,
\end{cases}
\tag{43.6}
\]

где \(N \geq 1, \ q > 1 \) и начальные данные \(u_0 \) и \(u_1 \) предполагаются локально интегрируемыми.

Исследование этой задачи для уравнения

\[
\frac{\partial^2 u}{\partial t^2} - \Delta u = |u|^q
\tag{43.7}
\]

было начато Джоном в серии классических работ [105, 106, 108].

Значение критического показателя существования глобальных решений задачи (43.7) было предсказано Штраусом [169, 170] как больший корень квадратного уравнения

\[(N - 1)q^2 - (N + 1)q - 2 = 0.\tag{43.8}\]

Впоследствии Сидерис [166] доказал, что если \(u_0, u_1 \in C_0^\infty(\mathbb{R}^N) \) достаточно малы и удовлетворяют некоторым слабым условиям положительности, то соответствующее решение не может быть глобальным, если

\[1 < q < q^*(N),\]

где \(q^* \) есть больший корень (43.8).

Отметим, что в случае \(N = 1 \) задача (43.7) не имеет глобального решения. В случае \(N = 2 \) Глассе [97], а для \(N = 3 \) Джон [105] и Шаффер [159] доказали отсутствие глобального решения при

\[1 < q \leq \frac{2 + \sqrt{17}}{2} \quad \text{и} \quad 1 < q \leq 1 + \sqrt{2}\]

соответственно. Таким образом, для \(N = 2, 3 \) доказано отсутствие решения даже для критического случая \(q = q^*(N) \). В связи с этим заметим, что Джон доказал отсутствие решения без предположений о положительности начальных данных \(u_0, u_1 \), тогда как доказательство Шаффера (для критического случая при \(N = 3 \)) использует явный вид фундаментального решения волнового оператора.

Вопросы существования глобальных решений для малых начальных данных в случае \(q > q^*(N) \) были решены Георгиевым, Линдбладом и Сорге [83] (см. также [98, 84, 134, 81, 82, 124]). Но, насколько известно авторам, вопрос об отсутствии решения в критическом случае \(q = q^*(N) \) для \(N > 3 \) остается открытым.

В настоящей части нашей главной целью является изучение вопроса об отсутствии решения гиперболических задач в случае, когда мы не имеем информации о фундаментальном решении этого гиперболического оператора и без предположений о малости начальных данных. Источником такой постановки задачи для гиперболических уравнений с общим эллиптическим оператором второго порядка в главной части является работа Като [110]. Однако поскольку доказательство Като использует так называемый функциональный метод (т.е. сведение к обыкновенному дифференциальному неравенству), то главные предположения о компактности и "положительности" начальных данных и некоторых свойствах волнового оператора играют важную роль в доказательстве.
Для модельной задачи (43.7) результат Като утверждает, что если \(u \) — обобщенное решение задачи (43.7) с \(u_0, u_1 \in C_0^\infty(\mathbb{R}^N) \) и
\[
\int_{\mathbb{R}^N} |x|^{q-1} u_0(x) \,dx > 0, \quad \int_{\mathbb{R}^N} u_1(x) \,dx > 0
\]
и
\[
\text{supp } u \subset \{|x| \leq R + t\},
\]
где
\[
\eta(N) = \begin{cases}
0, & \text{если } N \text{ нечетное,} \\
1/2, & \text{если } N \text{ четное,}
\end{cases}
\]
тогда решение \(u \) не может быть глобальным (по времени), если
\[
1 < q \leq \frac{N + 1}{N - 1}.
\]
Показатель \(q^*_K = \frac{N+1}{N-1} \) мы называем критическим показателем Като для задачи (43.7).

Перед тем как продолжить описание содержания настоящей части, заметим, что доказательство Като остается справедливым и для неравенства (43.6). Аналогичное замечание касается и результатов Джона и Сидериса.

Поскольку \(q^*_K \) меньше соответствующего показателя Штравуса
\[
q^*_S(N) = (N - 1) \left\{ \frac{1}{2} + \frac{1}{N} + \left(\frac{1}{2} + \frac{1}{N} \right)^2 + \frac{2}{N} \right\}^{1/2},
\]
естественно предположить, что \(q^*_K \) не зависит от компактности носителя начальных данных \(u_0 \) и \(u_1 \). Более того, в действительности \(q^*_K \) не зависит и от фундаментального свойства конечности распространения возмущений, т.е. предположения \(\text{supp } u \subset \{|x| \leq R + t\} \).

Это дает возможность доказывать результаты об отсутствии решений неравенств высокого порядка
\[
\frac{\partial^2 u}{\partial t^2} + (-1)^m \Delta^m u \geq |u|^q
\]
и более общих.

Весьма важна неулучшаемость показателя Като в классе задач с некомпактными носителями решений. Именно справедливо следующее утверждение.

Теорема 43.1 (Верон–Похожаев [179]). Пусть \(N > 1 \) и \(q > q^*_K(N) = \frac{N+1}{N-1} \). Если
\[
\int_{\mathbb{R}^N} u_1(x) \,dx > 0,
\]
то существует глобальное положительное слабое решение задачи
\[
\begin{cases}
\frac{\partial^2 u}{\partial t^2} - \Delta u \geq |u|^q, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = 0, & x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(x, 0) = u_1(x), & x \in \mathbb{R}^N. \quad \square
\end{cases}
\]
Мы показываем, как доказать общие результаты об отсутствии решения широкого класса задач гиперболического типа без предположений о компактности носителей u_0 и u_1. Конечно, в общем случае мы получаем различные варианты показателя Като для рассматриваемых задач.

Перейдем теперь к описанию конкретного содержания части. Глава 5 содержит краткое описание и некоторые приложения энергетического метода доказательства отсутствия решений. Этот способ восходит к Х. Левину, который использовал его для исследования общих эволюционных задач второго порядка. Для использования этого энергетического подхода рассматриваемая задача должна допускать "естественнее" введение понятия энергии и связь этого понятия с подходящим пространством Соболева. Очевидно, это возможно, если заранее известно, что решения принадлежат этому пространству. Генеральная идея энергетического метода состоит в том, что начальные данные с отрицательной энергией означают отсутствие глобального решения. Для некоторых классов задач отрицательная энергия в действительно означает, что начальные данные достаточно "большие".

В гл. 6 мы начинаем изучение эволюционных уравнений (и неравенств) высокого порядка по пространственным переменным без определенного типа, т.е. мы не делаем явных предположений о гиперболичности рассматриваемого эволюционного оператора второго порядка (по времени t). Общая постановка задачи имеет вид

$$\frac{\partial^2 u}{\partial t^2} \geq L_m(\varphi_p(u)) + |u|^q,$$

где

$$L_m(\cdot) = \sum_{|\alpha|=m} D^\alpha(a_\alpha(x,t)\cdot)$$

— дифференциальный оператор порядка m, не обязательно эллиптический, и φ_p — скалярная функция, имеющая степенной рост порядка p. Типичным результатом наших доказательств являются утверждения о том, что если u есть слабое решение задачи (43.9) и

$$\int_{\mathbb{R}^N} \frac{\partial u}{\partial k}(x,0) \, dx \geq 0,$$

tо существует функция

$$\Gamma : \mathbb{R}^4 \to \mathbb{R}$$

такая, что если

$$\Gamma(m, p, q, N) \leq 0,$$

то это решение u не может быть глобальным.

Нахождение явного вида функции $\Gamma(\cdot)$ и составляет нашу основную цель. Обычно $\Gamma(\cdot)$ можно выписать явно с учетом рассматриваемого функционального пространства решений с помощью подходящего выбора пробных функций в определении слабого решения задачи. В приложении к стандартному волновому уравнению (43.6) условие

$$\Gamma(2, 1, q, N) \leq 0$$

принимает вид

$$q \leq \frac{N + 1}{N - 1}.$$
ВВЕДЕНИЕ

В наших доказательствах мы не используем никаких принципов сравнения. Более того, мы рассматриваем решения из пространств \(L^r_{\text{loc}} \) (где \(r \), вообще говоря, зависит от задачи), в которых наш подход выглядит наиболее естественным.

Для большинства задач функция \(\Gamma(\cdot) \) зависит от размерности \(N \) пространства \(\mathbb{R}^N \). Например, в теореме 47.1 условие отсутствия решения задачи (47.1) дается формулой (47.11):

\[
2N \leq \frac{l(q + 1)}{q - p}.
\]

В этом случае \(\Gamma \) зависит от параметров \(l, q, p \) и \(N \) и определена формулой

\[
\Gamma(l, p, q, N) := 2N(q - p) - l(q + 1).
\]

Поскольку мы предполагаем \(q > p \), то условие отсутствия решения эквивалентно

\[
\Gamma(l, p, q, N) \leq 0.
\]

Если теперь вместо (43.6) рассмотреть неравенство

\[
\begin{aligned}
\frac{\partial^2 u}{\partial t^2} - |x|^\sigma \Delta u & \geq |u|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) &= u_0(x), \quad x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(x, 0) &= u_1(x), \quad x \in \mathbb{R}^N,
\end{aligned}
\]

где \(0 \leq \sigma \) и \(q > 1 \), то выявляется следующий феномен (см. гл. 7). Рассмотрим сначала случай \(0 \leq \sigma \leq 2 \). Из примера 48.3 следует, что если \(N \geq 1 \), то

\[
\Gamma(q, N, \sigma) = \begin{cases}
q \left(N - 1 - \frac{\tau}{2} \right) - \left(N + 1 - \frac{3\sigma}{2} \right), & \text{если } \sigma < 2, \\
q - 3, & \text{если } \sigma = 2 \text{ и } N \geq 3, \\
\infty, & \text{если } \sigma = 2 \text{ и } N = 2.
\end{cases}
\]

Видно, что существует задача, для которой функция \(\Gamma \) не зависит от размерности \(N \) и для которой эта функция разрывна. Заметим, что если \(N = 2 \), то \(\Gamma(q, N, 2) = \infty \) означает, что наша задача не имеет решения для всех \(q > 1 \). Из предыдущих результатов мы знаем, что это происходит для эллиптических и параболических неравенств с вырождающимися или сингулярными коэффициентами того же порядка, что и дифференциальный оператор. Для задачи (43.11) этот порядок равен 2 и критическое выражение определяется как множитель \(|x|^2 \) перед оператором Лапласа. Тот факт, что разрывность функции \(\Gamma(\cdot) \) зависит от порядка дифференциального оператора, описан в теореме 50.5, где рассматривается неравенство с полигармоническим оператором \(\Delta^m, m \geq 2 \).

Приведенное выше обсуждение приводит нас к общей постановке вопроса: как \(\Gamma \) зависит от функционального пространства, в котором рассматриваются решения? Один из простейших примеров — неравенство (43.11) с \(\sigma < 2 \) или \(\sigma > 2 \). Из теоремы 54.1 следует, что при определенных предположениях о начальных данных функция \(\Gamma \) имеет вид

\[
\Gamma(q, N, \sigma) := q - 3,
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
так что если $\Gamma(q, N, \sigma) \leq 0$, то задача не имеет решения в определенном в теореме 54.1 классе. Таким образом, в данном случае мы имеем существенное отличие от функции Γ, получаемой при использовании "стандартного" пространства слабых решений (ср. определения 51.1 и 54.1).

Глава 8 посвящена исследованию отсутствия и существования периодических (по времени) решений на базе вариационного метода.

В гл. 9 изучены вопросы отсутствия решений систем гиперболических неравенств с компактным носителем решения (рассмотренные в гл. 5 для случая одного неравенства).

Заключительная глава 10 обобщает метод пробных функций (гл. 6) на случай систем гиперболических неравенств и систем смешанного типа.

Глава 5. ЭНЕРГЕТИЧЕСКИЙ МЕТОД И ЗАДАЧИ С КОМПАКТНЫМ НОСИТЕЛЕМ

44. АБСТРАКТНАЯ СХЕМА И ПРИЛОЖЕНИЯ

Абстрактная схема. В отличие от указанных выше работ предлагаемый подход, разработанный совместно с В.А. Галактионовым [74], применим также к гиперболическим уравнениям с нелинейным главным членом. Сначала приведем абстрактную схему.

Пусть X — рефлексивное банахово пространство с нормой $\| \cdot \|$ и двойственным произведением (\cdot, \cdot). Пусть f есть C^{1}-функционал $X \rightarrow \mathbb{R}$ с производной f'.

Рассмотрим "гиперболическое" уравнение

$$\frac{\partial^2 u}{\partial t^2} = f'(u), \quad t > 0,$$

(44.1)

с начальными данными

$$u(0) = u_0 \in X_0, \quad \frac{\partial u}{\partial t}(0) = u_1 \in X.$$

(44.2)

Здесь множество X_0 из X снабжено соответствующей нормой и вложение $X_0 \subset X$ является непрерывным. Мы не останавливаемся на общей концепции решения, так как определение этого решения стандартно и основано на соответствующих тождествах и неравенствах, используемых ниже, т.е. решение принадлежит классу функций, для которых имеют смысл используемые для этого уравнения тождества и неравенства. Эти конкретные условия легко выписываются для конкретных примеров, приводимых ниже.

Все доказательства отсутствия глобального решения проводятся от противного, т.е. сначала предполагается, что существует глобальное решение из соответствующего класса. Далее на основании априорных асимптотических оценок для этого решения приходим к противоречию с предположением о существовании (ненулевого) глобального решения.

Для получения оценок для задачи (44.1), (44.2) введем следующие функционалы:

$$E(t) = \frac{1}{2} \left(\left\| \frac{\partial u}{\partial t} (t) \right\| \right)^2 - f(u(t)),$$

$$G(t) = \|u(t)\|^2.$$

(44.3)
Глава 5. ЭНЕРГЕТИЧЕСКИЙ МЕТОД

Из уравнения (44.1) имеем

\[E'(t) = 0 \Rightarrow \frac{1}{2} \| \frac{\partial u}{\partial t} \|^2 - f(u) = E(0) = E_0. \] (44.4)

С другой стороны,

\[G' = 2 \left(u, \frac{\partial u}{\partial t} \right), \quad G'' = 2 \left\| \frac{\partial u}{\partial t} \right\|^2 + 2 \left(u, \frac{\partial^2 u}{\partial t^2} \right) = 2 \left\| \frac{\partial u}{\partial t} \right\|^2 + 2 \langle u, f'(u) \rangle. \] (44.5)

Мы предполагаем, что существует действительная постоянная \(\lambda > 2 \) такая, что

\[\langle u, f'(u) \rangle - \lambda f(u) \geq 0, \quad u \in X_0, \] (44.6)

и начальные данные удовлетворяют

\[E_0 = E(0) \leq 0. \] (44.7)

Тогда, используя (44.4) и (44.6), получаем

\[G'' \geq 2 \left\| \frac{\partial u}{\partial t} \right\|^2 + 2 \lambda \left(\frac{1}{2} \left\| \frac{\partial u}{\partial t} \right\|^2 - E_0 \right) = (2 + \lambda) \left\| \frac{\partial u}{\partial t} \right\|^2 - 2 \lambda E_0 \geq (2 + \lambda) \left\| \frac{\partial u}{\partial t} \right\|^2, \quad t > 0. \] (44.8)

С другой стороны, из первого тождества (44.5) с использованием неравенства Коши–Буняковского–Шварца получаем

\[(G')^2 \leq 4 \| u \|^2 \left\| \frac{\partial u}{\partial t} \right\|^2 = 4G \left\| \frac{\partial u}{\partial t} \right\|^2 \Rightarrow \left\| \frac{\partial u}{\partial t} \right\|^2 \geq \frac{(G')^2}{4G}. \] (44.9)

Тогда (44.8) приводит к обыкновенному дифференциальному неравенству для функции \(G(t) \):

\[G''(t) \geq (2 + \lambda) \frac{(G'(t))^2}{4G(t)}, \quad t > 0. \] (44.10)

Существованию и отсутствию решения этого неравенства соответствуют существование и отсутствие решения исходной задачи.

Глобальное существование: равномерная априорная оценка. Предположим, что

\[G'(0) = 2 \left(u(0), \frac{\partial u}{\partial t}(0) \right) \equiv 2 \langle u_0, u_1 \rangle < 0. \] (44.11)

Интегрируя неравенство (44.10) в форме \(G''/(G')^2 \geq (2 + \lambda)/4G(t) \), получаем

\[(G'(t))^{-1} \leq (G'(0))^{-1} - \frac{2 + \lambda}{4} \int_0^t \frac{d \tau}{G(\tau)} < 0, \] (44.12)

так что \(G'(t) \equiv 2 \langle u(t), \frac{\partial u}{\partial t}(t) \rangle < 0 \) для всех \(t > 0 \). Таким образом мы получили следующую априорную оценку решения.

Лемма 44.1. Пусть выполнены (44.6), (44.7), (44.11). Тогда \(\| u(t) \| \) строго убывает и равномерно ограничена: \(\| u(t) \| < \| u(0) \| \) для \(t > 0 \).

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Доказательство. Интегрируя (44.10) в виде
\[\frac{G''}{G} \leq (2 + \lambda) \frac{G'}{4G}, \]
получаем \(G'(t)/G'(0) \leq [G(t)/G(0)]^{(2+\lambda)/4} \). Повторное интегрирование приводит к следующей оценке:
\[\|u(t)\| \leq \|u_0\|[1 + (\lambda - 2)|F_0|t/4]^{-2/(\lambda-2)}, \quad F_0 = 2\langle u_0, u_1 \rangle/\|u_0\|^2 > 0. \quad (44.13) \]

Глобальное несуществование. Если
\[G'(0) = 2\langle u_0, u_1 \rangle > 0, \quad (44.14) \]
то (44.10) дает \(G'(t) > 0 \) для всех \(t > 0 \). Интегрируя дважды, аналогично предыдущим рассуждениям получим
\[G(t) \geq G(0)[1 - (\lambda - 2)|F_0|t/4]^{-4/(\lambda-2)}. \]
В предположении о существовании локального решения приходим к следующему утверждению.

Лемма 44.2. Пусть выполнены (44.6), (44.7) и (44.14). Тогда решение "взрывается" (в том смысле, что \(G(t) = \|u(t)\|^2 \) становится неограниченной) на конечном интервале \((0, T) \), где \(T = 4/(\lambda - 2)F_0 \). \quad \square

Приведем теперь некоторые примеры.

Полулинейное гиперболическое уравнение высокого порядка. Рассмотрим в области \(\mathbb{R}^{N+1}_+ = \mathbb{R}^N \times \mathbb{R}_+ \) следующее гиперболическое уравнение порядка \(2m \):
\[\frac{\partial^2 u}{\partial t^2} = f'(u) \equiv -(-\Delta)^m u + |u|^{p-1} u, \quad m \geq 1, \quad p > 1, \quad (44.15) \]
где
\[f(u) = \frac{1}{2} \int_{\mathbb{R}^N} |D^m u|^2 \, dx + \frac{1}{p + 1} \int_{\mathbb{R}^N} |u|^{p+1} \, dx, \quad \langle u, f'(u) \rangle = - \int_{\mathbb{R}^N} |D^m u|^2 \, dx + \int_{\mathbb{R}^N} |u|^{p+1} \, dx. \]
Тогда (44.6) принимает вид
\[\langle u, f'(u) \rangle - \lambda f(u) = \left(\frac{\lambda}{2} - 1 \right) \int_{\mathbb{R}^N} |D^m u|^2 \, dx + \left(1 - \frac{\lambda}{p + 1} \right) \int_{\mathbb{R}^N} |u|^{p+1} \, dx. \]
Полагая \(\lambda = p + 1 \), получим
\[\langle u, f'(u) \rangle - (p + 1)f(u) = \left(\frac{p + 1}{2} - 1 \right) \int_{\mathbb{R}^N} |D^m u|^2 \, dx \geq 0, \]
откуда по лемме 44.1 следует отсутствие глобального нетривиального решения для уравнения (44.1).
Квазилинейное гиперболическое уравнение второго порядка. Рассмотрим в \mathbb{R}_{+}^{N+1} квазилинейное уравнение с q-лапласианом

$$\frac{\partial^2 u}{\partial t^2} = D(|Du|^q - 1)Du + |u|^{p-1}u, \quad q > 0, \quad p > 1. \quad (44.16)$$

Тогда

$$f(u) = -\frac{1}{q+1} \int_{\mathbb{R}^N} |Du|^{q+1} dx + \frac{1}{p+1} \int_{\mathbb{R}^N} |u|^{p+1} dx,$$

$$\langle u, f'(u) \rangle = -\int_{\mathbb{R}^N} |Du|^{q+1} dx + \int_{\mathbb{R}^N} |u|^{p+1} dx$$

и (44.6) дает

$$\langle u, f'(u) \rangle - \lambda f(u) = \left(\frac{\lambda}{q+1} - 1 \right) \int_{\mathbb{R}^N} |Du|^{q+1} dx + \left(1 - \frac{\lambda}{p+1} \right) \int_{\mathbb{R}^N} |u|^{p+1} dx \geq 0,$$

если $\lambda \geq q + 1, \lambda \leq p + 1$.

Таким образом, лемма 44.2 с $\lambda > 2$ применима, если $p \geq q > 1$.

Квазилинейное уравнение высокого порядка. Естественным обобщением приведенных выше примеров является квазилинейное гиперболическое уравнение высокого порядка

$$\frac{\partial^2 u}{\partial t^2} = -\sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^\alpha(a_\alpha(x)|Du|^q D^\alpha u) + \sum_{|\beta| \leq k} (-1)^{|\beta|} D^\beta(b_\beta(x)|Du|^{p-1} D^\beta u), \quad (44.17)$$

где $p > 1, q > 1$ и $\alpha = (\alpha_1, \ldots, \alpha_N), \beta = (\beta_1, \ldots, \beta_N)$ обозначают мультииндексы, $|\alpha| = \alpha_1 + \ldots + \alpha_N, |\beta| = \beta_1 + \ldots + \beta_N$.

Имеем

$$f(u) = -\frac{1}{q+1} \int_{\mathbb{R}^N} \sum_{|\alpha| \leq m} a_\alpha(x)|Du|^q dx + \frac{1}{p+1} \int_{\mathbb{R}^N} \sum_{|\beta| \leq k} b_\beta(x)|Du|^p dx,$$

$$\langle u, f'(u) \rangle = -\int_{\mathbb{R}^N} \sum_{|\alpha| \leq m} a_\alpha(x)|Du|^q dx + \int_{\mathbb{R}^N} \sum_{|\beta| \leq k} b_\beta(x)|Du|^p dx.$$

Рассмотрим главное предположение (44.6):

$$\langle u, f'(u) \rangle - \lambda f(u) = \left(\frac{\lambda}{q+1} - 1 \right) \int_{\mathbb{R}^N} \sum_{|\alpha| \leq m} a_\alpha(x)|Du|^q dx +$$

$$+ \left(1 - \frac{\lambda}{p+1} \right) \int_{\mathbb{R}^N} \sum_{|\beta| \leq k} b_\beta(x)|Du|^p dx. \quad (44.18)$$

Предположим, что обе дифференциальные формы в (44.17) являются неотрицательно определенными:

$$\sum_{|\alpha| \leq m} a_\alpha(x)\xi^q |\xi\alpha| \geq 0, \quad \sum_{|\beta| \leq k} b_\beta(x)\xi^p |\xi\beta| \geq 0. \quad (44.19)$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

Тогда из (44.18) следует, что лемма 44.2 об отсутствии решений применима, если \(\lambda \geq q + 1 \) и \(\lambda \leq p + 1 \). Это приводит к тому же самому условию \(p \geq q \).

Заметим, что результат о несуществовании нетривиального решения остается справедливым без предположений типа положительности первого оператора в правой части (44.17), если мы выберем \(\lambda = q + 1 > 2 \) при условии, что \(p > q > 1 \). Если \(p = q = 1 \), то полагая \(\lambda = q + 1 \), получаем отсутствие нетривиального решения без каких-либо ограничений на оба оператора в (44.17).

Уравнение Кирхгофа с нелокальными нелинейностями. Рассмотрим гиперболическое уравнение второго порядка с нелокальной нелинейностью

\[
\frac{\partial^2 u}{\partial t^2} = a \left(\int_{\mathbb{R}^N} |Du|^2 \, dx \right) \Delta u + h(u), \quad (x, t) \in \mathbb{R}^{N+1},
\]

с достаточно гладкими действительнозначными функциями \(a \) и \(h \), удовлетворяющими некоторым необходимым предположениям. Это уравнение является обобщением уравнения Кирхгофа. Имеем

\[
f(u) = - \frac{1}{2} A \left(\int_{\mathbb{R}^N} |Du|^2 \, dx \right) + \int_{\mathbb{R}^N} H(u) \, dx,
\]

где

\[
A(s) = \int_0^s a(\tau) \, d\tau, \quad H(s) = \int_0^s h(\tau) \, d\tau.
\]

В этом случае (44.6) принимает вид

\[
\langle u, f'(u) \rangle - \lambda f(u) = -a \left(\int_{\mathbb{R}^N} |Du|^2 \, dx \right) \int_{\mathbb{R}^N} |Du|^2 \, dx + \int_{\mathbb{R}^N} h(u)u \, dx + \lambda \int_{\mathbb{R}^N} |Du|^2 \, dx \cdot u - \int_{\mathbb{R}^N} H(u) \, dx = \frac{\lambda}{2} A \left(\int_{\mathbb{R}^N} |Du|^2 \, dx \right) - a \left(\int_{\mathbb{R}^N} |Du|^q \, dx \right) \int_{\mathbb{R}^N} |Du|^2 \, dx + \int_{\mathbb{R}^N} (h(u)u - \lambda H(u)) \, dx.
\]

Следовательно, если для некоторого \(\lambda > 2 \) правая часть (44.21) неотрицательна, то справедливо аналогичное утверждение об отсутствии решения. Этот результат допускает естественное обобщение на нелокальные гиперболические уравнения высокого порядка.

Уравнение Кирхгофа высокого порядка. В качестве примера рассмотрим уравнение Кирхгофа высокого порядка

\[
\frac{\partial^2 u}{\partial t^2} = - \left(\int_{\mathbb{R}^N} |D^m u|^2 \, dx \right)^q (-\Delta)^m u + |u|^{p-1} u, \quad m \geq 1, \quad q > 0, \quad p > 1.
\]
Глава 5. ЭНЕРГЕТИЧЕСКИЙ МЕТОД

Имеем

\[a(s) = s^q, \quad A(s) = (q + 1)^{-1}s^{q+1}, \quad s = \int_{\mathbb{R}^N}|D^mu|^2\,dx, \]

\[H(u) = (p + 1)^{-1}|u|^{p+1}, \quad f(u) = -\frac{1}{2(q + 1)} \left(\int_{\mathbb{R}^N}|D^mu|^2\,dx \right)^{q+1} + \frac{1}{p + 1} \int_{\mathbb{R}^N}|u|^{p+1}\,dx. \]

Главное неравенство записывается в виде (ср. (44.21))

\[\langle u, f'(u) \rangle - \lambda f(u) = \left(\frac{\lambda}{2(q + 1)} - 1 \right) \left(\int_{\mathbb{R}^N}|D^mu|^2\,dx \right)^{q+1} + \left(1 - \frac{\lambda}{p + 1} \right) \int_{\mathbb{R}^N}|u|^{p+1}\,dx \geq 0. \]

Далее предполагаем

\[\lambda > 2, \quad \lambda \geq 2(q + 1), \quad \lambda \leq p + 1. \tag{44.23} \]

При условии \(p \geq 2q + 1 \) такая постоянная \(\lambda \) существует и соответствующий результат об отсутствии нетривиального решения применим к уравнению (44.22) .

Замечание 44.1. Мы рассмотрели некоторые нелинейные гиперболические уравнения в \(\mathbb{R}^N+1 \). Аналогичные результаты об отсутствии глобального нетривиального решения справедливы для уравнений в \(\Omega \times \mathbb{R}_+ \) с однородными граничными условиями Дирихле.

45. ЗАДАЧА КОШИ С КОМПАКТНЫМ НОСИТЕЛЕМ

В этом разделе мы рассматриваем неавтономные уравнения вида

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} &= \Delta u + b(x,t)|u|^p, \quad (x,t) \in \mathbb{R}^N \times (0, \infty), \\
u(0,x) &= u_0(x), \quad x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(0,x) &= u_1(x), \quad x \in \mathbb{R}^N,
\end{align*}
\tag{45.1}
\]

с показателем \(p > 1 \), где \(b \in L^\infty_{\mathrm{loc}}(\mathbb{R}^{N+1}_+), \ b \geq 0, \) — заданная функция. Мы изучаем свойства решений задачи (45.1) из класса \(C^2_{\mathrm{loc}}(\mathbb{R}^{N+1}_+) \) с начальными условиями \(u_0 \in C^2_0(\mathbb{R}^N) \) и \(u_1 \in C^1_0(\mathbb{R}^N) \),

\[\int_{\mathbb{R}^N} u_1(x)\,dx > 0. \tag{45.2} \]

Предполагаем, что начальные данные имеют компактный носитель в шаре радиуса \(R \): \(\text{supp} u_0, \supp u_1 \subset \{|x| < R\} \). Отметим, что условие компактности носителей начальных данных в рассматриваемой задаче Коши является существенным [44, 5, 19].

Введем функции

\[B(t) = \left(\int_{|x| \leq R+t} b^{1-p'}\,dx \right)^{p-1}, \quad B_1(t) = \left(\int_{t-R \leq |x| \leq R+t} b^{1-p'}\,dx \right)^{p-1}, \tag{45.3} \]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
где $1/p + 1/p' = 1$. Предполагаем, что обе функции определены для $t > 0$ и существуют показатели $\alpha, \beta \in \mathbb{R}$ такие, что

$$\lim_{t \to \infty} \frac{B(t)}{t^\alpha} < \infty, \quad \lim_{t \to \infty} \frac{B_1(t)}{t^\beta} < \infty. \quad (45.4)$$

Отсутствие решения в трехмерном случае. Сначала докажем следующий результат.

Теорема 45.1. Пусть $N = 3$ и

$$\alpha < (p + 2 - \beta)(p - 1) + 2. \quad (45.5)$$

Тогда максимальное время T существования решения задачи (45.1) конечно.

Доказательство проводится в три этапа.

Первый этап: энергетическое обыкновенное дифференциальное неравенство. Рассмотрим функционал энергии

$$E(t) = \int_{\mathbb{R}^N} u(x, t) \, dx.$$

Поскольку мы предполагаем $\text{supp} \, u(t) \subset \{|x| \leq R + t\}$, то

$$E(t) = \int_{|x| \leq R+t} u(x, t) \, dx$$

является C^2-функцией на $(0, T)$. Интегрируя (45.1) по \mathbb{R}^N, получаем

$$E'' = \int_{|x| \leq R+t} b|u|^p \, dx. \quad (45.6)$$

По неравенству Гельдера

$$\left| \int_{|x| \leq R+t} u(x, t) \, dx \right| \leq \left(\int_{|x| \leq R+t} b|u|^p \, dx \right)^{1/p} \left(\int_{|x| \leq R+t} b^{1-p'} \, dx \right)^{1/p'}. \quad \left(45.6^*\right)$$

Следовательно,

$$\int_{|x| \leq R+t} b|u|^p \, dx \geq B^{-1}(t) \left| \int_{|x| \leq R+t} u(x, t) \, dx \right|^p = B^{-1}(t)E^p(t).$$

Окончательно приходим к обыкновенному дифференциальному неравенству второго порядка

$$E''(t) \geq B^{-1}(t)E^p(t), \quad t > 0, \quad E'(0) > 0. \quad (45.7)$$

В случае $b \equiv 1$ это неравенство приводит к критическому показателю Като $p_K = (N+1)/(N-1)$ (равен 2 для $N = 3$) [110], так что любая орбита $\{E(t)\}$ задачи (45.7) взрывается за конечное время.
Глава 5. ЭНЕРГЕТИЧЕСКИЙ МЕТОД

Второй этап: нижняя энергетическая оценка. Нам необходима дополнительная оценка снизу для $E(t)$. Рассмотрим линейную задачу Коши с теми же самыми начальными данными ($N = 3$)

$$\begin{cases}
\frac{\partial^2 v}{\partial t^2} = \Delta v, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
v(x, 0) = u_0(x), & x \in \mathbb{R}^N, \\
\frac{\partial v}{\partial t}(x, 0) = u_1(x), & x \in \mathbb{R}^N.
\end{cases}$$

(45.8)

Из положительности фундаментального решения для $N = 3$

$$F_3(x, t) = (2\pi)^{-1}\delta(t^2 - |x|^2) \geq 0, \quad t > 0,$$

где δ обозначает дельта-функцию Дирака, следует

$$u(x, t) \geq v(x, t), \quad (x, t) \in \mathbb{R}^3 \times (0, \infty).$$

(45.9)

Тогда

$$E(t) = \int_{|x| \leq R + t} u(x, t) \, dx \geq \int_{|x| \leq R + t} v(x, t) \, dx.$$

(45.10)

С другой стороны, в силу принципа Гюйгенса для $N = 3$ при $t > R$ имеем

$$\int_{|x| \leq R + t} v(x, t) \, dx = \int_{t - R \leq |x| \leq R + t} v(x, t) \, dx.$$

(45.11)

Из (45.9) и (45.10) следует

$$\int_{t - R \leq |x| \leq R + t} v(x, t) \, dx \leq \int_{|x| \leq R + t} u(x, t) \, dx \leq \left(\int_{|x| \leq R + t} b|u|^p \, dx \right)^{1/p} \times$$

$$\times \left(\int_{t - R \leq |x| \leq R + t} b^{1-p'} \, dx \right)^{1/p'} \leq \left(\int_{|x| \leq R + t} b|u|^p \, dx \right)^{1/p} \left(\int_{t - R \leq |x| \leq R + t} b^{1-p'} \, dx \right)^{1/p'}.$$

Это означает, что

$$\int_{|x| \leq R + t} b|u|^p \, dx \geq \left(\int_{t - R \leq |x| \leq R + t} v \, dx \right)^p B_1^{-1}(t).$$

(45.12)

Теперь установим нижнюю энергетическую оценку для v. Интегрируя (45.8) по \mathbb{R}^3, получим, что соответствующий функционал

$$E_0(t) = \int_{\mathbb{R}^N} v(x, t) \, dx = \int_{|x| \leq t + R} v \, dx \equiv \int_{t - R \leq |x| \leq t + R} v \, dx, \quad t > R,$$

удовлетворяет условиям

$$E_0'' = 0, \quad t > 0, \quad E_0(0) = \int_{\mathbb{R}^3} u_0 \, dx \equiv a_0, \quad E_0'(0) = \int_{\mathbb{R}^3} u_1 \, dx \equiv a_1.$$
и, следовательно, $E_0(t) = a_0 + a_1 t$. В силу (45.2) $a_1 > 0$ и (45.12) принимает вид

$$\int_{|x| \leq R + t} b(x, t)|u|^p \, dx \geq (a_0 + a_1 t)^p B_1^{-1}(t). \quad (45.13)$$

Тогда (45.6) дает $E''(t) \geq (a_0 + a_1 t)^p B_1^{-1}(t)$ и интегрирование приводит к оценке снизу

$$E(t) \geq a_0 + a_1 t + H_0(t), \quad H_0(t) = \int_0^t (t - \tau)(a_0 + a_1 \tau)^p B_1^{-1}(\tau) \, d\tau. \quad (45.14)$$

Третий этап: анализ обыкновенного дифференциального неравенства. Окончательно для больших значений времени t мы приходим к обыкновенному дифференциальному неравенству для энергетических орбит $\{E(t), t > 0\}$ с дополнительной нижней оценкой (условием)

$$E'' \geq B^{-1}(t) E^p, \quad E'(t) \geq H_0(t), \quad t \geq R, \quad a_1 > 0. \quad (45.15)$$

В предположении (45.4) получаем систему (здесь $c > 0$ постоянная)

$$E''(t) \geq ct^{-\alpha} E^p(t), \quad E(t) \geq ct^{-\beta + p + 2}, \quad t \geq 1. \quad (45.16)$$

Интегрируя это дифференциальное неравенство, с использованием леммы 4 из [166] можно убедиться, что при условии (45.5) функционал энергии $E(t)$ взрывается за конечное время. Заметим также, что соответствующее дифференциальное уравнение $E''(t) = ct^{-\alpha} E^p(t)$ есть классическое уравнение Эмдена–Фоулера. Стандартными преобразованиями оно сводится к дифференциальному уравнению первого порядка. Его фазовая плоскость наглядно отражает приведенные выше условия отсутствия нетривиального решения. Теорема доказана. \[\square\]

Примеры для $N = 3$. Зависящие от времени операторы. Рассмотрим уравнение (45.1), где

$$b(x, t) = ct^l, \quad t \geq 1, \quad l > 0, \quad c > 0.$$

Тогда функция $B(t)$ из (45.3) принимает вид

$$B(t) = \left(\int_{|x| \leq R + t} (ct^l)^{1-p'} \, dx \right)^{p-1} = c_1(Rt)^{3(p-1)-l},$$

так что $\alpha = 3(p-1) - l$. Аналогично для $B_1(t)$, определенного по формуле (45.3), получаем

$$B_1(t) \leq c_2(R + t)^{2(p-1)-l} \Rightarrow \beta = 2(p-1) - l.$$

Неравенство (45.5) для показателей принимает вид $3(p-1) - l < (p + 2 + l - 2p + 2)(p-1) + 2$, или $p^2 - (2 + l)p - 1 < 0$. Это дает интервал отсутствия решения (докритические значения):

$$1 < p < p_c = 1 + l/2 + [(1 + l/2)^2 + 1]^{1/2}. \quad (45.17)$$

В автономном случае $l = 0$ получаем критический показатель $p_c = 1 + \sqrt{2}$ (Джон [105]).

Пространственно неавтономный оператор. Рассмотрим гиперболическое уравнение (45.1) с функцией $b(x, t)$, зависящей от пространственной переменной:

$$\frac{\partial^2 u}{\partial t^2} = \Delta u + c|x|^k |u|^p, \quad k < N(p-1) = 3(p-1), \quad c > 0. \quad (45.18)$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Тогда

\[B(t) = c_1 \left(\int_{|x| \leq R+t} |x|^{k(1-p')} \right)^{p-1} = c_2(R + t)^\alpha, \quad \alpha = 3(p - 1) - k, \]

\[B_1(t) = c_3 \left(\int_{t-R \leq |x| \leq R+t} |x|^{k(1-p')} \, dx \right)^{p-1} = c_3 \left(\int_{t-R \leq |x| \leq R+t} \frac{|x|^{N-1}}{|x|^{(k-1)p'}} \, dx \right)^{p-1} = \]

\[= c_4 [(t + R)^{N-k(p'-1)} - (t - R)^{N-k(p'-1)}]^{p-1} \leq c_5 (R + t)^\beta, \]

где \(\beta = (N-1)(p-1) - k = 2(p-1) - k. \) Из (45.5) имеем \(3(p-1) - k < (p+2+k-2p+2)(p-1) + 2, \) что эквивалентно неравенству относительно показателя \(p: p^2 - (2 + k)p - 1 < 0, \) откуда получаем докритический интервал отсутствия решения

\[1 < p < p_c = 1 + k/2 + [(1 + k/2)^2 + 1]^{1/2}, \quad k < 3(p - 1). \quad (45.19) \]

При \(k = 0 \) этот показатель совпадает с критическим показателем Джона \(p_c = 1 + \sqrt{2} \) [105].

Критические показатели для \(N > 3. \) Рассмотрим задачу Коши (45.1) для размерности \(N > 3. \) Мы будем использовать некоторые оценки из работы [166]. Положим

\[m = (N - 5)/2, \quad \text{если \(N \) нечетное; \quad m = (N - 4)/2, \quad \text{если \(N \) четное,} \]

и для \(t > R \) определим

\[F(t) = \int_{t-R}^t (t-s)^m \int \| u(x,s) \| dx \, ds \quad \Rightarrow \quad F'' = \int_{t-R}^t (t-s)^m \int \frac{\partial^2 u}{\partial s^2} dx \, ds. \quad (45.20) \]

Тогда уравнение (45.1) означает

\[F''(t) = \int_{t-R}^t (t-s)^m \int b(x,s)|u(x,s)|^p \, dx \, ds. \quad (45.21) \]

Поскольку \(\operatorname{supp} u(t) \subset S(t) \equiv \{|x| < t + R\}, \) то с использованием неравенства Гельдера получаем

\[|F(t)| \leq \int_{t-R}^t \int (t-s)^m \| u(x,s) \| dx \, ds \leq \]

\[\leq \int_{t-R}^t \int (t-s)^m b^p dx \, ds \left| (t-s)^{1/p'} \right| \leq \int_{t-R}^t \int (t-s)^m b^{1-p'} dx \, ds \]

\[\leq \int_{t-R}^t \int (t-s)^m b^p dx \, ds \left| (t-s)^{1/p'} \right| \leq \int_{t-R}^t \int b^{1-p'} dx \, ds \right|^{1/p'} \cdot (45.22) \]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

Обозначая

\[B(t) = R^m(p-1) \left(\int_{t-R}^{t} \int_{S(t)} b^{1-p'}(x, s) \, dx \, ds \right)^{p-1}, \]

имеем

\[G(t) = \int_{t-R}^{t} \int_{S(t)} (t-s)^m b(x, s) u^{p} \, dx \, ds \geq B^{-1}(t) F^p(t) \]

и (45.21) приводит к обыкновенному дифференциальному неравенству

\[F''(t) \geq B^{-1}(t) F^p(t), \quad t > R. \]

Чтобы получить нижнюю оценку для \(G(t), \) рассмотрим линейную задачу (45.8). По лемме 5 из [166] имеем (ср. (45.9))

\[\int_{0}^{t} (t-s)^m u(x, s) \, ds \geq \int_{0}^{t} (t-s)^m v(x, s) \, ds \]

и поэтому

\[\int_{0}^{t} (t-s)^m \int_{|x|>t} u(x, s) \, dx \, ds \geq \int_{0}^{t} (t-s)^m \int_{|x|>t} v(x, s) \, dx \, ds. \]

Поскольку носители обоих решений \(u(\cdot, t) \) и \(v(\cdot, t) \) содержатся в шаре \(S(t), \) то для \(t > R \) получаем

\[\int_{0}^{t} u \, ds = \int_{0}^{t} u \, ds, \quad \int_{0}^{t} v \, ds = \int_{0}^{t} v \, ds. \]

Тогда из последнего неравенства следует

\[\int_{t-R}^{t} (t-s)^m \int_{|x|>t} u(x, s) \, dx \, ds \geq \int_{t-R}^{t} (t-s)^m \int_{|x|>t} v(x, s) \, dx \, ds \equiv H(t). \]

Теперь применяем лемму 6 из [166].

Лемма 45.1 [166, лемма 6]. Предположим, что

\[\int_{\mathbb{R}^N} |x|^\eta-1 u_0(x) \, dx > 0, \quad \int_{\mathbb{R}^N} |x|^\eta-1 u_1(x) \, dx > 0, \]

где \(\eta = 0, \) если \(N \) нечетно, а \(\eta = 1/2, \) если \(N \) четно. Тогда существует постоянная \(C > 0 \) такая, что для \(t \gg 1 \)

\[H(t) \geq C(R + t)^{(N-1)/2}. \]
Глава 5. ЭНЕРГЕТИЧЕСКИЙ МЕТОД

С учетом (45.26), с использованием неравенства Гельдера получаем

\[
C(R + t)^{(N-1)/2} \leq H(t) \leq \int\limits_{t-R}^{t} (t-s)^m \int\limits_{|x|>t} u(x,s) \, dx \, ds = \\
= \int\limits_{t-R}^{t} (t-s)^m \int\limits_{t-R}^{t} u(x,s) \, dx \, ds \leq B_1^{1/p}(t) \left(\int\limits_{t-R}^{t} (t-s)^m \int\limits_{s(t)} u(x,s) \, dx \, ds \right)^{1/p},
\]

\[
B_1(t) = R^{m(p-1)} \left(\int\limits_{t-R}^{t} \int\limits_{(t-R, t)} b^{1-p'}(x,s) \, dx \, ds \right)^{p-1}.
\]

Следовательно,

\[
G(t) \geq C^p B_1^{-1}(t)(R + t)^{(N-1)p/2}.
\] (45.30)

Из (45.21) следует, что \(F''(t) \geq C^p B_1^{1}(t)(R + t)^{(N-1)p/2} \). Интегрируя это неравенство, приходим к оценке снизу

\[
F(t) \geq A + Bt + C^p \int\limits_{0}^{t} (t - \tau)(R + \tau)^{(N-1)p/2} B_1^{-1}(\tau) \, d\tau.
\] (45.31)

Предположим теперь, что существуют показатели \(\alpha, \beta \) такие, что (45.4) выполнено. Тогда (45.24) и (45.31) образуют систему

\[
F''(t) \geq C_1 t^{-\alpha} F(t), \quad F(t) \geq C_2 t^{-\beta+2+(N-1)p/2}, \quad t \gg 1.
\] (45.32)

Предположим также, что

\[
-\beta + 2 + (N - 1)p/2 > 1.
\] (45.33)

Тогда линейным членом \(A + Bt \) в (45.31) можно пренебречь при большом времени \(t \). Используя лемму 4 из [166] об отсутствии глобального решения обыкновенного дифференциального неравенства типа (45.22), приходим к следующему утверждению.

Теорема 45.2. Пусть для \(N > 3 \) начальные данные удовлетворяют (45.27). Пусть выполнено (45.33) и

\[
\alpha < [-\beta + 2 + (N - 1)p/2](p - 1) + 2.
\] (45.34)

Тогда максимальное время существования нетривиальных решений задачи (45.1) конечно. \(\square \)

Примеры для \(N > 3 \). Оператор, зависящий от времени. Рассмотрим задачу

\[
\frac{\partial^2 u}{\partial t^2} = \Delta u + c t^l |u|^p, \quad 0 \leq t \leq \frac{1}{p' - 1}, \quad p > 1.
\]

Тогда для \(t > R \)

\[
B(t) \leq C_R \left(\int\limits_{(t-R, t)} s^{-l(p'-1)} \, dx \, ds \right)^{p-1} = C_R \left(|R + t|^N s^{1-l(p'-1)} \right)^{p-1} \leq C_R |R + t|^N t^{-l(p'-1)} \leq C_R t^\alpha,
\]

16 ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
где $\alpha = N(p-1) - l$, C_R обозначают различные положительные постоянные, зависящие от R. Оценивая $B_1(t)$, при $t > R$ получаем

$$B_1(t) \leq C_R \left(\int_{t-R}^{t} \int_{S(t)} s^{-l(p'-1)} ds \right)^{p-1} \leq C_R t^{\alpha},$$

где $\beta = (N-1)(p-1) - l$. Тогда (45.33) и (45.34) дают

$$(N-1)(p-1) - l < 1 + (N-1)p/2,$$

$$N(p-1) - l < [(N-1)p/2 + 2 - (N-1)(p-1) + l](p-1) + 2,$$

t.е. $p < 2(N+l)/(N-1)$ и

$$(N-1)p^2 - (N + 1 + 2l)p - 2 < 0. \quad (45.35)$$

Так как положительный корень этого квадратного трехчлена удовлетворяет первому ограничению, то мы приходим к единственному условию (45.35) разрушения решения задачи Коши. Для автономного уравнения с $l = 0$ получаем критический показатель из работы [166].

Пространственно неавтономные операторы. Рассмотрим уравнение

$$\frac{\partial^2 u}{\partial t^2} = \Delta u + c|x|^k |u|^p, \quad 0 \leq k < N(p-1) = \frac{N}{p'-1},$$

Тогда для $t > R$

$$B(t) \leq C_R \left(\int_{t-R}^{t} \int_{S(t)} |x|^{-k(p'-1)} dx ds \right)^{p-1} \leq C_R t^{\alpha}, \quad \alpha = N(p-1) - k,$$

$$B_1(t) \leq C_R \left(\int_{t-R}^{t} \int_{t-R}^{t} |x|^{-k(p'-1)} dx ds \right)^{p-1} \leq C_R t^{\beta}, \quad \beta = (N-1)(p-1) - k.$$

Из (45.33), (45.34) получаем условия

$$(N-1)(p-1) - k < (N-1)p/2 + 1,$$

$$N(p-1) - k < [(N-1)p/2 + 2 - (N-1)(p-1) + k](p-1) + 2.$$

Если $1 < p < 2(N+k)/(N-1)$, $k < N(p-1)$ и $(N-1)p^2 - (N + 1 + 2k)p - 2 < 0$, то решение задачи Коши разрушается за конечное время.

Можно показать, что аналогичные результаты применимы также к гиперболическим неравенствам

$$\frac{\partial^2 u}{\partial t^2} \geq \Delta u + b(x, t)|u|^p.$$

Приведенные выше результаты получены совместно с В.А. Галкиноым [74].
Глава 6. МЕТОД ПРОБНЫХ ФУНКЦИЙ И ЗАДАЧИ С НЕКОМПАКТНЫМ НОСИТЕЛЕМ

46. НЕЛИНЕЙНЫЕ ЗАДАЧИ ВЫСОКОГО ПОРЯДКА С НЕКОМПАКТНЫМ НОСИТЕЛЕМ

В этом разделе мы приводим полученные совместно с Л. Вероном [179] результаты о несуществовании глобальных нетривиальных решений очень широкого класса нелинейных гиперболических уравнений и неравенств вида

$$\frac{\partial^2 u}{\partial t^2} \geq L_m(\varphi_p(u)) + |u|^q,$$

где φ_p — локально ограниченная вещественноназначенная функция, удовлетворяющая условию

$$|\varphi_p(r)| \leq c|r|^p$$

для некоторых $c > 0$ и $p > 0$, и $L_m(\zeta) = \sum_{|\alpha|=m} D^\alpha (a_\alpha(x,t)\zeta)$ — однородный дифференциальный оператор порядка m, в котором коэффициенты a_α суть ограниченные измеримые функции. Путем подходящего выбора пробных функций и размерностного анализа мы доказываем, что не существует слабого решения задачи (46.1), определенного на $\mathbb{R}^N \times \mathbb{R}$ с $\int_{\mathbb{R}^N \times \mathbb{R}} \frac{\partial u}{\partial t}(x,0) \, dx \geq 0$, если $q > \max(1,p)$ и либо $2N - m \leq 0$, либо $2N - m > 0$ и

$$N \frac{q - p}{q + 1} \leq \frac{m}{2}.$$

В отличие от упоминавшихся выше результатов не делается предположений о знаке среднего значения функции u_0 и о носителе решения. В частном случае неравенства

$$\frac{\partial^2 u}{\partial t^2} \geq L_2(u) + |u|^q$$

наши условия означают либо $N = 1$, либо $N > 1$ и

$$1 < q \leq \frac{N + 1}{N - 1}.$$

Мы приводим также вариант указанного результата в случае, когда оператор не является однородным, или имеет разные порядки дифференцирования по разным переменным (x_1, \ldots, x_N), или имеет неограниченные или стремящиеся к нулю при $x^2 + t \to \infty$ коэффициенты a_α. Важно отметить, что оператор L_m не имеет определенного типа. Насколько нам известно, первый результат об отсутствии глобальных положительных решений в \mathbb{R}^N для стационарных полилинейных уравнений с линейным дифференциальным оператором произвольного типа принадлежит Кондратьеву и Эйдельману [113].

Пусть L_m — однородный дифференциальный оператор порядка m:

$$L_m(\zeta) = \sum_{|\alpha|=m} D^\alpha (a_\alpha(x,t)\zeta),$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234 16*
где a_α — ограниченные измеримые функции, определенные на $\mathbb{R}^N \times \mathbb{R}_+ = \mathbb{R}^{N+1}_+$, m — положительное целое, ϕ_p — локально ограниченная вещественнозначная функция, удовлетворяющая при некотором $p > 0$ неравенству

$$|\phi_p(r)| \leq c|r|^p, \quad r \in \mathbb{R}. \quad (46.5)$$

Определение 46.1. Слабым решением u дифференциального неравенства

$$\frac{\partial^2 u}{\partial t^2} \geq L_m(\phi_p(u)) + |u|^q \quad (46.6)$$

в \mathbb{R}^{N+1}_+ с начальными данными $u(\cdot, 0) = u_0(\cdot)$ и $\frac{\partial u}{\partial t}(\cdot, 0) = u_1(\cdot)$, принадлежащими $L_{loc}^1(\mathbb{R}^N)$, называется локально интегрируемая функция $u \in L_{loc}^q(\mathbb{R}^{N+1}_+ \cap L_{loc}^p(\mathbb{R}^{N+1}_+)$, удовлетворяющая неравенству

$$-\int_{\mathbb{R}^N} u_1(x)\zeta(x, 0) \, dx + \int_{\mathbb{R}^N} u_0(x) \frac{\partial \zeta}{\partial t}(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial^2 \zeta}{\partial t^2} \, dx \, dt \geq$$

$$\geq \int_0^\infty \int_{\mathbb{R}^N} \phi_p(u)L_m^*(\zeta) \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} |u|^q \zeta \, dx \, dt \quad (46.7)$$

dля любой неотрицательной функции $\zeta \in C_{x,t}^{m,2}(\mathbb{R}^{N+1})$ с компактным носителем, где

$$L_m^*(\zeta) = (-1)^m \sum_{|\alpha|=m} a_\alpha(x,t)D^\alpha \zeta.$$

Теорема 46.1. Пусть $q > \max(1, p)$.

Тогда не существует нетривиального слабого решения $u(x,t)$ неравенства (46.6), определенного на $\mathbb{R}^N \times (0, \infty)$ и такого, что $\lim_{R \to \infty} \int_{|x|<R} u_1 \, dx \geq 0$, если либо $2N-m \leq 0$, либо $2N-m > 0$ и

$$N \leq \frac{m q + 1}{2q-p}.$$

Доказательство. Пусть u — слабое решение и ζ — гладкая неотрицательная пробная функция. Из (46.7) получаем

$$\int_{\mathbb{R}^N} u_1(x)\zeta(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} |u|^q \zeta \, dx \, dt \leq$$

$$\leq \int_{\mathbb{R}^N} u_0(x) \frac{\partial \zeta}{\partial t}(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial^2 \zeta}{\partial t^2} \, dx \, dt - \int_0^\infty \int_{\mathbb{R}^N} \phi_p(u)L_m^*(\zeta) \, dx \, dt. \quad (46.8)$$

Если ζ выбрано таким образом, что

$$\int_0^\infty \int_{\mathbb{R}^N} \left(\frac{\partial^2 \zeta}{\partial t^2} \right)^{q'} + |L_m^*(\zeta)|^{q/(q-p)} \zeta^{-p/(q-p)} \, dx \, dt < \infty, \quad (46.9)$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
где $q' = q/(q - 1)$, то

$$
\int_0^\infty \int_\mathbb{R}^N u \frac{\partial^2 \zeta}{\partial t^2} dx \, dt \leq \left(\int_0^\infty \int_\mathbb{R}^N |u|^q \zeta dx \, dt \right)^{1/q} \left(\int_0^\infty \int_\mathbb{R}^N \left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q'} \zeta^{1-q'} dx \, dt \right)^{1/q'} \leq \frac{1}{4} \int_0^\infty \int_\mathbb{R}^N |u|^q \zeta dx \, dt + C_1 \int_0^\infty \int_\mathbb{R}^N \left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q'} \zeta^{1-q'} dx \, dt.
$$

и

$$
- \int_0^\infty \int_\mathbb{R}^N \varphi_p(u) L_m(\zeta) dx \, dt \leq c \left(\int_0^\infty \int_\mathbb{R}^N |u|^q \zeta dx \, dt \right)^{p/q} \left(\int_0^\infty \int_\mathbb{R}^N |L_m(\zeta)|^{q/(p-q)} \zeta^{p/(p-q)} dx \, dt \right)^{(q-p)/q} \leq \frac{1}{4} \int_0^\infty \int_\mathbb{R}^N |u|^q \zeta dx \, dt + C_2 \int_0^\infty \int_\mathbb{R}^N |L_m(\zeta)|^{q/(p-q)} \zeta^{p/(p-q)} dx \, dt.
$$

Предположим теперь, что ζ выбрано так, что

$$
\int_\mathbb{R}^N u_0(x) \frac{\partial \zeta}{\partial t}(x, 0) \, dx = 0.
$$

Тогда (46.8)–(46.12) дают

$$
\int_\mathbb{R}^N u_1(x) \zeta(x, 0) \, dx + \frac{1}{2} \int_0^\infty \int_\mathbb{R}^N |u|^q \zeta dx \, dt \leq C_1 \int_0^\infty \int_\mathbb{R}^N \left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q'} \zeta^{1-q'} dx \, dt + C_2 \int_0^\infty \int_\mathbb{R}^N |L_m(\zeta)|^{q/(p-q)} \zeta^{p/(p-q)} dx \, dt.
$$

Теперь полюсим $\zeta(x, t) = \varphi \left(\frac{t^\infty + |x|^\mu}{R^\infty} \right)$, где $\varphi \in C_0^\infty(\mathbb{R}_+)$, $0 \leq \varphi \leq 1$ и

$$
\varphi(r) = \begin{cases} 0, & r \geq 2, \\ 1, & 0 \leq r \leq 1, \end{cases}
$$

R — положительный параметр, $\kappa > 1$ и $\mu > 0$ будут определены ниже.

Поскольку $\frac{d}{dt}(x, t) = \kappa t^{\kappa-1} R^{-2} \varphi' \left(\frac{t^{\kappa+|x|^\mu}}{R^\infty} \right)$, равенство (46.12) справедливо. Чтобы оценить правую часть (46.13), сделаем замену переменных

$$
\begin{cases} R^{-2} t^\infty = \tau^\kappa, \\ R^{-2}|x|^\mu = |y|^\mu \end{cases} \iff \begin{cases} t = R^{2/\kappa} \tau, \\ x = R^{2/\mu} y. \end{cases}
$$

Далее, обозначая $\Omega = \{(y, \tau) \in \mathbb{R}^N \times \mathbb{R}_+: \tau^\kappa + |y|^\mu \leq 2\}$ и $\rho(y, \tau) = \tau^\kappa + |y|^\mu$, будем иметь

$$
\int_0^\infty \int_\mathbb{R}^N \left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q'} \zeta^{1-q'} dx \, dt = R^{-4q'\kappa + 2\kappa + 2N/\mu} \int_\Omega \left(\left| \frac{\partial^2 \varphi}{\partial \tau^2} \circ \rho \right|^{q'} \varphi \circ \rho \right)^{1-q'} dy \, d\tau.
$$
часть сходится к σ

Это условие удовлетворяется для всех τ, что дает общее значение σ

Тогда существуют положительные постоянные C_3 и C_4 такие, что

$$2 \int_{\mathbb{R}^N} u_1(x) \zeta(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} |u|^q \zeta \, dx \, dt \leq C_3 R^{2N/\mu + 2/\kappa - 4q/\kappa} + C_4 R^{2N/\mu + 2/\kappa - 2mq/(\mu(q - p))}$$

(46.18)

для всех $R > 0$. Теперь выбираем κ из соотношения $2N/\mu + 2/\kappa - 4q/\kappa = 2N/\mu + 2/\kappa - 2mq/(\mu(q - p))$, т.е.

$$\frac{2}{\kappa} = \frac{m(q - 1)}{\mu(q - p)},$$

(46.19)

что дает общее значение σ показателей u, R в (46.18), именно

$$\sigma = \frac{2}{\mu} \left(N - \frac{m(q + 1)}{2(q - p)} \right).$$

(46.20)

Знак (46.20) не зависит от $\mu > 0$, тогда как условие $\kappa > 1$ эквивалентно $m(q - 1)/(q - p) < 2\mu$.

Это условие удовлетворяется, если взять достаточно большое μ.

Если $\sigma < 0$, то правая часть (46.18) стремится к нулю при $R \to \infty$, в то время как левая часть сходится к $\int_{\mathbb{R}^N} u_1 \, dx + \int_0^\infty \int_{\mathbb{R}^N} |u|^q \, dx \, dt$. Это доказывает отсутствие такой функции u.

Если $\sigma = 0$, то $\int_0^\infty \int_{\mathbb{R}^N} |u|^q \, dx \, dt < \infty$. Возвращаясь к неравенству (46.8), в действительности получаем

$$\int_0^\infty \int_{\mathbb{R}^N} |u|^q \zeta \, dx \, dt + \int_{\mathbb{R}^N} u_1 \, dx \, dt \leq \int_{R^2 \leq t^* + |x|^2 \leq 2R^2} u \frac{\partial^2 \zeta}{\partial t^2} \, dx \, dt \leq \int_{R^2 \leq t^* + |x|^2 \leq 2R^2} \varphi_p(u) L_m^*(\zeta) \, dx \, dt \leq \left(\int_{R^2 \leq t^* + |x|^2 \leq 2R^2} |u|^q \, dx \, dt \right)^{1/\mu} \left(\int_{1 \leq t^* + |y|^2 \leq 2} \left| \frac{\partial^2 \varphi}{\partial t^2} \right|^{q' - 1} \varphi \, dy \, d\tau \right)^{1/q'} + \left(\int_{R^2 \leq t^* + |x|^2 \leq 2R^2} |u|^q \zeta \, dx \, dt \right)^{p/q} \left(\int_{1 \leq t^* + |y|^2 \leq 2} \left| L_m^*(\varphi) \varphi^{(q/2 - p) / (q - p)} \right| \, dy \, d\tau \right)^{(q - p)/q}.$$

(46.21)

Так как $\int_0^\infty \int_{\mathbb{R}^N} |u|^q \, dx \, dt < \infty$, то $\lim_{R \to \infty} \int_{R^2 \leq t^* + |x|^2 \leq 2R^2} |u|^q \, dx \, dt = 0$. Это опять приводит нас к выводу, что $\int_0^\infty \int_{\mathbb{R}^N} |u|^q \, dx \, dt = 0$.

Предположение $\sigma \leq 0$ означает

$$N \leq \frac{mq + 1}{2(q - p)} \iff (2N - m)q \leq 2Np + m.$$

(46.22)

Необходимо отметить, что если $2N - m \leq 0$, то (46.22) выполняется с очевидностью. □
Замечание 46.1. Предположение об интегрируемости u_1 может быть ослаблено и заменено на следующее:

$$\lim_{R \to \infty} \int_{\mathbb{R}^N} u_1(x) \varphi(|x|^\mu / R^2) \, dx \in [0, \infty].$$

Замечание 46.2. Положительность u_1 играет существенную роль, поскольку для любого $\delta > 0$ существует положительная функция z, удовлетворяющая

$$z'' = |z|^q, \quad t \in [0, \infty), \quad z(0) = \delta. \quad (46.23)$$

Для такой функции $z'(t) < 0$ для всех $t \geq 0$ и, в частности, $z'(0) = f(\delta) < 0$. Следовательно, задача Коши для уравнения (46.23) с начальными данными $z(0) = \delta$ и $z'(0) = f(\delta)$ имеет глобальное решение, определенное на \mathbb{R}_+. Легко проверить, что существуют $1 < q < (N + 1)/(N - 1)$ и положительное глобальное решение u неравенства

$$\frac{\partial^2 u}{\partial t^2} \geq \Delta u + u^q \quad (46.24)$$

в \mathbb{R}^{N+1}_+ вида

$$u(x, t) = A(t + t_0)^\alpha \left((t + t_0)^2 + |x|^2 \right)^\beta$$

для $t_0 > 0$ и некоторых $A > 0$, α и β таких, что $\alpha + 2\beta = -1/(q - 1)$, $-2/(q - 1) < \beta < 0$, при условии

$$2\beta(\beta - 1)\xi^2 + \beta \xi(2\alpha - 2\beta + 3 - N) + 2\alpha(\alpha - 1)\eta^2 < 0, \quad (\eta, \xi): \xi^2 + \eta^2 > 0.$$

Однако производная этого решения отрицательна при $t = 0$.

Следующий результат немедленно следует из теоремы 46.1.

Следствие 46.1. Пусть $q > 1$ и $a_{i,j}$ — измеримые равномерно ограниченные функции в \mathbb{R}^{N+1}_+. Тогда если $1 < q \leq (N + 1)/(N - 1)$, то не существует нетривиального слабого решения $u(x, t)$ неравенства

$$\frac{\partial^2 u}{\partial t^2} \geq \sum_{i,j=1}^N \frac{\partial^2}{\partial x_i \partial x_j} (a_{i,j}(x,t)u) + |u|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \quad (46.25)$$

такого, что $\int_{\mathbb{R}^N} \frac{\partial u}{\partial t} (x, 0) \, dx \geq 0$.

Замечание 46.3. Результаты по нелинейным волновым уравнениям (43.4) [97, 105, 99, 166, 159] для начальных данных с компактным носителем приводят к большему значению критического показателя отсутствия глобального решения. Однако это доказано при ограничениях $\int_{\mathbb{R}^N} u_0 \, dx \geq 0$ и $\int_{\mathbb{R}^N} u_1 \, dx \geq 0$. Более близок к нашим исследованиям результат Като [110], доказанный в предположении $\int_{\mathbb{R}^N} u_1 \, dx \geq 0$. Ключевым моментом доказательства Като является тот факт, что для всех $t \geq 0$ решения имеют компактный носитель в шаре, который распространяется с постоянной скоростью. Тип дифференциального оператора в этом доказательстве несуществен.

Используя технику теоремы 46.1, можно изучать случай неоднородных дифференциальных операторов

$$\mathcal{L}(\zeta) = \sum_{k=1}^m L_k(\zeta) \quad (46.26)$$
Определиение 46.2. Слабым решением u дифференциального неравенства

$$
\frac{\partial^2 u}{\partial t^2} \geq \mathcal{L}(\varphi_p(u)) + |u|^q
$$

в \mathbb{R}^{N+1} с начальными данными $u(\cdot, 0) = u_0(\cdot)$ и $\frac{\partial u}{\partial t}(\cdot, 0) = u_1(\cdot)$, принадлежащими $L^1_{\text{loc}}(\mathbb{R}^N)$, будем называть локально интегрируемую функцию $u \in L^p_{\text{loc}}(\mathbb{R}^{N+1}) \cap L^q_{\text{loc}}(\mathbb{R}^{N+1})$ такую, что

$$
- \int_{\mathbb{R}^N} u_1(x) \zeta(x, 0) \, dx + \int_{\mathbb{R}^N} u_0(x) \frac{\partial \zeta}{\partial t}(x, 0) \, dx + \int_{\mathbb{R}^N} \int_0^\infty u \frac{\partial^2 \zeta}{\partial t^2} \, dx \, dt \geq
$$

$$
\geq \int_{\mathbb{R}^N} \int_0^\infty \varphi_p(u) \mathcal{L}^*(\zeta) \, dx \, dt + \int_{\mathbb{R}^N} |u|^q \zeta \, dx \, dt
$$

для любой функции $\zeta \in C^m_0(\mathbb{R}^{N+1})$, $\zeta \geq 0$, где

$$
\mathcal{L}^*(\zeta) = \sum_{k=1}^m (-1)^k \sum_{|\alpha|=k} a_{\alpha,k}(x, t) D^\alpha \zeta = \sum_{k=1}^m (-1)^k L_k^*(\zeta).
$$

Утверждение теоремы 46.1 остается справедливым для коэффициентов, соответствующих младшим членам операторов L_l в \mathcal{L}.

Теорема 46.2. Пусть $q > \max(1, p)$.

Тогда не существует нетривиального слабого решения $u(x, t)$ неравенства (46.28), определенного на $\mathbb{R}^N \times (0, \infty)$ и такого, что $\int_{\mathbb{R}^N} u_1 \, dx \geq 0$, если либо $2N - l \leq 0$, либо $2N - l > 0$ и

$$
N \leq \frac{l \, q + 1}{2 \, q - p}.
$$

Доказательство. Очевидно,

$$
\int_{\mathbb{R}^N} u_1(x) \zeta(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} |u|^q \zeta \, dx \, dt \leq
$$

$$
\leq \int_{\mathbb{R}^N} u_0(x) \frac{\partial \zeta}{\partial t}(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} \frac{\partial^2 \zeta}{\partial t^2} \, dx \, dt - \int_{\mathbb{R}^N} \int_0^\infty \varphi_p(u) \mathcal{L}^*(\zeta) \, dx \, dt
$$

для любой неотрицательной пробной функции.Выбирая ζ таким образом, что

$$
\int_0^\infty \int_{\mathbb{R}^N} \left(|\frac{\partial^2 \zeta}{\partial t^2}| \zeta^{1-q'} + |L_k^*(\zeta)|^{q/(q-p)} \zeta^{-p/(q-p)} \right) \, dx \, dt < \infty,
$$

(46.30)
для всех $k = 1, \ldots, m$ получаем

\[- \int_0^\infty \int \varphi_p(u)L_k^*(\zeta) \, dx \, dt \leq c \left(\int_0^\infty |u|^q \zeta \, dx \, dt \right)^{p/q} \left(\int_0^\infty |L_k^*(\zeta)|^{q/(q-p)} \zeta^{-p/(q-p)} \, dx \, dt \right)^{(q-p)/q} \leq \frac{1}{4} \int_0^\infty |u|^q \zeta \, dx \, dt + C_2 \int_0^\infty \int |L_k^*(\zeta)|^{q/(q-p)} \zeta^{-p/(q-p)} \, dx \, dt.\] (46.31)

Выбирая ζ так, чтобы выполнялось (46.29), получим

\[\int_0^\infty \int \frac{\partial^2 \zeta}{\partial t^2} \zeta^{1-q'} \, dx \, dt + C_2 \int_0^\infty \int \sum_{k=l}^m |L_k^*(\zeta)|^{q/(q-p)} \zeta^{-p/(q-p)} \, dx \, dt.\] (46.32)

Взяв в качестве ζ функцию из доказательства теоремы 46.1 (показатель κ определим позже), выводим (46.16) и

\[\int_0^\infty \int |L_k^*(\zeta)|^{q/(q-p)} \zeta^{-p/(q-p)} \, dx \, dt = R^{-2kq/\mu} + 2/\kappa + 2N/\mu \int_\Omega \left(|L_k^*(\varphi \circ \rho)|^{q/(q-p)} (\varphi \circ \rho) \right) \, dy \, dt.\] (46.33)

Выбирая теперь κ из соотношения $\frac{2N}{\mu} + \frac{2}{\kappa} - \frac{2q'}{\kappa} = \frac{2N}{\mu} + \frac{2}{\kappa} - \frac{2q}{\mu(q-p)}$, т.е.

\[\frac{2}{\kappa} = \frac{l(q - 1)}{\mu(q - p)},\] (46.34)

получим

\[\int_0^\infty \int |L_k^*(\zeta)|^{q/(q-p)} \zeta^{-p/(q-p)} \, dx \, dt = \text{const} \cdot R^{\sigma_k},\] (46.35)

gде

\[\sigma_k = \frac{2}{\mu} \left(N - l - \frac{q + 1}{2(q - p)} - (k - l) \frac{q}{q - p} \right).\] (46.36)

Следовательно, условия $2N - l \leq 0$ или $2N - l > 0$ и $N \leq \frac{q + 1}{2(q - p)}$ означают, что $\sigma_l \leq 0$ и $\sigma_k < 0$ для $k > l$. Доказательство завершается аналогично теореме 46.1. □

Наш метод применим также к анизотропным операторам, т.е. к операторам с разными порядками дифференцирования по переменным. Пусть $x = (x_1, \ldots, x_N)$ — переменная в \mathbb{R}^N. Рассмотрим оператор

\[\mathcal{L}(\zeta) = \sum_{j=1}^N \frac{\partial^2 \beta_j}{\partial x_j^2} (a_{\beta_j}(x, t) \zeta),\] (46.37)

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
т.е. оператор с разными порядками дифференцирования β_j по переменным x_j. Рассмотрим неравенство

$$\frac{\partial^2 u}{\partial t^2} \geq \mathcal{L}(\varphi_p(u)) + |u|^q$$ \hspace{1cm} (46.38)

на \mathbb{R}^{N+1} с начальными данными $u(\cdot, 0) = u_0(\cdot)$ и $\frac{\partial u}{\partial t}(\cdot, 0) = u_1(\cdot)$, локально интегрируемыми в \mathbb{R}^N. Это означает, что $u \in L^q_{\text{loc}}(\mathbb{R}^{N+1}) \cap L^p_{\text{loc}}(\mathbb{R}^{N+1})$ и (46.7) выполнено, если L^*_m заменить на Ω^* (формально сопряженный к Ω).

Теорема 46.3. Пусть $q > \max(1, p)$.

Тогда не существует нетривиального слабого решения $u(x, t)$ неравенства (46.38), определенного на $\mathbb{R}^N \times (0, \infty)$ и такого, что $\lim_{R \to \infty} \int_{|x| < R} u_1 \, dx \geq 0$, если $\sum_{j=1}^N \beta_j^{-1} \leq \frac{q+1}{2(q-p)}$.

Доказательство. Как и в предыдущем доказательстве, начинаем с оценки

$$\int_{\mathbb{R}^N} u_1(x) \zeta(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} |u|^q \zeta \, dx \, dt \leq $$

\begin{equation}
\leq \int_{\mathbb{R}^N} u_0(x) \frac{\partial \zeta}{\partial t}(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial^2 \zeta}{\partial t^2} \, dx \, dt - \sum_{j=1}^N (-1)^{\beta_j} \int_0^\infty \int_{\mathbb{R}^N} \varphi_p(u) a_{j \beta_j} \frac{\partial \beta_j \zeta}{\partial x_j} \, dx \, dt. \tag{46.39}
\end{equation}

Выбирая ζ такое, что

$$\int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q'/2} \zeta^{1-q'} + \left| a_{j \beta_j} \frac{\partial \beta_j \zeta}{\partial x_j} \right|^{q/(q-p)} \zeta^{p/(q-p)} \, dx \, dt < \infty$$

для всех $j = 1, \ldots, N$, получаем

$$\int_{\mathbb{R}^N} u_1(x) \zeta(x, 0) \, dx + \frac{1}{2} \int_0^\infty \int_{\mathbb{R}^N} |u|^q \zeta \, dx \, dt \leq $$

\begin{equation}
\leq C_1 \int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q'/2} \zeta^{1-q'} \, dx \, dt + C_2 \sum_{j=1}^N \int_0^\infty \int_{\mathbb{R}^N} \left| a_{j \beta_j} \frac{\partial \beta_j \zeta}{\partial x_j} \right|^{q/(q-p)} \zeta^{p/(q-p)} \, dx \, dt < \infty. \tag{46.41}
\end{equation}

Теперь берем

$$\zeta(x, t) = \varphi \left(\frac{t^\kappa + \sum_{j=1}^N |x_j|^{2\kappa_j}}{R^2} \right),$$

где φ было определено ранее, $\kappa > 1$ и $\kappa_j > 0$ будут определены ниже. Рассмотрим замену переменных

\begin{align*}
R^{-2} t^\kappa &= \tau^\kappa, \\
R^{-2} |x_j|^{2\kappa_j} &= |y_j|^{2\kappa_j},
\end{align*}

тогда

\begin{equation}
\int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q'/2} \zeta^{1-q'} \, dx \, dt = R^{-4q'/2+2} \int_0^\infty \int_{\Omega} \left(\frac{\partial^2 \varphi}{\partial \tau^2} \circ \rho \right) \left(|(\varphi \circ \rho)^{1-q'}\right) \, dy \, d\tau \tag{46.43}
\end{equation}

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
и

\[
\int_0^\infty \int_{\mathbb{R}^N} a_\beta \frac{\partial^2 \xi}{\partial x_i^2} \zeta^{p/(q-p)} \, dx \, dt =
\]

\[
= R^{-\beta q/(\zeta(p-q)) + 2/q + \sum_{j=1}^N \zeta_j^{-1}} \int_\Omega \left(\sum_{i} \frac{\partial^2 \zeta}{\partial y_i^2} \right)^{q/(q-p)} (\zeta)^{-(q-p)} \, dy \, dt. \quad (46.44)
\]

Следовательно, существуют положительные постоянные \(C_i, i = 0, \ldots, N\), такие, что

\[
2 \int_{\mathbb{R}^N} u_1(x)\zeta(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} |u|^{q-p} \zeta \, dx \, dt \leq \]

\[
\leq C_0 R^{\sum_{j=1}^N \zeta_j^{-1} + 2/q - 4q'/\zeta} + \sum_{i=1}^N C_i R^{-\beta q/(\zeta(p-q)) + 2/q + \sum_{j=1}^N \zeta_j^{-1}}. \quad (46.45)
\]

Теперь выбираем \(\zeta > 0\) и \(\zeta\) такими, чтобы степени у \(R\) были бы теми же самыми, что и в (46.44), т.е.

\[
\sum_{i=1}^N \frac{1}{\zeta_i} + \frac{2}{\zeta} - \frac{4q'}{\zeta} = -\frac{\beta q}{\zeta(p-q)} + \frac{2}{\zeta} + \sum_{i=1}^N \frac{1}{\zeta_i} \iff 4\zeta_j = \frac{\beta j(q-1)}{q-p}. \quad (46.46)
\]

В этом случае общее значение \(\sigma\) показателя есть

\[
\sigma = \frac{2}{\zeta(q-1)} \left(2(q-p) \sum_{j=1}^N \frac{1}{\beta j} - q - 1 \right), \quad (46.47)
\]

и ограничение на \(\zeta\) принимает вид \(\beta j(q-1)/(q-p) < 4\zeta_j\), которое может быть удовлетворено при достаточно больших \(\zeta_j\). В силу предположения \(\sigma \leq 0\) доказательство завершается аналогично предыдущей теореме с помощью предельного перехода \(R \to \infty\). \(\Box\)

В заключение рассмотрим случай, когда поведение коэффициентов оператора при \(x\) и \(t\), стремящихся к бесконечности, оказывает существенное влияние на отсутствие глобального решения. Вместо предположения об ограниченности коэффициентов \(a_\alpha\) оператора \(L_m\), определенного формулой (46.4), рассматриваем условие

\[
|a_\alpha(x, t)| = C|x|^\delta t^\gamma, \quad (x, t) \in \mathbb{R}^N \times (0, \infty) : |x|^2 + t \geq 1 \quad (46.48)
\]

для некоторых неотрицательных \(C, \delta\) и \(\gamma\) из \(\mathbb{R}\).

Теорема 46.4. Пусть \(q > \max(1, p), \delta < m\) и \(\gamma > -(2(p-q)/(q-1)).\)

Тогда не существует нетривиального слабого решения \(u(x, t)\) неравенства (46.6), определенного на \(\mathbb{R}^N_+\) и такого, что \(\int_{\mathbb{R}^N} u_1 \, dx \geq 0\), если

\[
N \leq \frac{(m-\delta)(q+1)}{2(p-q) + \gamma(q-1)}.
\]
Доказательство следует доказательству теоремы 46.1. С использованием той же самой пробной функции получаем (46.13). Замена переменных (46.15), (46.16) приводит нас к аналогу (46.17)

\[
\int_0^\infty \int_{\mathbb{R}^N} |L_m^*(\zeta)|^{(q-p)^{-p}}(q-p)dx
\leq \int_0^\infty \int_{|x|^2+t\leq 1} |L_m^*(\zeta)|^{(q-p)^{-p}}(q-p)dx
\]

\[+ CR^{-2mq/(\mu(q-p))+2/\kappa+2N/\mu+(2\delta/\mu+2\gamma/\kappa)}q/(q-p) \int_\Omega \left(\sum_{|\alpha|=m} |D^\alpha(\varphi \circ \rho)|^{q/(q-p)}(\varphi \circ \rho)^{-p/(q-p)} \right) dy
\]

(46.49)

Следовательно,

\[2 \int_{\mathbb{R}^N} u_1(x)\zeta(x,0) dx + \int_0^\infty \int_{\mathbb{R}^N} |u|^{q/p} \zeta dx dt \leq \int_0^\infty \int_{|x|^2+t\leq 1} |L_m^*(\zeta)|^{q/(q-p)}(q-p)dx dt \]

\[+ CR^{2N/\mu+2/\kappa-4q/\kappa} + CR^{-2mq/(\mu(q-p))+2/\kappa+2N/\mu+(2\delta/\mu+2\gamma/\kappa)}q/(q-p). \] (46.50)

Так как \(\int_{|x|^2+t\leq 1} |L_m^*(\zeta)|^{q/(q-p)}(q-p)dx dt = 0 \) для \(R \geq R_0 > 1 \), зависящего от \(\kappa \) и \(\mu > 0 \), то задача сводится к уравнению степени \(R \) в (46.50), т.е.

\[-\frac{2mq}{\mu(q-p)} + \frac{2}{\kappa} + \frac{2N}{\mu} + \left(\frac{2\delta}{\mu} + \frac{2\gamma}{\kappa} \right) \frac{q}{q-p} = \frac{2N}{\mu} + \frac{2}{\kappa} - \frac{4q'\kappa}{\kappa}. \] (46.51)

Полагаем

\[\theta \left(\gamma + \frac{q-p}{q-1} \right) = m - \delta \] (46.52)

с \(\theta = \mu/\kappa \), откуда получаем общее значение \(\sigma \) для степени \(R \)

\[\sigma = \frac{2}{\mu} \left(N - \frac{(m-\delta)(q+1)}{2(q-p)} + \gamma(q-1) \right). \] (46.53)

Доказательство завершается аналогично теореме 46.1.

П р и м е р 46.1. При \(m = 2, \ p = 1, \ \delta = 1 \) и \(\gamma = 1 \) условия на \(\gamma \) и \(\delta \) удовлетворяются и условие на \(q \) выглядит следующим образом: \(1 \leq N \leq (q+1)/(2(q-1)) \), или \(1 < q \leq (2N+1)/(2N-1) \).

Замечание 46.4. Используя данную технику, можно получить также результаты об отсутствии стационарных решений указанных неравенств (т.е. решений, не зависящих от времени \(t \), а только от \(x \in \mathbb{R}^N \), соответственно предполагаем \(a_n = a_n(x) \)). Приведем без доказательств некоторые результаты.

Пусть \(q > \max(1,p) \). Тогда не существует стационарного решения задачи (46.6), определенного на \(\mathbb{R}^N \), если \(N \leq mq/(q-p) \).

Пусть \(q > \max(1,p) \). Тогда не существует стационарного решения задачи (46.28), определенного на \(\mathbb{R}^N \), если \(N \leq lq/(q-p) \).

Пусть \(q > \max(1,p) \). Тогда не существует стационарного решения задачи (46.38), определенного на \(\mathbb{R}^N \), если \(\sum_{i=1}^N \beta_i^{-1} \leq q/(q-p) \).

Пусть \(q > \max(1,p) \), \(\delta < m \) и выполнено (46.48) c \(\gamma = 0 \). Тогда не существует стационарного решения задачи (46.6), определенного на \(\mathbb{R}^N \), если \(N \leq q(m-\delta)/(q-p) \).
Глава 6. МЕТОД ПРОБНЫХ ФУНКЦИЙ

47. УРАВНЕНИЯ ВЫСОКОГО ПОРЯДКА

Рассмотрим следующую задачу:

\[
\begin{aligned}
\frac{\partial^2 u}{\partial t^2} & \geq \sum_{l \leq |\alpha| \leq m} D^\alpha A(x, t, u) + b(x, t, u), \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) &= u_0(x), \quad x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(x, 0) &= u_1(x), \quad x \in \mathbb{R}^N.
\end{aligned}
\]

(47.1)

Здесь \(l \geq 1, A_\alpha \) и \(b \) — каратеодориевы функции, удовлетворяющие следующим условиям:

\[
|A_\alpha(x, t, u)| \leq a_0 |u|^p, \quad l \leq |\alpha| \leq m, \quad b(x, t, u) \geq b_0 |u|^q
\]

(47.2)

с постоянными \(a_0, b_0 > 0, p > 0 \) и \(q < \max\{1, p\} \).

Относительно начальных данных предполагается, что

\[
u_0, u_1 \in L^1_{\text{loc}}(\mathbb{R}^N).
\]

(47.3)

Определение 47.1. Под слабым решением \(u(x, t) \) задачи (47.1) с условиями (47.2), (47.3) понимается функция \(u \in L^q_{\text{loc}}(\mathbb{R}^{N+1}) \) такая, что

\[
\int_{\mathbb{R}^N} \left(u_0 \frac{\partial \varphi}{\partial t} - u_1 \varphi \right) |_{t=0} dx + \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial^2 \varphi}{\partial t^2} dx dt \geq \int_0^\infty \int_{\mathbb{R}^N} \sum_{l \leq |\alpha| \leq m} (-1)^{|\alpha|} A_\alpha(x, t, u) D^\alpha \varphi dx dt + \int_0^\infty \int_{\mathbb{R}^N} b(x, t, u) \varphi dx dt
\]

(47.4)

dля любой неотрицательной функции \(\varphi \in C^{m,2}_{x,t}(\mathbb{R}^{N+1}) \) с компактным носителем.

Априорные оценки. Из неравенства (47.4) в силу (47.2) имеем

\[
b_0 \int_0^\infty \int_{\mathbb{R}^N} |u|^q \varphi dx dt \leq a_0 \int_0^\infty \int_{\mathbb{R}^N} |u|^p \sum_{l \leq |\alpha| \leq m} |D^\alpha \varphi| dx dt + \\
+ \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial^2 \varphi}{\partial t^2} dx dt - \int_{\mathbb{R}^N} \left(u_0 \frac{\partial \varphi}{\partial t} - u_1 \varphi \right) |_{t=0} dx.
\]

Выберем функцию \(\varphi \) из указанного класса такую, что

\[
\frac{\partial \varphi}{\partial t}(x, 0) = 0.
\]

(47.5)

Тогда получаем

\[
b_0 \int_0^\infty \int_{\mathbb{R}^N} |u|^q \varphi dx dt \leq a_0 \int_0^\infty \int_{\mathbb{R}^N} |u|^p \sum_{l \leq |\alpha| \leq m} |D^\alpha \varphi| dx dt + \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial^2 \varphi}{\partial t^2} dx dt - \int_{\mathbb{R}^N} u_1 \varphi(x, 0) dx.
\]
Отсюда, применяя неравенство Юнга с соответствующими постоянными, находим

\[
\frac{1}{q'} b_0 \int_0^\infty |u|^q \varphi \, dx \, dt \leq \frac{1}{q' b_0} \int_0^\infty \left(\frac{\partial^2 \varphi}{\partial t^2} \right) \varphi^{1-q'} \, dx \, dt + \frac{1}{t} a_0' \left(\frac{q'}{b_0} \right) \int_0^\infty \left[\frac{L(\varphi)}{\varphi'} \right]^{r-1} \, dx \, dt - \int u_1 \varphi(x, 0) \, dx.
\] (47.6)

Здесь \(q' = \frac{q}{q-1}, r' = \frac{q}{q-p} \) и \(L(\varphi) = \sum_{|\alpha| \leq m} |D^\alpha \varphi| \).

Асимптотические оценки. Введем теперь срезающую функцию \(\varphi \) следующего вида:

\[\varphi(x, t) = \varphi_0 \left(\frac{t^\kappa + |x|^\mu}{R^2} \right), \quad \kappa > 1, \quad \mu > 0, \]

где \(\varphi_0 : \mathbb{R}_+ \to \mathbb{R}_+ \) — гладкая неотрицательная функция такая, что

\[\varphi_0(\xi) = \begin{cases}
1, & 0 \leq \xi \leq 1, \\
0, & \xi \geq 2.
\end{cases} \]

Параметры \(\kappa > 1 \) и \(\mu > 0 \) будут определены ниже.

В соответствии с (47.7) введем новые переменные \((x, t) \to (\eta, \tau)\) по формулам

\[\tau = R^{2/\kappa}, \quad x = R^{2/\mu} \eta. \] (47.8)

Подставляя функцию \(\varphi_0 \) и вводя новые переменные в (47.6), находим

\[\int_0^\infty \int_{\mathbb{R}^N} |u|^q \varphi \, dx \, dt \leq c_1 R^{\theta_1} + c_2 R^{\theta_2} - c_3 \int_{\mathbb{R}^N} u_1 \varphi(x, 0) \, dx, \] (47.9)

где

\[\theta_1 = \frac{2N}{\mu} + \frac{2}{\kappa} - \frac{4q'}{\kappa}, \quad \theta_2 = \frac{2N}{\mu} + \frac{2}{\kappa} - \frac{2lq}{\mu(q-p)} \]

и

\[c_1 = \frac{r'}{b_0} \int_{0}^{1} \int_{|\eta|^m \leq 2} \left| \frac{\partial^2 \varphi_0}{\partial \tau^2} \right| \varphi_0^{1-q'} \, d\eta d\tau, \]

\[c_2 = a_0' \left(\frac{q'}{b_0} \right) \int_{0}^{1} \int_{|\eta|^m \leq 2} \left[\frac{L(\varphi_0)}{\varphi_0'} \right]^{r-1} \, d\eta d\tau, \quad c_3 = \frac{q' r'}{b_0}. \]

Нетрудно показать, что существует функция \(\varphi_0 \) указанного вида такая, что \(c_1 < \infty, c_2 < \infty \) при \(R \to \infty \). При этом \(c_2 = c_2(R) \), если \(m > l \).

Для получения оптимального результата выберем параметры \(\mu > 0 \) и \(\kappa > 1 \) из условия \(\theta_1 = \theta_2 \), т.е.

\[\frac{4q'}{\kappa} = - \frac{2lq}{\mu(q-p)}. \]

Таким образом,

\[\kappa = \frac{2q - p}{l(q - 1)\mu}. \]
Глава 6. МЕТОД ПРОБНЫХ ФУНКЦИЙ

Отсюда, полагая \(\mu = 2, 4, \ldots \), мы можем подобрать \(\kappa > 1 \) достаточно большим так, чтобы функция \(\varphi \), определенная формулой (47.7) с достаточно гладкой функцией \(\varphi_0 \), принадлежала классу \(C_0^{m,2}(\mathbb{R}^{N+1}) \).

Подставляя это значение \(\kappa \) в формулы для \(\theta_1 \) и \(\theta_2 \), получим

\[
\theta_1 = \theta_2 = \theta_0 \equiv \left(2N - \frac{l(q+1)}{q-p} \right) \frac{1}{\mu}, \quad (47.10)
\]

Отсюда в силу наших стандартных аргументов, т.е. устремляя \(R \to \infty \) в (47.9) и используя при \(\theta_0 = 0 \) дополнительно мультипликативное неравенство Гельдера, получаем следующее утверждение.

Теорема 47.1. Пусть выполнены условия (47.2) и (47.3). Пусть

\[
\int_{\mathbb{R}^N} u_1 \, dx \geq 0 \quad (могет быть, +\infty).
\]

Тогда, если

\[
2N \leq \frac{l(q+1)}{q-p}, \quad (47.11)
\]

задача (47.1) не имеет глобального нетривиального слабого решения \(u(x,t) \) в указанном классе. \(\square \)

В качестве следствия получаем следующее утверждение.

Теорема 47.2. Пусть выполнены условия теоремы 47.1, исключая (47.11). Пусть

\[
l \geq 2N. \quad (47.12)
\]

Тогда задача (47.1) не имеет глобального нетривиального слабого решения \(u(x,t) \) в указанном классе.

Для доказательства достаточно заметить, что неравенство (47.11) при \(q > p \) эквивалентно следующему:

\[
(2N - l)q \leq 2Np + l. \quad \square \]

Пример 47.1. Рассмотрим следующую задачу с линейным главным оператором:

\[
\begin{cases}
\frac{\partial^2 u}{\partial t^2} \geq \sum_{|\alpha|=2} D^\alpha(a_\alpha(x,t)u) + c|u|^q, & (x,t) \in \mathbb{R}^N \times (0, \infty), \\
u(x,0) = u_0(x), & x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(x,0) = u_1(x), & x \in \mathbb{R}^N,
\end{cases} \quad (47.14)
\]

с \(q > 1 \), положительной постоянной \(c \) и измеримыми ограниченными коэффициентами \(a_\alpha(x,t) \) в \(\mathbb{R}^{N+1}_+ \).

Тогда при условии

\[
u_0, u_1 \in L^1_{\text{loc}}(\mathbb{R}^N), \quad \int_{\mathbb{R}^N} u_1 \, dx \geq 0 \quad (могет быть, +\infty)
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

неравенство (47.11) при \(l = 2, \ p = 1 \) принимает вид

\[
N \leq \frac{q + 1}{q - 1} \Rightarrow 1 < q \leq \frac{N + 1}{N - 1}, \ N > 1.
\]

Таким образом мы получаем, в частности, результат Като [110] для неравенства

\[
\frac{\partial^2 u}{\partial t^2} \geq \Delta u + c|u|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty),
\]

но без дополнительного условия о компактности носителя решения \(u(x, t) \).

Отметим также, что мы не предполагаем условие эллиптичности оператора

\[
L_2(u) \equiv \sum_{|\alpha| = 2} D^\alpha (a_\alpha(x, t) u).
\]

Это же замечание относится и к общему случаю задачи (47.1). В теоремах 47.1 и 47.2 не предполагается, что соответствующий оператор

\[
A(u) = \sum_{l \leq |\alpha| \leq m} D^\alpha A_\alpha(x, t, u)
\]

принадлежит к какому-либо типу.

48. КВАЗИЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ НЕРАВЕНСТВА

ВЫСОКОГО ПОРЯДКА

С СУЩЕСТВЕННО ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ

Здесь мы рассматриваем задачу Коши для квазилинейного гиперболического неравенства (в частности, уравнения) следующего вида:

\[
\begin{aligned}
\frac{\partial^2 u}{\partial t^2} &\geq \sum_{l \leq |\alpha| \leq m} D^\alpha A_\alpha(x, t, u) + b(x, t)|u|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) &= u_0(x), \quad x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(x, 0) &= u_1(x), \quad x \in \mathbb{R}^N,
\end{aligned}
\]

где \(l \geq 1 \).

Здесь \(A_\alpha : \mathbb{R}_{+}^{N+1} \times \mathbb{R} \to \mathbb{R}, \ l \leq |\alpha| \leq m, \) суть карацеодориевы функции, удовлетворяющие условию

\[
|A_\alpha(x, t, u)| \leq a_\alpha(x, t)|u|^p
\]

с \(0 < p < q \) и измеримыми функциями \(a_\alpha : \mathbb{R}_{+}^{N+1} \to \mathbb{R}_{+}, \) удовлетворяющими условиям

\[
|a_\alpha(x, t)| \leq c_1(1 + t^n + |x|^k), \quad n, k \geq 0.
\]

Функция \(b : \mathbb{R}_{+}^{N+1} \to \mathbb{R}_{+} \) является измеримой, п.в. положительной и удовлетворяет неравенству

\[
|b(x, t)| \geq c_2(1 + t^s + |x|^{r}), \quad s, r \geq 0.
\]
Глава 6. МЕТОД ПРОБНЫХ ФУНКЦИЙ

Относительно начальных данных мы предполагаем, что

\[u_0, u_1 \in L^1_{\text{loc}}(\mathbb{R}^N), \quad \int_{\mathbb{R}^N} u_1 \, dx > 0. \]

(48.5)

Решение \(u(x, t) \) задачи (48.1) рассматриваем в весовом классе локально интегрируемых функций таких, что

\[A_\alpha(x, t, u), b(x, t) |u|^q, \quad u, \frac{\partial u}{\partial t} \in C([0, T]; L^1_{\text{loc}}(\mathbb{R}^N)). \]

При этом под слабым решением задачи (48.1) понимаем функцию \(u(x, t) \) из указанного класса, удовлетворяющую неравенству

\[
\begin{align*}
- \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \varphi - u \frac{\partial \varphi}{\partial t} \right) \bigg|_{t=0} \, dx + \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial^2 \varphi}{\partial t^2} \, dx \, dt & \geq \\
+ \int_0^\infty \int_{\mathbb{R}^N} \sum_{l \leq |\alpha| \leq m} (-1)^{|\alpha|} A_\alpha(x, t, u) D^\alpha \varphi \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} b(x, t) |u|^q \varphi \, dx \, dt
\end{align*}
\]

(48.6)

dля любой неотрицательной функции \(\varphi \in C_0^{m,2}(\mathbb{R}^{N+1}). \)

Априорные оценки. Пусть

\[\frac{\partial \varphi}{\partial t} = 0 \quad \text{при} \ t = 0. \]

(48.7)

Тогда из (48.6) в силу (48.2) получаем

\[
\int_0^\infty \int_{\mathbb{R}^N} b(x, t) |u|^q \varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} a(x, t, \varphi) |u|^p \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial^2 \varphi}{\partial t^2} \, dx \, dt - \int_{\mathbb{R}^N} u_1 \varphi(x, 0) \, dx. \]

(48.8)

Здесь

\[a(x, t, \varphi) = \sum_{l \leq |\alpha| \leq m} a_\alpha(x, t) |D^\alpha \varphi|. \]

(48.9)

Отсюда в силу неравенства Минковского имеем

\[
\begin{align*}
a(x, t, \varphi) |u|^p &= (x \cdot b \varphi)^{p/q} |u|^p a(x, t, \varphi) (x \cdot b \varphi)^{-p/q} \leq \frac{p}{q} x \cdot b \varphi |u|^q + \frac{q - p}{q} [a(x, t, \varphi)]^{q/(q-p)} (x \cdot b \varphi)^{-p/(q-p)}
\end{align*}
\]

при любом \(\kappa > 0. \)

Выбирая \(\kappa = \frac{q}{4p} \), получаем

\[
a(x, t, \varphi) |u|^p \leq \frac{1}{4} b |u|^q \varphi + \gamma_1 [a(x, t, \varphi)]^{q/(q-p)} (b \varphi)^{-p/(q-p)},
\]

(48.10)

где

\[
\gamma_1 = \frac{q - p}{q} \left(\frac{4p}{q} \right)^{p/(q-p)}.
\]
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

Аналогично получаем

\[\left| u \frac{\partial^2 \varphi}{\partial t^2} \right| \leq \frac{1}{4} b |u|^q \varphi + \gamma_2 \left| \frac{\partial^2 \varphi}{\partial t^2} \right|^q \frac{1}{(b \varphi)^{q' - 1}}, \]

(48.11)

где

\[\gamma_2 = \frac{1}{q} \left(\frac{4}{q} \right)^{q' - 1}, \quad q' = \frac{q}{q - 1}. \]

На основании неравенств (48.10) и (48.11) из (48.8) следует, что

\[\begin{aligned}
&\frac{1}{2} \int_0^\infty \int_{\mathbb{R}^N} b |u|^q \varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} a_b(x, t, \varphi) \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} C(x, t, \varphi) \, dx \, dt - \int_{\mathbb{R}^N} u_1 \varphi(x, 0) \, dx \\
&\quad \equiv I_1(R) + I_2(R) - \int_{\mathbb{R}^N} u_1 \varphi(x, 0) \, dx,
\end{aligned} \]

(48.12)

где через $I_1(R)$ и $I_2(R)$ обозначены соответствующие интегралы и

\[\begin{aligned}
a_b(x, t, \varphi) &= \gamma_1 a(x, t, \varphi)^{\eta/(q - p)} (b \varphi)^{-p/(q - p)}, \\
C(x, t, \varphi) &= \gamma_2 \left| \frac{\partial^2 \varphi}{\partial t^2} \right|^q \frac{1}{(b \varphi)^{q' - 1}}.
\end{aligned} \]

(48.13)

(48.14)

Асимптотические оценки. Мы выбираем пробную функцию φ следующего вида:

\[\varphi(x, t) = \varphi_0 \left(\frac{t^\kappa + |x|^\sigma}{R^\sigma} \right), \]

(48.15)

с $\kappa > 1$ и $\sigma > 0$, которые будут определены ниже, неотрицательная функция φ_0 из класса $C_0^m(\mathbb{R})$ следующего вида:

\[\varphi_0(\xi) = \begin{cases}
1, & 0 \leq \xi \leq 1, \\
0, & \xi \geq 2,
\end{cases} \]

и $\varphi_0(\xi) \geq 0$ при $1 \leq \xi \leq 2$ с $\frac{d^{\alpha}}{d\xi^{\alpha}} \varphi_0 \leq 0$.

В соответствии с (48.15) введем новые независимые переменные $(x, t) \rightarrow (\eta, \tau)$ по формулам

\[t = R^\theta \tau, \quad x = R\eta, \quad \theta = \sigma / \kappa. \]

(48.16)

Тогда

\[\varphi(x, t) = \varphi_0(\xi), \quad \xi = \tau^\kappa + |\eta|^\sigma. \]

Для оператора $a(x, t, \varphi)$, определенного формулой (48.9), имеем

\[a(x, t, \varphi) = \sum_{|\alpha| \leq m} a_\alpha(R\eta, R^\theta \tau) \frac{1}{R^{|\alpha|}} |D^\alpha \varphi_0| \equiv a^0(\eta, \tau, R, \varphi_0). \]

(48.17)

Соответственно для $b(x, t)$ имеем

\[b(x, t) = b(R\eta, R^\theta \tau) \equiv b^0(\eta, \tau, R). \]
Глава 6. МЕТОД ПРОБНЫХ ФУНКЦИЙ

Подставляя эти выражения в (48.13) и (48.14), для интегралов из (48.12) получаем

\[
I_1(R) := R^{N+\theta} \int_{1 \leq r^* + |\eta|^2 \leq 2} \tilde{a}_b(\eta, \tau, R, \varphi_0) \, d\eta \, d\tau,
\]

(48.17)

\[
I_2(R) := R^{N+\theta-2q} \int_{1 \leq r^* + |\eta|^2 \leq 2} \tilde{C}(\eta, \tau, R, \varphi_0) \, d\eta \, d\tau,
\]

(48.18)

где

\[
\tilde{a}_b(\eta, \tau, R, \varphi_0) = \gamma_1 \left\{ \frac{|a^0(\eta, \tau, R, \varphi_0)|^q}{(b^0(\varphi_0))^p} \right\}^{1/(q-p)},
\]

(48.19)

\[
\tilde{C}(\eta, \tau, R, \varphi_0) = \gamma_2 \frac{\partial^2 \varphi_0}{\partial \tau^2} \left| \frac{1}{(b^0(\varphi_0))^{q'-1}}.
\]

(48.20)

Устремим \(R \to \infty \), и пусть

\[
I_1(R) = K_1 R^{\nu(\theta)}(1 + o(1)), \quad I_2(R) = K_2 R^{\mu(\theta)}(1 + o(1))
\]

(48.21)

при \(R \to \infty \) с некоторыми постоянными \(K_1, K_2 > 0 \).

Введем теперь основное предположение. Пусть существует \(\theta_0 > 0 \) такое, что

\[
\nu(\theta_0) = \mu(\theta_0) \leq 0.
\]

(48.22)

Тогда \(I_1(R), I_2(R) \to 0 \) при \(R \to \infty \), если \(\nu(\theta_0) < 0 \), и \(I_1(R), I_2(R) \) равномерно ограничены при \(R \to \infty \), если \(\nu(\theta_0) = 0 \).

С учетом (48.5) и функции \(\varphi_0 \) при \(R \to \infty \) из (48.12) получаем

\[
\int_0^\infty \int_{\mathbb{R}^N} b|u|^q \, dx \, dt = 0,
\]

(48.23)

если \(\nu(\theta_0) < 0 \), и

\[
\int_0^\infty \int_{\mathbb{R}^N} b|u|^q \, dx \, dt \leq C < \infty,
\]

(48.24)

если \(\nu(\theta_0) = 0 \).

Повторяя аргументы из предыдущих глав для случая \(\nu(\theta_0) = 0 \), заключаем, что

\[
\int_0^\infty \int_{\mathbb{R}^N} b|u|^q \, dx \, dt = 0
\]

и в случае \(\nu(\theta_0) = 0 \).

Таким образом доказано следующее утверждение.

Теорема 48.1. Пусть выполнены условия (48.2)–(48.5) и (48.22). Тогда задача (48.1) не имеет глобального нетривиального слабого решения из указанного выше класса функций. □
Приемы. Мы начнем с задачи, рассмотренной Като [110].

Пример 48.1. \[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} & \geq \Delta u + |u|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) &= u_0(x), \quad x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(x, 0) &= u_1(x), \quad x \in \mathbb{R}^N,
\end{align*}
\] (48.25)
где \(q > 1 \).

Здесь \(l = m = 2 \), так что \(|\alpha| = 2 \) и \(|a_{\alpha}(x, t)| \leq 1 \), \(b(x, t) \equiv 1 \), \(p = 1 \). Для этого примера \(\theta_0 = 1 \) и

\[
\varphi(x, t) = \varphi_0 \left(\frac{t^2 + |x|^2}{R^2} \right),
\]

так что \(\frac{\partial \varphi}{\partial t}(x, 0) \equiv 0 \).

Полагая \(t = R \tau, x = R \eta \), получаем

\[
a^0(\eta, \tau, R, \varphi_0) = \frac{1}{R^2} \Delta_\eta \varphi_0, \quad b^0(\eta, \tau, R) \equiv 1.
\]

Тогда

\[
I_1(R) = \gamma_1 R^{N+1} R^{2q' - 2q} \int_{1 \leq \tau^2 + |\eta|^2 \leq 2} \frac{|\Delta_\eta \varphi_0|^{q'}}{q' - 1} d\eta d\tau = c_1 R^\nu,
\]

\[
I_2(R) = \gamma_2 R^{N+1} R^{2q' - 2q} \int_{1 \leq \tau^2 + |\eta|^2 \leq 2} \left| \frac{\partial^2 \varphi_0}{\partial \tau^2} \right|^{q'} \frac{1}{q' - 1} \, d\eta d\tau = c_2 R^\mu,
\]

с \(\nu = \mu = N + 1 - 2q' \).

Следовательно, задача (48.25) в предположении (48.5) не имеет глобального нетривиального решения, если \(N + 1 - 2q' \leq 0 \), т.е.

\[
1 < q \leq \frac{N + 1}{N - 1}.
\]

Таким образом мы получили условие отсутствия глобального нетривиального решения задачи (48.25) без дополнительных условий Като о компактности носителя решения \(u(x, t) \) и условия \(\int_{\mathbb{R}^N} u_0(x) \, dx \neq 0 \).

Пример 48.2. \[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} & \geq \Delta u + |x|^k |u|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) &= u_0(x), \quad x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(x, 0) &= u_1(x), \quad x \in \mathbb{R}^N,
\end{align*}
\] (48.26)
с \(q > 1 \) и \(k > -2 \), \(k(q' - 1) < N \).

В этом случае мы имеем \(l = m = 2 \), \(|\alpha| = 2 \) и \(|a_{\alpha}(x, t)| \leq 1 \), \(p = 1 \),

\[a^0(\eta, \tau, R, \varphi_0) = \frac{1}{R^2} \Delta_\eta \varphi_0.
\]
с $\varphi_0(\eta, \tau) = \varphi_0(\tau^2 + |\eta|^2)$ и $\theta = 1$.

Формально этот пример не удовлетворяет условиям теоремы 48.1. Поэтому, повторяя доказательство этой теоремы для задачи (48.26), имеем

$\tilde{a}_b(\eta, \tau, R, \varphi_0) = \gamma_1 1 \frac{1}{R^{2q'} R^{k(q'-1)}} |\Delta_{\eta} \varphi_0|^{q'} (|\eta|^k \varphi_0)^{q'-1}$,

$\tilde{C}(\eta, \tau, R, \varphi_0) = \gamma_2 1 \frac{1}{R^{k(q'-1)}} \left| \frac{\partial^2 \varphi_0}{\partial \tau^2} \right| (|\eta|^k \varphi_0)^{1-q'}$.

Таким образом,

$I_1(R) = \gamma_1 R^{N+1} \frac{1}{R^{2q'} R^{k(q'-1)}} \int_{1 \leq \tau^2 + |\eta|^2 \leq 2} |\Delta_{\eta} \varphi_0|^{q'} (|\eta|^k \varphi_0)^{q'-1} d\eta d\tau = c_1 R^\nu$,

$I_2(R) = \gamma_2 R^{N+1-2q'} \frac{1}{R^{k(q'-1)}} \int_{1 \leq \tau^2 + |\eta|^2 \leq 2} \left| \frac{\partial^2 \varphi_0}{\partial \tau^2} \right| (|\eta|^k \varphi_0)^{q'-1} d\eta d\tau = c_2 R^\nu$

с $\nu = N + 1 - 2q' - k(q'-1)$.

Отсюда получаем условие отсутствия нетривиального глобального решения задачи (48.26) $\nu \leq 0$, т.е.

$1 < q \leq \frac{N + 1 + k}{N - 1}$.

Отметим, что мы получили условие отсутствия решения в классе локально интегрируемых функций с

$\int_{\text{Compact}} |u|^q |x|^k \, dx \, dt < \infty$.

Пример 48.3.

\[
\begin{cases}
\frac{\partial^2 u}{\partial t^2} \geq |x|^\sigma \Delta u + |u|^q, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x), & x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(x, 0) = u_1(x), & x \in \mathbb{R}^N,
\end{cases}
\]

с $q > 1$, $\sigma < 2$ и $N \geq 2$.

Сначала приведем это неравенство к неравенству дивергентного вида. С этой целью сделаем замены $u(x, t) \rightarrow v(x, t)$ по формуле

$u(x, t) = |x|^\sigma v(x, t)$.

Тогда для v получаем

$|x|^\sigma \frac{\partial^2 v}{\partial t^2} \geq |x|^\sigma \Delta (|x|^\sigma v) + |x|^\sigma q |v|^q$,

или

\[
\begin{cases}
\frac{\partial^2 v}{\partial t^2} \geq \Delta (|x|^\sigma v) + |x|^\sigma(q-1) |v|^q, \\
v(0, x) = |x|^{-\sigma} u_0(x), \\
\frac{\partial v}{\partial t}(0, x) = |x|^{-\sigma} u_1(x).
\end{cases}
\]
Отметим, что класс решений задачи (48.27) очевидным образом определяется классом решения задачи (48.29), т.е.

$$|x|^\sigma v \in L^1_{\text{loc}}(\mathbb{R}^{N+1})_+, \quad |x|^\sigma(\sigma-1)|v'|^q \in L^1_{\text{loc}}(\mathbb{R}^{N+1})_+,$$

или

$$u \in L^1_{\text{loc}}(\mathbb{R}^{N+1})_+, \quad |x|^{-\sigma}|u'|^q \in L^1_{\text{loc}}(\mathbb{R}^{N+1})_+,$$

$$|x|^{-\sigma}u_0 \in L^1_{\text{loc}}(\mathbb{R}^N), \quad |x|^{-\sigma}u_1 \in L^1_{\text{loc}}(\mathbb{R}^N), \quad \int_{\mathbb{R}^N} |x|^{-\sigma}u_1 dx \geq 0 \quad (\text{может быть}, +\infty).$$

Для задачи (48.29) имеем

$$|a_\alpha(x,t)| \leq |x|^\sigma, \quad l = m = 2, \quad p = 1, \quad b(x,t) = |x|^\sigma(q-1),$$

так что

$$|a(x,t,\varphi)| \leq \text{const} \cdot |x|^\sigma \Delta \varphi,$$

где для получения неуклучаемых условий отсутствия глобального решения введена функция \(\varphi\) вида

$$\varphi(x,t) = \varphi_0 \left(\frac{t^\kappa + |x|^\mu}{R^\mu} \right) \quad (48.30)$$

со свободными параметрами \(\kappa > 1, \mu > 0\).

В соответствии с (48.30) вводим новые переменные \((x,t) \rightarrow (\eta,\tau)\) по формуле

$$t = R^\theta \tau, \quad x = R\eta, \quad \theta = \mu/\kappa > 0.$$

Тогда

$$a^0(\eta,\tau,R,\varphi_0) \leq \text{const} \cdot R^{\sigma-2} |\Delta \varphi_0| \cdot |\eta|^\sigma - 2$$

и, следуя (48.19), получаем

$$\tilde{a}_0(\eta,\tau,R,\varphi_0) \leq \text{const} \cdot R^{(\sigma-2)q'-\sigma} \frac{|\Delta \varphi_0|^q_0}{\varphi_0} \cdot |\eta|^{(\sigma-2)q'-\sigma}.$$

В соответствии с (48.20) имеем

$$\tilde{C}(\eta,\tau,R,\varphi_0) \leq \text{const} \cdot \frac{1}{R^\sigma} \left| \frac{\partial^2 \varphi_0}{\partial \tau^2} \right| \cdot \frac{1}{|\eta|^\sigma \varphi_0^q_0 - 1}.$$

В результате для интегралов \(I_1(R)\) и \(I_2(R)\), определенных формулами (48.17) и (48.18) соответственно, получаем

$$I_1(R) \leq \text{const} \cdot R^{N+\theta} R^{(\sigma-2)q'-\sigma} \int_{1 \leq \tau^\mu + |\eta|^\mu \leq 2} \frac{|\Delta \varphi_0|^q_0}{|\eta|^{(\sigma-2)q'-\sigma} \varphi_0^q_0 - 1} d\eta d\tau,$$

$$I_2(R) \leq \text{const} \cdot R^{N+\theta-2\theta q'} R^{-\sigma} \int_{1 \leq \tau^\mu + |\eta|^\mu \leq 2} \left| \frac{\partial^2 \varphi_0}{\partial \tau^2} \right| \cdot \frac{1}{|\eta|^\sigma \varphi_0^q_0 - 1} d\eta d\tau.$$
Здесь интегралы берутся по носителю функций $\Delta_\nu \varphi_0$ и $\frac{\partial^2 \varphi}{\partial \tau^2}$ соответственно, т.е. по множеству $1 \leq \tau^\nu + |\eta|^{\mu} \leq 2$. В силу неравенства $q' > q - 1$ нетрудно убедиться в существовании функции φ_0 из указанного класса с соответствующими конечными интегралами. При этом сходимость интеграла, оценивающего $I_1(R)$, обеспечивается выбором $\kappa \gg 1$ (следовательно, $\mu = \theta \kappa \gg 1$).

Чтобы "уравновесить" степени R в правых частях неравенств для $I_1(R)$ и $I_2(R)$, выберем θ:

$$N + \theta + (\sigma - 2)q' - \sigma = N + \theta - 2\theta q' - \sigma,$$

t.e. $\theta = (2 - \sigma)/2 > 0$. Заметим, что в изотропном случае $\sigma = 0$ мы имеем $\theta = 1$, т.е. $\kappa = \mu$.

Подставляя это значение θ в неравенства для $I_1(R)$ и $I_2(R)$, мы получаем

$$I_1(R) \leq \text{const} \cdot R^\nu \int_{1 \leq \tau^\nu + |\eta|^{\mu} \leq 2} \frac{|\Delta_\nu \varphi_0|^{q'}}{|\eta|^{(\sigma - 2)q' - \sigma}} \frac{1}{|\varphi_0|^{q' - 1}} d\eta d\tau,$$

$$I_2(R) \leq \text{const} \cdot R^\nu \int_{1 \leq \tau^\nu + |\eta|^{\mu} \leq 2} \frac{\left| \frac{\partial^2 \varphi_0}{\partial \tau^2} \right|^{q'}}{|\eta|^{\sigma} |\varphi_0|^{q' - 1}} d\eta d\tau,$$

gде

$$\nu = N + 1 - \frac{3}{2} \sigma + (\sigma - 2)q'.$$

Отсюда в силу теоремы 48.1 получаем, что при $\nu \leq 0$, т.e.

$$1 < q \leq \frac{N + 1 - \frac{3\sigma}{2}}{N - 1 - \frac{\sigma}{2}}, \quad (48.31)$$

$\sigma < 1$ и $N \geq 2$ задача (48.27) с начальными данными u_0 и u_1 такими, что

$$|x|^{-\sigma} u_0, \quad |x|^{-\sigma} u_1 \in L^1_{\text{loc}}(\mathbb{R}^N), \quad \int_{\mathbb{R}^N} \frac{u_1}{|x|^\sigma} dx > 0,$$

не допускает глобального нетривиального решения.

Отметим, что неравенство (48.31) имеет смысл при $\sigma < 2$ и не имеет смысла при $\sigma = 2$.

49. УРАВНЕНИЯ С НЕЛОКАЛЬНОЙ НЕЛИНЕЙНОСТЬЮ

Здесь мы рассматриваем проблему отсутствия глобальных нетривиальных решений в локальном функциональном пространстве.

Начнем с примера

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2} - a \left(\int_{\mathbb{R}^N} |\nabla u|^2 dx \right) \Delta u \geq |u|^q, \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x), \quad x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(x, 0) = u_1(x), \quad x \in \mathbb{R}^N,
\end{cases} \quad (49.1)$$

gде $q > 1$.

Здесь $a : \mathbb{R}_+ \to \mathbb{R}$ есть непрерывная ограниченная функция,

$$|a(s)| \leq c_0, \quad s \in \mathbb{R}_+. \quad (49.2)$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

Относительно начальных данных предполагаем, как всегда,

\[u_0, \ u_1 \in L^1_{\text{loc}}(\mathbb{R}^N), \quad \int_{\mathbb{R}^N} u_1 \ dx \geq 0 \quad (\text{может быть}, \ +\infty). \]

(49.3)

Под слабым решением \(u(x, t) \) задачи (49.1) мы понимаем функцию

\[u \in L^q_{\text{loc}}(\mathbb{R}^{N+1}_+), \quad \nabla u \in L^2_{\text{loc}}(\mathbb{R}^{N+1}_+), \]

такую, что

\[
- \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \varphi - u \frac{\partial \varphi}{\partial t} \right) \bigg|_{t=0} \ dx + \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial^2 \varphi}{\partial t^2} \ dx \ dt - \int_0^\infty \int_{\mathbb{R}^N} a \left(\int_{\mathbb{R}^N} |\nabla u|^2 \ dx \right) u \Delta \varphi \ dx \ dt \geq \]

\[\geq \int_0^\infty \int_{\mathbb{R}^N} |u|^q \varphi \ dx \ dt \]

(49.4)

для любой неотрицательной гладкой срезающей функции \(\varphi \in C^2_0(\mathbb{R}^{N+1}_+) \). Отметим, что в силу (49.2) коэффициент \(a \left(\int_{\mathbb{R}^N} |\nabla u|^2 \ dx \right) \) имеет смысл в случае \(\int_{\mathbb{R}^N} |\nabla u|^2 \ dx = +\infty \).

Теорема 49.1. Пусть выполнены условия (49.2) и (49.3). Тогда при любом \(q > 1 \), если \(N = 1 \), и \(1 < q \leq (N + 1)/(N - 1) \), если \(N > 1 \), задача (49.1) не имеет глобального нетривиального решения \(u(x, t) \) из указанного класса.

Доказательство. В силу (49.4) на основании (49.2) имеем

\[
\int_0^\infty \int_{\mathbb{R}^N} |u|^q \varphi \ dx \ dt \leq \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial^2 \varphi}{\partial t^2} \ dx \ dt + c_0 \int_0^\infty \int_{\mathbb{R}^N} |u| \cdot |\Delta \varphi| \ dx \ dt - \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 - u \frac{\partial \varphi}{\partial t} \bigg|_{t=0} \ dx,
\]

Отсюда в силу неравенства Минковского получаем

\[
\int_0^\infty \int_{\mathbb{R}^N} |u|^q \varphi \ dx \ dt \leq \int_0^\infty \int_{\mathbb{R}^N} \left(\frac{\partial^2 \varphi}{\partial t^2} + c_0 |\Delta \varphi| \right)^{q'} \ dx \ dt - q' \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \varphi - u \frac{\partial \varphi}{\partial t} \right) \bigg|_{t=0} \ dx, \quad (49.5)
\]

где \(q' = q/(q - 1) \).

Выберем теперь срезающую функцию \(\varphi \) вида

\[\varphi(x, t) = \varphi_0 \left(\frac{t^2 + |x|^2}{R^2} \right), \]

(49.6)

где \(\varphi_0 \in C^2_0(\mathbb{R}_+) \) такая, что

\[\varphi_0(\xi) = \begin{cases} 1, & 0 \leq \xi \leq 1, \\ 0, & \xi \geq 2, \end{cases} \]

и \(\varphi_0 \geq 0 \). Заметим, что \(\frac{\partial \varphi_0}{\partial t}(x, 0) \equiv 0 \).
Глава 6. МЕТОД ПРОБНЫХ ФУНКЦИЙ

Подставляя эту функцию φ в (49.5) и делая замену переменных $(x, t) \rightarrow (\eta, \tau)$:

$$t = R \tau, \quad x = R \eta,$$

мы получим

$$\int_0^\infty \int_{\mathbb{R}^N} |u|^q \varphi \, dx \, dt \leq c_1 R^{N+1-2q'} - q' \int_{\mathbb{R}^N} u_1 \varphi(x, 0) \, dx, \quad (49.7)$$

где

$$c_1 = \int_{1 \leq r^2 + |\eta|^2 \leq 2} \left(\frac{\partial^2 \varphi_0}{\partial r^2} + c_0 |\Delta \eta \varphi_0| \right)^{q'} \varphi_0^{1-q'} \, d\eta \, d\tau.$$

Ясно, что существует функция φ_0 указанного вида такая, что $c_1 < \infty$.

Применяя наши стандартные аргументы к неравенству (49.7) при $N + 1 < 2q'$ и дополнительные мультипликативные неравенства Гельдера для предельного случая $N + 1 = 2q'$, мы получаем утверждение теоремы 49.1. □

Рассмотрим теперь общую задачу с ограниченной нелокальной нелинейностью $a(u(t))$ следующего вида:

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2} \geq a(u(t)) \sum_{l \leq |\alpha| \leq m} D^\alpha A_\alpha(x, t, u) + b(x, t, u), \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x), \quad x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(x, 0) = u_1(x), \quad x \in \mathbb{R}^N,
\end{cases} \quad (49.8)$$

при условиях на A_α и b из разд. 47.

Определение 49.1. Под слабым решением $u(x, t)$ задачи (49.8) с условиями (47.2), (47.3) понимается функция $u \in L^q_{\text{loc}}(\mathbb{R}^{N+1}_+)$, для которой определен оператор $a(u(t))$ и такая, что

$$\int_{\mathbb{R}^N} \left(u_0 \frac{\partial \varphi}{\partial t} - u_1 \varphi \right) \bigg|_{t=0} \, dx + \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial^2 \varphi}{\partial t^2} \, dx \, dt \geq \int_0^\infty \int_{\mathbb{R}^N} a(u(t)) \sum_{l \leq |\alpha| \leq m} (-1)^{|\alpha|} A_\alpha(x, t, u) D^\alpha \varphi \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} b(x, t, u) \varphi \, dx \, dt \quad (49.9)$$

для любой неотрицательной срезающей функции $\varphi \in C_0^{m,2}(\mathbb{R}^{N+1}_+)$.

При этом мы предполагаем, что $u(x, t) \rightarrow a(u(t))$ есть измеримая по t и равномерно ограниченная функция

$$|a(u(t))| \leq c_0 \quad (49.10)$$

на рассматриваемом классе решений.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

Теорема 49.2. Пусть выполнены условия (47.2), (47.3) и (49.10). Пусть

$$\int_{\mathbb{R}^N} u_1 \, dx \geq 0 \quad (может быть, +\infty).$$

Тогда, если

$$2N \leq \frac{l(q + 1)}{q - p}, \quad (49.11)$$

задача (49.8) не имеет глобального нетривиального слабого решения $u(x,t)$ в указанном классе.

Теорема 49.3. Пусть выполнены условия теоремы 49.2, исключая (49.11). Пусть

$$l \geq 2N.$$

Тогда задача (49.8) не имеет глобального нетривиального слабого решения $u(x,t)$ в указанном классе.

Доказательства теорем 49.2 и 49.3 повторяют доказательства теорем 47.1 и 47.2. □

Пример 49.1. Рассмотрим следующую задачу:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} \geq \nu \frac{\partial^2 u}{1 + \int_{\mathbb{R}} \left(\frac{\partial u}{\partial x} \right)^2 \, dx} + |u|^q, \quad (x,t) \in \mathbb{R} \times (0, \infty), \\ u(x,0) = u_0(x), \quad x \in \mathbb{R}, \\ \frac{\partial u}{\partial t}(x,0) = u_1(x), \quad x \in \mathbb{R}, \end{cases} \quad (49.12)$$

с $\nu = \pm 1$ и $u_0, u_1 \in L^1_{\text{loc}}(\mathbb{R})$ и

$$\lim_{R \to \infty} \int_{|x| < R} u_1 \, dx \geq 0 \quad (может быть, +\infty).$$

Теорема 49.4. Задача (49.12) при $q > 1$ не имеет глобального нетривиального слабого решения $u(x,t)$ с $u \in L^q_{\text{loc}}(\mathbb{R} \times (0, \infty))$ и $\frac{\partial u}{\partial t} \in L^2_{\text{loc}}(\mathbb{R}).$ □

Пример 49.2. Рассмотрим задачу

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} \geq \nu \frac{\Delta^2 u + |u|^q}{1 + \int_{\mathbb{R}^2} |\Delta u|^2 \, dx}, \quad (x,t) \in \mathbb{R}^2 \times (0, \infty), \\ u(x,0) = u_0(x), \quad x \in \mathbb{R}^2, \\ \frac{\partial u}{\partial t}(x,0) = u_1(x), \quad x \in \mathbb{R}^2, \end{cases} \quad (49.13)$$

с $\nu = \pm 1$ и $u_0, u_1 \in L^1_{\text{loc}}(\mathbb{R}^2)$ и

$$\lim_{R \to \infty} \int_{|x| < R} u_1 \, dx \geq 0 \quad (может быть, +\infty).$$

Теорема 49.5. Задача (49.13) при $q > 1$ не имеет глобального нетривиального слабого решения $u(x,t)$ с $u \in L^q_{\text{loc}}(\mathbb{R}^2 \times (0, \infty))$ и $\Delta u \in L^2_{\text{loc}}(\mathbb{R}^2).$ □
Глава 7. ВЫРОЖДЕННЫЕ И СИНГУЛЯРНЫЕ ГИПЕРБОЛИЧЕСКИЕ ЗАДАЧИ В \mathbb{R}_+^{N+1}

50. ГИПЕРБОЛИЧЕСКИЕ НЕРАВЕНСТВА С СУБКРИТИЧЕСКИМ ВЫРОЖДЕНИЕМ

В этом разделе рассматриваются классическая задача

$$
\begin{cases}
\frac{\partial^2 u}{\partial t^2} - |x|^{\sigma} \Delta u \geq |u|^q, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x), & x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(x, 0) = u_1(x), & x \in \mathbb{R}^N,
\end{cases}
$$

(50.1)

и некоторые обобщения более высокого порядка [225]. В (50.1) подразумевается, что $N \geq 1$, $\sigma < 2$ и $q > 1$.

Мы относим задачу (50.1) к случаю субкритического вырождения. А именно, мы имеем в виду, что коэффициент рассеяния $|x|^{\sigma}$ может быть вырожденным и в отличие от ситуации при $\sigma = 2$ (см. следующий раздел) критический показатель q^*, связанный с отсутствием глобальных нетривиальных решений задачи (50.1), зависит от N.

Для подтверждения сказанного введем сначала класс функций, в котором мы будем доказывать отсутствие решений.

Определение 50.1. Пусть $u_0|x|^{-\sigma}$, $u_1|x|^{-\sigma} \in L^1_{\text{loc}}(\mathbb{R}^N)$. Будем называть функцию $u \in L^1_{\text{loc}}(\mathbb{R}^N \times (0, \infty))$ такую, что $|u|^q|x|^{-\sigma} \in L^1_{\text{loc}}(\mathbb{R}^N \times (0, \infty))$ и $u|x|^{-\sigma} \in L^1_{\text{loc}}(\mathbb{R}^N \times (0, \infty))$, слабым решением задачи (50.1), если для любой неотрицательной $\varphi \in C_0^3(\mathbb{R}^N \times \mathbb{R})$ верно неравенство

$$
\int_0^\infty \int_{\mathbb{R}^N} |u|^q|x|^{-\sigma} \varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} u \left(\frac{\partial^2 \varphi}{\partial x^2} |x|^{-\sigma} - \Delta \varphi \right) \, dx \, dt + \int_{\mathbb{R}^N} \left(u_0|x|^{-\sigma} \frac{\partial \varphi}{\partial t}(x, 0) - u_1|x|^{-\sigma} \varphi(x, 0) \right) \, dx.
$$

(50.2)

Отметим, что значения φ при $t < 0$ для нас не важны, поэтому вместо $\varphi \in C_0^3(\mathbb{R}^N \times \mathbb{R})$ можно рассматривать $\varphi \in C_0^2(\mathbb{R}^N \times [0, \infty))$ с компактным носителем.

Пусть $R > 0$, $\sigma < 2$ и $\varphi_0 \in C_0^\infty(\mathbb{R})$ — допустимая пробная функция такая, что

$$
\varphi_0(s) = \begin{cases} 1, & 0 \leq s \leq 1, \\
0, & s \geq 2. \end{cases}
$$

(50.3)

Положим

$$
A_R = \left\{ (x, t) \in \mathbb{R}^N \times (0, \infty) : \frac{R^\sigma t^2 + |x|^2}{R^2} \leq 1 \right\}
$$

и

$$
\delta = \frac{q(2(N-1) - \sigma) - (2(N+1) - 3\sigma)}{2(q-1)}.
$$

(50.4)
Измерения показывают, где q' — показатель, сопряженный с q, и $C > 0$ не зависит от u, R.

Доказательство. Так как u — слабое решение (50.1), то, применяя неравенство Юнга к правой части (50.2), получаем

$$
\int_0^\infty \int_\mathbb{R}^N |u|^q |x|^{-\sigma} \varphi \, dx \, dt \leq \int_0^\infty \int_\mathbb{R}^N \left| \frac{\partial^2 \varphi}{\partial t^2} - |x|^\sigma \Delta \varphi \right|^q |x|^{-\sigma} \varphi^{1-q'} \, dx \, dt + q' \int_\mathbb{R}^N \left(u_0 \frac{\partial \varphi}{\partial t}(x, 0) - u_1 \varphi(x, 0) \right) |x|^{-\sigma} \, dx.
$$

(50.6)

Заметим, что правая часть (50.6) конечна, поскольку $\varphi \in C^2_0(\mathbb{R}^{N+1})$ — допустимая функция. Кроме того,

$$
\frac{\partial \varphi}{\partial t}(x, 0) = \varphi'(t) \left(\frac{R^2 t^2 + |x|^2}{R^2} \right) \frac{2t}{R^{2-\sigma}} |x|^{-\sigma} \Big|_{t=0} = 0.
$$

(50.7)

С учетом (50.7) из (50.6) получаем

$$
\int_0^\infty \int_\mathbb{R}^N |u|^q |x|^{-\sigma} \varphi \, dx \, dt \leq 2^{q'-1}(I_1 + I_2) - q' \int_\mathbb{R}^N u_1 \varphi(x, 0)|x|^{-\sigma} \, dx,
$$

(50.8)

gде

$$
I_1 = \int_0^\infty \int_\mathbb{R}^N \frac{\partial^2 \varphi}{\partial t^2} |q'| \varphi^{1-q'} |x|^{-\sigma} \, dx \, dt, \quad I_2 = \int_0^\infty \int_\mathbb{R}^N |\Delta \varphi|^q \varphi^{1-q'} |x|^\sigma(q'-1) \, dx \, dt.
$$

Положим $\theta = 2 - \sigma$ и сделаем замену переменных

$$
t = R^{\theta/2} \tau, \quad x = R \xi.
$$

(50.9)

Простые вычисления показывают, что

$$
I_1 = R^{N+\theta/2-\sigma-\theta q'} \int_B \left| \frac{d^2}{dt^2} \varphi_0(\tau^2 + |\xi|^2) \right|^{q'} \left(\varphi_0(\tau^2 + |\xi|^2) \right)^{1-q'} |\xi|^{-\sigma} d\xi \, d\tau
$$

и

$$
I_2 = R^{N+\theta/2+\sigma(q'-1)-2\theta q'} \int_B \left| \Delta \xi \varphi_0(\tau^2 + |\xi|^2) \right|^{q'} \left(\varphi_0(\tau^2 + |\xi|^2) \right)^{1-q'} |\xi|^{\sigma(q'-1)} d\xi \, d\tau,
$$

где

$$
B = \{ (\xi, \tau) : 1 \leq \tau^2 + |\xi|^2 \leq 2 \}.
$$

(50.10)

Далее очевидно, что

$$
\int_B \left| \frac{d^2 \varphi}{dt^2} \right|^{q'} \varphi_0^{1-q'} |\xi|^{-\sigma} d\xi \, d\tau = \text{const} < \infty
$$
и
\[
\int_{B} |\Delta \varphi_0|^q |\varphi_0^{1-q'}| |\xi|^{(q'-1)} \, d\xi \, dt = \text{const} < \infty,
\]
после чего оценка (50.5) следует из равенства
\[
\delta = N + \frac{\theta}{2} - \sigma - \theta q' = N + \frac{\theta}{2} + \sigma(q' - 1) - 2q'.
\]
Доказательство окончено.

В качестве следствия оценки (50.5) получаем следующий результат.

Теорема 50.2. Пусть \(-N(q - 1) < \sigma < \min\{2, N\} u q > 1\). Если
\[
\delta \leq 0, \quad m.e. \quad q(2(N - 1) - \sigma) \leq 2(N + 1) - 3\sigma, \quad (50.11)
\]
то задача (50.1) не имеет нетривиальных слабых решений.

Доказательство. Предположим, что утверждение теоремы неверно, и пусть \(u\) — нетривиальное слабое решение (50.1). Тогда согласно (50.5) имеем
\[
\int_{A_R} |u|^q |x|^{-\sigma} \, dx \, dt \leq CR^\delta - q' \int_{\mathbb{R}^N} u_1 \varphi(x, 0)|x|^{-\sigma} \, dx. \quad (50.13)
\]
Сначала рассмотрим случай \(\delta < 0\). Устремляя \(R \to \infty\) в (50.13), получаем
\[
\int_{0}^{\infty} \int_{\mathbb{R}^N} |u|^q |x|^{-\sigma} \, dx \, dt \leq -q' \lim_{R \to \infty} \int_{\mathbb{R}^N} u_1 \varphi(x, 0)|x|^{-\sigma} \, dx \leq -q' \lim_{R \to \infty} \int_{|x| \leq R} u_1 |x|^{-\sigma} \, dx \leq 0
\]
(напомним, что \(\varphi(x, t) = \varphi_0(Rt^2 + |x|^2)\)). Второе неравенство в этой цепочке легко получить с помощью интегрирования по частям при условии, что \(\varphi_0(s)\) монотонно убывает при \(1 \leq s \leq 2\). Таким образом, \(u \equiv 0\) на \(\mathbb{R}^N \times (0, \infty)\).

Получили противоречие, а значит, утверждение теоремы верно.

Теперь рассмотрим случай \(\delta = 0\).

Из (50.13) следует, что
\[
|u|^q |x|^{-\sigma} \in L^1(\mathbb{R}^N \times (0, \infty)). \quad (50.14)
\]
Используя (50.2) и свойства функции \(\varphi\), получаем
\[
\int_{0}^{\infty} \int_{\mathbb{R}^N} |u|^q |x|^{-\sigma} \varphi \, dx \, dt \leq \int_{C_R} u \left(\frac{\partial^2 \varphi}{\partial t^2} |x|^{-\sigma} - \Delta \varphi\right) \, dx \, dt - \int_{\mathbb{R}^N} u_1 \varphi(x, 0)|x|^{-\sigma} \, dx, \quad (50.15)
\]
где
\[
C_R = \left\{ (x, t) \in \mathbb{R}^N \times (0, \infty) : 1 \leq \frac{R^2 t^2 + |x|^2}{R^2} \leq 2 \right\}.
\]
Применяя неравенство Гельдера в (50.15):

\[
\int_0^1 \int u^q |x|^{-\sigma} \, dx \, dt \leq \left(\int_0^1 \int u^q |x|^{-\sigma} \, dx \, dt \right)^{1/q} \left(\int_0^1 \int \frac{\partial^2 \varphi}{\partial t^2} - |x|^\sigma \Delta \varphi \right)^{q'} \left(\int_0^1 \int u^q |x|^{-\sigma} \, dx \, dt \right)^{1/q'} - \int u_1 \varphi(x,0)|x|^{-\sigma} \, dx.
\]

(50.16)

В последней оценке мы использовали то, что \(0 \leq \varphi \leq 1\).

Наконец, в силу (50.14) имеем

\[
\lim_{R \to \infty} \int_{\mathbb{R}^N} u^q |x|^{-\sigma} \, dx \, dt = 0.
\]

Учитывая, что второй интеграл в правой части (50.16) ограничен (см. оценки \(I_1\) и \(I_2\) выше), из (50.16) получаем

\[
\int_0^1 \int u^q |x|^{-\sigma} \, dx \, dt \leq - \lim_{R \to \infty} \int_{|x| \leq R} u_1 |x|^{-\sigma} \, dx \leq 0.
\]

Получили противоречие, и доказательство завершено. □

Замечание 50.1. Метод, использованный при доказательстве теорем 50.1 и 50.2, можно без труда применить к различным обобщениям на гиперболические системы вида

\[
\begin{cases}
\frac{\partial^2 u}{\partial t^2} - |x|^\sigma \Delta u \geq t^{a_1} |x|^{\beta_1} |v|^p, & (x,t) \in \mathbb{R}^N \times (0, \infty), \\
\frac{\partial^2 v}{\partial t^2} - |x|^\sigma \Delta v \geq t^{a_2} |x|^{\beta_2} |u|^p, & (x,t) \in \mathbb{R}^N \times (0, \infty), \\
u(x,0) = u_0(x), \quad \frac{\partial u}{\partial t}(x,0) = u_1(x), & x \in \mathbb{R}^N, \\
v(x,0) = v_0(x), \quad \frac{\partial v}{\partial t}(x,0) = v_1(x), & x \in \mathbb{R}^N,
\end{cases}
\]

где \(a_i, \beta_i \in \mathbb{R}, \sigma_i < 2\) при \(i = 1, 2\) и \(u_0|x|^{-\sigma_1}, v_0|x|^{-\sigma_2}, u_1|x|^{-\sigma_1}, v_1|x|^{-\sigma_2} \in L^1_{loc}(\mathbb{R}^N)\).

Замечание 50.2. Аналогичные результаты можно получить и для волнового неравенства в конусе (см. разд. 11, 32)

\[
\begin{cases}
\frac{\partial^2 u}{\partial t^2} - \Delta u \geq |u|^q, & (x,t) \in K \times (0, \infty), \\
u \geq 0, & (x,t) \in \partial K \times (0, \infty), \\
\frac{\partial u}{\partial t}(x,0) \geq 0, & x \in K.
\end{cases}
\]

(50.17)

Теорема 50.3 (Лаптев [216]). Пусть

\[
1 < q \leq q^* = 1 + \frac{2}{s^* + 1},
\]

где \(s^*\) определено формулой (11.5), задача (50.17) не имеет непрерывного глобального нетривиального решения. □
Глава 7. ВЫРОЖДЕННЫЕ И СИНГУЛЯРНЫЕ ЗАДАЧИ В \mathbb{R}^{N+1}_+

Более того, аналогично использованным ранее аргументам исследуется и зависимость критического показателя от введения неоднородности. Точнее, для задачи

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2} - \Delta u \geq |u|^q + w(x), & (x, t) \in K \times (0, \infty), \quad w(x) \not\equiv 0, \\
u \geq 0, & (x, t) \in \partial K \times (0, \infty), \\
\frac{\partial u}{\partial t}(x, 0) \geq 0, & x \in K,
\end{cases} \quad (50.18)$$

где $w(x) \in L^1_{\text{loc}}(K)$, $w(x) \geq 0$, справедлива

Теорема 50.4 (Лаптев [216]). Пусть

$$1 < q < q^* = 1 + \frac{2}{s^*}$$

задача (50.18) не имеет глобального нетривиального слабого решения, каким бы малым ни было $w(x) \not\equiv 0$. \square

Замечание 50.3. С помощью тех же рассуждений, которые были использованы при доказательстве теоремы 50.1, можно установить вариант теоремы 50.2 для неравенств более высокого порядка. Приведем пример в этом направлении.

Теорема 50.5. Пусть $0 \leq \sigma < \min\{2m, N\}$, $m \geq 1$, $q > 1$. Рассмотрим задачу

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2} + (-1)^m |x|^{\sigma} \Delta^m u \geq |u|^q, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x), & x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(x, 0) = u_1(x), & x \in \mathbb{R}^N,
\end{cases} \quad (50.19)$$

где $u_0|x|^{-\sigma}, u_1|x|^{-\sigma} \in L^1_{\text{loc}}(\mathbb{R}^N)$.

Если

$$q(2(N - m) - \sigma) \leq 2(N + m) - 3\sigma$$

то задача (50.19) не имеет нетривиальных слабых решений. \square

С помощью того же подхода, что и в доказательстве теоремы 50.1, можно исследовать сингулярные неравенства (неравенства с особенностями) вида

$$\frac{\partial^2 u}{\partial t^2} + (-1)^m \Delta^m u \geq \frac{|u|^q}{|x|^\sigma}. \quad (50.20)$$

Однако мы не будем отдельно изучать (50.20), а воспользуемся общим результатом, который мы докажем ниже.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Пусть
\[
\begin{aligned}
\frac{\partial^2 u}{\partial t^2} - L_m(u) &\geq b(x, t, u), \quad (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) &= u_0(x), \quad x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(x, 0) &= u_1(x), \quad x \in \mathbb{R}^N.
\end{aligned}
\] (50.21)

Здесь L_m — дифференциальный оператор вида
\[
L_m(\cdot) = \sum_{l \leq |\alpha| \leq m} D^\alpha A_\alpha(x, t, \cdot),
\]
где $1 \leq l$. Каратеодориевые функции $A_\alpha: \mathbb{R}^N \times \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$, α: $l \leq |\alpha| \leq m$, таковы, что существуют функции $a_\alpha: \mathbb{R}^N \times \mathbb{R}_+ \to \mathbb{R}_+$, $a_\alpha \in L^1_{\text{loc}}(\mathbb{R}^N \times (0, \infty))$, и для некоторого $p > 0$ для любого α
\[
|A_\alpha(x, t, u)| \leq a_\alpha(x, t)|u|^p
\] (50.22)
п.в. в $\mathbb{R}^N \times (0, \infty)$ и для всех $u \in L^1_{\text{loc}}(\mathbb{R}^N \times (0, \infty))$.

Мы предполагаем также, что для некоторого $q \in \mathbb{R}$, $q > \max\{p, 1\}$, найдется функция $b_0 \in L^\infty_{\text{loc}}(\mathbb{R}^N \times \mathbb{R}_+)$ такая, что
\[
b(x, t, u) \geq b_0(x, t)|u|^q
\] (50.23)
p.в. в $\mathbb{R}^N \times (0, \infty)$ и для всех $u \in L^\infty_{\text{loc}}(\mathbb{R}^N \times (0, \infty))$.

Кроме того, если $u \in L^q(\Omega)$, где Ω — компактное подмножество $\mathbb{R}^N \times (0, \infty)$, и
\[
\iint\limits_\Omega b_0(x, t)|u(x, t)|^q \, dx \, dt = 0,
\]
то $u = 0$ п.в. в Ω.

Далее сформулируем понятие слабого решения.

Определение 50.2. Пусть $u_0, u_1 \in L^q_{\text{loc}}(\mathbb{R}^N)$. Будем называть $u \in L^q_{\text{loc}}(\mathbb{R}^N \times (0, \infty))$ слабым решением задачи (50.21), если для любой $\varphi \in C^m_0(\mathbb{R}^N \times \mathbb{R})$ выполнено неравенство
\[
\int_0^\infty \int_{\mathbb{R}^N} b(x, t, u)\varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} \sum_{l \leq |\alpha| \leq m} (-1)^{|\alpha|+1} A_\alpha(x, t, u)D^\alpha \varphi \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial^2 \varphi}{\partial t^2} \, dx \, dt + \int_{\mathbb{R}^N} \left(u_0 \frac{\partial \varphi}{\partial t}(x, 0) - u_1 \varphi(x, 0) \right) \, dx.
\] (50.24)

Введем теперь некоторые обозначения, которые играют важную роль в формулировке нашего следующего результата об отсутствии нетривиальных решений.

Пусть T и L — фиксированные положительные параметры, и пусть $\psi_0 \in C^m_0(\mathbb{R}^N \times \mathbb{R})$. Рассмотрим функцию $\varphi: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}_+$, определенную соотношением
\[
\varphi(x, t) := \psi_0(\xi, \tau),
\]
где
\[
t = T\tau, \quad x = L\xi.
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Очевидно, \(\varphi \in C_0^m(\mathbb{R}^N \times \mathbb{R}) \).

Пользуясь этими обозначениями, введем величины \(A_{\tau, \xi}, B_{\tau, \xi} \) и \(C_{\tau, \xi} \) следующим образом:

\[
A_{\tau, \xi} := \sum_{l \leq |\alpha| \leq m} \frac{1}{|L|} a_\alpha(L, \xi, T \tau) |D^\alpha \psi_0|,
\]

\[
B_{\tau, \xi} := \frac{q - p}{q} |A_{\tau, \xi}|^{\frac{q}{p}} (b_0 \psi_0)^{-\frac{q}{p}},
\]

\[
C_{\tau, \xi} := \gamma T^{-2q} \left| \frac{\partial^2 \psi_0}{\partial \tau^2} \right|^{q'} (b_0 \psi_0)^{1-q'},
\]

где \(\frac{1}{q} + \frac{1}{q'} = 1 \) и \(\gamma = \frac{1}{q'} \left(\frac{2}{q - p} \right)^{q'-1} \).

Наконец, определим множества \(D_1 \) и \(D_2 \):

\[
D_1 = \{(\xi, \tau) \in \mathbb{R}^N \times [0, \infty) : |\xi| \leq 1, 0 \leq \tau \leq 1\},
\]

\[
D_2 = \{(\xi, \tau) \in \mathbb{R}^N \times [0, \infty) : |\xi| \leq 2, 0 \leq \tau \leq 2\}.
\]

Теперь мы можем сформулировать наш следующий результат.

Теорема 50.6. Предположим, что выполнены условия (50.22) и (50.23) и определена непрерывная кривая

\[
P : \mathbb{R}_+ \to \mathbb{R}_+ \times \mathbb{R}_+,
\]

такая, что

\[
\lim_{R \to \infty} T(R) = \lim_{R \to \infty} L(R) = \infty
\]

и

\[
\lim_{R \to \infty} T(R)L^N(R) \int_{D_2} (B_{\tau, \xi} + C_{\tau, \xi}) \, d\xi \, d\tau = 0,
\]

где \(\psi_0 \in C_0^m(\mathbb{R}^N \times \mathbb{R}) \) имеет вид

\[
\psi_0 = \begin{cases} 1, & (\xi, \tau) \in D_1, \\ 0, & (\xi, \tau) \in \mathbb{R}^{N+1}\setminus D_2. \end{cases}
\]

Если

\[
\lim_{R \to \infty} L^N(R) \int_{|\xi| \leq 2} \left(T^{-1} u_0(L(R)\xi) \frac{\partial \psi_0}{\partial \tau}(\xi, 0) - u_1(L(R)\xi)\psi_0(\xi, 0) \right) \, d\xi \leq 0,
\]

то задача (50.21) не имеет глобальных нетривиальных слабых решений.

Доказательство. Пусть \(u \) — глобальное нетривиальное слабое решение (50.21), и пусть \(\psi_0 \in C_0^m(\mathbb{R}^N \times \mathbb{R}), \varphi(x, t) = \psi_0(\xi, \tau), \) как и выше. Тогда с учетом определения множества \(D_2 \) из (50.24) получаем

\[
\begin{aligned}
T L^N \int_{D_2} b(L, \xi, T \tau, u) \psi_0 \, d\xi \, d\tau &\leq T L^N \int_{D_2} \sum_{l \leq |\alpha| \leq m} |A_\alpha(L, \xi, T \tau, u)| \frac{1}{|L|} |D^\alpha \psi_0| \, d\xi \, d\tau + \\
&+ T^{-1} L^N \int_{D_2} u \frac{\partial^2 \psi_0}{\partial \tau^2} \, d\xi \, d\tau + \int_{\mathbb{R}^N} \left(\frac{\partial \varphi}{\partial t}(x, 0) - u_1 \varphi(x, 0) \right) \, dx.
\end{aligned}
\]

18 ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
В силу (50.22) и (50.23) из (50.27) вытекает неравенство

\[
\int \int_{D_2} b_0(L, \xi, T) |u|^q \psi_0 \, d\xi \, d\tau \leq \int \int_{D_2} \frac{1}{L^{|a|}} a_n(L, \xi, T) |D^n \psi_0| \cdot |u|^p \, d\xi \, d\tau + \frac{1}{T^2} \int \int_{D_2} u \frac{\partial^2 \psi_0}{\partial \tau^2} \, d\xi \, d\tau + \frac{1}{TLN} \int_{\mathbb{R}^N} \left(u_0 \frac{\partial \varphi}{\partial t}(x, 0) - u_1 \varphi(x, 0) \right) \, dx,
\]

или

\[
\int \int_{D_2} b_0(L, \xi, T) |u|^q \psi_0 \, d\xi \, d\tau \leq \int \int_{D_2} A_{r, \xi} |u|^p \, d\xi \, d\tau + \frac{1}{T^2} \int \int_{D_2} u \frac{\partial^2 \psi_0}{\partial \tau^2} \, d\xi \, d\tau + \frac{1}{TLN} \int_{\mathbb{R}^N} \left(u_0 \frac{\partial \varphi}{\partial t}(x, 0) - u_1 \varphi(x, 0) \right) \, dx. \tag{50.28}
\]

Далее заметим, что в силу неравенства Юnga

\[
A_{r, \xi} |u|^p = (b_0 \psi_0)^q |u|^p \psi_0 \leq \frac{p}{q} |u|^q b_0 \psi_0 + \frac{q-p}{q} A_{r, \xi} |u|^q \psi_0 \leq \frac{p}{q} |u|^q b_0 \psi_0 + \frac{q-p}{q} \left((b_0 \psi_0)^q \right) = \frac{p}{q} |u|^q b_0 \psi_0 + B_{r, \xi}.
\]

Подставляя это неравенство в (50.28), получаем

\[
\frac{q-p}{q} \int \int_{D_2} b_0 |u|^q \psi_0 \, d\xi \, d\tau \leq \int \int_{D_2} B_{r, \xi} \, d\xi \, d\tau + \frac{1}{T^2} \int \int_{D_2} u \frac{\partial^2 \psi_0}{\partial \tau^2} \, d\xi \, d\tau + \frac{1}{TLN} \int_{\mathbb{R}^N} \left(u_0 \frac{\partial \varphi}{\partial t}(x, 0) - u_1 \varphi(x, 0) \right) \, dx \tag{50.29}
\]

и снова применяем неравенство Юnga (на этот раз с параметром \(\nu > 0 \)):

\[
\frac{1}{T^2} \frac{\partial^2 \psi_0}{\partial \tau^2} = \nu (b_0 \psi_0)^q \frac{1}{\nu T^2} \frac{\partial^2 \psi_0}{\partial \tau^2} (b_0 \psi_0)^q \leq \frac{\nu}{q} |u|^q b_0 \psi_0 + \frac{1}{q \nu T^2} (b_0 \psi_0)^q \left. \left| \frac{\partial^2 \psi_0}{\partial \tau^2} \right| \right| |q|, \]

где \(\frac{1}{q} + \frac{1}{\nu} = 1 \).

Полагая \(\nu = (\frac{q-p}{q})^{1/q} \), мы можем оценить второй интеграл в правой части (50.29) через определенную выше величину \(C_{r, \xi} \); другими словами,

\[
\frac{q-p}{2q} \int \int_{D_2} b_0 |u|^q \psi_0 \, d\xi \, d\tau \leq \int \int_{D_2} (B_{r, \xi} + C_{r, \xi}) \, d\xi \, d\tau + \frac{1}{TLN} \int_{\mathbb{R}^N} \left(u_0 \frac{\partial \varphi}{\partial t}(x, 0) - u_1 \varphi(x, 0) \right) \, dx. \tag{50.30}
\]

По условию теоремы определена функция

\[
P: \mathbb{R}_+ \to \mathbb{R}_+ \times \mathbb{R}_+
\]

такая, что \(P(R) = (T(R), L(R)) \) и

\[
\lim_{R \to \infty} T(R) = \lim_{R \to \infty} L(R) = \infty.
\]
Следовательно, имеем

\[
\frac{q-p}{2q} \int_0^{T(R)} \int_{|x| \leq L(R)} b_0|u|^q \, dx \, dt \leq \frac{q-p}{2q} T(R)L^N \int_{D_2} b_0|u|^q \psi_0 \, d\xi \, d\tau \leq T(R)L^N \int_{D_2} (B_{r,\xi} + C_{r,\xi}) \, d\xi \, d\tau + L^N \int \left(T^{-1}u_0(L(R)\xi) \frac{\partial \psi_0}{\partial \tau}(\xi,0) - u_1(L(R)\xi)\psi_0(\xi,0) \right) \, d\xi.
\]

(50.31)

Наконец, в силу (50.25) и (50.26) правая часть этого неравенства за счет выбора R может быть сделана меньше сколь угодно малого $\varepsilon > 0$, при этом R можно взять сколь угодно большим. Тогда для любой ограниченной области $\Omega \subset \mathbb{R}^N \times [0, \infty)$ имеем $u = 0$ в Ω. Это противоречит нашему предположению. Теорема доказана.

Пример 50.1. Рассмотрим следующую задачу:

\[
\begin{cases}
\frac{\partial^2 u}{\partial t^2} \geq t^\delta \sum_{|\alpha|=2} D^\alpha a_\alpha(x,t)|u|^{p-1}u + |x|^{\sigma}|u|^q, & (x,t) \in \mathbb{R}^N \times (0, \infty), \\
u(x,0) = u_0(x), & x \in \mathbb{R}^N,
\end{cases}
\]

(50.32)

Здесь a_α — ограниченные измеримые функции на $\mathbb{R}^N \times \mathbb{R}_+$, $p > 0$, $q > \max\{1, p\}$. Параметры δ и σ удовлетворяют условиям, указанным ниже (см. (50.33) и (50.35)).

В терминах теоремы 50.6 имеем

\[
A_{r,\xi} = \frac{T^\delta}{L^2} \frac{\gamma}{\delta} \sum_{|\alpha|=2} |a_\alpha(L\xi,T\tau)| \cdot |D^\alpha \psi_0|,
\]

\[
B_{r,\xi} = \frac{q-p}{q} \left(\frac{T^\delta}{L^{2q+\delta p}} \right)^{\frac{1}{1-p}} \left(\gamma \sum_{|\alpha|=2} |a_\alpha(L\xi,T\tau)| \cdot |D^\alpha \psi_0| \right)^{\frac{1}{1-p}} \left((|\xi|^\sigma \psi_0)^{-\frac{p}{\sigma}} \right),
\]

\[
C_{r,\xi} = \frac{1}{L^{2q(q-1)\tau_2^q}} \left(\frac{\partial^2 \psi_0}{\partial \tau^2} \right)^{q'} \left((|\xi|^\sigma \psi_0)^{1-q'} \right).
\]

Мы рассматриваем здесь функцию ψ_0 следующего вида:

\[
\psi_0(\xi, \tau) = \varphi_0(|\xi|) \cdot \varphi_0(\tau),
\]

где $0 \leq \varphi_0(s) \leq 1$, $\varphi_0 \in C^2_0(\mathbb{R})$ и

\[
\varphi_0(s) = \begin{cases} 1, & 0 \leq s \leq 1, \\
0, & s \geq 2. \end{cases}
\]

Отметим, что в силу такого выбора функции ψ_0 имеем

\[
supp B_{r,\xi} \subset \{(\xi, \tau) \in \mathbb{R}^N \times \mathbb{R}_+: 1 \leq |\xi| \leq 2, 0 \leq \tau \leq 2\},
\]

\[
supp C_{r,\xi} \subset \{(\xi, \tau) \in \mathbb{R}^N \times \mathbb{R}_+: 0 \leq |\xi| \leq 2, 1 \leq \tau \leq 2\}.
\]
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

Тогда условие сходимости интеграла
\[\iint_{D_2} (B_{\tau, \xi} + C_{\tau, \xi}) \, d\xi \, d\tau \]
приводит к ограничениям
\[\delta > -\frac{q - p}{q} \quad \text{и} \quad \sigma < N(q - 1). \] (50.33)

Далее, оптимальное условие “равновесия” слагаемых \(B_{\tau, \xi} \) и \(C_{\tau, \xi} \) относительно \(T, L \to \infty \) имеет вид
\[\left(\frac{T^q}{L^{2q + \sigma p}} \right)^{\frac{1}{q - p}} = \frac{1}{L}\sigma(q - 1) + 2q^2, \]
т.e.
\[T = L^\theta, \quad \theta = \frac{2(q - 1) + \sigma(p - 1)}{(\delta + 2)q - (\delta + 2p)}. \] (50.34)

Отметим, что при \(p = 1 \) получаем
\[\theta_1 := \theta|_{p = 1} = \frac{2}{\delta + 2}. \]
Здесь \(\theta_1 > 0 \) в силу (50.33), так как \(\delta > \frac{1}{q} - 1 \). В общем случае мы предполагаем, что
\[\frac{2(q - 1) + \sigma(p - 1)}{(\delta + 2)q - (\delta + 2p)} > 0. \] (50.35)

Тогда в терминах теоремы 50.6 мы получаем кривую \(P: \mathbb{R}_+ \to \mathbb{R}_+ \times \mathbb{R}_+, \) \(P(R) = (T(R), L(R)), \)
\[L = R \to \infty, \quad T = R^\theta \to \infty, \quad R \to \infty. \]
При этом условие (50.25) теоремы 50.6 принимает вид
\[(N - \theta)q < N + \theta + \sigma, \quad \theta < N. \]

Замечание 50.4. Дополнительные рассуждения “эллиптического характера” показывают, что это неравенство можно усилить, включив в него знак равенства.

Далее замечая, что выбранная функция \(\psi_0 \) удовлетворяет условию
\[\frac{\partial \psi_0}{\partial \tau}(x, 0) = 0, \]
на основании теоремы 50.6 получаем следующий результат.

Утверждение 50.1. Пусть \(u_0, u_1 \in L^1_{\text{loc}}(\mathbb{R}^N) \) и
\[\lim_{R \to \infty} \int_{|x| \leq R} u_1(x) \, dx \geq 0 \quad (\text{быть может, } +\infty). \]
Пусть параметры \(\delta \) и \(\sigma \) задачи (50.32) удовлетворяют неравенствам (50.33) и (50.35).
Тогда если \(q > \max\{1, p\} \) удовлетворяет неравенству
\[(N - \theta)q < N + \theta + \sigma, \] (50.36)
где \(\theta < N \) определено формулой (50.34), то задача (50.32) не имеет глобальных нетрivialьных слабых решений. □

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 7. ВЫРОЖДЕННЫЕ И СИНГУЛЯРНЫЕ ЗАДАЧИ В \mathbb{R}^{N+1}

В качестве следствия рассмотрим задачу

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2} \geq t^\delta \Delta u + |x|^\sigma |u|^q, & (x,t) \in \mathbb{R}^N \times (0,\infty), \\
u(x,0) = u_0(x), \frac{\partial u}{\partial t}(x,0) = u_1(x), & x \in \mathbb{R}^N.
\end{cases}$$

В обозначениях задачи (50.32) имеем $p = 1$ и $a_\alpha(x,t) = a_{ij}(x,t) = \delta_{ij}$. При тех же предположениях о начальных данных условия отсутствия нетривиальных глобальных решений принимают вид

$$q > 1, \quad \delta > \max\left\{\frac{1}{q} - 1, \frac{2}{N} - 2\right\}, \quad \sigma < N(q - 1)$$

и

$$q \leq \frac{(N + \sigma)(\delta + 2) + 2}{N(\delta + 2) - 2}. \quad (50.38)$$

Для задачи (50.37) имеем

$$\theta = \frac{2}{2 + \delta} > 0.$$

Замечание 50.5. Из неравенства (50.38) в силу $q > 1$ следует дополнительное необходимое условие на σ:

$$\sigma > -\frac{4}{\delta + 2}.$$

В частности, при $\delta = 0$ имеем $\sigma > -2$.

Замечание 50.6. Для задач в конической области K_R, $R > 0$ (см. разд. 21, 32), Лаптевым [216] для непрерывных слабых неотрицательных решений задачи

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2} - \Delta u \geq |x|^\sigma u^q, & (x,t) \in K_R \times (0,\infty), \\
u \geq 0, & (x,t) \in K_R \times (0,\infty), \\
\frac{\partial u}{\partial t}(x,0) \geq 0, & x \in K_R,
\end{cases}$$

где $-2 < \sigma < +\infty$, доказана

Теорема 50.7 [216]. Пусть

$$1 < q \leq q^* = 1 + \frac{2 + \sigma}{s^* + 1},$$

где s^* определено формулой (11.5), задача (50.39) не имеет глобального нетривиального слабого решения. □

Аналогичное утверждение получено и для неотрицательных решений неравенства

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2} - \text{div}(|x|^\sigma Du) \geq u^q, & (x,t) \in K_R \times (0,\infty), \\
u \geq 0, & (x,t) \in K_R \times (0,\infty), \\
\frac{\partial u}{\partial t}(x,0) \geq 0, & x \in K_R,
\end{cases}$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
где $-\infty < \alpha < 2$.

Теорема 50.8 [216]. При

$$1 < q \leq q^* = 1 + \frac{2 - \alpha}{s_{\alpha}^* + 1 - \alpha/2},$$

где s_{α}^* определено в (11.13), задача (50.40) не имеет глобального нетривиального слабого решения. □

51. МОДЕЛЬНАЯ ЗАДАЧА ВТОРОГО ПОРЯДКА
С КРИТИЧЕСКИМ ВЫРОЖДЕНИЕМ

В этом разделе мы рассмотрим задачу

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2} - |x|^2 \Delta u \geq |u|^q, & (x, t) \in \mathbb{R}^N \setminus \{0\} \times (0, \infty), \\
u(x, 0) = u_0(x), & x \in \mathbb{R}^N \setminus \{0\}, \\
\frac{\partial u}{\partial t}(x, 0) = u_1(x), & x \in \mathbb{R}^N \setminus \{0\},
\end{cases} \tag{51.1}$$

где $q > 1$ и $N \geq 1$.

Мы относим эту задачу к критическому случаю потому, что, как будет видно из дальнейшего, оценка, аналогичная (50.5), не зависит от размерности.

Начнем с определения слабого решения задачи (51.1).

Определение 51.1. Пусть $u_0, u_1 \in L^1_{loc}(\mathbb{R}^N \setminus \{0\})$. Будем называть функцию $u(x, t) \in L^q_{loc}(\mathbb{R}^N \setminus \{0\} \times (0, \infty))$ слабым решением задачи (51.1), если для любой неотрицательной $\varphi \in C^2_0(\mathbb{R}^N \setminus \{0\} \times \mathbb{R})$ выполнено неравенство

$$\int_0^\infty \int_{\mathbb{R}^N} |u|^q |x|^{-N} \varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} u \left(\frac{\partial^2 \varphi}{\partial t^2} |x|^{-N} - \Delta(|x|^{2-N} \varphi) \right) \, dx \, dt +$$

$$+ \int_{\mathbb{R}^N} \left(u \frac{\partial \varphi}{\partial t}(x, 0) - u_1 \varphi(x, 0) \right) |x|^{-N} \, dx. \tag{51.2}$$

Теорема 51.1. Предположим, что выполнены следующие условия:

$$0 \leq \lim_{R \to \infty} \int_{R^{-1} \leq |x| \leq R} u_1(x) |x|^{-N} \, dx \quad \text{быть может,} +\infty$$

и

$$1 < q \leq 3, \quad \text{если} \ N = 1 \ \text{или} \ N > 2;$$

$$1 < q, \quad \text{если} \ N = 2.$$

Тогда задача (51.1) не имеет глобальных нетривиальных слабых решений.
Доказательство. Предположим, что утверждение теоремы неверно, и пусть \(u \) — не-тривиальное слабое решение (51.1) в условиях теоремы. Мы покажем, что это приведет к противоречию. Применяя неравенство Юнга в правой части (51.2), получаем

\[
\begin{aligned}
\int_0^\infty \int_{\mathbb{R}^N} |u|^q |x|^{-N} \varphi \, dx \, dt & \leq \int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial^2 \varphi}{\partial t^2} \right| \frac{1}{|x|^{N\varphi^q-1}} \, dx \, dt + \\
& \quad + q' \int_{\mathbb{R}^N} \left(u_0 \frac{\partial \varphi}{\partial t}(x,0) - u_1 \varphi(x,0) \right) |x|^{-N} \, dx.
\end{aligned}
\]

(51.3)

Далее будем считать, что \(\varphi \in C_0^\infty(\mathbb{R}^N \setminus \{0\} \times \mathbb{R}) \) удовлетворяет условиям

\[
\varphi(x,t) = \psi(r,t), \quad r = |x| \neq 0, \quad \frac{\partial \varphi}{\partial t}(x,0) = 0.
\]

(51.4)

Ниже, когда мы выпишем \(\varphi \) в явном виде, проверка выполнения этих условий не составит труда.

Из (51.3) вытекает, что (в очевидных обозначениях)

\[
\begin{aligned}
\int_0^\infty \int_{\mathbb{R}^N} |u|^q |x|^{-N} \varphi(x,t) \, dx \, dt & \leq \int_0^\infty \int_{\mathbb{R}^N} r^2 \Delta_r \psi + 2(2 - N) r \frac{\partial \psi}{\partial r} - \frac{\partial^2 \psi}{\partial r^2} \frac{1}{r^\varphi d-1} \, dr \, dt - \\
& \quad - q' \int_0^\infty \int_{S^{N-1}} \frac{u_1(r,\omega)}{r} \psi(r,0) \, d\omega \, dr
\end{aligned}
\]

(51.5)

gде \(\Delta_r = \frac{\partial^2}{\partial r^2} + (N - 1)r^{-1} \frac{\partial}{\partial r} \cdot |S^{N-1}| \) — мера единичной сферы в \(\mathbb{R}^N \) и \(\omega = \frac{x}{|x|}, \, x \neq 0. \)

Сделаем замену переменной

\[
\rho = \ln r, \quad -\infty < \rho < \infty;
\]

tогда правая часть (51.5) преобразуется к виду

\[
\begin{aligned}
\int_0^\infty \int_{-\infty}^\infty \left| \frac{\partial^2 \psi}{\partial \rho^2} + (2 - N) \frac{\partial \psi}{\partial \rho} - \frac{\partial^2 \psi}{\partial \rho^2} \right|^q \frac{1}{(\psi(e^\rho,t))^{q'-1}} \, d\rho \, dt - \\
& \quad - q' \int_{-\infty}^\infty \int_{-\infty}^\infty u_1(e^\rho,\omega) \psi(e^\rho,0) \, d\omega \, d\rho.
\end{aligned}
\]

(51.6)

Далее конкретизируем выбор функции \(\psi \). А именно рассмотрим \(\psi \), определенную соотношением

\[
\psi(r,t) = \psi(e^\rho,t) = \varphi_0 \left(\frac{\rho^2 + R^2 t^2}{R^4} \right),
\]

gде \(R > 0 \) и функция \(\varphi_0 \in C_0^\infty(\mathbb{R}) \) такова, что

\[
\varphi_0(s) = \begin{cases}
1, & |s| \leq 1, \\
0, & |s| \geq 2.
\end{cases}
\]

(51.8)

Делая замену переменных

\[
\rho = R^2 \zeta, \quad t = R \tau
\]

(51.9)
и полагаем

\[\gamma(\zeta, \tau) := \zeta^2 + \tau^2 \]

и

\[\Gamma_R := \frac{1}{R^2} \frac{\partial^2}{\partial \zeta^2} + (2 - N) \frac{\partial}{\partial \zeta} - \frac{\partial^2}{\partial \tau^2}, \]

из (51.5), (51.6) получаем

\[
\int \int_{A_R} |u|^q |x|^{-N} dx \, dt \leq R^{2-2q'} |S^{N-1}| \int \int_B |\Gamma_R(\varphi_0 \circ \gamma)|^{q'} (\varphi_0 \circ \gamma)^{1-q'} \, d\zeta \, d\tau - q' \int_{-\infty}^{\infty} \int_{S^{N-1}} u_1(e^\rho, \omega) \varphi_0 \left(\frac{\rho^2}{R^4} \right) \, d\omega \, d\rho, \tag{51.10}
\]

где

\[
A_R = \left\{ (x, t) \in \mathbb{R}^N \times (0, \infty) : \ln |x| + R^2 |t|^2 \leq 1 \right\}, \tag{51.11}
\]

\[
B = \{ (\zeta, \tau) \in \mathbb{R} \times (0, \infty) : 1 \leq \gamma(\zeta, \tau) \leq 2 \}.
\]

С помощью стандартных рассуждений можно показать, что

\[
\int \int_B |\Gamma_R(\varphi_0 \circ \gamma)|^{q'} (\varphi_0 \circ \gamma)^{1-q'} \, d\zeta \, d\tau \leq \text{const} < \infty
\]

при \(R > 1 \). Предположим теперь, что \(3 - 2q' < 0, \) т.е. \(q < 3 \). Устремляя \(R \to \infty \) в (51.10), благодаря специальному виду \(\varphi_0 \) (см. (51.8)) получаем

\[
\int \int_{0}^{\infty} |u|^q |x|^{-N} dx \, dt \leq -q' \lim_{R \to \infty} \int_{R^{-1} \leq |x| \leq R} u_1(x) |x|^{-N} dx \leq 0.
\]

Это завершает доказательство в случае \(q < 3 \).

Случай \(q = 3 \) может быть рассмотрен аналогично случаю \(\delta = 0 \) в теореме 50.2.

Теперь пусть \(N = 2 \). Тогда положим

\[\psi(r, t) = \psi(e^\rho, t) = \varphi_0 \left(\frac{\rho^2 + t^2}{R^2} \right) \]

и сделаем замену переменных

\[\rho = R\zeta, \quad t = R\tau. \tag{51.12} \]

Объединяя (51.5) и (51.6), имеем

\[
\int \int_{A_R} |u|^q |x|^{-2} dx \, dt \leq R^{2(1-q')} |S^{N-1}| \int \int_B |\Gamma(\varphi_0 \circ \gamma)|^{q'} (\varphi_0 \circ \gamma)^{1-q'} \, d\zeta \, d\tau - q' \int_{-\infty}^{\infty} \int_{S^{N-1}} u_1(e^\rho, \omega) \varphi_0 \left(\frac{\rho^2}{R^2} \right) \, d\omega \, d\rho.
\]
где γ и B те же, что и выше,

$$A_R = \left\{ (x,t) \in \mathbb{R}^N \times (0, \infty) : \frac{\ln^2|x| + |t|^2}{R^2} \leq 1 \right\}, \quad (51.13)$$

$$\Gamma = \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial t^2}. \quad (51.14)$$

Далее, поскольку $1 - q' < 0$, из предыдущего неравенства получаем

$$\int_0^{\infty} \int_0^\infty |u|^q |x|^{-2} \, dx \, dt \leq -q' \lim_{R \to \infty} \int_{R^{-1} \leq |x| \leq R} u_1(x) |x|^{-2} \, dx \leq 0.$$

Это противоречие завершает доказательство теоремы. \square

Гиперболические неравенства, содержащие полигармонический оператор. Мы рассмотрим здесь вариант теоремы о гиперболических неравенствах высшего порядка с критическим вырождением вида

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2} + (-1)^m |x|^{2m} \Delta^m u \geq |u|^q, \quad (x,t) \in \mathbb{R}^N \backslash \{0\} \times (0, \infty), \\
u(x,0) = u_0(x), \quad x \in \mathbb{R}^N \backslash \{0\}, \\
\frac{\partial u}{\partial t}(x,0) = u_1(x), \quad x \in \mathbb{R}^N \backslash \{0\}. \quad (51.15)
\end{cases}$$

Здесь $m \geq 1$, $q > 1$ и u_0, u_1 — заданные функции, обладающие определенными свойствами интегрируемости (см. ниже).

Определение 51.2. Пусть $u_0, u_1 \in L^1_{\text{loc}}(\mathbb{R}^N \backslash \{0\})$. Будем называть функцию $u(x,t) \in L^q_{\text{loc}}(\mathbb{R}^N \backslash \{0\} \times (0, \infty))$ слабым решением задачи (51.14), если для любой неотрицательной $\varphi \in C_c^{m,2}(\mathbb{R}^N \backslash \{0\} \times \mathbb{R})$ с компактным носителем выполнено неравенство

$$\int_0^{\infty} \int_{\mathbb{R}^N} |u|^q |x|^{-N} \varphi \, dx \, dt \leq \int_0^{\infty} \int_{\mathbb{R}^N} \left(\frac{\partial^2 \varphi}{\partial t^2} |x|^{-N} + (-1)^m \Delta^m (|x|^{2m-N} \varphi) \right) \, dx \, dt +$$

$$+ \int_{\mathbb{R}^N} \left(u_0 \frac{\partial \varphi}{\partial t}(0,0) - u_1 \varphi(0,0) \right) |x|^{-N} \, dx. \quad (51.15)$$

Справедлива следующая

** Теорема 51.2. Пусть, что

$$0 \leq \lim_{R \to \infty} \int_{R^{-1} \leq |x| \leq R} u_1(x) |x|^{-N} \, dx \quad (быть может, +\infty)$$

$$u \begin{cases}
1 < q \leq 3, \text{ если } N = 2(m-j) - 1, j = 0, \ldots, m - 1, \text{ или } N > 2m; \\
1 < q, \quad \text{если } N = 2(m-j), j = 0, \ldots, m - 1.
\end{cases} \quad (51.16)$$

Тогда задача (51.14) не имеет глобальных нетривиальных слабых решений.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Мы утверждаем, что функция ϕ, где $\hat{\phi}$.

Действительно, чтобы доказать (51.20), достаточно заметить, что

$$P_j \left(\frac{\partial}{\partial \rho} \right) \left(e^{(2m-N)\rho} \hat{\phi} \right) = e^{(2m-N)\rho} P_{m-1-j} \left(- \frac{\partial}{\partial \rho} \right) \left(\hat{\phi} \right)$$

для $j = 0, \ldots, m - 1$, где

$$P_j \left(\frac{\partial}{\partial \rho} \right) = \left(\frac{\partial}{\partial \rho} - 2j \right) \circ \left(\frac{\partial}{\partial \rho} + N - 2 - 2j \right).$$
Тогда с учетом (51.19) получим

\[
P \left(\frac{\partial}{\partial \rho} \right) e^{(2m-N)\rho} \frac{\psi}{\rho} = P_{m-1} \left(\frac{\partial}{\partial \rho} \right) \circ \ldots \circ P_1 \left(\frac{\partial}{\partial \rho} \right) \circ P_0 \left(\frac{\partial}{\partial \rho} \right) e^{(2m-N)\rho} \frac{\psi}{\rho} =
\]

\[
= P_{m-1} \left(\frac{\partial}{\partial \rho} \right) \circ \ldots \circ P_1 \left(\frac{\partial}{\partial \rho} \right) e^{(2m-N)\rho} \left(\frac{\partial}{\partial \rho} \right) (\tilde{\psi}) =
\]

\[
= e^{(2m-N)\rho} P_0 \left(\frac{\partial}{\partial \rho} \right) \circ \ldots \circ P_{m-1} \left(\frac{\partial}{\partial \rho} \right) (\tilde{\psi}) =
\]

\[
= e^{(2m-N)\rho} P \left(\frac{\partial}{\partial \rho} \right) (\tilde{\psi}),
\]

что и требовалось.

Равенство (51.21) вытекает непосредственно из (51.19).

Вернемся к (51.18). Виду (51.4) имеем

\[
\int_0^\infty \int_{\mathbb{R}^N} |u|^q |x|^{-N} \varphi \, dx \, dt \leq |S^{N-1}| \int_0^\infty \int_{\mathbb{R}^N} e^{qN\rho} \left| \frac{\partial^2 \tilde{\psi}}{\partial \tau^2} \right| e^{-N\rho} + (-1)^m e^{-2m\rho} P \left(\frac{\partial}{\partial \rho} \right) e^{(2m-N)\rho} \frac{\psi}{\rho} \left| \frac{\psi}{\rho} \right|^q \times
\]

\[
\times \tilde{\psi}^{-q} d\rho \, dt - q' \int_{\mathbb{R}^N} u_1 \varphi(x,0) \, dx \leq
\]

\[
\leq |S^{N-1}| \int_0^\infty \int_{\mathbb{R}^N} e^{qN\rho} \left| \frac{\partial^2 \tilde{\psi}}{\partial \tau^2} \right| e^{-N\rho} + (-1)^m e^{-2m\rho} (2m-N)\rho P \left(\frac{\partial}{\partial \rho} \right) (\tilde{\psi}) \left| \frac{\psi}{\rho} \right|^q \times
\]

\[
\times \tilde{\psi}^{-q} d\rho \, dt - q' \int_{\mathbb{R}^N} u_1 \varphi(x,0) \, dx =
\]

\[
= |S^{N-1}| \int_0^\infty \int_{\mathbb{R}^N} \left| \frac{\partial^2 \tilde{\psi}}{\partial \tau^2} \right| + (-1)^m P \left(\frac{\partial}{\partial \rho} \right) (\tilde{\psi}) \left| \frac{\psi}{\rho} \right|^q \tilde{\psi}^{-q} d\rho \, dt - q' \int_{\mathbb{R}^N} u_1 \varphi(x,0) \, dx. \quad (51.23)
\]

Дальнейшие рассуждения повторяют соответствующую часть доказательства теоремы 51.1.

Предположим, что выполнено условие (51.16). Рассмотрим функцию

\[
\tilde{\psi}(\rho, t) = \varphi_0 \left(\frac{\rho^2 + R^2 t^2}{R^4} \right),
\]

где \(\varphi_0 \geq 0 \) — гладкая срезающая функция такая, что

\[
\varphi_0(s) = \begin{cases} 1, & |s| \leq 1, \\ 0, & |s| \geq 2. \end{cases}
\]

Простыми преобразованиями (с использованием замены переменных (51.9)) приводим (51.23) к виду

\[
\int \int_{\mathbb{R}^N} |u|^q |x|^{-N} \, dx \, dt \leq C_0 R^{3-2q'} - q' \int_{-\infty}^\infty \int_{S^{N-1}} u_1(e^\rho, \omega) \varphi_0 \left(\frac{\rho^2}{R^4} \right) d\omega \, d\rho,
\]

где

\[
C_0 = |S^{N-1}| \int_B |\Gamma_R(\varphi_0 \circ \gamma)|^q (\varphi_0 \circ \gamma)^{1-q'} d\zeta \, d\tau \leq \text{const} < \infty
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
при $R > 1$, $\gamma(\zeta, \tau) = \zeta^2 + \tau^2$, множества A_R и B определены в (51.11),

$$
\Gamma_R = \frac{\partial^2}{\partial \tau^2} + (-1)^{m+1} \tilde{P} \left(-\frac{1}{R^2} \frac{\partial}{\partial \zeta} \right) \frac{\partial}{\partial \zeta}
$$

и \tilde{P} — многочлен такой, что $P \left(\frac{\partial}{\partial \rho} \right) = \tilde{P} \left(\frac{\partial}{\partial \rho} \right) \frac{\partial}{\partial \rho}$. Теперь противоречие немедленно вытекает из последних двух неравенств.

Перейдем к случаю (51.17). Заметим, что член первого порядка оператора $P \left(-\frac{\partial}{\partial \rho} \right)$, определенного соотношением

$$
P \left(-\frac{\partial}{\partial \rho} \right) = \prod_{j=0}^{m-1} \left(-\frac{\partial}{\partial \rho} - 2j \right) \circ \left(-\frac{\partial}{\partial \rho} + N - 2 - 2j \right),
$$

обращается в нуль при $j = 0, \ldots, m - 1$. Следовательно, минимальный порядок членов этого оператора равен 2. Таким образом, этот случай аналогичен случаю $m = 1$ и $N = 2$, рассмотренному при доказательстве теоремы 51.1 выше. А именно полагаем

$$
\tilde{\psi}(\rho, t) = \varphi_0 \left(\frac{\rho^2 + t^2}{R^2} \right),
$$

dелаем замену переменных (51.12) и из (51.23) получаем

$$
\int_{A_R} \int |u|^q |x|^{-N} \, dx \, dt \leq C_1 R^{2(1-q)} - q' \int_{-\infty}^{\infty} \int_{S^{N-1}} u_1(e^p, \omega) \varphi_0 \left(\frac{\rho^2}{R^2} \right) \, d\omega \, d\rho,
$$

где

$$
C_1 = |S^{N-1}| \int_{B} \left| \Gamma_R(\varphi_0 \circ \gamma) |^q' \left(\varphi_0 \circ \gamma \right)^{1-q'} \, d\zeta \, d\tau \leq \text{const} < \infty
$$

при $R > 1$, γ и B те же, что и раньше, A_R определено в (51.13),

$$
\Gamma_R = \frac{\partial^2}{\partial \tau^2} + (-1)^m \tilde{P} \left(-\frac{1}{R} \frac{\partial}{\partial \zeta} \right) \frac{\partial^2}{\partial \zeta^2}
$$

и \tilde{P} — многочлен такой, что $P \left(\frac{\partial}{\partial \rho} \right) = \tilde{P} \left(\frac{\partial}{\partial \rho} \right) \frac{\partial}{\partial \rho}$. Теперь, поскольку $q' > 1$, мы очевидным образом получаем противоречие.

Доказательство теоремы 51.2 закончено. □

52. ГИПЕРБОЛИЧЕСКИЕ ЗАДАЧИ С ЛОКАЛЬНЫМ (ПОЛНЫМ И МГНОВЕННЫМ) РАЗРУШЕНИЕМ РЕШЕНИЯ

Пусть $N \geq 2$. Введем множества $\Omega = \Omega_{0, r_0} = \{ x \in \mathbb{R}^N : 0 < |x| < r_0 \}, Q = (\Omega \setminus \{0\}) \times (0, T) \subseteq \mathbb{R}^{N+1}$ и рассмотрим следующую задачу:

$$
\begin{cases}
 \frac{\partial^2 u}{\partial t^2} - \Delta u \geq |x|^\sigma u^p, & (x, t) \in Q, \\
 u \geq 0, & u \neq 0, \quad (x, t) \in Q, \\
 u(x, 0) = u_0(x), \quad \frac{\partial u}{\partial t}(x, 0) = u_1(x), & x \in \Omega \setminus \{0\} \subseteq \mathbb{R}^N.
\end{cases}
$$

Здесь $p > 1, \sigma \leq -2$. Мы предполагаем, что $u_0, u_1 \in L^1_{\text{loc}}(\Omega \setminus \{0\})$.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Априорные оценки. Повторяя рассуждения из разд. 6, посвященного эллиптической задаче с критической и суперкритической сингулярностью, получим обыкновенные дифференциальные неравенства второго порядка.

В самом деле, умножим неравенство из (52.1) на функцию ζ(x), определенную формулой (6.2) для соответствующей эллиптической задачи.

Тогда получим

$$\int_{\Omega_{\varepsilon,r_0}} u^p \varphi_0 \varphi r^{N-1+\kappa+\sigma} dr d\omega \leq \int_{\Omega_{\varepsilon,r_0}} u L(\varphi_0, \varphi) dr d\omega + \int_{\Omega_{\varepsilon,r_0}} \frac{\partial^2 u}{\partial t^2} \varphi_0 \varphi r^{N-1+\kappa} dr d\omega,$$

где $L(\varphi_0, \varphi)$ определено формулой (6.10), $\varphi_0(r) = r^\mu - r_0^\mu$ и $\Omega_{\varepsilon,r_0} = \{ x \in \mathbb{R}^N : \varepsilon < |x| < r_0 \}$.

Отсюда в силу неравенства Юнга находим

$$\int_{\Omega_{\varepsilon,r_0}} u^p \varphi_0 \varphi r^{N-1+\kappa+\sigma} dr d\omega \leq C \int_{\varepsilon}^{r_0} \frac{|L(\varphi_0, \varphi)|^{p'}}{(\varphi_0 \varphi r^{N-1+\kappa})^{p'-1}} dr + p \int_{\Omega_{\varepsilon,r_0}} \frac{\partial^2 u}{\partial t^2} \varphi_0 \varphi r^{N-1+\kappa} dr d\omega,$$

где $C = C(N) = \int_{|x|=1} 1 d\omega$ и $p' = p/(p - 1)$.

Введем теперь функцию

$$U(t) := \int_{\Omega_{\varepsilon,r_0}} u^p \varphi_0 \varphi r^{N-1+\kappa} dr d\omega.$$

Тогда на основании неравенства Гельдера получаем

$$U^p(t) \leq K(\varepsilon, r_0) \int_{\Omega_{\varepsilon,r_0}} u^p \varphi_0 \varphi r^{N-1+\kappa+\sigma} dr d\omega,$$

где

$$K(\varepsilon, r_0) = \left[C \int_{\varepsilon}^{r_0} \varphi_0 \varphi r^{N+\kappa-1-\sigma(p'-1)} dr \right]^{1/(p'-1)}.

Тогда неравенство (52.3) принимает вид

$$p' U''(t) \geq K^{-1}(\varepsilon, r_0) U^p(t) - K_1(\varepsilon, r_0),$$

где

$$K_1(\varepsilon, r_0) = \int_{\varepsilon}^{r_0} \frac{|L(\varphi_0, \varphi)|^{p'}}{(\varphi_0 \varphi r^{N-1+\kappa+\sigma})^{p'-1}} dr.$$

Оценка $K_1(\varepsilon, r_0)$. Для интеграла $K_1(\varepsilon, r_0)$ в силу предыдущих аргументов (см. вывод формулы (6.13)) имеем

$$K_1(\varepsilon, r_0) \leq C_1 \varepsilon^\theta,$$

с $C_1 = C_1(\varphi_0, \varphi) > 0$ и

$$\theta = -(\sigma + 2)(p' - 1) + N - 2 + \kappa + \mu.$$

При оптимальном выборе параметров κ и $\mu < 0$, а именно $\kappa + \mu = 2 - N$, получаем

$$\theta = \theta_0 = -(\sigma + 2)(p' - 1).$$
Отсюда при $\sigma < -2$ имеем

$$K_1(\varepsilon, r_0) \rightarrow 0, \quad \varepsilon \rightarrow 0,$$ \hspace{1cm} (52.10)

при любом фиксированном $r_0 > 0$.

Оценка $K(\varepsilon, r_0)$. В силу определения функций φ_0 и φ (см. разд. 6) имеем

$$\varphi_0 \varphi r^{N + \kappa - 1 - \sigma(p' - 1)} \leq (r^\mu - r_0^\mu) r^{N + \kappa - 1 - \sigma(p' - 1)}$$

при $\varepsilon \leq r \leq r_0$.

Отсюда получаем

$$\int_\varepsilon^{r_0} \varphi_0 \varphi r^{N + \kappa - 1 - \sigma(p' - 1)} dr \leq C_{\kappa, \mu} r_0^{\sigma}, \quad C_{\kappa, \mu} = \frac{1}{\mu} (r^\mu - 1) r^{N + \kappa - 1 - \sigma(p' - 1)} dr,$$

где $\gamma = N + \kappa + \mu - \sigma(p' - 1)$ и $C_{\kappa, \mu} > 0$ в силу $\mu < 0$ и $\gamma > 0$.

Всюду ниже мы рассматриваем случай $\kappa + \mu = 2 - N$. Тогда

$$\int_\varepsilon^{r_0} \varphi_0 \varphi r^{N + \kappa - 1 - \sigma(p' - 1)} dr \leq C_0 r_0^{\gamma_0},$$ \hspace{1cm} (52.11)

с $\gamma_0 = 2 - \sigma(p' - 1) > 0$ и $C_0 = C_{\kappa, \mu}$ при $\kappa + \mu = 2 - N$.

Анализ дифференциального неравенства (52.7). Напомним, что мы рассматриваем нашу задачу в классе неотрицательных функций.

Лемма 52.1. Пусть

$$U(0) \geq [(1 - \delta)^{-1} K(\varepsilon, r_0)^{1/p}] K_1(\varepsilon, r_0)^{1/p},$$

$$U'(0) \geq 0,$$ \hspace{1cm} (52.12)

с некоторым $0 < \delta < 1$.

Тогда $U'(t) > 0$ в области существования при $t > 0$.

Доказательство. Из неравенства (52.7) имеем

$$p' U''(t) \geq (1 - \delta) K^{-1}(\varepsilon, r_0) U'(t) - K_1(\varepsilon, r_0) + \delta K^{-1}(\varepsilon, r_0) U(t).$$ \hspace{1cm} (52.13)

В силу (52.12) имеем $U''(0) > 0$.

Предположим противное утверждению леммы. Тогда существует $T_0 > 0$ такое, что

$$U'(t) > 0, \quad t \in (0, T_0), \quad U'(T_0) = 0.$$ \hspace{1cm} (52.14)

Умножим неравенство (52.13) на t и проинтегрируем по отрезку $[0, T_0]$. Тогда получим

$$\int_0^{T_0} U''(t) dt = U'(t)|_{t=0}^{T_0} - \int_0^{T_0} U'(t) dt \geq \frac{1}{p'} (1 - \delta) K^{-1}(\varepsilon, r_0) \times$$

$$\times \int_0^{T_0} [(U^{p}(t) - (1 - \delta)^{-1} K(\varepsilon, r_0)^{1/p} + \delta K^{-1}(\varepsilon, r_0) U^{p}(t)].$$ \hspace{1cm} (52.15)

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 7. ВЫРОЖДЕННЫЕ И СИНГУЛЯРНЫЕ ЗАДАЧИ В \(R^{N+1} \)

Из предположения (52.14) следует \(U(t) > U(0) > 0 \) и в силу начального условия

\[
U^p(t) > (1 - \delta)^{-1} K(\varepsilon, r_0) K_1(\varepsilon, r_0)
\]

на \((0, T_0)\).

Тогда полученное неравенство (52.15) становится противоречивым, что и доказывает лемму 52.1. □

Рассмотрим теперь неравенство (52.7) с начальными условиями (52.12) при некотором \(0 < \delta < 1 \).

Отметим, что тогда в силу леммы 52.1 имеем

\[
(1 - \delta)K^{-1}(\varepsilon, r_0) U^p(t) - K_1(\varepsilon, r_0) > 0
\]

(52.16)

при любом \(t > 0 \) из области существования \(U(t) > 0 \).

Умножим это неравенство на пробную функцию \(\varphi(t) \geq 0 \) из класса \(C^2(\mathbb{R}) \) с компактным носителем \(\text{supp} \varphi \subset [0, T] \) и такую, что \(\varphi(0) = 1, \varphi'(0) = 0 \).

Тогда после интегрирования получим

\[
\int_0^T \left(K^{-1}(\varepsilon, r_0) U^p(t) - K_1(\varepsilon, r_0) \right) \varphi(t) dt \leq \int_0^T U \varphi'' dt - p'U'(0).
\]

(52.17)

Далее в силу параметрического неравенства Юнга имеем

\[
\int_0^T U \varphi'' dt \leq \delta K^{-1}(\varepsilon, r_0) \int_0^T U^p(t) \varphi(t) dt + \frac{1}{\delta p' - 1} \frac{(p' - 1)p'' - 1}{(p')^p} (K(\varepsilon, r_0))^{p' - 1} \int_0^T \frac{|\varphi''|^p}{\varphi^{p' - 1}} dt - p'U'(0)
\]

при любом \(\delta > 0 \).

Тогда из неравенства (52.15) следует, что

\[
\int_0^T \left((1 - \delta)K^{-1}(\varepsilon, r_0) U^p(t) - K_1(\varepsilon, r_0) \right) \varphi(t) dt \leq
\]

\[
\leq \frac{1}{\delta p' - 1} \frac{(p' - 1)p'' - 1}{(p')^p} (K(\varepsilon, r_0))^{p' - 1} \int_0^T \frac{|\varphi''|^p}{\varphi^{p' - 1}} dt - p'U'(0).
\]

(52.18)

Введем теперь пробную функцию \(\varphi \) вида

\[
\varphi(t) = \tilde{\varphi}(\tau), \quad \tau = \frac{t}{T},
\]

где \(\tilde{\varphi}(0) = 1, \tilde{\varphi}'(0) = 0 \) и \(\tilde{\varphi} \geq 0 \) из класса \(C^2(\mathbb{R}_+) \), такую, что

\[
\tilde{\varphi}(\tau) = \begin{cases} 1, & 0 \leq \tau \leq 1, \\ 0, & \tau \geq 2, \end{cases}
\]

и

\[
\Gamma_0 = \frac{2}{(\tilde{\varphi}(\tau))^{p' - 1}} d\tau < \infty,
\]

что, очевидно, возможно.
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

Тогда неравенство (52.18) влечет

\[\int_0^T \left((1-\delta)K^{-1}(\varepsilon,r_0)U'(t) - K_1(\varepsilon,r_0) \right) \varphi(t) \, dt \leq \]

\[\leq \frac{1}{\delta^{p'-1}} \frac{(p'-1)^{p'-1}}{(p')^{p'-1}} (K(\varepsilon,r_0))^{p'-1} \frac{1}{T^{2p'-1}} \Gamma_0 - p'U'(0). \]

Отсюда следует, что решение \(U(t) \) с начальными условиями (52.12) не существует при

\[T \geq T_* , \]

где

\[T_* = \frac{1}{\delta^{p'-1}} \frac{(p'-1)^{p'-1}}{(p')^{p'-1}} \Gamma_0 \left(\frac{K^{p'-1}(\varepsilon,r_0)}{U'(0)} \right)^{1/(2p'-1)} . \] (52.19)

Поскольку локально по \(t \) решение \(U(t) \) неравенства (52.7) с начальными условиями (52.12) существует, то разрушение решения \(U(t) \) обусловлено существованием конечного \(0 < T_\infty \leq T_* \) такого, что

\[\lim_{t \to T_\infty} U(t) = +\infty. \]

Поясним это на следующем демонстративном примере.

Пример 52.1. Рассмотрим неравенство

\[
\begin{align*}
y'' & \geq c_1 y^p, & t > 0, \\
y & > 0, & t > 0, \\
y'(0) & > 0,
\end{align*}
\]

с постоянной \(c_1 > 0 \) и \(p > 1 \).

Тогда, умножая это неравенство на пробную функцию \(\varphi(t) \) из вышеуказанного класса и интегрируя по промежутку \((0,T) \), получим

\[c_1 \int_0^T y^p \varphi \, dt \leq \int_0^T y \varphi'' \, dt - y'(0) \]

в силу \(\varphi(0) = 1, \varphi'(0) = 0 \) и \(\varphi(T) = \varphi'(T) = 0 \).

Отсюда на осноивании параметрического неравенства Юнга получаем

\[\int_0^T y^p \varphi \, dt \leq \frac{1}{C_1^{p'}} \int_0^T \frac{\varphi'' y'}{\varphi^{p'-1}} \, dt - \frac{p'}{C_1} y'(0). \]

Тогда подставляя, как и выше, пробную функцию \(\varphi \) вида

\[\varphi(t) = \tilde{\varphi}(t/T), \]

где \(\tilde{\varphi}(\tau) \) определена выше, получаем

\[\int_0^T y^p \varphi \, dt \leq \frac{\Gamma_0}{C_1^{p'}} \frac{1}{T^{2p'-1}} - \frac{p'}{C_1} y'(0), \quad \Gamma_0 = \int_1^2 \frac{1}{\tilde{\varphi}''(\tau)/\tilde{\varphi}^{p'-1}} \, d\tau. \]
Глава 7. ВЫРОЖДЕННЫЕ И СИНГУЛЯРНЫЕ ЗАДАЧИ В \mathbb{R}^{N+1}_+

Следовательно, решение $y(t) > 0$ не существует при $T \geq T_*$, где

$$T_* = \left(\frac{\Gamma_0}{p^* C_1^p} \frac{1}{y(0)} \right)^{1/(2p' - 1)}.$$ \hspace{1cm} (52.21)

Построим теперь конкретную функцию $y_0(t)$, удовлетворяющую (52.20). Возьмем $y_0(t)$ в виде

$$y_0(t) = \frac{C}{(T-t)^\lambda}, \quad \lambda = \frac{2}{p-1}.$$ \hspace{1cm}

Тогда при

$$0 < C < \left(\frac{2(p+1)}{(p-1)^2} \right)^{1/(p-1)}$$

выполняется (52.19) с $y'(0) = \sqrt{\frac{C}{T_0 + (0,1)}}$. Таким образом, решение $y(t)$ не существует при $t \geq T_*$:

$$T_* = \left(\frac{2}{p-1} \frac{C^2}{(p-1)^2} \frac{1}{y(0)} \right)^{(p-1)/(p+1)} \leq C_p \left(\frac{1}{C_1^p} \frac{1}{y(0)} \right)^{1/(2p'-1)},$$ \hspace{1cm} (52.22)

где C_p — положительная постоянная, зависящая только от $p > 1$.

Сравнение правых частей формул (52.21) и (52.22) показывает точность (неулучшаемость) границы времени существования решения $y(t)$ относительно зависимости от $C_1 > 0$ и $y'(0) > 0$. В данном случае постоянные Γ_0/p' и C_p являются несущественными.

Анализ условия отсутствия решения задачи (52.1). В соответствии с формулой (52.4) для $U(t)$ имеем

$$U(0) = \int_{\varepsilon}^{r_0} u(x,0) \varphi_0 \varphi r^{N-1+\kappa} dr d\omega$$

с $\varphi_0 = r^\mu - r_0^\mu$, $\mu < 0$, и $\varphi = \tilde{\varphi}/\varepsilon$, где $\tilde{\varphi} \in C^2[0, +\infty)$, $0 \leq \tilde{\varphi}(\rho) \leq 1$, $\tilde{\varphi}'(\rho) \geq 0$ при $\rho \geq 0$ и

$$\tilde{\varphi}(\rho) = \begin{cases} 0, & 0 \leq \rho \leq 1, \\ 1, & \rho \geq 2. \end{cases}$$

Таким образом,

$$U(0) = \int_{|\omega|=1}^{r_0} \int_{r=\varepsilon}^{r_0} u(x,0)(r^\mu - r_0^\mu) \varphi(r) r^{N+\kappa-1} dr d\omega$$ \hspace{1cm} (52.23)

с

$$\varphi(r) = \begin{cases} 0, & r \leq \varepsilon, \\ 1, & r \geq 2\varepsilon, \end{cases}$$

и $0 \leq \varphi \leq 1$, при этом $\mu + \kappa = -N + 2$.

Пример 52.2. Пусть $u(x,0) \simeq \text{const} \cdot |x|^{\kappa}$ при $x \to 0$. Тогда

$$U(0) \simeq \text{const} \cdot r_0^{\mu+2}, \quad r_0 \geq 4\varepsilon.$$ Далее в силу (52.9) и (52.11) имеем

$$K(\varepsilon, r_0) K_1(\varepsilon, r_0) \leq C_0 C_1 r_0^{2\theta} \varepsilon^{\theta}$$
часть III. Эволюционные задачи второго порядка

с $\gamma_0 = 2 - \sigma(p' - 1)$ и $\theta = -(\sigma + 2)(p' - 1)$.

Следовательно, условие (52.12) с $\delta = 1/2$ на начальные данные принимает вид

$$U^p(0) \geq 2C_0C_1\varepsilon^\delta r_0^{-\gamma_0}.$$
(52.24)

Величина $U(0)$, как видно из (52.23), монотонно возрастает при $\varepsilon \to 0$, следовательно, неравенство (52.24) при любом фиксированном $r_0 > 0$ выполняется при достаточно малом ε, если $\sigma < -2$.

Таким образом, в предположении, что существует “выколотая” окрестность

$$\Omega_{0,r_0} = \{0 < |x| < r_0\},$$
в которой

$$u(x, 0) > 0,$$
(52.25)

неравенство (52.12) относительно $U(0)$ будет выполнено при достаточно малом $\varepsilon > 0$.

Далее предположим, что в этой “ε-выколотой” окрестности Ω_{ε,r_0}

$$\frac{\partial u}{\partial t}(x, 0) > 0.$$
(52.26)

Тогда $U'(0) > 0$.

Таким образом, условия (52.25), (52.26) обеспечивают выполнение неравенства (52.12) в некоторой “ε-выколотой” окрестности Ω_{ε,r_0}. Следовательно, для решения задачи (52.1) существует конечное время $T_0 > 0$ существования интеграла $U(t)$, определенного формулой (52.4) с $\mu + \kappa = 2 - N$. Это время T_0 оценивается из формулы (52.19) с $\delta = 1/2$:

$$T_0 \leq \text{const} \cdot \left(\frac{K_{p'-1}(\varepsilon, r_0)}{U'(0)}\right)^{1/(2p'-1)}.$$
(52.27)

В силу (52.11) имеем

$$T_0 \leq \text{const} \cdot \frac{r_0^{\gamma_0/(2p'-1)}}{(U'(0))^{1/(2p'-1)}}$$

с $\gamma_0 = 2 - \sigma(p' - 1)$, так что

$$T_0 \leq \text{const} \cdot \left(\frac{r_0^{2(p-1) - \sigma}}{(U'(0))^{p-1}}\right)^{1/(p+1)}.$$
(52.27)

Итак, мы доказали

Утверждение 52.1. Пусть $\sigma < -2$. Тогда при начальных данных, удовлетворяющих неравенствам (52.25), (52.26), решение задачи (52.1) разрушается за конечное время. \square

Мгновенное разрушение. Рассмотрим теперь условия мгновенного разрушения. Из формулы (52.27) следует

Утверждение 52.2. При $\sigma < -2$ у

$$\lim_{r_0 \to 0} \frac{T_0^{2(p-1) - \sigma}}{(U'(0))^{p-1}} = 0$$
(52.28)

решение задачи (52.1) разрушается мгновенно. \square

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 7. ВЫРОЖДЕННЫЕ И СИНГУЛЯРНЫЕ ЗАДАЧИ В \mathbb{R}^{N+1}

Проведем количественный анализ условия (52.28). Имеем

$$U'(0) = \int_{\Omega_{\varepsilon, r_0}} \frac{\partial u}{\partial t}(x, 0) \varphi \varphi r^{N-1+\varepsilon} drd\omega = \int_{|\omega|=1} \frac{\partial u}{\partial t}(x, 0) (r^\mu - r_0^\mu) \varphi r^{N+\varepsilon-1} drd\omega.$$

Пусть

$$\frac{\partial u}{\partial t}(x, 0) \geq \text{const} \cdot |x|^{\nu_1}, \quad |x| \to 0. \quad (52.29)$$

Тогда

$$U'(0) \geq \text{const} \cdot \int_{2\varepsilon} r^\nu (r^\mu - r_0^\mu) \varphi r^{N+1} dr \geq \text{const} \cdot \int_{2\varepsilon} r^\nu (r^\mu - r_0^\mu) r^{N+1} dr = \text{const} \cdot \varepsilon^{\nu_1+2}$$

при $r_0 = 4\varepsilon$.

Тогда

$$\frac{r_0^{2(p-1)-\sigma}}{(U'(0))^{p-1}} = \text{const} \cdot \varepsilon^{-\sigma-\nu_1(p-1)}.$$

Следовательно, соотношение (52.28) будет выполнено, если

$$\nu_1 < -\frac{\sigma}{p-1}. \quad (52.30)$$

Вернемся теперь к соотношению (52.12) при $r_0 = 4\varepsilon$. Пусть

$$u(x, 0) \geq \text{const} \cdot |x|^\nu, \quad |x| \to 0. \quad (52.31)$$

Тогда

$$U(0) \geq \text{const} \cdot \varepsilon^{\nu+2}.$$

С другой стороны,

$$K(\varepsilon, r_0) K_1(\varepsilon, r_0) \leq \text{const} \cdot \varepsilon^{\gamma_0+\theta}$$

при $r_0 = 4\varepsilon$, где

$$\gamma_0 + \theta = 2 - \sigma(p' - 1) - (\sigma + 2)(p' - 1) = 2 - 2(\sigma + 1)(p' - 1).$$

Следовательно, неравенство (52.24) принимает вид

$$\varepsilon^{\gamma_0+\theta} \leq \text{const} \cdot \varepsilon^{(\nu+2)p}.$$

Таким образом, неравенство (52.24) будет выполнено, если $(\nu+2)p < \gamma_0 + \theta$, т.е.

$$\nu < -2 + \frac{\gamma_0 + \theta}{p}. \quad (52.32)$$

Итак, получаем следующие количественные условия на поведение начальных функций u_0 и u_1 в “выколотой” окрестности точки 0.

Пусть u_0 и u_1 удовлетворяют в “выколотой” окрестности точки 0 неравенствам (52.31), (52.32) и (52.29), (52.30) соответственно. Тогда для задачи (52.1) имеет место локальное по x и мгновенное по t разрушение решения.
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

Это означает следующее: при любом \(\varepsilon > 0 \) и любом \(\tau_0 > 0 \) существует \(T < \tau_0 \) такое, что

\[
\lim_{t \to T} \int_{\Omega_{2\varepsilon,4\varepsilon}} u(x,t)(r^\mu - r_0^\mu)r^{N+\kappa-1}drd\omega = +\infty,
\]
откуда следует при \(\mu + \kappa = 2 - N \) и \(r_0 = 4\varepsilon \)

\[
\lim_{t \to T} \int_{\Omega_{2\varepsilon,4\varepsilon}} u(x,t) \frac{dx}{|x|^{N-2}} = +\infty.
\]

Сингулярный случай \(\sigma = -2 \). В этом случае показатель \(\theta = 0 \) в неравенстве (52.9) и условие (52.12) с \(\delta = 1/2 \) принимает вид

\[
U_p(0) \geq 2C_0C_1r_0^{2p'}.
\] (52.33)

Тогда в силу предыдущих рассуждений получаем

Утверждение 52.3. Пусть \(\sigma = -2 \) и начальные данные задачи (52.1) таковы, что выполнено (52.33) и \(U'(0) > 0 \).

Тогда имеет место локальное по \(x \) разрушение решения задачи (52.1) в "выколотой" \(r_0 \)-окрестности точки 0. Время разрушения \(T_\infty \) оценивается по формуле (52.19) с \(\delta = 1/2 \), т.е.

\[
T_\infty < \left(\frac{2(p'-1)p'-1}{(p')p'+1} \right)^{1/(2p'-1)} \Gamma_0 \left(\frac{K^{p'-1}(\varepsilon, r_0)}{U'(0)} \right)^{1/(2p'-1)}.
\] (52.34)

Проведем количественный анализ неравенства (52.33) при \(r_0 = 4\varepsilon \). Пусть

\[
u(x,0) \geq \text{const} \cdot |x|^\nu, \quad |x| \to 0.
\]

Тогда \(U(0) \geq \text{const} \cdot \varepsilon^{\nu+2} \). Следовательно, неравенство (52.33) с \(r_0 = 4\varepsilon \) принимает вид

\[
\varepsilon^{2p'-p(\nu+2)} \leq \text{const}, \quad \varepsilon \to 0.
\]

Очевидно, это неравенство выполнено, если \(2p' > p(\nu+2) \), т.е. при \(\sigma = -2

\[
\nu < -2 + \frac{2}{p-1}.
\] (52.35)

Таким образом, при выполнении неравенств (52.31) и (52.35) имеет место локальное разрушение решения задачи (52.1) с \(\sigma = -2 \) за конечное время \(T_\infty \).

Оценим время разрушения \(T_\infty \). Предположим, что начальная функция \(u_1 \) удовлетворяет (52.29). Тогда в силу предыдущих рассуждений имеем

\[
\frac{K^{p'-1}(\varepsilon, r_0)}{U'(0)} \leq \text{const} \cdot \frac{r_0^{\gamma_0}}{\varepsilon^p+2}, \quad r_0 = 4\varepsilon.
\]

Отсюда \(\nu_1 + 2 < \gamma_0 = 2p' \) при \(\sigma = -2 \), т.е.

\[
\nu_1 < 2(p' - 1).
\] (52.36)
и
\[T_\infty \to 0, \quad r_0 = 4\varepsilon \to 0. \]

Таким образом мы получили следующее

Утверждение 52.4. Пусть начальные функции \(u_0(x) \) и \(u_1(x) \) удовлетворяют (52.31) с (52.35) и (52.29) с (52.36). Тогда имеет место локальное по \(x \) и локальное по \(t \) разрушение решения \(u(x,t) \) задачи (52.1) в критическом случае \(\sigma = -2 \). □

Отметим, что в этом случае разрушение решения носит мгновенный характер. Действительно, для любого \(T > 0 \) существуют \(\varepsilon > 0 \) и \(T_\infty < T \) такие, что

\[\lim_{t \to T} \int_{\Omega_{2x,4\varepsilon}} u(x,t) \frac{dx}{|x|^{N-2}} = +\infty. \]

В работе Лаптева [215] изучен еще один вариант эволюционного неравенства высокого порядка по \(t \) и четвертого по \(x \) в шаре \(B_R \). Рассмотрим эволюционное дифференциальное неравенство (здесь \(k \in \mathbb{N}, m = 1,2 \))

\[
\begin{aligned}
\frac{\partial^k u}{\partial t^k} + (-1)^m \Delta^m u &\geq \frac{|u|^q}{|x|^\sigma}, & (x,t) &\in B_R \times (0,\infty), \\
\int_{\partial B_R} u(x,t) \, dx &\geq 0, \quad \int_{\partial B_R} \Delta u(x,t) \, dx &\leq 0 &\text{для } m = 2, \\
u(x,0) = u_0(x), \ldots, \partial^{k-1} u / \partial t^{k-1} (x,0) = u_{k-1}(x) &\geq 0, & x &\in B_R.
\end{aligned}
\] (52.37)

Для гладких решений \(u \in C(B_R \setminus \{0\} \times \mathbb{R}_+) \cap C^{0,k}(B_R \setminus \{0\} \times [0,\delta]) \cap C^{2m,0}(B_R \setminus B_{R_1} \times \mathbb{R}_+) \), где \(\delta > 0, R_1 < R \), удовлетворяющих неравенству в слабом смысле (в смысле интегрального неравенства), справедлива

Теорема 52.1 [215]. При \(q > 1, k \geq 1 \) и \(\sigma \geq 2m \) задача (52.37) не имеет глобального по времени \(t \) нетривиального слабого решения. □

Оценку времени существования неотрицательных решений дает

Теорема 52.2 [215]. Пусть \(q > 1, \sigma \geq 2m \) и локальное неотрицательное решение таково, что при некотором \(t_0 \)

\[\lim_{R \to 0} R^{-(\sigma(q'-1)+2m)} \int_{B_R} \frac{\partial^{k-1} u}{\partial t^{k-1}} (x,t_0) \xi(x) \, dx = \infty, \]

где \(\xi(x) = |x|^{2m-N} \).

Тогда время существования этого решения не превосходит \(t_0 \). □

Если при некотором \(t_0 \)

\[\frac{\partial^{k-1-i} u}{\partial t^{k-1-i}} (x,t_0) \geq 0, \quad x \in B_R, \quad i = 0, \ldots, k-1, \] (52.38)
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

tо справедлива

Теорема 52.3 [215]. Пусть $q > 1$, $\sigma \geq 2m$ и для локального неотрицательного решения $u(x,t)$ при некотором t_0 выполнены неравенства (52.38) и справедливо соотношение

$$\lim_{R \to 0} R^{(2+\sigma(q-1)+2(m-1)/q)} \int_{B_R} \frac{\partial^i u}{\partial t^j}(x,t_0)\xi(x) \, dx = \infty$$

хотя бы для одного $i = 0, \ldots, k - 1$, где $\xi(x) = |x|^{2m-N}$.

Тогда время существования этого решения не превосходит t_0. □

Очевидно, если начальные данные задачи (52.37) удовлетворяют условиям теорем 52.2 или 52.3 при $t_0 = 0$, то решение задачи (52.37) разрушается мгновенно.

53. ЗАДАЧА С СУПЕРКРИТИЧЕСКИМ ПОКАЗАТЕЛЕМ СИНГУЛЯРНОСТИ

Рассмотрим задачу

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2} \geq |x|^{r} \Delta u + |u|^q, & (x,t) \in \mathbb{R}^N \times (0,\infty), \\
u(x,0) = u_0(x), & x \in \mathbb{R}^N, \\
\frac{\partial u}{\partial t}(x,0) = u_1(x), & x \in \mathbb{R}^N,
\end{cases} \tag{53.1}$$

gде $\sigma > 2$.

Условия отсутствия глобального нетривиального решения этой задачи будут сформулированы ниже.

Проведем следующую редукцию задачи. Введем переменные

$$r = |x|, \quad \omega = \frac{x}{|x|}.$$

Тогда неравенство (53.1) примет вид

$$\frac{\partial^2 u}{\partial t^2} \geq r^\sigma \left(\frac{\partial^2 u}{\partial r^2} + \frac{N-1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \Delta \omega u \right) + |u|^q. \tag{53.2}$$

Теперь введем новую радиальную переменную

$$\rho = r^\lambda, \quad \lambda = -\frac{\sigma - 2}{2}. \tag{53.3}$$

Тогда неравенство (53.2) примет вид

$$\frac{\partial^2 u}{\partial \rho^2} \geq \lambda^2 \frac{\partial^2 u}{\partial \rho^2} + \frac{\lambda(N-2+\lambda)}{\rho} \frac{\partial u}{\partial \rho} + \frac{1}{\rho^2} \Delta \omega u + |u|^q. \tag{53.4}$$

Введем теперь функцию

$$\psi(\rho,t) = \rho \varphi(\rho,t),$$

где φ — стандартная гладкая неотрицательная срезающая функция с $\frac{\partial \varphi}{\partial \rho}(\rho,0) = 0$.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 7. ВЫРОЖДЕННЫЕ И СИНГУЛЯРНЫЕ ЗАДАЧИ В \mathbb{R}_+^{N+1}

Умножая (53.4) на эту функцию $\psi(\rho, t)$ и интегрируя по $d\omega d\rho dt$, с учетом $\Delta_\omega \psi = 0$ получим

$$- \int_{\mathbb{R}^N} u_1(\rho, 0) d\omega d\rho + \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial^2 \psi}{\partial t^2} d\omega d\rho dt \geq$$

$$\geq \int_0^\infty \int_{\mathbb{R}^N} u L^*(\psi) d\omega d\rho dt + \int_0^\infty \int_{\mathbb{R}^N} |u|^q \psi d\omega d\rho dt,$$

(53.5)

где

$$L^*(\psi) = \lambda^2 \frac{\partial^2 \psi}{\partial \rho^2} - \lambda(N - 2 + \lambda) \frac{\partial}{\partial \rho} \left(\frac{1}{\rho} \psi \right).$$

(53.6)

Отсюда имеем

$$\int_0^\infty \int_{\mathbb{R}^N} |u|^q \varphi \rho d\omega d\rho dt \leq - \int_0^\infty \int_{\mathbb{R}^N} u M^*(\varphi) \rho d\omega d\rho dt - \int_{\mathbb{R}^N} u_1(\rho, 0) \rho d\omega d\rho,$$

(53.7)

где

$$M^*(\varphi) = \lambda^2 \frac{\partial^2 \varphi}{\partial \rho^2} + \lambda(\lambda + 2 - N) \frac{1}{\rho} \frac{\partial \varphi}{\partial \rho} - \frac{\partial^2 \varphi}{\partial \tau^2}.$$

На основании неравенства Минковского получаем

$$\int_0^\infty \int_{\mathbb{R}^N} |u|^q \varphi \rho d\omega d\rho dt \leq \gamma N \int_0^\infty \int_{\mathbb{R}^N} \frac{|M^*(\varphi)|^q}{\varphi^q - 1} \rho d\omega d\rho dt - \gamma' \int_{\mathbb{R}^N} u_1(\rho, 0) \rho d\omega d\rho,$$

(53.8)

где γN — площадь единичной сферы S^N и $q' = q/(q - 1)$.

Положим теперь

$$\varphi(\rho, t) = \varphi_0 \left(\frac{t^2 + \rho^2}{R^2} \right),$$

где $\varphi_0 \in C_0^2(\mathbb{R}_+)$ такая, что

$$\varphi_0(\zeta) = \begin{cases} 1, & 0 \leq \zeta \leq 1, \\ 0, & \zeta \geq 2, \end{cases}$$

и $\varphi_0(\zeta) \geq 0$.

Тогда, вводя новые переменные $(\rho, t) \to (\xi, \tau)$:

$$t = R\tau, \quad \rho = R\xi,$$

мы получаем на основании (53.8)

$$\int_0^\infty \int_{\mathbb{R}^N} |u|^q \varphi \rho d\omega d\rho dt \leq \gamma N R^{3-2q} \int_{1 \leq \tau^2 + \xi^2 \leq 2} \frac{|M^*_\xi(\varphi_0)|^{q'}}{\varphi_0^{q' - 1}} \xi d\tau -$$

$$- \gamma' \int_{\mathbb{R}^N} u_1(\varphi_0) \left(\frac{\rho^2}{R^2} \right) \rho d\omega d\rho,$$

(53.9)

где

$$M^*_\xi(\varphi_0) = \lambda^2 \frac{\partial^2 \varphi_0}{\partial \xi^2} + \lambda(\lambda + 2 - N) \frac{1}{\xi} \frac{\partial \varphi_0}{\partial \xi} - \frac{\partial^2 \varphi_0}{\partial \tau^2}.$$
Ясно, что существует функция φ_0 из указанного класса такая, что

$$
\int_1^{\tau^2+\xi^2\leq 2} \frac{|M^\varphi_{\frac{\xi}{\varphi_0}}(\varphi_0)|^q}{\varphi_0^{-q-1}} \xi \, d\xi \, d\tau < \infty.
$$

Тогда в предположении, что

$$
\int_{\mathbb{R}^N} u_1 \rho \, d\omega \, d\rho \geq 0,
$$

мы получаем из (53.9) при $R \to \infty$

$$
\int_0^\infty \int_{\mathbb{R}^N} |u|^q \varphi_0 \left(\frac{t^2 + \rho^2}{R^2} \right) \rho \, d\omega \, d\rho \, dt \to 0,
$$

если $1 < q \leq 3$.

При этом доказательство для предельного случая $q = 3$, т.е. $q' = 3/2$, проводится на основе аргументов, аналогичных использованным ранее для эллиптических и параболических задач.

Итак, суммируя результаты, получаем следующее утверждение.

Теорема 53.1. Пусть $\sigma > 2$ и

$$
\int_{|x|>L} u_0 \frac{dx}{|x|^{N+\sigma-2}} < \infty, \quad \int_{|x|>L} u_1 \frac{dx}{|x|^{N+\sigma-2}} < \infty
$$

при любом $L > 0$. Пусть

$$
\lim_{L \to 0} \int_{|x|>L} u_1 \frac{dx}{|x|^{N+\sigma-2}} \geq 0 \quad \text{(может быть, } +\infty)\,.
$$

Тогда при $1 < q \leq 3$ не существует глобального нетривиального решения $u(x,t)$ задачи (53.1) такого, что

$$
\int_0^T \int_{|x|>L} \frac{|u|^q}{|x|^{N+\sigma-2}} \, dx \, dt < \infty, \quad \int_0^T \int_{|x|>L} \frac{|u|}{|x|^{N+\sigma-2}} \, dx \, dt < \infty
$$

при любых $T > 0$ и $L > 0$. □

Отметим, что замена (53.3) "работает" при любом $\sigma \neq 2$, так что при любом $\sigma \neq 2$ эта замена приводит к неравенству (53.1) к (53.4). Тогда, повторяя предыдущие оценки, но для $\sigma < 2$, т.е. $\lambda > 0$, мы получаем следующее утверждение.

Теорема 53.2. Пусть $\sigma < 2$ и $|x|^{2-\sigma-N} u_0 \in L^1_{\text{loc}}(\mathbb{R}^N)$, $|x|^{2-\sigma-N} u_1 \in L^1_{\text{loc}}(\mathbb{R}^N)$. Пусть

$$
\lim_{L \to \infty} \int_{|x|<L} u_1 \frac{dx}{|x|^{N+\sigma-2}} \geq 0 \quad \text{(может быть, } +\infty)\,.
$$

Тогда при $1 < q \leq 3$ не существует глобального нетривиального решения $u(x,t)$ задачи (53.1) такого, что

$$
|x|^{2-\sigma-N} u \in L^1_{\text{loc}}(\mathbb{R}_+^{N+1}), \quad |x|^{2-\sigma-N} |u|^q \in L^1_{\text{loc}}(\mathbb{R}_+^{N+1}). \quad \square
$$
Замечание 53.1. Случай задачи (53.1) с $\sigma < 2$ был рассмотрен ранее (см. разд. 50) и было получено утверждение об отсутствии глобального решения при

$$1 < q \leq \frac{N + 1 - 3\sigma/2}{N - 1 - \sigma/2},$$

но в другом функциональном классе решений.

Таким образом, мы видим, что критический показатель нелинейности q зависит не только от показателя сингулярности σ, но и от класса рассматриваемых решений.

54. ЗАВИСИМОСТЬ КРИТИЧЕСКОГО ПОКАЗАТЕЛЯ ОТ ВЫБОРА ФУНКЦИОНАЛЬНОГО ПРОСТРАНСТВА

В этом разделе на примере задачи (54.1) мы еще раз обсудим факт зависимости критического показателя q от выбора функционального пространства решений.

Итак, рассмотрим снова задачу

$$
\begin{cases}
\frac{\partial^2 u}{\partial t^2} - |x|^\sigma \Delta u \geq |u|^q, & (x, t) \in \mathbb{R}^N \times (0, \infty), \\
u(x, 0) = u_0(x), & x \in \mathbb{R}^N , \\
\frac{\partial u}{\partial t}(x, 0) = u_1(x), & x \in \mathbb{R}^N ,
\end{cases}
$$

где $N \geq 3$, $q > 1$ и $\sigma < 2$, $(q' - 1) + 2 > 0$, но в пространстве с другим весом, отличным от веса $|x|^\mu$ с $\mu = -\sigma$ (см. пример 48.3).

Мы введем вес $|x|^\mu$ с

$$\mu = -\sigma - N + 2.$$ \hspace{1cm} (54.2)

В соответствии с этим определим решение задачи (54.1).

Определение 54.1. Пусть $u_0|x|^\mu, u_1|x|^\mu \in L^1_{\text{loc}}(\mathbb{R}^N)$. Будем называть функцию u такую, что $|u|^q|x|^\mu \in L^1_{\text{loc}}(\mathbb{R}^N \times (0, \infty))$ и $u|x|^{1-N} \in L^1_{\text{loc}}(\mathbb{R}^N \times (0, \infty))$, слабым решением задачи (54.1), если

$$
\lim_{\rho \to 0} \int_{|\omega| = 1} u(\rho, \omega, t) \, d\omega = 0, \quad \lim_{\rho \to 0} \rho \int_{|\omega| = 1} \frac{\partial u}{\partial \rho}(\rho, \omega, t) \, d\omega = 0
$$

и для любой неотрицательной $\varphi \in C^\infty_0(\mathbb{R}^N \times \mathbb{R})$ выполнено неравенство

$$
\int_0^\infty \int_{\mathbb{R}^N} |u|^q |x|^\mu \varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} u L^*(\varphi) \, dx \, dt + \int_{\mathbb{R}^N} \left(u_0 |x|^\mu \frac{\partial \varphi}{\partial t}(x, 0) - u_1 |x|^\mu \varphi(x, 0)\right) \, dx ,
$$

где $L^*(\varphi) \equiv |x|^\mu \frac{\partial^2 \varphi}{\partial x^2} - \Delta(|x|^{2-N} \varphi)$.

Замечание 54.1. Написанное неравенство (54.3) носит формальный характер в силу наличия сингулярных членов в операторе L^*. На самом деле, чтобы придать точный смысл определению, следует взять указанные в (54.3) интегралы вне ε-окрестности точки $0 \in \mathbb{R}^N$, т.e. по множеству $\{x \in \mathbb{R}^N | |x| > \varepsilon\}$, а затем перейти к пределу при $\varepsilon \to 0$. В силу определения пространства решений получаем в пределе неравенство (54.3).

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Следовательно, докажем теорему 54.1. Пусть \(\sigma < 2 \), \(\sigma(q - 1) + 2 > 0 \) и \(1 < q \leq 3 \). Пусть

\[
\lim_{R \to \infty} \int_{|x| < R} u_1 |x|^{\mu} dx \geq 0 \quad (быть может, +\infty).
\]

Тогда задача (54.1) не имеет нетривиальных слабых решений в указанном классе.

Доказательство в целом повторяет доказательство теорем из разд. 48, 50.

В самом деле, выберем пробную функцию \(\varphi \) радиально симметричной, т.е. \(\varphi = \varphi(r, t) \), \(r = |x| \).

Тогда формально получим

\[
L^*(\varphi) = r^\mu \frac{\partial^2 \varphi}{\partial r^2} - r^{\sigma + \mu - 2} \left(r^2 \frac{\partial^2 \varphi}{\partial r^2} + (N - 1 + 2\sigma + 2\mu) r \frac{\partial \varphi}{\partial r} + (\sigma + \mu)(\sigma + \mu + N - 2) \varphi \right).
\]

Отсюда при \(\mu \), определенном формулой (54.2), находим

\[
L^*(\varphi) = r^\mu \left(\frac{\partial^2 \varphi}{\partial r^2} - r^\sigma \left(\frac{\partial^2 \varphi}{\partial r^2} - \frac{N - 3}{2} \frac{\partial \varphi}{\partial r} \right) \right).
\]

Далее, выбирая пробную функцию \(\varphi \) так, что

\[
\frac{\partial \varphi}{\partial r}(r, 0) \equiv 0,
\]

из (54.3) получаем

\[
\int_0^\infty \int_{\mathbb{R}^N} |u|^q |x|^{\mu} \varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} u L^*(\varphi) \, dx \, dt - \int_{\mathbb{R}^N} u_1 \varphi(x, 0) |x|^{\mu} \, dx.
\]

Отсюда на основании неравенства Гёльдера находим

\[
\int_0^\infty \int_{\mathbb{R}^N} |u|^q |x|^{\mu} \varphi \, dx \, dt \leq \int_0^\infty \int_{\mathbb{R}^N} \frac{|L^*(\varphi)|^{q'}}{(|x|^{\mu} \varphi)^{q'-1}} \, dx \, dt - q' \int_{\mathbb{R}^N} u_1 \varphi(x, 0) |x|^{\mu} \, dx
\]

с \(q' = q/(q - 1) \).

Замечание 54.2. Оператор \(L^* \), определенный формулой (54.4), в общем случае содержит \(\delta \)-функцию Дирака. В самом деле, мы имеем

\[
L^*(\varphi) \equiv |x|^\mu \frac{\partial^2 \varphi}{\partial x^2} - \Delta(|x|^{2-N} \varphi) = |x|^\mu \frac{\partial^2 \varphi}{\partial x^2} - \varphi \Delta(|x|^{2-N}) - 2 \Delta \varphi |x|^{2-N} - |x|^{2-N} \Delta \varphi.
\]

Отсюда в силу выражения \(-\varphi \Delta(|x|^{2-N}) \) с \(\varphi(0, t) \neq 0 \) мы имеем слагаемое, содержащее \(\delta \)-функцию Дирака.

Поэтому интеграл \(\int_0^\infty \int_{\mathbb{R}^N} u L^*(\varphi) \, dx \, dt \) в общем случае будет содержать дополнительное слагаемое

\[
- \int \int_{\mathbb{R}^N} u \varphi \Delta(|x|^{2-N}) \, dx \, dt.
\]
Глава 7. ВЫРОЖДЕННЫЕ И СИНГУЛЯРНЫЕ ЗАДАЧИ В \mathbb{R}^{N+1}

Однако в нашем случае в силу рассматриваемого класса решений это слагаемое обращается в нуль.

Рассмотрим теперь в неравенстве (54.6) пробную срезающую функцию φ вида

$$\varphi(x,t) = \varphi_0 \left(\frac{R^q t^2 + |x|^2}{R^2} \right), \quad (54.7)$$

где $0 \leq \varphi_0 \in C_0^\infty(\mathbb{R})$ такая, что

$$\varphi_0(s) = \begin{cases} 1, & 0 \leq s \leq 1, \\ 0, & s \geq 2. \end{cases}$$

В соответствии с (54.7) введем новые переменные $(x,t) \rightarrow (\xi,\tau)$ по формулам

$$t = R^{\theta/2} \tau, \quad x = R\xi$$

с $\theta = 2 - \sigma > 0$. Обозначим

$$B_{\xi,\tau} = \{(\xi,\tau) : \tau^2 + |\xi|^2 \leq 2\}.$$

Тогда из неравенства (54.6) получим

$$\int_0^\infty \int_{\mathbb{R}^N} |u|^q |x|^\mu \varphi \, dx \, dt \leq I_1 + I_2 - q' \int_{\mathbb{R}^N} u_1 |x|^\mu \varphi(x,0) \, dx, \quad (54.8)$$

где

$$I_1 = 2^q' \int_{B_{\xi,\tau}} \left| \frac{\partial^2 \varphi_0}{\partial \tau^2} \right| \varphi_0^{1-q'} |x|^\mu \, dx \, dt,$$

$$I_2 = 2^q' \int_{B_{\xi,\tau}} \left| \frac{\partial^2 \varphi_0}{\partial \rho^2} - (N-3) \frac{1}{\rho} \frac{\partial \varphi_0}{\partial \rho} \right| \varphi_0^{1-q'} |x|^{\mu+\sigma q'} \, dx \, dt.$$

Здесь $t = R^{\theta/2} \tau, x = R\xi$ и $r = |x|$.

После указанной замены переменных получаем

$$I_1 \leq C_1 R^\theta_1 \int_{B_{\xi,\tau}} \left| \frac{\partial^2 \varphi_0}{\partial \tau^2} \right| \varphi_0^{1-q'} |\xi|^\mu \xi \, d\xi \, d\tau,$$

$$I_2 \leq C_2 R^\theta_2 \int_{B_{\xi,\tau}} \left| \frac{\partial^2 \varphi_0}{\partial \rho^2} - (N-3) \frac{1}{\rho} \frac{\partial \varphi_0}{\partial \rho} \right| \varphi_0^{1-q'} |\xi|^{\mu+\sigma q'} \, d\xi \, d\tau$$

с $\rho = |\xi|$ и

$$\theta_1 = -\theta q' + \mu + N + \frac{\theta}{2}, \quad \theta_2 = -2q' + \mu + \sigma q' + N + \frac{\theta}{2}.$$

В силу (54.2) и $\theta = 2 - \sigma$ имеем

$$\theta_1 = \theta_2 = (2 - \sigma) \left(\frac{3}{2} - q' \right).$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Отсюда следует в силу $\sigma < 2$, что неравенство $\theta_1 = \theta_2 \leq 0$ эквивалентно $q' \geq 3/2$, т.е. $q \leq 3$.

В силу стандартных рассуждений, аналогичных вышеприведенным, мы получаем отсутствие решения гиперболической задачи (54.1) с $\sigma < 2$ при любом $1 < q \leq 3$ независимо от размерности в указанном классе функций.

Замечание 54.3. Сравнивая эту теорему с теоремами из разд. 48, 50, где показатель веса $\mu = -\sigma$, мы видим, что критический показатель нелинейности $q > 1$ для одной и той же задачи (54.1) является разным в разных функциональных пространствах.

В самом деле, в случае показателя $\mu = -\sigma$ мы имеем

$$1 < q \leq \frac{N + 1 - 3\sigma/2}{N - 1 - \sigma/2}, \quad \sigma < 2.$$

В случае показателя $\mu = -\sigma - N + 2$ мы имеем $1 < q \leq 3$, при этом критический показатель $q = 3$ не зависит от размерности.

Глава 8. ВАРИАЦИОННЫЙ МЕТОД.
ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ

55. СУЩЕСТВОВАНИЕ ПЕРИОДИЧЕСКИХ РЕШЕНИЙ НЕЛИНЕЙНЫХ
ГИПЕРБОЛИЧЕСКИХ УРАВНЕНИЙ

Проблеме существования периодических решений квазилинейных гиперболических уравнений посвящена обширная литература (см., например, книгу [177], обзор [157] и недавние интересные исследования [50, 143], а также приведенную там библиографию).

При этом в основном рассматриваются задачи, в которых главная часть гиперболического оператора является линейной, или пространственная размерность равна 1, или и то и другое.

Мы рассматриваем случай многомерных гиперболических уравнений с нелинейной главной частью. В этом случае предыдущие методы становятся неприменимыми. Оказывается, для специального класса нелинейных гиперболических уравнений, именно для уравнений с одночленными членами, можно предложить метод разложения переменных [229], который позволяет реализовать вариационный подход [230, 232, 233]. На основе этого подхода доказываются теоремы существования периодических решений для этого специального класса уравнений.

Далее в теоремах отсутствия термин "тривиальное" решение применяется не только к решению, тождественно (почти всюду) равному нулю, но и в некоторых (очевидных) случаях к решению, для которого каждое из слагаемых соответствующего вариационного тождества равно нулю.

Так, например, для уравнения

$$\frac{\partial^2 u}{\partial t^2} - \Delta u = 0, \quad (x, t) \in \mathbb{R}^N \times (0, T),$$

тривиальным периодическим решением $u(x, t)$ является

$$u(x, t) = A + Bx$$

с произвольными $A, B \in \mathbb{R}$.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 8. ВАРИАЦИОННЫЙ МЕТОД. ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ

Отсутствие нетривиального (в указанном смысле) периодического решения в соответствующем функциональном пространстве в этом случае означает отсутствие решения, отличного от \(u(x, t) = A \). Это объясняется тем, что при \(B \neq 0 \) решение \(u(x, t) = A + Bx \) не принадлежит пространству функций с конечной полной энергией (для этого оператора)

\[
\int_0^T \int_{\mathbb{R}^N} \left(\left| \frac{\partial u}{\partial t} \right|^2 + |\nabla u|^p \right) \, dx \, dt < \infty.
\]

На основании предложенных вариационных тождеств можно получать также условия отсутствия периодических решений специальной структуры. Например, применяя эти тождества к стационарным решениям, получаем условия отсутствия стационарных целых решений из соответствующего функционального пространства.

В настоящем разделе мы в иллюстративных целях рассматриваем вопросы существования периодических решений, тогда как следующий раздел посвящен проблеме отсутствия таких решений.

Приведем несколько примеров.

Пример 55.1.

\[
\begin{cases}
 u'' - \Delta_p u + \lambda(t)u = 0, & (x, t) \in Q = \Omega \times (0, T), \\
 u = 0, & (x, t) \in \Sigma = \partial\Omega \times (0, T), \\
 u(x, 0) = u(x, T), \quad u'(x, 0) = u'(x, T), & x \in \Omega.
\end{cases}
\]

Здесь \(\Delta_p u \) есть \(p \)-lapласиан функции \(u \), т.е.

\[
\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u),
\]

\(\Omega \) — ограниченная область в \(\mathbb{R}^N \) с липшицевой границей \(\partial\Omega \), \(\lambda \) — ограниченная (скалярная) \(T \)-периодическая функция.

Утверждение 55.1. Пусть \(p > 2 \). Тогда существует счетное множество попарно линейно независимых \(T \)-периодических решений \(u_n(x, t) \) задачи (55.1) таких, что

\[
0 < \int_0^T \int_\Omega |\nabla u_n|^p \, dx \, dt < \infty
\]

если \(\lambda(t) \neq \text{const} \),

\[
0 < \int_0^T \int_\Omega |u_n'|^2 \, dx \, dt < \infty.
\]

Пример 55.2. Рассмотрим теперь задачу (55.1) с \(\lambda(t) \equiv 0 \), т.е.

\[
\begin{cases}
 u'' - \Delta_p u = 0, & (x, t) \in \Omega \times (0, T), \\
 u = 0, & (x, t) \in \partial\Omega \times (0, T), \\
 u(x, 0) = u(x, T), \quad u'(x, 0) = u'(x, T), & x \in \Omega.
\end{cases}
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

Утверждение 55.2. Пусть

\[p > \max \left \{ 1, \frac{2N}{N+2} \right \}, \quad p \neq 2. \quad (55.3) \]

Тогда для любого периода \(T > 0 \) существует счетное множество попарно линейно независимых \(T \)-периодических решений \(u_n(x,t) \) задачи (55.2) таких, что

\[
0 < \int_0^T \int_\Omega |\nabla u_n|^p \, dx \, dt < \infty, \quad 0 < \int_0^T \int_\Omega |u_n'|^2 \, dx \, dt < \infty. \quad (55.4)
\]

Пример 55.3. Рассмотрим следующую задачу:

\[
\begin{align*}
&\frac{\partial^2 u}{\partial t^2} - \Delta_p u + c(x)|u|^{p-2} u = 0, \quad (x,t) \in \Omega \times (0,T), \\
&u = 0, \quad (x,t) \in \partial \Omega \times (0,T), \\
&u(x,0) = u(x,T), \quad u'(x,0) = u'(x,T), \quad x \in \Omega.
\end{align*}
\quad (55.5)
\]

Утверждение 55.3. Пусть \(c \in L^\infty(\Omega) \) и \(p \) удовлетворяет (55.3).

Тогда для любого периода \(T > 0 \) существует счетное множество попарно линейно независимых \(T \)-периодических решений \(u_n(x,t) \) задачи (55.5) таких, что справедливо (55.4).

Доказательство: приведенных выше утверждений основано на методе разделения переменных. Мы приведем здесь доказательство для случая задачи (55.2).

Доказательство утверждения 55.2 проведем в несколько этапов.

I этап. Мы ищем решение \(u(x,t) \) задачи (55.2) в виде

\[u(x,t) = v(t)w(x). \quad (55.6) \]

Подставляя это выражение в (55.2), мы получаем

\[
\begin{align*}
&\frac{v''}{|v|^{p-2}v} - \frac{\Delta_p w}{w} = \lambda, \\
&w = 0, \quad x \in \partial \Omega, \\
&v(0) = v(T), \\
&v'(0) = v'(T),
\end{align*}
\]

где \(\lambda \in \mathbb{R} \) и \(T \) — произвольно фиксированное положительное число.

Таким образом, для нахождения функций \(v = v(t) \) и \(w = w(x) \) мы получили следующие системы:

\[
\begin{align*}
&v'' = \lambda|v|^{p-2}v, \quad t \in (0,T), \\
&v(0) = v(T), \\
&v'(0) = v'(T), \\
&\Delta_p w = \lambda w, \quad x \in \Omega \in \mathbb{R}^N, \\
&w = 0, \quad x \in \partial \Omega.
\end{align*}
\quad (55.7)
\]

Отметим, что система (55.7) не являются независимыми, поскольку они связаны одним и тем же параметром \(\lambda \in \mathbb{R} \).

II этап. Для нахождения нетривиального решения \(v \) первой системы (55.7) рассмотрим следующую вариационную задачу:

\[
\inf \left\{ \int_0^T |v'|^2 \, dt \left| \int_0^T |v|^p \, dt = 1, \int_0^T |v|^{p-2} v \, dt = 0 \right. \right\} \quad (55.8)
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 8. ВАРИАЦИОННЫЙ МЕТОД. ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ

в пространстве Соболева $W^{1,2}_T(0, T)$ периодических функций.

В силу ограничений задачи (55.8) имеем

$$\int_0^T |v'|^2 \, dt \geq T^{-\frac{p+2}{p}} > 0. \quad (55.9)$$

В силу компактности вложения $W^{1,2}(0, T) \to L^p(0, T)$ получаем существование точки минимума v_0 задачи (55.8), удовлетворяющей неравенству (55.9). В точке минимума $v_0 \in W^{1,2}(0, T)$ имеем

$$\mu_0 v_0'' = \mu_1 |v_0|^{p-2} v_0 + \mu_2 |v_0|^{p-2} \quad (55.10)$$

с $\mu_0, \mu_1, \mu_2 \in \mathbb{R}$ такими, что

$$\mu_0^2 + \mu_1^2 + \mu_2^2 \neq 0. \quad (55.11)$$

Умножая (55.10) на v_0 и интегрируя с учетом периодичности и ограничений задачи (55.8), получаем

$$-\mu_0 \int_0^T |v_0'|^2 \, dt = \mu_1. \quad (55.12)$$

С другой стороны, интегрируя уравнение (55.10) с учетом периодичности и ограничений задачи (55.8), получаем

$$\mu_2 = 0. \quad (55.13)$$

Тогда неравенство (55.11) принимает вид

$$\mu_0^2 + \mu_1^2 \neq 0. \quad (55.14)$$

В силу (55.9) для v_0 и (55.12) имеем

$$\mu_0 \neq 0, \quad \mu_1 \neq 0. \quad (55.15)$$

Уравнение (55.10) в силу (55.12) и (55.14) принимает вид

$$v_0'' = \lambda_0 |v_0|^{p-2} v_0 \quad (55.15)$$

с $\lambda_0 = \mu_1/\mu_0$, где v_0 удовлетворяет ограничениям задачи (55.8) и (55.9).

Умножая (55.15) на v_0 и интегрируя с учетом периодичности, получаем

$$-\int_0^T |v_0'|^2 \, dt = \lambda_0 \int_0^T |v_0|^p \, dt = \lambda_0. \quad (55.16)$$

В силу (55.9) имеем

$$\lambda_0 < 0. \quad (55.16)$$

III этап. Рассмотрим теперь вторую систему (55.7) (для w) с параметром $\lambda \in \mathbb{R}$. Для нахождения нетривиальных решений этой задачи рассмотрим вариационную задачу

$$\text{crit} \left\{ \int_{\Omega} w^2 \, dx \left| \int_{\Omega} |\nabla w|^p \, dx = 1, \ w \in W^{1,p}(\Omega) \right. \right\}.$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Слабо непрерывный функционал \(f_{\Omega} w^2 \, dx \) на единичной сфере

\[
S_1 = \left\{ w \in W^{1,p}(\Omega) \left| \int_{\Omega} |\nabla w|^p \, dx = 1 \right. \right\}
\]

с \(p > \max\{1, \frac{2N}{N+2} \} \) удовлетворяет всем условиям теории Люстерника—Шнирельмана. В силу этой теории существует счетное множество попарно линейно независимых критических значений \(c_n = \int_{\Omega} w_n^2 \, dx \to 0 \) при \(n \to \infty \).

Итак, мы имеем

\[
\Delta_p w_n = \lambda_n w_n, \quad w_n \in W^{1,p}(\Omega), \tag{55.17}
\]

с \(\int_{\Omega} |\nabla w_n|^p \, dx = 1, \int_{\Omega} w_n^2 \, dx = c_n \to 0 \) и

\[
0 > \lambda_n = -\frac{1}{c_n} \to -\infty. \tag{55.18}
\]

IV этап. Поскольку \(\lambda_n \neq \lambda_0 \), введем функции \(\overline{w}_n = \overline{w}_n(x) \), определяемые соотношениями

\[
w_n(x) = k_n \overline{w}_n(x)
\]

с \(k_n = |\frac{\lambda_n}{\lambda_0}|^{\frac{1}{p-2}} > 0, \ p \neq 2 \).

Тогда для функций \(\overline{w}_n \in W^{1,p}(\Omega) \) получим

\[
\Delta_p \overline{w}_n = \lambda_0 \overline{w}_n, \quad x \in \Omega, \tag{55.19}
\]

\[
\int_{\Omega} |\nabla \overline{w}_n|^p \, dx = \frac{\lambda_0}{\lambda_n} |\overline{w}_n|^p, \quad \int_{\Omega} |\overline{w}_n|^2 \, dx = \frac{|\lambda_0|^\frac{2}{p-2}}{|\lambda_n|^\frac{2}{p-2}}.
\]

V этап. Таким образом мы получили \(T \)-периодические решения

\[
u_n(x, t) = v_0(t) \overline{w}_n(x), \quad n = 1, 2, \ldots,
\]

систем (55.7) с одним и тем же параметром \(\lambda = \lambda_0 \).

Для этих \(T \)-периодических решений \(u_n \) имеем

\[
\int_0^T \int_{\Omega} |\nabla u_n|^p \, dx \, dt = \int_0^T |v_0|^p \, dt \int_{\Omega} |\nabla \overline{w}_n|^p \, dx = \frac{\lambda_0}{\lambda_n} |\overline{w}_n|^p \int_0^T |v_0|^p \, dt
\]

и

\[
\int_0^T \int_{\Omega} |u_n'|^2 \, dx \, dt = \int_0^T |v_0'|^2 \, dt \int_{\Omega} |\overline{w}_n|^2 \, dx = \frac{|\lambda_0|^\frac{2}{p-2}}{|\lambda_n|^\frac{2}{p-2}} \int_0^T |v_0'|^2 \, dt = \frac{|\lambda_0|^\frac{2}{p-2}}{|\lambda_n|^\frac{2}{p-2}}
\]

с \(|\lambda_n| \to \infty \) при \(n \to \infty \) и

\[
|\lambda_0| \geq T^{-\frac{p-2}{p}}.
\]

Утверждение 55.2 доказано. □

Аналогично доказываются утверждения 55.1 и 55.3.
Глава 8. ВАРИАЦИОННЫЙ МЕТОД. ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ

Общая задача. Рассмотрим следующую задачу:

\[
\begin{align*}
& - \sum_{k=0}^{l} (-1)^k \frac{d^k}{dt^k} H_{q_k}(t, u, \ldots, u^{(l)}) + \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^\alpha F_\alpha(x, u, \ldots, D^m u) = 0, & (x, t) \in \Omega \times (0, T), \\
& u = Du = \ldots = D^{m-1}u = 0, & (x, t) \in \partial \Omega \times (0, T), \\
& u(x, 0) = u(x, T), \ldots, u^{(2l-1)}(x, 0) = u^{(2l-1)}(x, T), & x \in \Omega.
\end{align*}
\]

(55.20)

Здесь

\[F_\alpha(\ldots) = \frac{\partial F(\ldots)}{\partial \xi_\alpha}, |\alpha| \leq m, \]

суть каратеодориевы T-périodische по переменной t функции, являющиеся производными по ξ_α ($\xi_\alpha \mapsto D^\alpha u$) каратеодориевой T-périodической по t функции $F(x, t, \xi, \ldots, \xi_m)$ (здесь $\xi_m = \{\xi_\alpha \mid |\alpha| = m\}$).

Аналогично определяются и

\[H_{q_k}(\ldots) = \frac{\partial}{\partial q_k} H(\ldots). \]

Мы предполагаем, что выполнены следующие условия.

(H1) Условие периодичности и гладкости. Функция $H : \mathbb{R} \times \mathbb{R}^{l+1} \to \mathbb{R}$ является T-périodической функцией относительно первого аргумента и принадлежит классу $C^1(\mathbb{R} \times \mathbb{R}^{l+1})$.

(H2) Условие однородности.

\[H(t, \lambda v, \lambda v_1, \ldots, \lambda v_l) = |\lambda|^q H(t, v, v_1, \ldots, v_l) \]

с некоторым $q > 1$ при всех значениях соответствующих аргументов.

(H3) Условие слабой полунепрерывности снизу. Функционал

\[h(v) := \int_0^T H(t, v, \ldots, v^{(l)}) \, dt \]

принадлежит классу C^1 и является слабо полунепрерывным снизу в пространстве Соболева $W_T^{l,q}(\mathbb{R}) T$-périodических функций из $W^{l,q}(\mathbb{R})$.

Условие слабой полунепрерывности снизу означает, что для любой функции $v \in W_T^{l,q}(\mathbb{R})$ и любой слабо сходящейся в $W_T^{l,q}(\mathbb{R})$ последовательности $v_n \rightharpoonup v$ выполнено неравенство

\[\lim_n h(v_n) \geq h(v). \]

Замечание 55.1. Соответствующие "алгебраические" условия на функцию H, обеспечивающие условие (H3), можно найти в учебнике по вариационному исчислению.

(H4) Условие положительной ограниченности. Пусть

\[m_T := \inf \left\{ h(v) \mid v \in W_T^{l,q}(\mathbb{R}), \int_0^T |v|^p \, dt = 1 \right\} > 0 \]

и

\[W_T := \left\{ v \in W_T^{l,q}(\mathbb{R}) \mid h(v) \leq m_T + 1, \int_0^T |v|^p \, dt = 1 \right\} \]

20 ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
является ограниченным множеством в \(W^{l,q}_p(\mathbb{R}) \).

Относительно \(F \) предполагаются выполненными следующие условия.

(F1) Условие гладкости. Функция \(F(\ldots) \) принадлежит классу \(C^1 \) во всей области изменения своих аргументов

\[
x \in \overline{\Omega}, \quad \xi \in \mathbb{R}, \ldots, \xi_\alpha \in \mathbb{R}^N, \quad |\alpha| \leq m.
\]

(F2) Условие однородности. Справедливо равенство

\[
F(x, \lambda w, \ldots, \lambda D^m w) = |\lambda|^p F(x, w, \ldots, D^m w)
\]

с \(p, q > 1, p \neq q \), причем \(1 < q < \frac{Np}{N-mp} \), если \(N > mp \). Здесь и ниже \(D^m w = \{D^\alpha w \mid |\alpha| = m\} \).

(F3) Условие гладкости и слабой полунепрерывности снизу. Функционал

\[
f(w) := \int_{\Omega} F(x, w, \ldots, D^m w) \, dx
\]

принадлежит классу \(C^1 \) на пространстве Соболева \(\tilde{W}^{m,p}(\Omega) \) и является слabo полунепрерывным снизу.

Замечание 55.2. Соответствующие “алгебраические” условия на функцию \(F \), обеспечивающие выполнение (F3), можно найти, например, в [228].

(F4) Условие положительной ограниченности. Пусть

\[
m_0 := \inf \left\{ f(w) \right\} \text{ w } \in \tilde{W}^{m,p}(\Omega), \quad \int_{\Omega} |w|^q \, dx = 1 > 0
\]

и множество

\[
W_0 := \left\{ w \in \tilde{W}^{m,p}(\Omega) \mid f(w) \leq m_0 + 1, \quad \int_{\Omega} |w|^q \, dx = 1 \right\}
\]

является ограниченным в \(\tilde{W}^{m,p}(\Omega) \).

Задача (55.20) рассматривается в функциональном пространстве

\[
\tilde{W}_T(Q) := \{ u \in W^{l,q,m,p}_T x \mid u - T\text{-périodische} \text{ function} \text{ by} \ t
\]

с \(u = Du = \ldots = D^{m-1}u = 0 \text{ на } \Sigma \}.

Теорема 55.1. Пусть выполнены условия (H1)–(H4) и (F1)–(F4).

Тогда существует нетривиальное слабое решение \(u_0 \in \tilde{W}_T(Q) \) задачи (55.20) вида

\[
u_0 = u_0(x, t) = v_0(t)\varphi_0(x)
\]

с \(0 < h(v_0) < \infty, \quad 0 < f(\varphi_0) < \infty \).

Доказательство разобьем на несколько этапов.

I этап. Задача (55.20) эквивалентна следующей вариационной задаче:

\[
\tilde{h}^u (u) = f^u (u), \quad u \in \tilde{W}_T (Q),
\] (55.21)
Глава 8. ВАРИАЦИОННЫЙ МЕТОД. ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ

где

\[\tilde{h}(u) = \int_0^T \int_\Omega H(t, u, \ldots, u^{(l)}) \, dx \, dt \equiv \int_\Omega h(u) \, dx, \]

\[\tilde{f}(u) = \int_0^T \int_\Omega F(x, u, \ldots, D^m u) \, dx \, dt \equiv \int_0^T f(u) \, dt \]

и произвольная функционала понимается в смысле Гато.

Благодаря условиям однородности относительно функционалов \(h \) и \(f \) решение \(u(x, t) \) задачи (55.21) можно искать в виде (55.6):

\[u(x, t) = v(t)w(x), \]

gде \(v \in W^{l,q}_T(\mathbb{R}) \) и \(w \in W^{m,p}(\Omega) \).

Тогда (55.21) принимает вид

\[|w(x)|^{q-2}w(x)h'(v(t)) = |v(t)|^{p-2}v(t)f'(w(x)). \]

(55.22)

Следовательно,

\[\frac{h'(v(t))}{|v(t)|^{p-2}v(t)} = \frac{f'(w(x))}{|w(x)|^{q-2}w(x)} = \lambda, \]

(55.23)

gде \(\lambda \) — скалярный параметр.

Отсюда следует

\[h'(v(t)) = \lambda |v(t)|^{p-2}v(t), \quad v \in W^{l,q}_T(\mathbb{R}), \]

(55.24)

и

\[f'(w(x)) = \lambda |w(x)|^{q-2}w(x), \quad w \in W^{m,p}(\Omega). \]

(55.25)

II этап. Рассмотрим вариационную задачу

\[\text{crit} \left\{ h(v) \mid v \in W^{l,q}_T(\mathbb{R}), \int_0^T |v|^p \, dt = 1 \right\}. \]

(55.26)

Из условий относительно функции \(H \) следует, что существует по крайней мере одна критическая точка \(v_0 \) — точка минимума задачи (55.26). В силу правила множителей Лагранжа в этой точке \(v_0 \in W^{l,q}_T(\mathbb{R}) \) имеем

\[h'(v_0) = \lambda_0 |v_0|^{p-2}v_0. \]

(55.27)

Отсюда получаем

\[\langle h'(v_0), v_0 \rangle = \lambda_0 \int_0^T |v_0|^p \, dt = \lambda_0. \]

По формуле Эйлера для однородного функционала \(h \) отсюда следует

\[\lambda_0 = qh(v_0). \]

(55.28)

В силу условия (H4) имеем

\[\lambda_0 > 0. \]

(55.29)
III этап. Рассмотрим теперь следующую вариационную задачу:

$$\text{crit} \left\{ f(w) \mid w \in W^{m,p}(\Omega), \int_{\Omega} |w|^q \, dx = 1 \right\}. \quad (55.30)$$

В силу условий (F1)–(F4) эта задача имеет по крайней мере одну критическую точку w_0 — точку минимума.

В силу правила множителей Лагранжа в этой точке имеем

$$f'(w_0) = \mu_0 |w_0|^{q-2}w_0. \quad (55.31)$$

Отсюда, как и выше, в силу (F4) находим

$$\mu_0 = pf(w_0) > 0. \quad (55.32)$$

IV этап. Введем теперь функцию

$$\varpi_0 = \varpi_0(x) = kw_0(x)$$

с $k = (\lambda_0/\mu_0)^{1/(q-1)}$.

Тогда уравнение (55.31) принимает вид

$$f'(\varpi_0) = \lambda_0 |\varpi_0|^{q-2}\varpi_0. \quad (55.33)$$

Таким образом, функции $\nu_0 = \nu_0(t)$ и $\varpi_0 = \varpi_0(x)$ удовлетворяют системе (55.24), (55.25) с $\lambda = \lambda_0$.

Следовательно, функция

$$u_0 = u_0(x,t) = \nu_0(t)\varpi_0(x)$$

является нетривиальным T-периодическим по t решением уравнения (55.21) и тем самым задачи (55.20) с $h(\nu_0) > 0$ и $f(\varpi_0) > 0$. □

Замечание 55.3. Ясно, что решение $\varpi_0(x)$ задачи (55.33) не является постоянным: $\varpi_0(x) \neq \text{const}$. В противном случае в силу однородных граничных условий $\varpi_0 \equiv 0$, что противоречит соотношению $\int_{\Omega} |w_0|^q \, dx = 1$.

Замечание 55.4. Ясно также, что $\nu_0(t) \neq 0$, так как $\int_0^T |\varpi_0|^p \, dt = 1$. Вопрос о $\nu_0(t) \neq \text{const} \neq 0$ связан с существованием неstationарного T-периодического решения $\nu_0(t)$ задачи (55.27). В частности, если оператор $h'(c) \neq \text{const}$ при любой константе $c \neq 0$, то, очевидно, $\nu_0(t) \neq \text{const}$.

При некоторых несущественных дополнительных предположениях на основании теории Люстерника–Шнireльмана можно получить существование счетного множества T-периодических решений.

Нелокальные нелинейности. Приведем несколько примеров задач с нелокальными нелинейностями, для которых мы доказываем существование счетного множества T-периодических решений.
Глава 8. ВАРИАЦИОННЫЙ МЕТОД. ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ

Пример 55.4. Рассмотрим следующую задачу:

\[
\begin{aligned}
&u'' - \left(\int_{\Omega} |\nabla u|^p \, dx \right)^q \Delta_p u + \lambda(t)u = 0, \quad (x, t) \in \Omega \times (0, T), \\
&u = 0, \quad (x, t) \in \partial \Omega \times (0, T), \\
&u(x, 0) = u(x, T), \quad u'(x, 0) = u'(x, T), \quad x \in \Omega,
\end{aligned}
\]

(55.34)

с T-периодической ограниченной в $L^\infty(0, T)$ функцией λ.

Здесь, как и выше, Ω — ограниченная область из \mathbb{R}^N с липшицевой границей $\partial \Omega$.

Утверждение 55.4. Пусть

\[
p > \max\left\{ 1, \frac{2N}{N+2} \right\}, \quad q > 1, \quad pq + p \neq 2.
\]

Тогда существует счетное множество попарно линейно независимых T-periодических решений u_n задачи (55.34) таких, что

\[
0 < \int_0^T \int_{\Omega} |\nabla u_n|^p \, dx \, dt < \infty
\]

(55.35)

если $\lambda(t) \neq \text{const}$,

\[
0 < \int_0^T \int_{\Omega} |u_n'|^2 \, dx \, dt < \infty.
\]

(55.36)

Пример 55.5.

\[
\begin{aligned}
&u'' - \left(\int_{\Omega} |\nabla u|^p \, dx \right)^q \Delta_p u + c(x)|u|^{q+2p-2}u = 0, \quad (x, t) \in \Omega \times (0, T), \\
&u = 0, \quad (x, t) \in \partial \Omega \times (0, T), \\
&u(x, 0) = u(x, T), \quad u'(x, 0) = u'(x, T), \quad x \in \Omega,
\end{aligned}
\]

(55.37)

где функция $c \in L^\infty(\Omega)$.

Утверждение 55.5. Пусть $p \neq 2$, $p > \max\{ 1, \frac{2N}{N+2} \}$, $q \geq 0$, и пусть $q < \frac{p}{N-p}$, если $N > p$.

Тогда для любого $T > 0$ существует счетное множество попарно линейно независимых T-periодических решений u_n задачи (55.37) с ограниченными интегралами (55.35), (55.36).

Пример 55.6.

\[
\begin{aligned}
&\left(\int_0^T |u'|^2 \, dt \right)^k \frac{\partial^2 u}{\partial t^2} - \left(\int_{\Omega} |\nabla u|^p \, dx \right)^q \Delta_p u + \lambda(t)u^{2k+1} + \\
&+ c(x)|u|^{pq+p-2}u = 0, \quad (x, t) \in \Omega \times (0, T), \\
&u = 0, \quad (x, t) \in \partial \Omega \times (0, T), \\
&u(x, 0) = u(x, T), \quad u'(x, 0) = u'(x, T), \quad x \in \Omega.
\end{aligned}
\]

(55.38)

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Здесь $c \in L^{\infty}(\Omega)$, T-périодическая функция $\lambda \in L^{\infty}(0, T)$.

Утверждение 55.6. Пусть выполнены следующие неравенства:

$$p > 1, \quad q \geq 0, \quad p(q+1) > 1, \quad k \geq 0, \quad 2(k+1) \neq p(q+1),$$

и пусть

$$2(k+1) < \frac{Np}{N-p} u, \quad q < \frac{p}{N-p}, \quad \text{если } N > p.$$

Тогда существует счетное множество попарно линейно независимых T-périодических решений u_n задачи (55.38) с ограниченным интегралом (55.35) и, если $\lambda(t) \neq \text{const}$, ограниченным интегралом (55.36).

Доказательство утверждения 55.5 основано на методе разделения переменных и проводится в три этапа.

I этап. Фиксируем произвольно $T > 0$ и ищем решение $u(x, t)$ задачи (55.37) в виде (55.6), где функция v принадлежит пространству Соболева $W^{1,2}_T(0, T)$ T-périодических функций, а функция $w \in W^{1,p}(\Omega)$.

Тогда из (55.37) получаем

$$\begin{cases}
 v'' = \lambda |v|^{pq+p-2}, & t \in (0, T), \\
 v(0) = v(T), \quad v'(0) = v'(T),
\end{cases} \quad (55.39)$$

и

$$\begin{cases}
 \left(\int_\Omega |\nabla w|^p \, dx \right)^{\frac{q}{p}} \Delta_p w - c(x)|w|^{pq+p-2}w = \lambda w, & x \in \Omega, \\
 w = 0, & x \in \partial \Omega.
\end{cases} \quad (55.40)$$

II этап. Рассмотрим задачу (55.39). Повторяя рассуждения из II этапа доказательства существования решения задачи (55.2) (с заменой p на $p(q+1)$), получаем существование T-périодического нестационарного решения $v_0 \in W^{1,2}(0, T)$ задачи (55.39) с $\lambda = \lambda_0 < 0$. Для этого решения имеем

$$\int_0^T |v'_0|^2 \, dt \geq T^{-\frac{p(q+1)+2}{p(q+1)}} > 0, \quad \int_0^T |v|^q |w|^{p+q} \, dt = 1, \quad \int_0^T |v|^p |w|^{q+2} \, dt = 0.$$

III этап. Рассмотрим теперь задачу (55.38) с параметром $\lambda \in \mathbb{R}$. Для нахождения нетривиальных решений рассмотрим вариационную задачу

$$\begin{align*}
 \text{crit} \left\{ \int_\Omega w^2 \, dx \mid w \in W^{1,p}(\Omega), \quad \left(\int_\Omega |\nabla w|^p \, dx \right)^{\frac{q+1}{p}} + \int_\Omega c(x)|w|^{pq+p} \, dx = 1 \right\}.
\end{align*}$$

Применяя метод расслоений [230], мы сводим эту задачу к соответствующей вариационной задаче для слабо непрерывного четного функционала на единичной сфере.

В случае функции $c(x)$ такой, что функционал

$$\left(\int_\Omega |\nabla w|^p \, dx \right)^{\frac{q+1}{p}} + \int_\Omega c(x)|w|^{pq+p} \, dx$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 8. ВАРИАЦИОННЫЙ МЕТОД. ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ

не является положительным на единичной сфере \(S = \{ w \in W^{1,p} \Omega \mid \int \Omega |\nabla w|^p \, dx = 1 \} \), мы используем модифицированный слабо непрерывный четный функционал, который совпадает с исходным при

\[
\int c(x)|w|^{pq+p} \, dx > -1, \quad w \in S.
\]

Далее на основании теории Люстерника–Шнирельмана получаем счетное множество попарно линейно независимых критических точек \(\{ w_n \} \), удовлетворяющих задаче (55.40) с \(\lambda = \lambda_n \to -\infty \) при \(n \to \infty \).

Далее, почти повторяя аргументы из IV и V этапов доказательства существования решения задачи (55.2), завершаем доказательство утверждения 55.5. \(\square \)

Доказательства остальных утверждений аналогичны. Общая задача с нелинейностью рассмотрена в [233].

56. ПЕРВОЕ ГИПЕРБОЛИЧЕСКОЕ ВАРИАЦИОННОЕ ТОЖДЕСТВО.

ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ. ПРИМЕРЫ

56.1. Рассмотрим следующую задачу:

\[
\begin{aligned}
\frac{\partial^2 u}{\partial t^2} - \Delta_p u &= \lambda g(x,t)|u|^{p-2}u + f(x,t)|u|^{\gamma-2}u, \quad (x,t) \in \mathbb{R}^N \times (0,T), \\
\frac{\partial u}{\partial t}(x,0) &= u(x,T), \quad u'(x,0) = u'(x,T),
\end{aligned}
\]

Здесь \(p, \gamma > 1 \) и \(g, f \) — \(T \)-periодические по \(t \) функции такие, что

\[
\begin{aligned}
\int_0^T \int_{\mathbb{R}^N} \left(|\frac{\partial u}{\partial t}|^2 + |\nabla u|^p + |u|^p + |u|\gamma \right) \, dx \, dt < \infty,
\end{aligned}
\]

\[
\begin{aligned}
\int_0^T \int_{\mathbb{R}^N} \left| \frac{\partial^2 u}{\partial t^2} (x, \nabla u) \right| \, dx \, dt < \infty, \quad
\int_0^T \int_{\mathbb{R}^N} \left| \Delta_p u(x, \nabla u) \right| \, dx \, dt < \infty,
\end{aligned}
\]

\[
\begin{aligned}
\int_0^T \int_{\mathbb{R}^N} |g| |u|^{p-2} u(x, \nabla u) \, dx \, dt < \infty, \quad
\int_0^T \int_{\mathbb{R}^N} |f| |u|^{\gamma-2} u(x, \nabla u) \, dx \, dt < \infty.
\end{aligned}
\]

Первое гиперболическое вариационное тождество. Умножим уравнение в (56.1) на множитель

\[
M_\mu(u) \zeta = (-\langle x, \nabla u \rangle + \mu u) \zeta,
\]

где \(\mu \in \mathbb{R} \) и \(\zeta(x) = \zeta_0(\frac{|x|}{R}) \) есть \(C^\infty \)-срезающая неотрицательная функция такая, что

\[
\zeta_0(|s|) = \begin{cases} 1, & |s| \leq 1, \\
2, & |s| \geq 2, \end{cases}
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

и проинтегрируем по частям полученное выражение. В силу определения функционального пространства существует последовательность \(\{ R_k \} \) с \(R_k \to +\infty \) и такая, что соответствующие граничные интегралы стремятся к нулю при \(R_k \to \infty \).

Переходя к пределу при \(R_k \to \infty \) в проинтегрированных выражениях, мы получаем первое гиперболическое вариационное тождество

\[
-\left(\frac{N}{2} + \mu \right) \int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 dx \, dt + \left(\frac{N - p}{p} + \mu \right) \int_0^T \int_{\mathbb{R}^N} |\nabla u|^p dx \, dt - \\
\int_0^T \int_{\mathbb{R}^N} \left[\frac{N - p}{p} \left(\frac{N}{p} + \mu \right) g + \frac{\lambda}{p} \langle x, \nabla g \rangle \right] |u|^p dx \, dt - \\
\int_0^T \int_{\mathbb{R}^N} \left[\frac{N}{\gamma} + \mu \right] \left(\frac{f + \left(\frac{1}{\gamma} \right) \langle x, \nabla f \rangle} \right) |u|^p dx \, dt = 0 \tag{56.4}
\]

для решений \(u(x, t) \) задачи (56.1) в указанном функциональном пространстве.

Обозначим через \(L_{\mu}(u) \) левую часть этого тождества.

Теорема 56.1. Пусть существует \(\mu_0 \in \mathbb{R} \) такое, что

\[L_{\mu_0}(u) \neq 0 \]

при любой нетривиальной функции \(u(x, t) \) из указанного класса функций.

Тогда не существует нетривиального \(T \)-periодического решения задачи (56.1) в указанном функциональном пространстве.

Доказательство непосредственно следует из вариационного тождества (56.4). □

Пример 56.1. Рассмотрим задачу

\[
\begin{aligned}
\frac{\partial^2 u}{\partial t^2} - \Delta u &= 0, \quad (x, t) \in \mathbb{R}^N \times (0, T), \\
u(x, 0) = u(x, T), \ u'(x, 0) = u'(x, T), \ x \in \mathbb{R}^N.
\end{aligned}
\tag{56.5}
\]

Тогда тождество (56.4) принимает вид

\[
-\left(\frac{N}{2} + \mu \right) \int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 dx \, dt + \left(\frac{N - p}{p} + \mu \right) \int_0^T \int_{\mathbb{R}^N} |\nabla u|^p dx \, dt = 0.
\]

Пусть \(p \neq \frac{2N}{N+2} \). Тогда задача (56.5) ни при каком \(T > 0 \) не имеет нетривиального \(T \)-periодического решения \(u(x, t) \) с

\[
0 \leq \int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 dx \, dt < \infty, \quad 0 < \int_0^T \int_{\mathbb{R}^N} |\nabla u|^p dx \, dt < \infty
\]

или

\[
0 < \int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 dx \, dt < \infty, \quad 0 \leq \int_0^T \int_{\mathbb{R}^N} |\nabla u|^p dx \, dt < \infty
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
из соответствующего функционального пространства T-периодических по t функций.

Замечание 56.1. Напомним, что периодическая задача (56.5) в случае ограниченной области $\Omega \in \mathbb{R}^N$ с нулевыми условиями Дирихле, т.е. задача (55.2), при $p > \max\{1, \frac{2N}{N+2}\}, \ p \neq 2$, для любого $T > 0$ имеет счетное множество нетривиальных решений из соответствующего пространства Соболева.

Пример 56.2. Рассмотрим задачу

$$
\begin{cases}
\frac{\partial^2 u}{\partial t^2} - \Delta_p u = \lambda |x|^l |u|^{p-2} u, & (x,t) \in \mathbb{R}^N \times (0, T), \\
u(x,0) = u(x,T), \ u'(x,0) = u'(x,T), & x \in \mathbb{R}^N,
\end{cases}
$$

(56.6)

с $\lambda \neq 0$ и $p > 1$.

Тогда тождество (56.4) принимает вид

$$
- \left(\frac{N}{2} + \mu \right) \int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 \, dx \, dt + \left(\frac{N - p}{p} + \mu \right) \int_0^T \int_{\mathbb{R}^N} |\nabla u|^p \, dx \, dt - \\
- \left(\mu + \frac{N + 1}{p} \right) \lambda \int_0^T \int_{\mathbb{R}^N} |x|^l |u|^p \, dx \, dt = 0.
$$

Отсюда, в частности, вытекает следующее утверждение.

Пусть $\lambda > 0$, $p > \frac{2N}{N+2}$ и $l > -p$. Тогда задача (56.6) ни при каком $T > 0$ не имеет нетривиального T-периодического решения $u(x,t)$ с

$$
0 < \int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 \, dx \, dt < \infty, \quad 0 < \int_0^T \int_{\mathbb{R}^N} |\nabla u|^p \, dx \, dt < \infty \quad \text{и} \quad 0 < \int_0^T \int_{\mathbb{R}^N} |x|^l |u|^p \, dx \, dt < \infty
$$

из соответствующего функционального пространства T-периодических по t функций.

Пример 56.3. Рассмотрим задачу

$$
\begin{cases}
\frac{\partial^2 u}{\partial t^2} - \Delta_p u + \lambda(t) u = 0, & (x,t) \in \mathbb{R}^N \times (0, T), \\
u(x,0) = u(x,T), \ u'(x,0) = u'(x,T), & x \in \mathbb{R}^N,
\end{cases}
$$

(56.7)

с T-периодической ограниченной функцией λ.

Тогда тождество (56.4) принимает вид

$$
- \left(\frac{N}{2} + \mu \right) \int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 \, dx \, dt + \left(\frac{N - p}{p} + \mu \right) \int_0^T \int_{\mathbb{R}^N} |\nabla u|^p \, dx \, dt + \left(\mu + \frac{N}{2} \right) \int_0^T \int_{\mathbb{R}^N} \lambda(t) u^2 \, dx \, dt = 0.
$$

Пусть $p \neq \frac{2N}{N+2}$. Тогда задача (56.7) не имеет нетривиального T-периодического решения $u(x,t)$ с

$$
0 \leq \int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 \, dx \, dt < \infty, \quad 0 < \int_0^T \int_{\mathbb{R}^N} \lambda(t) u^2 \, dx \, dt < \infty, \quad 0 < \int_0^T \int_{\mathbb{R}^N} |\nabla u|^p \, dx \, dt < \infty
$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
эволюционные задачи второго порядка из соответствующего функционального пространства T-периодических по t функций.

Рассмотрим следующую задачу:

$$
\begin{cases}
\frac{\partial^2 u}{\partial t^2} - \Delta_p u = f(x, t, u), & (x, t) \in \mathbb{R}^N \times (0, T), \\
u(x, 0) = u(x, T), & x \in \mathbb{R}^N,
\end{cases}
\quad (56.8)
$$

с каратеодориевой T-периодической по t функцией f.

Мы рассматриваем эту задачу в пространстве T-периодических по t функций $u(x, t)$ таких, что

$$
\int_0^T \int_{\mathbb{R}^N} \left| \frac{\partial^2 u}{\partial t^2} \right|^2 + |u|^p + |F(x, t, u)| + |u f(x, t, u)| + \left| \langle x, \nabla F \rangle \right| \, dx \, dt < \infty,
$$

и таких, что

$$
\int_0^T \int_{\mathbb{R}^N} \left| \frac{\partial^2 u}{\partial t^2} \langle x, \nabla u \rangle \right| \, dx \, dt < \infty, \quad \int_0^T \int_{\mathbb{R}^N} |\Delta_p u \langle x, \nabla u \rangle| \, dx \, dt < \infty, \quad \int_0^T \int_{\mathbb{R}^N} |f(x, t, u) \langle x, \nabla u \rangle| \, dx \, dt < \infty.
$$

Здесь

$$
F(x, t, v) = \int_0^v f(x, t, s) \, ds.
$$

Умножая уравнение в (56.8) на интегрирующий множитель $M_\mu(u)\zeta$, определенный формулой (56.3), и повторяя прежние операции и аргументы, мы получаем следующее гиперболическое вариационное тождество:

$$
- \left(\frac{N}{2} + \mu \right) \int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 \, dx \, dt + \left(\frac{N - p}{p} + \mu \right) \int_0^T \int_{\mathbb{R}^N} |\nabla u|^p \, dx \, dt -
\int_0^T \int_{\mathbb{R}^N} \left[N F(x, t, u) + \langle x, \nabla F \rangle + \mu u f(x, t, u) \right] \, dx \, dt = 0
\quad (56.9)
$$

для любого T-периодического по t решения $u(x, t)$ в указанном функциональном пространстве. Обозначим через $L_\mu(u)$ левую часть этого тождества.

Теорема 56.2. Пусть существует $\mu_0 \in \mathbb{R}$ такое, что

$$
L_{\mu_0}(u) \neq 0
$$

при любой нетривиальной функции $u(x, t)$ из указанного класса функций.

Тогда не существует нетривиального T-периодического решения задачи (56.8) в указанном классе функций.

Доказательство непосредственно вытекает из тождества (56.9). □

Рассмотрим следующую задачу:

$$
\begin{cases}
\frac{\partial^2 u}{\partial t^2} + \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^\alpha F_\alpha(x, t, u, \ldots, D^m u) = 0, & (x, t) \in \mathbb{R}^N \times (0, T), \\
u(x, 0) = u(x, T), & x \in \mathbb{R}^N.
\end{cases}
\quad (56.10)
$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 8. ВАРИАЦИОННЫЙ МЕТОД. ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ

Мы рассматриваем эту задачу в пространстве T-периодических по t функций $u(x, t)$ таких, что

$$
\int_0^T \int_{\mathbb{R}^N} \left[\left| \frac{\partial u}{\partial t} \right|^2 + |F(x, t, u, \ldots, D^m u)| + \sum_{|\alpha| \leq m} |D^\alpha u| + |\langle x, \nabla F \rangle| \right] \, dx \, dt < \infty,
$$

и таких, что

$$
\int_0^T \int_{\mathbb{R}^N} \left| \frac{\partial^2 u}{\partial t^2} (x, \nabla u) \right| \, dx \, dt < \infty, \quad \int_0^T \int_{\mathbb{R}^N} |F(x, t, u, \ldots, D^m u)D^\alpha (x, \nabla u)| \, dx \, dt < \infty
$$

при $|\alpha| \leq m$.

Умножая уравнение (56.10) на интегрирующий множитель $M_\mu(u) \zeta$, определенный формулой (56.3), мы получаем следующее гиперболическое вариационное тождество:

$$
- \left(\frac{N}{2} + \mu \right) \int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 \, dx \, dt + \int_0^T \int_{\mathbb{R}^N} NF(x, t, u, \ldots, D^m u) +

+ \sum_{|\alpha| \leq m} (\mu - |\alpha|)D^\alpha u F_\alpha (x, t, u, \ldots, D^m u) + \langle x, \nabla F \rangle \right] \, dx \, dt = 0 \quad (56.11)
$$

для любого T-периодического по t решения $u(x, t)$ задачи (56.10) в указанном функциональном пространстве.

Обозначим через $L_\mu(u)$ левую часть этого тождества. Тогда из (56.11) получаем следующее утверждение.

Теорема 56.3. Пусть существует $\mu_0 \in \mathbb{R}$ такое, что

$$
L_{\mu_0}(u) \neq 0
$$

при любой нетривиальной функции $u(x, t)$ из указанного класса функций.

Тогда не существует нетривиального T-периодического решения задачи (56.10) в указанном классе функций.

Общее гиперболическое вариационное тождество. Рассмотрим следующий дифференциальный оператор:

$$
A(u) := - \sum_{k=0}^l (\alpha) \frac{q_k}{dt^k} H_{q_k} \left(x, t, u, \ldots, \frac{\partial u}{\partial t} \right) + \sum_{|\alpha| \leq m} (-1)^k D^\alpha F_\alpha (x, t, u, \ldots, D^m u) \quad (56.12)
$$

для $(x, t) \in \mathbb{R}^N \times (0, T)$.

Здесь H и F — карактеристики T-периодические по t функции соответствующих переменных такие, что существуют производные

$$
\frac{\partial H}{\partial x_i}, \quad H_{q_k} = \frac{\partial H}{\partial q_k} \left(q_k \rightsquigarrow \frac{\partial^k u}{\partial t^k} \right), \quad k = 0, 1, \ldots, l,
$$

$$
\frac{\partial F}{\partial x_i}, \quad F_\alpha = \frac{\partial F}{\partial \xi_\alpha} \left(\xi_\alpha \rightsquigarrow D^\alpha u \right), \quad |\alpha| = 0, 1, \ldots, m,
$$

являющиеся также карактеристиками функциями соответствующих переменных.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Рассмотрим дифференциальный оператор A в пространстве T-периодических по t функций $u = u(x, t)$ с конечной полной энергией

$$E(u) := \int_0^T \int_{\mathbb{R}^N} \left[|H| + \sum_{k=0}^l \left| \frac{\partial^k u}{\partial t^k} H_{q_k} \right| + |\langle x, \nabla H \rangle| + |F| + \sum_{|\alpha| \leq m} |D^\alpha u F_\alpha| + |\langle x, \nabla F \rangle| \right] \, dx \, dt < \infty.$$

Здесь

$$H = H(x, t, u, \ldots, \frac{\partial^l u}{\partial t^l}), \quad F = F(x, t, u, \ldots, D^m u)$$

и $\langle \cdot, \cdot \rangle$ обозначает скалярное произведение в \mathbb{R}^N.

Более того, относительно функционального пространства мы предполагаем, что присоединенная энергия $E'(u)$ также конечна:

$$E'(u) := \int_0^T \int_{\mathbb{R}^N} \left[\sum_{k=0}^l \left| H_{q_k} \frac{\partial^k}{\partial t^k} \langle x, \nabla u \rangle \right| + \sum_{|\alpha| \leq m} |F_\alpha D^\alpha \langle x, \nabla u \rangle| \right] \, dx \, dt < \infty.$$

Здесь также $H = H(x, t, u, \ldots, \frac{\partial^l u}{\partial t^l})$ и $F = F(x, t, u, \ldots, D^m u)$.

Тогда

$$\int_0^T \int_{\mathbb{R}^N} A(u)(\mu u - \langle x, \nabla u \rangle) \, dx \, dt = \int_0^T \int_{\mathbb{R}^N} N(F - H) + \langle x, \nabla F - \nabla H \rangle + \sum_{|\alpha| \leq m} (\mu - |\alpha|) D^\alpha u F_\alpha - \mu \sum_{k=0}^l \frac{\partial^k}{\partial t^k} H_{q_k} \right) \, dx \, dt$$

для любой T-периодической по t функции $u = u(x, t)$, принадлежащей к указанному выше пространству.

Для доказательства достаточно умножить оператор $A(u)$ на интегрирующий множитель $M_\mu(u)\zeta$, определенный формулой (56.3), и перейти к пределу по соответствующей последовательности шаров радиусов $R \to \infty$ в указанном пространстве функций.

При этом для интегрирования по частям мы используем прием из [228] и следующие леммы.

Лемма 56.1. Пусть $H(x, t, q_0, q_1, \ldots, q_l)$ есть C^1-функция, T-периодическая по t. Пусть $u = u(x, t)$ есть T-периодическая по t функция с непрерывными производными

$$\frac{\partial u}{\partial x_i}, \frac{\partial }{\partial x_i t}, \ldots, \frac{\partial^l u}{\partial x_i \partial t^l}, \quad i = 1, \ldots, N.$$

Пусть $\zeta = \zeta(x)$ есть срезающая функция из (56.3).

Тогда

$$-\int_0^T \int_{\mathbb{R}^N} \sum_{k=0}^l (-1)^k \frac{d^k}{dt^k} H_{q_k} \langle x, \nabla u \rangle \zeta \, dx \, dt = N \int_0^T \int_{\mathbb{R}^N} H \zeta \, dx \, dt + \int_0^T \int_{\mathbb{R}^N} \langle x, \nabla H \rangle \zeta \, dx \, dt + \int_0^T \int_{\mathbb{R}^N} H \langle x, \nabla \zeta \rangle \, dx \, dt.$$
Глава 8. ВАРИАЦИОННЫЙ МЕТОД. ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ

Здесь \(H = H(x,t,u,\ldots,\frac{\partial u}{\partial t}) \) и интеграл в левой части этого равенства понимается в обобщенном смысле, т.е.

\[
\int_0^T \int_{\mathbb{R}^N} \sum_{k=0}^{l} (-1)^k \frac{d^k}{dt^k} H_{q_k}(x,\nabla u) \zeta \, dx \, dt = \int_0^T \int_{\mathbb{R}^N} \sum_{k=0}^{l} H_{q_k} \frac{\partial^k}{\partial t^k} (x,\nabla u) \zeta \, dx \, dt,
\]

для \(T \)-периодических по \(t \) функций из соответствующего функционального пространства.

Доказательство. Достаточно применить формулу Грина к дивергенции

\[
\sum_{i=1}^{N} \frac{\partial}{\partial x_i} (x_i H \zeta) = NH \zeta + \sum_{k=0}^{l} x_i H_{q_k} \frac{\partial^k}{\partial t^k} \zeta + \sum_{i=1}^{N} x_i \frac{\partial H}{\partial x_i} \zeta + H \sum_{i=1}^{N} x_i \frac{\partial \zeta}{\partial x_i}. \tag{56.15}
\]

Лемма 56.2. Пусть

\[
\int_0^T \int_{\mathbb{R}^N} |H| \, dx \, dt < \infty.
\]

Тогда

\[
\int_0^T \int_{\mathbb{R}^N} H(x,\nabla \zeta) \, dx \, dt \to 0
\]

при некоторой последовательности \(\{R_k\} \) с \(R_k \to \infty \).

Здесь \(\zeta = \zeta_R(x) = \zeta_0(\frac{|x|}{R}) \).

Доказательство. Имеем

\[
\int_0^T \int_{\mathbb{R}^N} H(x,\nabla \zeta) \, dx \, dt = \int_0^T \int_{R<|x|<2R} H(x,\nabla \zeta) \, dx \, dt.
\]

Следовательно,

\[
\left| \int_0^T \int_{\mathbb{R}^N} H(x,\nabla \zeta) \, dx \, dt \right| \leq c_0 \int_0^T \int_{R<|x|<2R} |H| \, dx \, dt,
\]

где \(c_0 = \max_{1 \leq s \leq 2} |\zeta_0'(s)| \).

В силу (56.15) существует последовательность \(\{R_k\} \) с \(R_k \to \infty \) такая, что

\[
\int_0^T \int_{R_k<|x|<2R_k} |H| \, dx \, dt \to 0. \tag{56.15}
\]

Лемма 56.3. Пусть выполнены условия леммы 56.1 и

\[
\int_0^T \int_{\mathbb{R}^N} |H| \, dx \, dt < \infty, \quad \int_0^T \int_{\mathbb{R}^N} |\langle x,\nabla H \rangle| \, dx \, dt < \infty, \quad \int_0^T \int_{\mathbb{R}^N} \sum_{k=0}^{l} \left| H_{q_k} \frac{\partial^k}{\partial t^k} \langle x,\nabla u \rangle \right| \, dx \, dt < \infty.
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

Тогда

$$-\int_0^T \int_{\mathbb{R}^N} \sum_{k=0}^l (-1)^k \frac{d^k}{dt^k} H_{q_k}(x, \nabla u) \, dx \, dt = N \int_0^T H \, dx \, dt + \int_0^T \langle x, \nabla H \rangle \, dx \, dt$$

(56.16)

для T-периодических функций из соответствующего функционального пространства.

Здесь $H = H(x, t, u, \ldots, \frac{\partial u}{\partial t})$ и интеграл в левой части этого равенства понимается в обобщенном смысле, т.е.

$$\int_0^T \int_{\mathbb{R}^N} \sum_{k=0}^l (-1)^k \frac{d^k}{dt^k} H_{q_k}(x, \nabla u) \, dx \, dt = \int_0^T \int_{\mathbb{R}^N} H_{q_k} \frac{\partial^k}{\partial t^k}(x, \nabla u) \, dx \, dt.$$

Доказательство. Достаточно в равенстве (56.14) перейти к пределу по соответствующей последовательности $\{R_k\}$ с $R_k \to \infty$ на основании лемм 56.1 и 56.2 с использованием условий леммы 56.3. □

В качестве приложения тождества (56.13) рассмотрим следующую задачу:

$$\left\{ \begin{array}{l}
A(u) = 0, \\
u(x, 0) = u(x, T), \ldots, u^{(2l-1)}(x, 0) = u^{(2l-1)}(x, T),
\end{array} \right. \quad \text{при} \quad (x, t) \in \mathbb{R}^N \times (0, T),
$$

(56.17)

Обозначим через $R_{\mu_0}(u)$ правую часть тождества (56.13).

Теорема 56.4. Пусть существует $\mu_0 \in \mathbb{R}$ такое, что

$$R_{\mu_0}(u) \neq 0$$

для любой нетривиальной T-periодической по t функции $u(x, t)$ из указанного выше функционального пространства.

Тогда задача (56.17) не имеет нетривиального T-periодического по t решения из указанного пространства.

Доказательство следует непосредственно из тождества (56.13). □

Общее гиперболическое вариационное тождество с нелокальной нелинейностью. Рассмотрим следующий дифференциальный оператор:

$$A_F(u) := -\sum_{k=0}^l (-1)^k \frac{d^k}{dt^k} H_{q_k}(x, t, u, \ldots, \frac{\partial^k u}{\partial t^k}) + \Phi_t[u] \sum_{|\alpha| \leq m} (-1)^k D^\alpha F_\alpha(x, t, u, \ldots, D^m u)$$

(56.18)

для $(x, t) \in \mathbb{R}^N \times (0, T)$ с нелокальной нелинейностью

$$\Phi_t[u] = \int_{\mathbb{R}^N} \varphi(x, t, u, \ldots) \, dx.$$

(56.19)

Здесь H и F - некоторый функциональный пространство W^φ функции $u = u(x, t)$, T-periодических по t, определяет при каждом $t \in [0, T]$ функционал $\Phi_t[u]$, непрерывный по t.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Оператор (56.18) рассматривается в пространстве T-периодических по t функций $u = u(x, t)$ с конечной полной Ф-энергией

$$E_\Phi(u) := \int_0^T \int_{\mathbb{R}^N} \left[|H| + \frac{1}{2} \frac{\partial^k u}{\partial t^k} \left| H_{q_k} \right| + \left| (x, \nabla H) \right| \right] dx \, dt +$$

$$+ \int_0^T |\Phi_t[u]| \int_{\mathbb{R}^N} \left[|F| + \sum_{|\alpha| \leq m} \left| D^\alpha u F_\alpha \right| + \left| \langle x, \nabla F \rangle \right| \right] dx \, dt < \infty.$$

Здесь, как и выше, $H = H(x, t, u, \ldots, \frac{\partial^k u}{\partial t^k})$, $F = F(x, t, u, \ldots, D^m u)$.

Более того, мы предполагаем, что присоединенная Ф-энергия $E_\Phi'(u)$ также конечна:

$$E_\Phi'(u) := \int_0^T \int_{\mathbb{R}^N} \sum_{k=0}^l \left| H_{q_k} \frac{\partial^k u}{\partial t^k} (x, \nabla u) \right| dx \, dt + \int_0^T |\Phi_t[u]| \int_{\mathbb{R}^N} \sum_{|\alpha| \leq m} \left| F_\alpha D^\alpha \langle x, \nabla u \rangle \right| dx \, dt < \infty.$$

Тогда

$$\int_0^T \int_{\mathbb{R}^N} A_\Phi(u)(\mu u - \langle x, \nabla u \rangle) \, dx \, dt =$$

$$= \int_0^T \Phi_t[u] \int_{\mathbb{R}^N} \left[N F + \sum_{|\alpha| \leq m} (\mu - |\alpha|) D^\alpha u F_\alpha + \langle x, \nabla F \rangle \right] dx \, dt -$$

$$- \int_0^T \int_{\mathbb{R}^N} \left[N H + \mu \sum_{k=0}^l \frac{\partial^k u}{\partial t^k} H_{q_k} + \langle x, \nabla H \rangle \right] dx \, dt \tag{56.20}$$

dля любой T-периодической по t функции $u = u(x, t)$, принадлежащей к указанному выше пространству.

Доказательство аналогично доказательству тождества (56.13). □

В качестве приложения тождества (56.20) рассмотрим следующую задачу:

$$\begin{cases}
A_\Phi(u) = 0, \\
u(x, 0) = u(x, T), \ldots, u^{(2l-1)}(x, 0) = u^{(2l-1)}(x, T), \quad x \in \mathbb{R}^N.
\end{cases} \tag{56.21}$$

Обозначим через $R_{\Phi, \mu_0}(u)$ правую часть тождества (56.20).

Теорема 56.5. Пусть существует $\mu_0 \in \mathbb{R}$ такое, что

$$R_{\Phi, \mu_0}(u) \neq 0$$

dля любой нетривиальной T-периодической по t функции $u(x, t)$ из указанного выше функционального пространства.

Тогда задача (56.21) не имеет нетривиального T-периодического по t решения из указанного пространства.

Доказательство следует непосредственно из тождества (56.20). □

В качестве приложения теоремы 56.5 рассмотрим несколько примеров.
Прием 56.4. Рассмотрим следующую задачу для уравнения Кирхгофа:

$$\left\{ \begin{array}{l} \frac{\partial^2 u}{\partial t^2} - a \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \Delta u = 0, \quad (x, t) \in \mathbb{R}^N \times (0, T), \\ u(x, 0) = u(x, T), \quad u'(x, 0) = u'(x, T), \quad x \in \mathbb{R}^N. \end{array} \right. \tag{56.22}$$

Здесь $a(z) : \mathbb{R}_+ \to \mathbb{R}_+, \quad z = \int_{\mathbb{R}^N} |\nabla u|^2 \, dx$, — непрерывная неотрицательная функция.

Эта задача рассматривается в пространстве T-периодических по t функций с конечной полной энергией

$$\int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 \, dx \, dt + \int_0^T a \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \, dt < \infty$$

и конечной присоединенной энергией

$$\int_0^T \int_{\mathbb{R}^N} \left| \frac{\partial u}{\partial t} \left(x, \nabla \left(\frac{\partial u}{\partial t} \right) \right) \right| \, dx \, dt + \int_0^T a \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \, dt < \infty.$$

В силу тождества (56.20) для решений $u = u(x, t)$ задачи (56.22) в указанном классе функций имеем

$$- \left(\frac{N}{2} + \mu \right) \int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 \, dx \, dt + \left(\frac{N}{2} + \mu - 1 \right) \int_0^T a \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \, dt = 0$$

при любом $\mu \in \mathbb{R}$.

Отсюда следует, что ни при каком $T > 0$ не существует T-périodического нетривиального решения $u = u(x, t)$ задачи (56.22) из указанного класса функций с

$$0 < \int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 \, dx \, dt + \int_0^T a \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \, dt.$$

Замечание 56.2. В частности, задача

$$\left\{ \begin{array}{l} \frac{\partial^2 u}{\partial t^2} \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right)^q \Delta u = 0, \quad (x, t) \in \mathbb{R}^N \times (0, T), \\ u(x, 0) = u(x, T), \quad u'(x, 0) = u'(x, T), \quad x \in \mathbb{R}^N, \end{array} \right. \tag{56.234}$$

при $q \geq 0$ не имеет ни при каком $T > 0$ T-périodического нетривиального решения $u = u(x, t)$ из соответствующего класса функций с

$$0 < \int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 \, dx \, dt + \int_0^T \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right)^q \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \, dt.$$
Напомним (см., в частности, (55.34) при \(p = 2 \) и \(\lambda(t) \equiv 0 \)), что в случае ограниченной области эта задача имеет счетное множество периодических нетривиальных решений.

Пример 56.5. Рассмотрим задачу

\[
\begin{aligned}
\begin{cases}
\frac{\partial^2 u}{\partial t^2} - a \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \Delta u + \lambda |u|^{p-2} u = 0, & (x, t) \in \mathbb{R}^N \times (0, T), \\
u(x, 0) = u(x, T), & x \in \mathbb{R}^N,
\end{cases}
\end{aligned}
\tag{56.23}
\]

с непрерывной неотрицательной функцией \(a : \mathbb{R}_+ \to \mathbb{R}_+ \), \(\lambda \neq 0 \) и \(p > 1 \).

Эта задача рассматривается в пространстве \(T \)-периодических по \(t \) функций \(u = u(x, t) \) с конечной полной энергией

\[
\int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 \, dx \, dt + \int_0^T a \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \, dt + \int_0^T \int_{\mathbb{R}^N} |u|^p \, dx \, dt < \infty
\]

и конечной присоединенной энергией

\[
\int_0^T \int_{\mathbb{R}^N} \left\langle x, \nabla \left(\frac{\partial u}{\partial t} \right) \right\rangle \, dx \, dt + \int_0^T a \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \, dt + \int_0^T \int_{\mathbb{R}^N} |u|^{p-2} |u(x, \nabla u)| \, dx \, dt < \infty.
\]

В силу тождеств (56.13) и (56.20) для решений \(u = u(x, t) \) задачи (56.23) в указанном классе функций имеем

\[
- \left(\frac{N}{2} + \mu \right) \int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 \, dx \, dt + \left(\frac{N}{2} + \mu - 1 \right) \int_0^T a \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \, dt + \left(\frac{N}{p} + \mu \right) \lambda \int_0^T \int_{\mathbb{R}^N} |u|^p \, dx \, dt = 0
\]

при любом \(\mu \in \mathbb{R} \).

Случай \(\lambda > 0 \). В этом случае при \(p > 2 \) ни при каком \(T > 0 \) не существует нетривиального \(T \)-периодического по \(t \) решения \(u(x, t) \) задачи (56.23) из указанного функционального пространства с положительной конечной полной энергией

\[
0 < \int_0^T \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial t} \right)^2 \, dx \, dt + \int_0^T a \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right) \, dt + \int_0^T \int_{\mathbb{R}^N} |u|^p \, dx \, dt < \infty.
\]

Отметим, что отсутствие нетривиального \(T \)-периодического по \(t \) решения задачи (56.23), как и во всех других случаях, утверждается только в соответствующем функциональном пространстве.

21 ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Так, например, задача (56.23) при \(a \equiv 1, \lambda > 0 \) и \(p > \frac{2N}{N-2}, \) \(N \geq 3, \) имеет континуум нетривиальных стационарных (положительных) решений \(\{ u_0(x) \} \) в \(\mathbb{R}^N. \) Однако эти решения не принадлежат соответствующему функциональному пространству, поскольку

\[
\int_0^T \int_{\mathbb{R}^N} \left[|\nabla u_0|^2 + |u_0|^p \right] dx \, dt = T \int_{\mathbb{R}^N} \left[|\nabla u_0(x)|^2 + |u_0(x)|^p \right] dx = \infty.
\]

Случай \(\lambda < 0. \) В этом случае при \(1 < p < \frac{2N}{N-2}, \) если \(N \geq 3, \) и при любом \(p > 1, \) если \(N = 1, 2, \) ни при каком \(T > 0 \) не существует нетривиального \(T \)-периодического по \(t \) решения \(u(x,t) \) задачи (56.23) из указанного функционального пространства с положительной конечной полной энергией.

Еще раз отмечается, что отсутствие нетривиального \(T \)-периодического по \(t \) решения задачи (56.23), как и во всех других случаях, утверждается только в соответствующем функциональном пространстве с конечной полной и присоединенной энергией, указанном выше для этой задачи.

Глава 9. МЕТОД СРАВНЕНИЯ ДЛЯ СИСТЕМЫ ВОЛНОВЫХ УРАВНЕНИЙ

57. СИСТЕМЫ НЕРАВЕНСТВ. ДОКРИТИЧЕСКИЙ СЛУЧАЙ

Приведем основные результаты об отсутствии решений гиперболических систем с компактными носителями начальных данных (критические показатели типа Джона), полученные совместно с Д. Дель Санто и В. Георгиевым [53].

Теорема 57.1. Пусть \(1 \leq N \leq 3, \) \(T \in (0, +\infty), \) и пусть \((u, v) \in C^2(\mathbb{R}^N \times [0, T))^2 \) — решение задачи

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} - \Delta u &= |v|^p, & (x, t) &\in \mathbb{R}^N \times (0, T), \\
\frac{\partial^2 v}{\partial t^2} - \Delta v &= |u|^q, & (x, t) &\in \mathbb{R}^N \times (0, T), \\
u(x, 0) &= f_1(x), \quad \frac{\partial u}{\partial t}(x, 0) = g_1(x), & x &\in \mathbb{R}^N, \\
v(x, 0) &= f_2(x), \quad \frac{\partial v}{\partial t}(x, 0) = g_2(x), & x &\in \mathbb{R}^N,
\end{align*}
\]

где \(f_i, g_i \in C_0^\infty(\mathbb{R}^N) \) и \(\text{supp} f_i, \text{supp} g_i \subset \{ |x| \leq R \} \) для \(i = 1, 2, \) \(R > 0. \)

Предположим, что \(p, q > 1, \)

\[
\int_{\mathbb{R}^N} g_i(x) \, dx > 0, \quad i = 1, 2,
\]

и

\[
\max \left\{ \frac{p + 2 + q^{-1}}{pq - 1}, \frac{q + 2 + p^{-1}}{pq - 1} \right\} > \frac{N - 1}{2}.
\]

Тогда \(T < +\infty. \)
Для всех целых \(N \) положим \(\eta = \eta(N) \) равным 0, если \(N \) нечетно, и 1/2, если \(N \) четно.

Теорема 57.2. Пусть \(N \geq 4 , T \in (0, +\infty) \), и пусть \((u,v) \in C^2(\mathbb{R}^N \times [0,T])^2 \) — решение задачи (57.1).

Предположим, что \(p,q > 1 \),

\[
\int_{\mathbb{R}^N} |x|^{n-1} f_i(x) \, dx > 0, \quad \int_{\mathbb{R}^N} g_i(x) \, dx > 0, \quad \int_{\mathbb{R}^N} |x|^n g_i(x) \, dx > 0, \quad i = 1, 2, \quad (57.4)
\]

и выполнено условие (57.3).

Тогда \(T < +\infty \).

Замечание 57.1. Если \((u,v) \) есть \(C^2 \)-решение задачи (57.1), предположение о носителе начальных данных означает \(\text{supp} \, u, \text{supp} \, v \subset \{ |x| \leq R + t \} \) (см., например, [106, теорема 4a]).

Замечание 57.2. Мы знаем, что если \(N = 1 \), то задача (57.1) имеет единственное классическое решение, локальное по времени, для всех \(p \) и \(q \). Если \(N \geq 2 \), по крайней мере в случае, когда \(1 \leq p,q \leq (N + 3)/(N - 1) \) можно показать, что (57.1) допускает единственное локальное (по времени) обобщенное решение (см. [166, ч. 1]; соответствующие результаты о локальном существовании можно найти в [43]). Используя технику Сидериса [166], можно применить наше доказательство отсутствия глобальных классических решений также к обобщенным решениям.

Замечание 57.3. Если \(N = 3 \), результаты теоремы 57.1 справедливы без предположения (57.2). Чтобы убедиться в этом, достаточно изменить наше доказательство аналогично соответствующему доказательству Джона [105, теорема 2] (см. [52]).

Некоторые системы дифференциальных неравенств. В доказательствах теорем 57.1 и 57.2 мы будем использовать следующее обобщение леммы 4 из [166].

Лемма 57.1. Пусть \(a, b \in [0, +\infty) \) \(c \leq b \), и пусть \(F, G \in C^2([a,b), \mathbb{R}) \). Предположим, что для всех \(t \in [a,b) \)

\[
F(t) \geq C(R + t), \quad (57.5)
\]

\[
G(t) \geq C(R + t)^s, \quad (57.6)
\]

\[
F''(t) \geq C(R + t)^{-\alpha}(G(t))^p, \quad (57.7)
\]

\[
G''(t) \geq C(R + t)^{-\beta}(F(t))^q, \quad (57.8)
\]

где \(C, R > 0, s \geq 1, \alpha, \beta \geq 0 \) и \(p, q > 0 \). Кроме того, предположим, что \(pq > 1 \) и

\[
q(\alpha - 2) + \beta - 2 < s(pq - 1). \quad (57.9)
\]

Тогда \(b < +\infty \).

Доказательство проведем от противного. Пусть \(F \) и \(G \) определены на \([a, +\infty)\). Из (57.5), (57.6) следует, что \(F, G > 0 \) на \([a, +\infty)\) и

\[
\lim_{t \to +\infty} F(t) = \lim_{t \to +\infty} G(t) = +\infty. \quad (57.10)
\]

Неравенства (57.7), (57.8) означают, что \(F'', G'' > 0 \), следовательно, \(F \) и \(G \) — выпуклые функции на \([a, +\infty)\). Этот факт вместе с (57.10) влечет существование \(T_0 \geq a \) такого, что

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234 21*
ЦАРШАЯ ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

$F'(t), G'(t) > 0$ для $t \geq T_0$. Умножая (57.7) на $G'(t)$ и интегрируя полученные неравенства по частям, получим

$$F'(t)G'(t) - F'(T_0)G'(T_0) - \int_{T_0}^{t} F'(s)G''(s) ds \geq \frac{C(R + t)^{-\alpha}}{p + 1}[(G(t))^{p+1} - (G(T_0))^{p+1}].$$

Следовательно, существуют $C > 0$ и $T_0 \geq a$ такие, что для $t \geq T_0$

$$F'(t)G'(t) \geq C(R + t)^{-\alpha}(G(t))^{p+1}. \tag{57.11}$$

Аналогично, умножая (57.11) на $G'(t)$ и интегрируя по частям, получим

$$F(t) \geq \frac{C(R + t)^{-\alpha}(G(t))^{p+2}}{(G'(t))^2}, \tag{57.12}$$

где $C > 0$ и t достаточно большое. Из (57.8) и (57.12) получим

$$(G'(t))^{2q}G''(t) \geq C(R + t)^{-\beta - \alpha}(G(t))^{q(p+2)}, \tag{57.13}$$

поэтому, как и ранее, существуют $C > 0$ и $T_0 \geq a$ такие, что для $t \geq T_0$

$$G'(t) \geq C(R + t)^{-\alpha}(G(t))^{q(p+2)+1} \tag{57.14}$$

Теперь в силу (57.9) можем выбрать $\varepsilon > 0$ такое, что

$$\frac{pq - 1}{2(q + 1)} > \varepsilon > \frac{1}{s} \frac{q(\alpha - 2) + \beta - 2}{2(q + 1)}$$

т.е.

$$\frac{q(p + 2) + 1}{2(q + 1)} - \varepsilon > 1 \text{ и } -\frac{\beta + q\alpha + \varepsilon s}{2(q + 1)} > -1. \tag{57.15}$$

Окончательно из (57.6) и (57.14) получаем

$$G'(t) \geq C(R + t)^{-\alpha}(G(t))^{q(p+2)+1} \tag{57.16}$$

Интегрируя последнее неравенство и используя (57.15), приходим к противоречию. □

Установим теперь результат, аналогичный предыдущему, который можно рассматривать как векторный аналог леммы Като [110, лемма 2].

Лемма 57.2. Пусть $a, b \in [0, +\infty]$ с $a < b$, и пусть $F, G \in C^2([a, b], \mathbb{R})$. Предположим, что для всех $t \in [a, b]$

$$F(t) \geq C(R + t), \tag{57.16}$$

$$G(t) \geq C(R + t), \tag{57.17}$$

$$F''(t) \geq C(R + t)^{-\alpha}(G(t))^p, \tag{57.18}$$

$$G''(t) \geq C(R + t)^{-\beta}(F(t))^q, \tag{57.19}$$

где $C, R > 0$, $\alpha, \beta > 0$ и $p, q > 0$, а также $pq > 1$, $\alpha \leq p + 1$ и

$$q(\alpha - 2) + \beta - 2 \leq pq - 1.$$

Тогда $b < +\infty$.
Глава 9. МЕТОД СРАВНЕНИЯ ДЛЯ СИСТЕМЫ ВОЛНОВЫХ УРАВНЕНИЙ

ДОКАЗАТЕЛЬСТВО. С точки зрения леммы 57.1 достаточно рассмотреть только случай
\[q(\alpha - 2) + \beta - 2 = pq - 1. \]
(57.20)
Мы получим противоречие, предполагая, что \(F \) и \(G \) определены в \([a, +\infty)\). Рассуждая аналогично первой части доказательства леммы 57.1, получим, что существуют \(C > 0 \) и \(T_0 \geq a \) такие, что для всех \(t \geq T_0 \)
\[G'(t) \geq C(R + t)^{-\beta + q\alpha \over 2(q + 1)}(G(t))^{\frac{q(p + 2) + 1}{2(q + 1)}}. \]
(57.21)
Из (57.20) имеем
\[\frac{\beta + q\alpha}{2(q + 1)} = \frac{q(p + 2) + 1}{2(q + 1)} \]
и, следовательно, (57.21) перепишется в виде
\[G'(t) \geq C(R + t)^{-\gamma}(G(t))^\gamma, \]
(57.22)
где
\[\gamma = 1 + \frac{pq - 1}{2(q + 1)} > 1. \]
Поскольку мы предполагаем \(-\alpha + p \leq -1\), то
\[F(t) \geq C(R + t)^{-\alpha + p + 2}. \]
Следовательно, из (57.19) вытекает
\[G''(t) \geq C(R + t)^{-\beta - q\alpha + pq + 2q} = C(R + t)^{-1}. \]
Интегрируя последнее неравенство дважды, получим, что существуют \(C > 0 \) и \(T_0 \geq a \) такие, что
\[G(t) \geq C(R + t)\ln(1 + R + t), \]
(57.23)
для всех \(t \geq T_0 \). Из (57.23) и (57.22) выводим
\[G'(t) \geq C(R + t)^{-1}(\ln(1 + R + t))^{\gamma - 1}G(t). \]
Следовательно, для всех \(\delta > 0 \) существуют \(C > 0 \) и \(T_0 \geq a \) такие, что
\[G(t) \geq C(R + t)^{\delta}, \]
для всех \(t \geq T_0 \). Теперь выберем \(\delta = 2\gamma/(\gamma - 1) \). Из (57.22) получим
\[G'(t) \geq C(R + t)^{-\gamma}(G(t))^{\frac{\gamma - 1}{\gamma - 1}}(G(t))^{\frac{\gamma - 1}{\gamma - 1}} \geq C(G(t))^{\frac{\gamma - 1}{\gamma - 1}}. \]
(57.24)
Так как \((\gamma - 1)/2 > 1\), из (57.24) легко следует требуемое. □

Доказательство теоремы 57.1. Заметим сначала, что в силу симметричности нашей задачи можем предполагать \(1 < q \leq p \). Пусть \((u, v)\) — решение (57.1), положим
\[F(t) := \int_{\mathbb{R}^N} u(x, t) \, dx, \quad G(t) := \int_{\mathbb{R}^N} v(x, t) \, dx. \]
Так как \((u, v)\) суть \(C^2\)-функции с носителем в \(\{ |x| \leq R + t \}\), то \(F\) и \(G\) являются \(C^2\)-функциями, определенными на \([0, T]\). По неравенству Гельдера имеем

\[
\left| \int_{\mathbb{R}^N} v(x, t) \, dx \right|^p \leq \left(\int_{|x| \leq R+t} \right) \left(\int_{|x| \leq R+t} v(x, t)^p \, dx \right)^{p-1} \leq C(R + t)^{(p-1)} \int_{\mathbb{R}^N} |v(x, t)|^p \, dx.
\]

С другой стороны, интегрирование по частям дает

\[
F''(t) = \int_{\mathbb{R}^N} \frac{\partial^2 u}{\partial t^2} (x, t) \, dx = \int_{\mathbb{R}^N} \left(\frac{\partial^2}{\partial t^2} - \Delta \right) u(x, t) \, dx = \int_{\mathbb{R}^N} |v(x, t)|^p \, dx. \tag{57.25}
\]

Следовательно,

\[
F''(t) \geq C(R + t)^{-N(p-1)} |G(t)|^p, \tag{57.26}
\]

где \(C > 0\). Аналогично

\[
G''(t) \geq C(R + t)^{-N(q-1)} |F(t)|^q. \tag{57.27}
\]

Из (57.25) выводим, что \(F\) — выпуклая функция и, следовательно, \(F(t) \geq F'(0)t + F(0)\), где \(F'(0) = \int_{\mathbb{R}^N} g_1(x) \, dx\). Согласно предположению (57.2) существует \(T_0 > 0\) такое, что для всех \(t \geq T_0\)

\[
F(t) \geq C(R + t), \tag{57.28}
\]

для некоторого \(C > 0\). Аналогично

\[
G(t) \geq C(R + t). \tag{57.29}
\]

В случае \(N = 1\) отсутствие решения следует из леммы 57.1 с \(s = 1\), \(\alpha = p - 1\) и \(\beta = q - 1\). Пусть \(N = 2\). Тогда (57.3) эквивалентно

\[
(pq - 1)(3 - q/2) > q(2p - 4) + 2q - 4
\]

и, следовательно, существует \(q^* \in (q, 4)\) такое, что

\[
(pq - 1)(3 - q^*/2) > q(2p - 4) + 2q - 4. \tag{57.30}
\]

Пусть \(u_0\) — решение задачи

\[
\begin{cases}
\frac{\partial^2 u_0}{\partial t^2} - \Delta u_0 = 0, & (x, t) \in \mathbb{R}^2 \times [0, +\infty), \\
u_0(x, 0) = f_1(x), \quad \frac{\partial u_0}{\partial t}(x, 0) = g_1(x), & x \in \mathbb{R}^2.
\end{cases}
\]

Известно [99, лемма 2], что

\[
\lim_{t \to +\infty} \frac{1}{\sqrt{t} \ln t} \int_{t-\ln t < |x| < R+t} u_0(x, t) \, dx = \sqrt{2} \int_{\mathbb{R}^2} g_1(x) \, dx.
\]

Поскольку \(\int_{\mathbb{R}^2} g_1(x) \, dx > 0\), то существует \(C, T_0 > 0\) такие, что для всех \(t \geq T_0\)

\[
\int_{t-\ln t < |x| < R+t} u_0(x, t) \geq C((R + t) \ln(1 + R + t))^{1/2}.
\]
Из положительности фундаментального решения волнового уравнения для размерностей $N = 2, 3$ имеем $u(x, t) \geq u_0(x, t)$ для всех $(x, t) \in \mathbb{R}^2 \times [0, +\infty)$. Тогда

$$C((R + t) \ln(1 + R + t))^{1/2} \leq \int_{t - \ln |x| < R + t} u_0(x, t) \, dx \leq \int_{t - \ln |x| < R + t} u(x, t) \, dx \leq C^t \left(\int_{\mathbb{R}^2} |u(x, t)|^q \, dx \right)^{1/q} ((R + t) \ln(1 + R + t))^{(q - 1)/q}.$$

Таким образом, существуют $C, T_0 \geq 0$ такие, что для всех $t > T_0$

$$\int_{\mathbb{R}^2} |u(x, t)|^q \, dx \geq C((R + t) \ln(1 + R + t))^{1 - q/2}$$

и, следовательно,

$$G''(t) = \int_{\mathbb{R}^2} |u(x, t)|^q \, dx \geq C(R + t)^{1 - q^*/2},$$

для всех $t \geq T_0$. Дважды интегрируя последнее неравенство (с учетом $q^* < 4$), получим

$$G(t) \geq C(R + t)^{3 - q^*/2}. \tag{57.32}$$

Для завершения доказательства применим лемму 57.1 с $s = 3 - q^*/2, \alpha = 2(p - 1) и \beta = 2(q - 1)$.

Положим теперь $N = 3$. В этом случае (57.3) означает

$$(pq - 1)(4 - q) > q(3p - 5) + 3q - 5. \tag{57.33}$$

Как и ранее, пусть u_0 — решение задачи

$$\begin{cases}
\frac{\partial^2 u_0}{\partial t^2} - \Delta u_0 = 0,
& (x, t) \in \mathbb{R}^3 \times [0, +\infty),
\frac{\partial u_0}{\partial t}(x, 0) = g_1(x), & x \in \mathbb{R}^3.
\end{cases}$$

Так как $\int_{\mathbb{R}^3} u_0(x, t) \, dx = 0$, то $\int_{\mathbb{R}^3} u_0(x, t) \, dx = t \int_{\mathbb{R}^3} g_1(x) \, dx + \int_{\mathbb{R}^3} f_1(x) \, dx$. Из сильного принципа Гюйгенса имеем $\sup u_0 \subset \{t - R \leq |x| \leq R + t\}$. Следовательно, используя неравенство $u(x, t) \geq u_0(x, t)$, получим

$$C(R + t) \leq \int_{t - R < |x| < R + t} u_0(x, t) \, dx \leq \int_{t - R < |x| < R + t} u(x, t) \, dx.$$

Далее по неравенству Гёльдера

$$C(R + t) \leq \left(\int_{t - R < |x| < R + t} |u(x, t)|^q \, dx \right)^{1/q} (R + t)^{2(q - 1)/q},$$

откуда

$$G''(t) = \int_{\mathbb{R}^3} |u(x, t)|^q \, dx \geq C(R + t)^{2 - q^*}. \tag{57.34}$$
Интегрируя дважды это неравенство (с $q^3 < 3$) получаем, что существуют $C, T_0 > 0$ такие, что для $t \geq T_0$

$$G(t) \geq C(R + t)^{4 - q}.$$ \hfill (57.34)

Применение леммы 57.1 завершает доказательство теоремы. \hfill □

Доказательство теоремы 57.2. Напомним два результата Сидериса [166, леммы 5,6], используемых в дальнейшем.

Лемма 57.3. Пусть $N \geq 4$. Пусть $h \in C^1(\mathbb{R}^N \times [0, T))$, $h(x, t) \geq 0$ для всех $(x, t) \in \mathbb{R}^N \times [0, T)$. Пусть $w_1 \in C^2(\mathbb{R}^N \times [0, T))$ — решение задачи

$$\begin{cases}
\frac{\partial^2 w_1}{\partial t^2} - \Delta w_1 = h, & (x, t) \in \mathbb{R}^N \times [0, T), \\
w_1(x, 0) = 0, \quad \frac{\partial w_1}{\partial t}(x, 0) = 0, & x \in \mathbb{R}^N.
\end{cases}$$

Рассмотрим

$$W(x, t) = \int_0^t (t - s)^m w_1(x, s) \, ds,$$

где $m = (N - 5)/2$, если N четно, или $m = (N - 4)/2$, если N нечетно.

Тогда $W(x, t) \geq 0$ для всех $(x, t) \in \mathbb{R}^N \times [0, T)$. \hfill □

Лемма 57.4. Пусть $N \geq 4$. Пусть w_0 — решение задачи

$$\begin{cases}
\frac{\partial^2 w_0}{\partial t^2} - \Delta w_0 = 0, & (x, t) \in \mathbb{R}^N \times [0, +\infty), \\
w_0(x, 0) = f(x), \quad \frac{\partial w_0}{\partial t}(x, 0) = g(x), & x \in \mathbb{R}^N,
\end{cases}$$

где $f, g \in C_0^\infty(\mathbb{R}^N)$.

Предположим, что $\text{supp} f, \text{supp} g \subset \{|x| \leq R\}$ и $\int_{\mathbb{R}^N} |x|^{q-1} f(x) \, dx > 0$, $\int_{\mathbb{R}^N} |x|^\eta g(x) \, dx > 0$, где $\eta = 0$, если N нечетно, или $\eta = 1/2$, если N четно.

Тогда существуют $C, T_0 > 0$ такие, что для $t > T_0$

$$\int_{t-R}^t \int_{|x| > t} w_0(x, s) \, dx \, ds \geq C(R + t)^{(N-1)/2},$$

где m определено в лемме 57.3. \hfill □

Переходя к доказательству теоремы 57.2, можем предположить без потери общности $1 < q \leq p$. Так как $\text{supp} u$, $\text{supp} v \in \{|x| \leq R + t\}$, определим

$$a_1(t) := \int_{\mathbb{R}^N} u(x, t) \, dx, \quad a_2(t) := \int_{\mathbb{R}^N} v(x, t) \, dx.$$

Следовательно, $a_1, a_2 \in C^2[0, +\infty)$ и поэтому

$$a_1''(t) = \int_{\mathbb{R}^N} |v(x, t)|^p \, dx \geq 0, \quad a_2''(t) = \int_{\mathbb{R}^N} |u(x, t)|^q \, dx \geq 0.$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
т.е. \(a_1, a_2 \) — выпуклые функции. Кроме того, \(a_i(0) = \int_{\mathbb{R}^N} f_i(x) \, dx \) и \(a'_i(0) = \int_{\mathbb{R}^N} g_i(x) \, dx \) для \(i = 1, 2 \). Тогда из (57.4) получаем, что существуют \(C, T_0 > 0 \) такие, что для \(t \geq T_0 \)

\[
a_i(t) \geq C(R + t)
\]

для \(i = 1, 2 \). Положим для \(t \geq R \)

\[
F(t) := \int_{t-R}^{t} (t-s)^m a_1(s) \, ds, \quad G(t) := \int_{t-R}^{t} (t-s)^m a_2(s) \, ds,
\]

где \(m = (N-5)/2 \), если \(N \) четно, или \(m = (N-4)/2 \), если \(N \) нечетно. Интегрируя по частям, получим

\[
F(t) = \frac{R^{m+1} a_1(t-R)}{m+1} + \frac{R^{m+2} a'_1(t-R)}{(m+1)(m+2)} + \frac{1}{(m+1)(m+2)} \int_{t-R}^{t} (t-s)^{m+2} a''_1(s) \, ds,
\]

\[
G(t) = \frac{R^{m+1} a_2(t-R)}{m+1} + \frac{R^{m+2} a'_2(t-R)}{(m+1)(m+2)} + \frac{1}{(m+1)(m+2)} \int_{t-R}^{t} (t-s)^{m+2} a''_2(s) \, ds.
\]

Дифференцируя эти тождества дважды по \(t \), получаем

\[
F''(t) = \int_{t-R}^{t} (t-s)^m a''_1(s) \, ds = \int_{t-R}^{t} (t-s)^m \int_{\mathbb{R}^N} |v(x,s)|^p \, dx \, ds,
\]

\[
G''(t) = \int_{t-R}^{t} (t-s)^m a''_2(s) \, ds = \int_{t-R}^{t} (t-s)^m \int_{\mathbb{R}^N} |u(x,s)|^q \, dx \, ds.
\]

По неравенству Гёдьера, используя тот факт, что \(\text{supp} \, u, \text{supp} \, v \subset \{ |x| \leq R+t \} \), будем иметь

\[
F''(t) \geq C(R+t)^{-N(p-1)} |G(t)|^p, \quad G''(t) \geq C(R+t)^{-N(q-1)} |F(t)|^q
\]

для некоторого \(C > 0 \). С другой стороны, из (57.35) легко видеть, что существуют \(C, T_0 > 0 \) такие, что для \(t \geq T_0 \)

\[
F(t) \geq C(R+t), \quad G(t) \geq C(R+t).
\]

Рассмотрим теперь первую компоненту решения, т.е. функцию \(u \); мы знаем, что \(u(x,t) = u_0(x,t) + u_1(x,t) \), где

\[
\begin{cases}
\frac{\partial^2 u_0}{\partial t^2} - \Delta u_0 = 0, & (x,t) \in \mathbb{R}^N \times [0, +\infty), \\
u_0(x,0) = f_1(x), \quad \frac{\partial u_0}{\partial t}(x,0) = g_1(x), & x \in \mathbb{R}^N,
\end{cases}
\]

и

\[
\begin{cases}
\frac{\partial^2 u_1}{\partial t^2} - \Delta u_1 = |v|^p, & (x,t) \in \mathbb{R}^N \times [0, T), \\
u_1(x,0) = 0, \quad \frac{\partial u_1}{\partial t}(x,0) = 0, & x \in \mathbb{R}^N.
\end{cases}
\]
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

Тогда по лемме 57.3
\[
\int_0^t (t-s)^m u(x, s) \, ds \geq \int_0^t (t-s)^m u_0(x, s) \, ds
\] (57.38)

для всех \((x, t) \in \mathbb{R}^N \times [0, T]\). Мы интегрируем обе части (57.38) на \(|x| > t\) и меняем порядок интегрирования. Получим

\[
\int_0^t (t-s)^m \int_{|x| > t} u(x, s) \, dx \, ds \geq \int_0^t (t-s)^m \int_{|x| > t} u_0(x, s) \, dx \, ds,
\]

и, поскольку \text{supp } u и \text{supp } u_0 содержатся в \(||x| \leq R + s\)\), это последнее неравенство эквивалентно

\[
\int_{t-R}^t (t-s)^m \int_{|x| > t} u(x, s) \, dx \, ds \geq \int_{t-R}^t (t-s)^m \int_{|x| > t} u_0(x, s) \, dx \, ds.
\]

Из неравенства Гёльдера и леммы 57.4 выводим для \(t \geq T_0\)

\[
(R + t)^{(N-1)(q-1)/q} \left(\int_{t-R}^t (t-s)^m \int_{\mathbb{R}^N} |u(x, s)|^q \, dx \, ds \right)^{1/q} \geq C(R+t)^{(N-1)/2}.
\]

Следовательно, существуют \(C, T_0 > 0\) такие, что для \(t \geq T_0\)

\[
G''(t) \geq C(R+t)^{N-1-q(N-1)/2}.
\]

Заметим, что \(N - 1 - q(N - 1)/2 > -1\), поэтому интегрируя по частям дважды последнее неравенство, будем иметь

\[
G''(t) \geq C(R+t)^{N+1-q(N-1)/2}.
\] (57.39)

Используя (57.37), (57.39), (57.36) и замечая, что (57.3) означает

\[
(pq - 1) \left(N + 1 - q \frac{(N-1)}{2} \right) > q(N(p - 1) - 2) + N(q - 1) - 2,
\]

можем использовать лемму 57.1 с \(s = N + 1 - q(N - 1)/2\), \(\alpha = N(p - 1)\) и \(\beta = N(q - 1)\). □

Приведенные результаты получены совместно с Д. Дель Санто и В. Георгиевым.

58. РАЗРУШЕНИЕ РЕШЕНИЙ ГИПЕРБОЛИЧЕСКОЙ СИСТЕМЫ.
КРИТИЧЕСКИЙ СЛУЧАЙ ПРИ \(N = 3\)

В настоящем разделе приводятся полученные совместно с Д. Дель Санто [193] результаты об отсутствии решений рассмотренных выше задач в критическом случае для пространства \(\mathbb{R}^3\). Метод доказательства основан на комбинации идей работы [159] и некоторых дифференциальных неравенств (см. также [99, 166]).

Основным результатом раздела является
Глава 9. МЕТОД СРАВНЕНИЯ ДЛЯ СИСТЕМЫ ВОЛНОВЫХ УРАВНЕНИЙ

Теорема 58.1. Пусть $R \in (0, +\infty)$, $T \in (0, +\infty)$, и пусть $(u, v) \in C^2(\mathbb{R}^3 \times [0, T))^2$ — решение задачи Коши

$$
\begin{align*}
\frac{\partial^2 u}{\partial t^2} - \Delta u &= |v|^p, \quad (x, t) \in \mathbb{R}^N \times [0, T), \\
\frac{\partial^2 v}{\partial t^2} - \Delta v &= |u|^q, \quad (x, t) \in \mathbb{R}^N \times [0, T), \\
\end{align*}
$$

(58.1)

где $f_i, g_i \in C_0^\infty(\mathbb{R}^3)$ и $\text{supp} f_i, \text{supp} g_i \subset \{x \in \mathbb{R}^3 : |x| \leq R\}$ для $i = 1, 2$. Предположим, что

$$
\begin{align*}
\int_{\mathbb{R}^3} g_1(x) \, dx > 0, \quad \int_{\mathbb{R}^3} g_2(x) \, dx > 0
\end{align*}
$$

(58.2)

и $p, q > 1$,

$$
\begin{align*}
\max \left\{ \frac{p + 2 + q^{-1}}{pq - 1}, \frac{q + 2 + p^{-1}}{pq - 1} \right\} = 1.
\end{align*}
$$

(58.3)

Тогда $T < +\infty$.

Сначала приведем некоторые предварительные факты, которые будут использованы при доказательстве теоремы 58.1. Введем некоторые обозначения. Пусть $\varphi \in C(\mathbb{R}^3)$; через φ обозначим усреднение по сфере с центром в начале координат, т. е.

$$
\varphi(r) = \frac{1}{4\pi} \int_{|\xi|=1} \varphi(|r|\xi) \, d\omega_\xi.
$$

Аналогично для $F \in C(\mathbb{R}^3) \times [0, T)$ положим

$$
\mathcal{F}(r, t) = \frac{1}{4\pi} \int_{|\xi|=1} F(|r|\xi, t) \, d\omega_\xi.
$$

Первый результат касается решения неоднородного линейного волнового уравнения в трёхмерном пространстве.

Лемма 58.1. Пусть w — решение задачи

$$
\begin{align*}
\frac{\partial^2 w}{\partial t^2} - \Delta w &= F, \quad (x, t) \in \mathbb{R}^3 \times [0, T), \\
w(x, 0) = f(x), \quad \frac{\partial w}{\partial t}(x, 0) = g(x), \quad x \in \mathbb{R}^3,
\end{align*}
$$

где функции $f, g \in C_0^\infty(\mathbb{R}^3)$, $\text{supp} f, \text{supp} g \subset \{x \in \mathbb{R}^3 : |x| \leq R\}$ и $F \in C^1(\mathbb{R}^3 \times [0, T))$, $\text{supp} F \subset \{(x, t) \in \mathbb{R}^3 \times [0, T) : |x| \leq R + t\}$. Предположим, что $\int_{\mathbb{R}^3} g(x) \, dx > 0$ и $F(x, t) \geq 0$ для всех $(x, t) \in \mathbb{R}^3 \times [0, T)$.

Тогда

$$
\int_{\frac{t}{2} \leq |x| \leq t + R} w(x, t) \, dx \geq \int_{|x| \leq \frac{t}{2} + R} w \left(x, \frac{t}{2} \right) \, dx
$$

(58.4)

для всех $t \in [2R, T)$.
Доказательство. Пусть w_0 — решение задачи

$$
\begin{cases}
\frac{\partial^2 w_0}{\partial t^2} - \Delta w_0 = 0, & (x, t) \in \mathbb{R}^3 \times [0, +\infty), \\
w_0(x, 0) = f(x), \quad \frac{\partial w_0}{\partial t}(x, 0) = g(x), & x \in \mathbb{R}^3.
\end{cases}
$$

Используя тождество Дарбу и формулу Даламбера, получим

$$
\overline{w}(r, t) = \frac{1}{2r} \left((r + t)\overline{f}(r + t) + (r - t)\overline{f}(r - t) + \int_{r-t}^{r+t} \rho F(\rho) \, d\rho \right)
$$

и

$$
\overline{w}(r, t) = \overline{w}(r, t) + \frac{1}{2r} \int_0^t \int_{|r - \tau + t|}^{r + t - \tau} \rho F(\rho, \tau) \, d\rho
$$

dля всех $(r, t) \in (0, +\infty) \times (0, +\infty)$. Поскольку F — неотрицательная функция, то

$$
\int_{\frac{r}{2} \leq |x| \leq t + R} (w(x, t) - w_0(x, t)) \, dx = 2\pi \int_0^t \int_0^{t-R} \int_{0}^{t-R} \rho F(\rho, \tau) \, d\rho \geq 2\pi \int_0^t \int_0^{t-R} \int_{0}^{t-R} \rho F(\rho, \tau) \, d\rho
$$

$$
\geq \int_{|x| \leq \frac{t}{2} + R} \left(w\left(x, \frac{t}{2} \right) - w_0\left(x, \frac{t}{2} \right) \right) \, dx. \quad (58.5)
$$

Так как

$$
\frac{d^2}{dt^2} \left(\int_{|x| \leq t + R} w_0(x, t) \, dx \right) = 0,
$$

то

$$
\int_{|x| \leq t + R} w_0(x, t) \, dx = \int_{\mathbb{R}^3} f(x) \, dx + t \int_{\mathbb{R}^3} g(x) \, dx.
$$

С другой стороны, из сильного принципа Гюйгенса

$$
\int_{|x| \leq \frac{t}{2}} w_0(x, t) \, dx = 0
$$

dля всех $t \geq 2R$. Следовательно, неравенство (58.5) принимает вид

$$
\int_{\frac{t}{2} \leq |x| \leq t + R} w(x, t) \, dx \geq \int_{|x| \leq \frac{t}{2} + R} w\left(x, \frac{t}{2} \right) \, dx + \frac{t}{2} \int_{\mathbb{R}^3} g(x) \, dx.
$$

Так как $\int_{\mathbb{R}^3} g(x) \, dx > 0$, то отсюда следует (58.4). Лемма доказана. □
Следующий результат посвящен несуществованию глобальных решений системы обыкновенных дифференциальных неравенств.

Лемма 58.2. Пусть $a, b \in (0, +\infty)$, $a < b$, и пусть $F, G \in C^2([a, b], \mathbb{R})$. Предположим, что существуют $C_0, R > 0, s \geq 1, \alpha, \beta \geq 0, p, q > 0$ такие, что

\[
F(t) \geq C_0(R + t), \quad G(t) \geq C_0(R + t)^s \ln(R + t), \quad F''(t) \geq C_0(R + t)^{-\alpha}(G(t))^p, \quad G''(t) \geq C_0(R + t)^{-\beta}(F(t))^q
\]

для всех $t \in [a, b)$. Предположим, кроме того, что $pq > 1$ и

\[
q(\alpha - 2) + \beta - 2 = s(pq - 1).
\]

Тогда $b < +\infty$.

Доказательство проводится методом от противного. Предположим, что $b = +\infty$. Из неравенств (58.6) и (58.7) следует, что $F(t), G(t) > 0$ для всех $t \in [a, +\infty)$ и

\[
\lim_{t \to +\infty} F(t) = \lim_{t \to +\infty} G(t) = +\infty.
\]

Так как $F''(t), G''(t) > 0$ для всех $t \in [a, +\infty)$, то F и G являются выпуклыми функциями и этот факт вместе с (58.11) влечет существование $T_0 \geq a$ такого, что $F'(t), G'(t) > 0$ для всех $t \geq T_0$. Умножая (58.8) на $G'(t)$ и интегрируя затем по частям, получим

\[
F'(t)G'(t) - F'(T_0)G'(T_0) - \int_{T_0}^{t} F'(s)G''(s) ds \geq \frac{C_0(R + t)^{-\alpha}}{p + 1} \left[(G(t))^{p+1} - (G(T_0))^{p+1}\right]
\]

для всех $t \geq T_0$. Следовательно, существуют $C_1 > 0$ и $T_1 \geq T_0$ такие, что

\[
F'(t)G'(t) \geq C_1(R + t)^{-\alpha}(G(t))^{p+1}
\]

для всех $t \geq T_1$. Аналогично, умножая (58.12) на $G'(t)$ и интегрируя, устанавливаем существование $C_2 > 0$ и $T_2 \geq T_1$ таких, что

\[
F(t) \geq \frac{C_2(R + t)^{-\alpha}(G(t))^{p+2}}{(G'(t))^2}
\]

для всех $t \geq T_2$. Из (58.9) и (58.13) получаем

\[
(G'(t))^{2q}G''(t) \geq C_0C_2^q(R + t)^{-\beta-q\alpha}(G(t))^{q(p+2)}
\]

для всех $t \geq T_2$ и, следовательно, существуют $C_3 > 0, T_3 \geq T_2$ такие, что

\[
G'(t) \geq C_3(R + t)^{\frac{\alpha q - \beta}{2(q+1)}}(G(t))^{\frac{pq}{2(q+1)+1}}
\]

для всех $t \geq T_3$. Из (58.7) и (58.10) получаем

\[
(G(t))^{\frac{pq}{2(q+1)}} \geq (R + t)^{\frac{\alpha q - \beta}{2(q+1)+1}}(C_0\ln(R + t))^{\frac{pq}{2(q+1)+1}},
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
следовательно, из (58.14) имеем

\[G'(t) \geq C_3(R + t)^{-1}(C_0 \ln(R + t))^{\frac{p-1}{2(p+1)}} G(t) \]

для всех \(t \geq T_3 \). Интегрируя это последнее неравенство, получаем, что существуют \(C_4 > 0 \) и \(T_4 \geq T_3 \) такие, что

\[G(t) \geq C_4(R + t)^{(\ln(R + t))^{\frac{p-1}{2(p+1)}}} \]

для всех \(t \geq T_4 \). Следовательно, существует \(T_5 \geq T_4 \) такое, что

\[(G(t))^{\frac{p-1}{2(p+1)}} \geq (R + t)^{\frac{d+q}{2(q+1)}} \] \((58.15) \)

для всех \(t \geq T_5 \). Окончательно из (58.14) и (58.15) получим

\[G'(t) \geq C_3(G(t))^{1+\frac{p-1}{2(p+1)}} \] \((58.16) \)

для всех \(t \geq T_5 \).

Легко видеть, что положительная функция, определенная на \([T_5, +\infty)\), не может удовлетворять (58.16). Это завершает доказательство леммы. \(\square \)

Доказательство теоремы 58.1. Предположим, что \(1 < p \leq q \). Тогда (58.3) принимает вид

\[pq^2 - pq - 3q = 1. \]

Доказательство проведем методом от противного. Пусть \(T = +\infty \). Положим

\[F(t) = \int_{|x| \leq t} u(x, t) \, dx, \quad G(t) = \int_{|x| \leq t} v(x, t) \, dx, \] \((58.18) \)

где \((u, v)\) — решение задачи (58.1) в \(\mathbb{R}^3 \times [0, +\infty) \). Пусть \(u_0 \) и \(v_0 \) — решения задачи Коши для линейного однородного волнового уравнения с начальными данными \(f_1, g_1, \) и \(f_2, g_2 \) соответственно. На основании теорем сравнения можно показать, что

\[u(x, t) \geq u_0(x, t), \quad v(x, t) \geq v_0(x, t) \]

для всех \((x, t) \in \mathbb{R}^3 \times [0, T)\). С другой стороны, мы знаем, что

\[\frac{d^2}{dt^2} \left(\int_{|x| \leq t+R} u_0(x, t) \, dx \right) = \frac{d^2}{dt^2} \left(\int_{|x| \leq t+R} v_0(x, t) \, dx \right) = 0 \]

и, следовательно,

\[\int_{|x| \leq t+R} u_0(x, t) \, dx = \int_{\mathbb{R}^3} f_1(x) \, dx + t \int_{\mathbb{R}^3} g_1(x) \, dx, \]

\[\int_{|x| \leq t+R} v_0(x, t) \, dx = \int_{\mathbb{R}^3} f_2(x) \, dx + t \int_{\mathbb{R}^3} g_2(x) \, dx. \]
Глава 9. МЕТОД СРАВНЕНИЯ ДЛЯ СИСТЕМЫ ВОЛНОВЫХ УРАВНЕНИЙ

Полагая $C_1 = \min \{ \int_{\mathbb{R}^3} g_1 \, dx, \int_{\mathbb{R}^3} g_2 \, dx \}$ и $T_1 = R + C_1^{-1} \min \{ \int_{\mathbb{R}^3} f_1 \, dx, \int_{\mathbb{R}^3} f_2 \, dx \}$, имеем

$$F(t) \geq \int_{|x| \leq t+R} u_0(x,t) \, dx \geq C_1(R+t), \quad G(t) \geq \int_{|x| \leq t+R} v_0(x,t) \, dx \geq C_1(R+t) \quad (58.19)$$

для всех $t \geq T_1$. Поскольку

$$F''(t) = \int_{|x| \leq t+R} |v(x,t)|^p \, dx, \quad G''(t) = \int_{|x| \leq t+R} |u(x,t)|^q \, dx,$$

по неравенству Гельдера получаем

$$F''(t) \geq \left(\frac{3}{4\pi} \right)^{1-p} (R+t)^{3-3p}(G(t))^p, \quad G''(t) \geq \left(\frac{3}{4\pi} \right)^{1-q} (R+t)^{3-3q}(F(t))^q \quad (58.20)$$

для всех $t \geq T_1$.

Заметим, что первое из неравенств (58.19) соответствует (58.6), а неравенства (58.20) отвечают условиям (58.8), (58.9) леммы 58.2. Поэтому остается доказать выполнение условия (58.7), чему и посвящено все последующее изложение.

Из сильного принципа Гюйгенса

$$\int_{|x| \leq t+R} |u_0(x,t)|^q \, dx = \int_{t-R \leq |x| \leq t+R} |u_0(x,t)|^q \, dx$$

для всех $t \geq R$. Из (58.19) и неравенства Гельдера получим

$$\int_{t-R \leq |x| \leq t+R} |u_0(x,t)|^q \, dx \geq \frac{C_1^q}{(8\pi R)^{q-1}}(R+t)^{2-q}$$

для всех $t \geq T_1$. Следовательно,

$$G''(t) \geq \frac{C_1^q}{(8\pi R)^{q-1}}(R+t)^{2-q}$$

для всех $t \geq T_1$. Дважды интегрируя это неравенство, устанавливаем существование $C_2 > 0$ и $T_2 \geq T_1$ таких, что

$$G(t) \geq C_2(R+t)^{4-q} \quad (58.21)$$

для всех $t \geq T_2$.

Пусть $t \geq 2T_2$. Получим теперь с учетом второго уравнения из системы (58.1) оценку снизу для интеграла от функции v^p. Так как v удовлетворяет предположениям леммы 58.1, то

$$\int_{\frac{t}{2} \leq |x| \leq t+R} v(x,t) \, dx \geq \int_{|x| \leq \frac{t}{2}+R} v \left(x, \frac{t}{2} \right) \, dx.$$
Тогда из (58.21)
\[
\int_{\frac{t}{2} \leq |x| \leq t+R} v(x, t) \, dx \geq C_2 \left(R + \frac{t}{2} \right)^{4-q}
\]
и, снова используя неравенство Гельдера, получим
\[
\int_{\frac{t}{2} \leq |x| \leq t+R} |v(x, t)|^p \, dx \geq C'_2 \left(R + \frac{t}{2} \right)^{4p-4q} \left(\frac{4}{3} \pi (R + t)^3 \right)^{1-p}.
\]
Следовательно, существует \(C_3 > 0 \) такое, что
\[
\int_{\frac{t}{2} \leq |x| \leq t+R} |v(x, t)|^p \, dx \geq C_3 (R + t)^{3p-3q} \quad (58.22)
\]
для всех \(t \geq 2T_2 \).

Используя это неравенство, приступим к получению оценки снизу интегралов от функции \(u^p \) на множествах специального вида, чтобы в дальнейшем, снова обращаясь ко второму уравнению системы (58.1), получить улучшенную оценку для интеграла от \(v(x, t) \), т.е. для функции \(G(t) \).

Пусть \(t \geq T_3 \), где \(T_3 = 8T_2 + 3R \), и пусть \(m \in \mathbb{N} \) такое, что
\[
\frac{3T_2}{2R} + 1 \leq m \leq \frac{2}{3} + \frac{t}{3R}.
\]
Определим
\[H_m(t) = \{ x \in \mathbb{R}^3 : t - (2m + 1)R \leq |x| \leq t - (2m - 1)R \}. \]
Поскольку \(m \geq 2 \), то
\[
\int_{H_m(t)} u(x, t) \, dx = 2\pi \int_{t-(2m-1)R}^{t-(2m+1)R} r \, dr \int_0^t d\tau \int_{|r-t+\tau|}^{r+t-\tau} \rho |v|^p(\rho, \tau) \, d\rho. \quad (58.24)
\]
Заметим, что если
\[
t - (2m + 1)R \leq r \leq t - (2m - 1)R,
\]
то множество \(A = \{ (\rho, \tau) \in \mathbb{R}^2 : 0 \leq \tau \leq t, |r - t + \tau| \leq \rho \leq r + t - \tau \} \) содержит множество \(B = \{ (\rho, \tau) \in \mathbb{R}^2 : \frac{2}{3}(2m + 1)R \leq \tau \leq 2(2m - 1)R, \frac{2}{3} \leq \rho \leq R + \tau \} \). Следовательно, из (58.24) имеем
\[
\int_{H_m(t)} u(x, t) \, dx \geq 2\pi \int_{t-(2m-1)R}^{t-(2m+1)R} r \, dr \int_0^{\frac{2}{3}(2m+1)R} d\tau \int_{\frac{2}{3}(2m+1)R}^{R+\tau} \rho |v|^p(\rho, \tau) \, d\rho \geq \frac{1}{2} \int_{t-(2m-1)R}^{t-(2m+1)R} r \, dr \int_{\frac{2}{3}(2m+1)R}^{\frac{2}{3}(2m+1)R} (R + \tau)^{-1} d\tau \int_{\frac{2}{3}(2m+1)R}^{R+\tau} 4\pi \rho^2 |v|^p(\rho, \tau) \, d\rho.
\]
Глава 9. МЕТОД СРАВНЕНИЯ ДЛЯ СИСТЕМЫ ВОЛНОВЫХ УРАВНЕНИЙ

Левая часть (58.23) означает, что \(\tau \geq \frac{2}{3}(2m+1)R \geq 2T_2 \) и, следовательно, (58.22) дает

\[
\int_{H_m(t)} u(x, t) \, dx \geq \frac{1}{2} \int_{t-(2m+1)R}^{2(2m-1)R} r \, dr \int_{\frac{2}{3}(2m+1)R}^{2(2m-1)R} C_3(R + \tau)^{2+p-pq} \, d\tau. \tag{58.25}
\]

С учетом (58.17) и (58.23) получаем

\[
\int_{\frac{2}{3}(2m+1)R}^{2(2m+1)R} (R + \tau)^{2+p-pq} \, d\tau \geq \frac{1}{12} R^{-\frac{1}{4}} m^{-\frac{1}{4}}. \tag{58.26}
\]

Кроме того, имеем

\[
\frac{1}{2} \int_{t-(2m+1)R}^{t+(2m+1)R} r \, dr = (t - 2mR)R \geq \frac{R}{2} (R + t). \tag{58.27}
\]

Используя (58.26) и (58.27), из (58.25) следует

\[
\int_{H_m(t)} u(x, t) \, dx \geq \frac{C_3}{24} R^{1-\frac{1}{4}} (R + t)m^{-\frac{1}{4}}.\tag{58.28}
\]

Тогда по неравенству Гельдера

\[
\int_{H_m(t)} |u(x, t)|^q \, dx \geq C_4 m^{-1} (R + t)^{2-q}, \tag{58.29}
\]

где \(C_4 \) — положительная постоянная, не зависящая от \(t \) и \(m \). Замечая, что существует \(C_5 > 0 \) такое, что

\[
\sum_{m \in \left[\frac{2T_3}{mR}, \frac{2T_3}{mR} + 1 \right]} m^{-1} \geq C_5 \ln(R + t) \tag{58.29}
\]

dля всех \(t \geq T_3 \). Из (58.28) и (58.29) легко получаем

\[
G''(t) = \int_{|x| \leq t+R} |u(x, t)|^q \, dx \geq C_4 C_5 (R + t)^{2-q} \ln(R + t)
\]

dля всех \(t \geq T_3 \). Интегрируя это дифференциальное неравенство, получаем, что существуют \(C_6 > 0 \) и \(T_3 \geq T_3 \) такие, что

\[
G(t) \geq C_6 (R + t)^{4-q} \ln(R + t) \tag{58.30}
\]

dля всех \(t \geq T_4 \), т.е. выполнено условие (58.7) леммы 58.2.

Таким образом, неравенства (58.19), (58.30), (58.20) соответствуют условиям (58.6)–(58.9) леммы 58.2, а равенство (58.17) отвечает условию (58.10). Итак, функции \(F \) и \(G \) удовлетворяют предположениям леммы 58.2 на \((T_3, +\infty)\), следовательно, время существования решения конечно. Получили противоречие. Теорема доказана. \(\square \)

Отметим еще раз, что приведенные результаты получены совместно с Д. Дель Санто [193].
Глава 10. МЕТОД ПРОБНЫХ ФУНКЦИЙ. ОТСУТСТВИЕ РЕШЕНИЙ СИСТЕМ НЕРАВЕНСТВ

59. ОТСУТСТВИЕ РЕШЕНИЙ ГИПЕРБОЛИЧЕСКИХ СИСТЕМ С НЕКОМПАКТНЫМ НОСИТЕЛЕМ

Приводимые в данном разделе результаты получены совместно с Л. Вероном [179]. Пусть L_m — дифференциальный оператор порядка m, $i = 1, 2$, определенный формулой

$$L_m(\zeta) = \sum_{|\alpha|=m} D^n(a_{i,\alpha}(x,t)\zeta),$$

(59.1)

где $a_{i,\alpha}$ — ограниченные измеримые функции на $\mathbb{R}^N \times \mathbb{R}+ = \mathbb{R}^{N+1}$, и φ_p — вещественнонаправленные непрерывные функции, удовлетворяющие неравенствам

$$|\varphi_p(r)| \leq c|r|^p_i \quad \forall r \in \mathbb{R}$$

(59.2)

для некоторых $p_i > 0$ и $c > 0$.

Определение 59.1. Пара функций

$$(u, v) \in L^p_1(\mathbb{R}^{N+1}) \cap L^q_1(\mathbb{R}^{N+1})$$

называется слабым решением системы неравенств

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2} \geq L_m (\varphi (u)) + |v|^q_1, \\
\frac{\partial^2 v}{\partial t^2} \geq L_m (\varphi (v)) + |u|^q_2
\end{cases}$$

(59.3)

в \mathbb{R}^{N+1} с начальными данными

$$(u(\cdot, 0), v(\cdot, 0)) = (u_0(\cdot), v_0(\cdot)), \quad \left(\frac{\partial u}{\partial t}(\cdot, 0), \frac{\partial v}{\partial t}(\cdot, 0)\right) = (u_1(\cdot), v_1(\cdot)),$$

принадлежащими $L^1_1(\mathbb{R}^N)$, если для любой функции $\zeta \in C^\infty_0(\mathbb{R}^{N+1})$, $\zeta \geq 0$, выполняются неравенства

$$- \int_{\mathbb{R}^N} u_1(x)\zeta(x, 0) \, dx + \int_{\mathbb{R}^N} u_0(x) \frac{\partial \zeta}{\partial t}(x, 0) \, dx + \int_{\mathbb{R}^N} u_1 \frac{\partial^2 \zeta}{\partial t^2} \, dx \, dt \geq$$

$$\geq \int_0^\infty \int_{\mathbb{R}^N} \varphi_1(u) L^*_m(\zeta) \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} |v|^q_1 \zeta \, dx \, dt$$

(59.4)

и

$$- \int_{\mathbb{R}^N} v_1(x)\zeta(x, 0) \, dx + \int_{\mathbb{R}^N} v_0(x) \frac{\partial \zeta}{\partial t}(x, 0) \, dx + \int_{\mathbb{R}^N} v_1 \frac{\partial^2 \zeta}{\partial t^2} \, dx \, dt \geq$$

$$\geq \int_0^\infty \int_{\mathbb{R}^N} \varphi_2(v) L^*_m(\zeta) \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} |u|^q_2 \zeta \, dx \, dt,$$

(59.5)

где $L^*_m = (-1)^m \sum_{|\alpha|=m} a_{i,\alpha}(x,t)D^n$.
Теорема 59.1. Пусть \(q_1 > \max(1, p_2) \) и \(q_2 > \max(1, p_1) \). Тогда не существует глобального нетривиального слабого решения \((u, v)\) дифференциальных неравенств (59.3) такого, что \(\int_{\mathbb{R}^N} u_1 dx \geq 0 \) и \(\int_{\mathbb{R}^N} v_1 dx \geq 0 \), если выполнено одно из следующих условий:

\[
\begin{align*}
q_1 \geq q_2, \quad & m_2 q_1/(q_1 - p_2) \geq m_1 q_2/(q_2 - p_1), \quad N \leq m_1 q_2(q_1 + 1)/(2q_1 (q_2 - p_1)); \\
q_1 \geq q_2, \quad & m_2 q_1/(q_1 - p_2) < m_1 q_2/(q_2 - p_1), \quad N \leq m_2(q_1 + 1)/(2(q_1 - p_2)); \\
q_1 < q_2, \quad & m_2 q_1/(q_1 - p_2) \geq m_1 q_2/(q_2 - p_1), \quad N \leq m_1(q_2 + 1)/(2(q_2 - p_1)); \\
q_1 < q_2, \quad & m_2 q_1/(q_1 - p_2) < m_1 q_2/(q_2 - p_1), \quad N \leq m_2 q_1(q_2 + 1)/(2q_2(q_1 - p_2)).
\end{align*}
\]

Доказательство. Рассмотрим неотрицательную пробную функцию \(\zeta \in C^\infty_0(\mathbb{R}_+^{N+1}) \) такую, что

\[
\int_{0}^{\infty} \int_{\mathbb{R}^N} \left(\left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q_1} + |L_{m_1}(\zeta)|q_1/(q_1-p_2) \zeta^{-p_2/(q_1-p_2)} \right) dx dt + \int_{0}^{\infty} \int_{\mathbb{R}^N} \left(\left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q_2} \zeta^{1-q_2} + |L_{m_2}(\zeta)|q_2/(q_2-p_1) \zeta^{-p_1/(q_2-p_1)} \right) dx dt < \infty,
\]
где \(q_i = q_i/(q_i - 1), \ i = 1, 2 \). Применяя неравенство Гельдера, получим

\[
\begin{align*}
\int_{0}^{\infty} \int_{\mathbb{R}^N} \left| \frac{\partial^2 \zeta}{\partial t^2} \right| dx dt & \leq \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} |u|^{q_2} \zeta dx dt \right)^{1/q_2} \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} \left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q_2} \zeta^{1-q_2} dx dt \right)^{1/q_2} \\
& \leq \frac{1}{4} \int_{0}^{\infty} \int_{\mathbb{R}^N} |u|^{q_2} \zeta dx dt + C_{1.1} \int_{0}^{\infty} \int_{\mathbb{R}^N} \left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q_2} \zeta^{1-q_2} dx dt.
\end{align*}
\]

и

\[
\begin{align*}
- \int_{0}^{\infty} \int_{\mathbb{R}^N} \varphi_{p_1}(u)L_{m_1}(\zeta) dx dt & \leq C \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} |u|^{q_2} \zeta dx dt \right)^{p_1/q_2} \\
& \times \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} |L_{m_1}(\zeta)|^{q_2/(q_2-p_1)} \zeta^{-p_1/(q_2-p_1)} dx dt \right)^{(q_2-p_1)/q_2} \\
& \leq \frac{1}{4} \int_{0}^{\infty} \int_{\mathbb{R}^N} |u|^{q_2} \zeta dx dt + C_{1.2} \int_{0}^{\infty} \int_{\mathbb{R}^N} |L_{m_1}(\zeta)|^{q_2/(q_2-p_1)} \zeta^{-p_1/(q_2-p_1)} dx dt.
\end{align*}
\]

Аналогично

\[
\begin{align*}
\int_{0}^{\infty} \int_{\mathbb{R}^N} \left| \frac{\partial^2 \zeta}{\partial t^2} \right| dx dt & \leq \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} |v|^{q_1} \zeta dx dt \right)^{1/q_1} \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} \left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q_1} \zeta^{1-q_1} dx dt \right)^{1/q_1} \\
& \leq \frac{1}{4} \int_{0}^{\infty} \int_{\mathbb{R}^N} |v|^{q_1} \zeta dx dt + C_{2.1} \int_{0}^{\infty} \int_{\mathbb{R}^N} \left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q_1} \zeta^{1-q_1} dx dt.
\end{align*}
\]
\[-\int_{0}^{\infty} \int_{\mathbb{R}^N} \varphi_{p_2}(v) L_{m_2}^*(\zeta) \, dx \, dt \leq c \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} |v|^{q_1} \zeta \, dx \, dt \right)^{p_2/q_1} \times \]
\[\times \left(\int_{0}^{\infty} \int_{\mathbb{R}^N} |L_{m_2}^*(\zeta)|^{q_1/(q_1-p_2)} \zeta^{-p_2/(q_1-p_2)} \, dx \, dt \right)^{(q_1-p_2)/q_1} \leq \frac{1}{4} \int_{0}^{\infty} \int_{\mathbb{R}^N} |v|^{q_1} \zeta \, dx \, dt + C_{2,2} \int_{0}^{\infty} \int_{\mathbb{R}^N} |L_{m_2}^*(\zeta)|^{q_1/(q_1-p_2)} \zeta^{-p_2/(q_1-p_2)} \, dx \, dt \] (59.14)

Выбираем \(\zeta \) так, чтобы
\[\int_{\mathbb{R}^N} u_0(x) \frac{\partial \zeta}{\partial t}(x,0) \, dx = 0, \quad \int_{\mathbb{R}^N} v_0(x) \frac{\partial \zeta}{\partial t}(x,0) \, dx = 0. \] (59.15)

Из (59.4), (59.11) и (59.12) имеем
\[\int_{\mathbb{R}^N} u_1(x) \zeta(x,0) \, dx + \int_{0}^{\infty} \int_{\mathbb{R}^N} |v|^{q_1} \zeta \, dx \, dt \leq \frac{1}{2} \int_{0}^{\infty} \int_{\mathbb{R}^N} |u|^{q_2} \zeta \, dx \, dt + C_{1,1} \int_{0}^{\infty} \int_{\mathbb{R}^N} \left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q_2} \zeta^{1-q_2} \, dx \, dt + \]
\[+ C_{1,2} \int_{0}^{\infty} \int_{\mathbb{R}^N} |L_{m_1}^*(\zeta)|^{q_2/(q_2-p_1)} \zeta^{-p_1/(q_2-p_1)} \, dx \, dt \] (59.16)

и из (59.5), (59.13) и (59.14) имеем
\[\int_{\mathbb{R}^N} v_1(x) \zeta(x,0) \, dx + \int_{0}^{\infty} \int_{\mathbb{R}^N} |u|^{q_2} \zeta \, dx \, dt \leq \frac{1}{2} \int_{0}^{\infty} \int_{\mathbb{R}^N} |v|^{q_1} \zeta \, dx \, dt + C_{2,1} \int_{0}^{\infty} \int_{\mathbb{R}^N} \left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q_1} \zeta^{1-q_1} \, dx \, dt + \]
\[+ C_{2,2} \int_{0}^{\infty} \int_{\mathbb{R}^N} |L_{m_2}^*(\zeta)|^{q_1/(q_1-p_2)} \zeta^{-p_2/(q_1-p_2)} \, dx \, dt. \] (59.17)

Суммируя (59.16) и (59.17), получаем следующую оценку:
\[2 \int_{\mathbb{R}^N} (u_1 + v_1) \zeta(x,0) \, dx + \int_{0}^{\infty} \int_{\mathbb{R}^N} (|v|^{q_1} + |u|^{q_2}) \zeta \, dx \, dt \leq \]
\[\leq C_1 \int_{0}^{\infty} \int_{\mathbb{R}^N} \left(\left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q_2} \zeta^{1-q_2} + \left| \frac{\partial^2 \zeta}{\partial t^2} \right|^{q_1} \zeta^{1-q_1} \right) \, dx \, dt + \]
\[+ C_2 \int_{0}^{\infty} \int_{\mathbb{R}^N} \left(|L_{m_1}^*(\zeta)|^{q_2/(q_2-p_1)} \zeta^{-p_1/(q_2-p_1)} + |L_{m_2}^*(\zeta)|^{q_1/(q_1-p_2)} \zeta^{-p_2/(q_1-p_2)} \right) \, dx \, dt. \] (59.18)

Возьмем снова
\[\zeta(x,t) = \varphi \left(\frac{t^\kappa + |x|^\mu}{R^2} \right),\]
где \(\varphi \in C_0^\infty(\mathbb{R}_+) \), \(0 \leq \varphi \leq 1 \), и

\[
\varphi(r) = \begin{cases}
0, & r \geq 2, \\
1, & 0 \leq r \leq 1,
\end{cases}
\]

(59.19)

\(R \) — положительный параметр и \(\varkappa > 1, \mu > 0 \) будут определены позднее.

Чтобы оценить правую часть (59.18), сделаем, как и раньше, замену переменных

\[
\begin{cases}
R^{-2t^\varkappa} = \tau^\varkappa, \\
R^{-2|x|^\mu} = |y|^\mu
\end{cases} \quad \Leftrightarrow \quad \begin{cases}
t = R^{2/\varkappa} \tau, \\
x = R^{2/\mu} y,
\end{cases}
\]

(59.20)

что дает

\[
2 \int_{\mathbb{R}^N} (u_1 + v_1) \zeta(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} (|v|^{q_1} + |u|^{q_2}) \zeta \, dx \, dt \leq
\]

\[
\leq C_3 (R^{-4q'_1/\varkappa + 2/\varkappa + 2N/\mu} + R^{-4q'_2/\varkappa + 2/\varkappa + 2N/\mu}) +
\]

\[
+ C_4 (R^{-2m_1q_2/(\mu(q_2 - p_1)) + 2/\varkappa + 2N/\mu} + R^{-2m_2q_1/(\mu(q_1 - p_2)) + 2/\varkappa + 2N/\mu}).
\]

(59.21)

Полагая \(\theta = \mu/\varkappa > 0 \), заметим, что степени \(R \) будет неположительными, если для некоторого \(\theta > 0 \) выполнены следующие неравенства:

\[
\begin{align*}
N &\leq \theta(q_1 + 1)/(q_1 - 1), \\
N &\leq \theta(q_2 + 1)/(q_2 - 1), \\
N &\leq m_2q_1/(q_1 - p_2) - \theta, \\
N &\leq m_1q_2/(q_2 - p_1) - \theta.
\end{align*}
\]

(59.22)

Определим

\[
\tilde{N} = \max\{r \geq 0 : \exists \theta > 0, \text{ для которого выполнено } (59.22)\}.
\]

(59.23)

Тогда \(N = E(\tilde{N}) \) есть наибольшее целое, для которого выполнено (59.22). Например, для \(q_1 \geq q_2 \) и \(m_2q_1/(q_2 - p_2) \geq m_1q_2/(q_2 - p_1) \) параметр \(\theta \) определяется соотношением

\[
\theta(q_1 + 1)/(q_1 - 1) = m_1q_2/(q_2 - p_1) - \theta \quad \Leftrightarrow \quad \theta = 2^{-1}m_1q_2(q_1 - 1)/(q_1(q_2 - p_1))
\]

(59.24)

и условия (59.22) принимают вид \(N \leq m_1q_2(q_1 + 1)/(2q_1(q_2 - p_1)) \), т.е. случай (59.6). Если \(q_1 \geq q_2 \) и \(m_2q_1/(q_1 - p_2) < m_1q_2/(q_2 - p_1) \), то

\[
\theta(q_1 + 1)/(q_1 - 1) = m_2q_1(q_1 - p_2) - \theta \quad \Leftrightarrow \quad \theta = 2^{-1}m_2(q_1 - 1)/(q_1 - p_2)
\]

(59.25)

и условия (59.22) дают \(N \leq m_2(q_1 + 1)/(2(q_1 - p_2)) \), т.е. случай (59.7). Аналогично рассматривается случай \(q_1 < q_2 \). Устремляя \(R \rightarrow \infty \) и используя неравенство \(\int_{\mathbb{R}^N} (u_1 + v_1)\zeta(x, 0) \, dx \geq 0 \), аналогично предыдущим доказательствам приходим к требуемому:

\[
\int_0^\infty \int_{\mathbb{R}^N} (|v|^{q_1} + |u|^{q_2}) \zeta \, dx \, dt = 0.
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Пример 59.1. В случае \(m_i = 2 \) и \(p_i = 1 \), \(i = 1, 2 \), отношение \(q_1 \geq q_2 \) означает

\[
\frac{m_2 q_1}{q_1 - p_2} = \frac{2q_1}{q_1 - 1} \leq \frac{m_1 q_2}{q_2 - p_1} = \frac{2q_2}{q_2 - 1}.
\]

Отсутствие глобального решения имеет место, когда \(N \leq (q_1 + 1)/(q_1 - 1) \), т.е.

\[q_1 \leq \frac{N + 1}{N - 1}, \]

а это те же самые условия, что и для одного уравнения.

В следующих теоремах мы приводим результаты об отсутствии решения недиагональных гиперболических систем

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} & \geq L_{m_1}(v) + |u|^{q_1}, \\
\frac{\partial^2 v}{\partial t^2} & \geq L_{m_2}(v) + |v|^{q_2}
\end{align*}
\]

и

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} & \geq L_{m_1}(v) + |u|^{q_1}, \\
\frac{\partial^2 v}{\partial t^2} & \geq L_{m_2}(v) + |u|^{q_2}.
\end{align*}
\]

Пара функций \((u, v) \in L_{\text{loc}}^{q_1}(\mathbb{R}^{N+1}_+) \cap L_{\text{loc}}^{p_1}(\mathbb{R}^{N+1}_+) \times L_{\text{loc}}^{q_2}(\mathbb{R}^{N+1}_+) \cap L_{\text{loc}}^{p_2}(\mathbb{R}^{N+1}_+) \) называется слабым решением в \(\mathbb{R}^{N+1}_+ \) задачи (59.26) с начальными данными \(u(\cdot, 0), v(\cdot, 0) = (u_0(\cdot), v_0(\cdot)) \) и \(\left(\frac{\partial u}{\partial t}(\cdot, 0), \frac{\partial v}{\partial t}(\cdot, 0) \right) = (u_1(\cdot), v_1(\cdot)) \), принадлежащими \(L_{\text{loc}}^1(\mathbb{R}^N) \), если для любой функции \(\zeta \in C_0^\infty(\mathbb{R}^{N+1}_+) \), \(\zeta \geq 0 \), выполняются неравенства

\[
- \int_{\mathbb{R}^N} u_1(x)\zeta(x, 0) \, dx + \int_{\mathbb{R}^N} u_0(x) \frac{\partial \zeta}{\partial t}(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial^2 \zeta}{\partial t^2} \, dx \, dt \\
\geq \int_0^\infty \int_{\mathbb{R}^N} \varphi_{p_1}(v) L_{m_1}^\ast(\zeta) \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} |u|^{q_1} \zeta \, dx \, dt
\]

и

\[
- \int_{\mathbb{R}^N} v_1(x)\zeta(x, 0) \, dx + \int_{\mathbb{R}^N} v_0(x) \frac{\partial \zeta}{\partial t}(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} v \frac{\partial^2 \zeta}{\partial t^2} \, dx \, dt \\
\geq \int_0^\infty \int_{\mathbb{R}^N} \varphi_{p_2}(u) L_{m_2}^\ast(\zeta) \, dx \, dt + \int_0^\infty \int_{\mathbb{R}^N} |v|^{q_2} \zeta \, dx \, dt.
\]

Аналогично \((u, v) \in L_{\text{loc}}^{q_2}(\mathbb{R}^{N+1}_+) \cap L_{\text{loc}}^{p_2}(\mathbb{R}^{N+1}_+) \times L_{\text{loc}}^{q_1}(\mathbb{R}^{N+1}_+) \cap L_{\text{loc}}^{p_1}(\mathbb{R}^{N+1}_+) \) называется слабым решением в \(\mathbb{R}^{N+1}_+ \) задачи (59.27) с начальными данными \(u(\cdot, 0), v(\cdot, 0) = (u_0(\cdot), v_0(\cdot)) \) и \(\left(\frac{\partial u}{\partial t}(\cdot, 0), \frac{\partial v}{\partial t}(\cdot, 0) \right) = (u_1(\cdot), v_1(\cdot)) \), принадлежащими \(L_{\text{loc}}^1(\mathbb{R}^N) \), если для любой функции \(\zeta \in C_0^\infty(\mathbb{R}^{N+1}_+) \), \(\zeta \geq 0 \), выполняются неравенства

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Глава 10. МЕТОД ПРОБНЫХ ФУНКЦИЙ ДЛЯ СИСТЕМ НЕРАВЕНСТВ

\[-\int_{\mathbb{R}^N} u_1(x)\zeta(x,0)\,dx + \int_{\mathbb{R}^N} u_0(x)\frac{\partial \zeta}{\partial t}(x,0)\,dx + \int_0^\infty \int_{\mathbb{R}^N} u\frac{\partial^2 \zeta}{\partial t^2}\,dx\,dt \geq\]

\[\geq \int_0^\infty \int_{\mathbb{R}^N} \varphi_{p_1}(v)L_{m_1}^*(\zeta)\,dx\,dt + \int_0^\infty \int_{\mathbb{R}^N} |v|^{p_1} \zeta\,dx\,dt \quad (59.30)\]

и

\[-\int_{\mathbb{R}^N} v_1(x)\zeta(x,0)\,dx + \int_{\mathbb{R}^N} v_0(x)\frac{\partial \zeta}{\partial t}(x,0)\,dx + \int_0^\infty \int_{\mathbb{R}^N} v\frac{\partial^2 \zeta}{\partial t^2}\,dx\,dt \geq\]

\[\geq \int_0^\infty \int_{\mathbb{R}^N} \varphi_{p_2}(u)L_{m_2}^*(\zeta)\,dx\,dt + \int_0^\infty \int_{\mathbb{R}^N} |u|^{p_2} \zeta\,dx\,dt. \quad (59.31)\]

Поскольку техника исследования таких недиагональных систем полностью аналогична технике, использованной в доказательстве теоремы 59.1, ограничившим формулировкой результатов и отметим отклоня от теоремы 59.1.

Теорема 59.2. Пусть \(q_1 > \max(1, p_2)\) и \(q_2 > \max(1, p_1)\). Тогда не существует глобального непрерывного слабого решения \((u, v)\) дифференциальных неравенств (59.26) такого, что

\[\int_{\mathbb{R}^N} u_1 \,dx \geq 0, \quad \int_{\mathbb{R}^N} v_1 \,dx \geq 0,\]

если выполнено одно из следующих условий:

- \(q_1 \geq q_2, \quad m_{2q_1}/(q_1 - p_2) \geq m_{1q_2}/(q_2 - p_1),\) \(N \leq m_{1q_2}(q_1 + 1)/(2q_1(q_2 - p_1));\)
- \(q_1 \geq q_2, \quad m_{2q_1}/(q_1 - p_2) < m_{1q_2}/(q_2 - p_1),\) \(N \leq m_{2q_1}(q_1 + 1)/(2q_2 - p_1));\)
- \(q_1 < q_2, \quad m_{2q_1}/(q_1 - p_2) \geq m_{1q_2}/(q_2 - p_1),\) \(N \leq m_{1q_2}(q_2 + 1)/(2q_2 - p_1));\)
- \(q_1 < q_2, \quad m_{2q_1}/(q_1 - p_2) < m_{1q_2}/(q_2 - p_1),\) \(N \leq m_{2q_1}(q_2 + 1)/(2q_2 - p_2)).\)

Доказательство отличается от доказательства теоремы 59.1 только тем, что (59.11) и (59.13) заменяются соответственно на

\[\int_0^\infty \int_{\mathbb{R}^N} u\frac{\partial^2 \zeta}{\partial t^2}\,dx\,dt \leq \left(\int_0^\infty \int_{\mathbb{R}^N} |u|^{q_1}\zeta\,dx\,dt\right)^{1/q_1} \left(\int_0^\infty \int_{\mathbb{R}^N} \left|\frac{\partial^2 \zeta}{\partial t^2}\right|^{q_1'}\zeta^{1-q_1'}\,dx\,dt\right)^{1/q_1'} \leq \frac{1}{4} \int_0^\infty \int_{\mathbb{R}^N} |u|^{q_1}\zeta\,dx\,dt + C_{1,1} \int_0^\infty \int_{\mathbb{R}^N} \left|\frac{\partial^2 \zeta}{\partial t^2}\right|^{q_1'}\zeta^{1-q_1'}\,dx\,dt, \quad (59.32)\]

\[\int_0^\infty \int_{\mathbb{R}^N} v\frac{\partial^2 \zeta}{\partial t^2}\,dx\,dt \leq \left(\int_0^\infty \int_{\mathbb{R}^N} |v|^{q_2}\zeta\,dx\,dt\right)^{1/q_2} \left(\int_0^\infty \int_{\mathbb{R}^N} \left|\frac{\partial^2 \zeta}{\partial t^2}\right|^{q_2'}\zeta^{1-q_2'}\,dx\,dt\right)^{1/q_2'} \leq \frac{1}{4} \int_0^\infty \int_{\mathbb{R}^N} |v|^{q_2}\zeta\,dx\,dt + C_{2,1} \int_0^\infty \int_{\mathbb{R}^N} \left|\frac{\partial^2 \zeta}{\partial t^2}\right|^{q_2'}\zeta^{1-q_2'}\,dx\,dt, \quad (59.33)\]

где пробная функция удовлетворяет (59.10) и выполнены (59.12) и (59.14). Неравенство (59.18) остается справедливым и таким образом продолжение доказательства очевидно. □
Часть III. ЭВОЛЮЦИОННЫЕ ЗАДАЧИ ВТОРОГО ПОРЯДКА

Теорема 59.3. Пусть $q_1 > \max(1, p_1)$ и $q_2 > \max(1, p_2)$. Тогда не существует глобального нетривиального слабого решения (u, v) дифференциальных неравенств (59.27) такого, что

$$
\int_{\mathbb{R}^N} u_1 \, dx \geq 0, \quad \int_{\mathbb{R}^N} v_1 \, dx \geq 0,
$$

если выполнено одно из следующих условий:

- $q_1 \geq q_2$, $m_2 q_2/(q_2 - p_2) \geq m_1 q_1/(q_1 - p_1)$, $N \leq m_1(q_1 + 1)/(2(q_1 - p_1))$;
- $q_1 \geq q_2$, $m_2 q_2/(q_2 - p_2) < m_1 q_1/(q_1 - p_1)$, $N \leq m_2 q_2(q_1 + 1)/(2q_1(q_2 - p_2))$;
- $q_1 < q_2$, $m_2 q_2/(q_2 - p_2) \leq m_1 q_1/(q_1 - p_1)$, $N \leq m_2(q_2 + 1)/(2(q_2 - p_2))$;
- $q_1 < q_2$, $m_2 q_2/(q_2 - p_2) > m_1 q_1/(q_1 - p_1)$, $N \leq m_1 q_1(q_2 + 1)/(2q_2(q_1 - p_1))$.

Доказательство. Рассмотрим неотрицательную пробную функцию $\zeta \in C^\infty_0(\mathbb{R}^{N+1}_+)$ такую, что

$$
\int_0^\infty \int_{\mathbb{R}^N} \left(\frac{\partial^2 \zeta}{\partial t^2} \right)^{q_1} \left(\frac{\partial \zeta}{\partial t} \right)^{q_1} \left(|L_{m_1}^*(\zeta)|^{q_1/(q_1 - p_1)} \zeta^{-p_1/(q_1 - p_1)} \right) \, dx \, dt +
\int_0^\infty \int_{\mathbb{R}^N} \left(\frac{\partial^2 \zeta}{\partial t^2} \right)^{q_2} \left(\frac{\partial \zeta}{\partial t} \right)^{q_2} \left(|L_{m_2}^*(\zeta)|^{q_2/(q_2 - p_2)} \zeta^{-p_2/(q_2 - p_2)} \right) \, dx \, dt < \infty. \quad (59.34)
$$

Оценки (59.11) и (59.13) остаются без изменения, тогда как (59.12) и (59.14) заменяются соответственно на

$$
- \int_0^\infty \int_{\mathbb{R}^N} \varphi_{p_2}(u)L_{m_2}^*(\zeta) \, dx \, dt \leq c \left(\int_0^\infty |u|^{p_2} \zeta \, dx \right)^{p_2/q_2} \times
\int_0^\infty \left(\int_{\mathbb{R}^N} |L_{m_2}^*(\zeta)|^{q_2/(q_2 - p_2)} \zeta^{-p_2/(q_2 - p_2)} \, dx \right)^{(q_2 - p_2)/q_2} \leq
\leq \frac{1}{4} \int_0^\infty |u|^{p_2} \zeta \, dx \, dt + C_{1,2} \int_0^\infty \left(\int_{\mathbb{R}^N} |L_{m_2}^*(\zeta)|^{q_2/(q_2 - p_2)} \zeta^{-p_2/(q_2 - p_2)} \, dx \right) dx \, dt \quad (59.35)
$$

и

$$
- \int_0^\infty \int_{\mathbb{R}^N} \varphi_{p_1}(v)L_{m_1}^*(\zeta) \, dx \, dt \leq c \left(\int_0^\infty |v|^{p_1} \zeta \, dx \right)^{p_1/q_1} \times
\int_0^\infty \left(\int_{\mathbb{R}^N} |L_{m_1}^*(\zeta)|^{q_1/(q_1 - p_1)} \zeta^{-p_1/(q_1 - p_1)} \, dx \right)^{(q_1 - p_1)/q_1} \leq
\leq \frac{1}{4} \int_0^\infty |v|^{p_1} \zeta \, dx \, dt + C_{2,2} \int_0^\infty \left(\int_{\mathbb{R}^N} |L_{m_1}^*(\zeta)|^{q_1/(q_1 - p_1)} \zeta^{-p_1/(q_1 - p_1)} \, dx \right) dx \, dt. \quad (59.36)
$$
Соответственно (59.18) заменяется на

\[2 \int_{\mathbb{R}^N} (u_1 + v_1) \zeta(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} (|v|^q_1 + |u|^q_2) \zeta \, dx \, dt \leq \]

\[\leq C_1 \int_0^\infty \int_{\mathbb{R}^N} \left(\frac{\partial^2 \zeta}{\partial t^2} \right)^{q_2} \zeta^{1-q_2} + \left(\frac{\partial^2 \zeta}{\partial t^2} \right)^{q_1} \zeta^{1-q_1} \, dx \, dt + \]

\[+ C_2 \int_0^\infty \int_{\mathbb{R}^N} \left(|L_{m_1}(\zeta)|^{q_1/(q_1-p_1)} \zeta^{-p_1/(q_1-p_1)} + |L_{m_2}(\zeta)|^{q_2/(q_2-p_2)} \zeta^{-p_2/(q_2-p_2)} \right) \, dx \, dt \]

(59.37)

и (59.21) принимает вид

\[2 \int_{\mathbb{R}^N} (u_1 + v_1) \zeta(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} (|v|^q_1 + |u|^q_2) \zeta \, dx \, dt \leq \]

\[\leq C_3 (R^{-4q_2'/x+2N/\mu} + R^{-4q_1'/x+2N/\mu}) + \]

\[+ C_4 (R^{-2m_1q_1/(\mu(q_1-p_1)+2+2N/\mu)} + R^{-2m_2q_2/(\mu(q_2-p_2)+2+2N/\mu)}). \]

(59.38)

Чтобы сделать показатель у R неположительным, найдем положительное $\theta = \mu/x > 0$ такое, что

\[N \leq \theta(q_1 + 1)/(q_1 - 1), \]

\[N \leq \theta(q_2 + 1)/(q_2 - 1), \]

\[N \leq m_2q_2/(q_2 - p_2) - \theta, \]

\[N \leq m_1q_1/(q_1 - p_1) - \theta. \]

(59.39)

Положим

\[\hat{N} = \max\{r \geq 0 : \exists \theta > 0, \text{ для которого выполнено (59.39)}\}. \]

(59.40)

Тогда $N = E(\hat{N})$ есть наибольшее целое, для которого выполнено (59.39), откуда следует заключение теоремы. □

Замечание 59.1. Рассмотрим слабо связанную систему в конусе K (см. разд. 11)

\[
\begin{cases}
\frac{\partial^2 u}{\partial t^2} - \Delta u \geq |v|^{q_1}, & (x, t) \in K \times (0, \infty), \\
\frac{\partial^2 v}{\partial t^2} - \Delta v \geq |u|^{q_2}, & (x, t) \in K \times (0, \infty), \\
u \geq 0, \quad v \geq 0, & (x, t) \in \partial K \times (0, \infty), \\
\frac{\partial u}{\partial t}(x, 0) \geq 0, \quad \frac{\partial v}{\partial t}(x, 0) \geq 0, & x \in K.
\end{cases}
\]

(59.41)

Теорема 59.4 (Лаптев [216]). Задача (59.41) не имеет слабого решения (из некоторого подходящего функционального класса, для функций из которого определены требуемые граничные значения), если

\[\max\{\gamma_1, \gamma_2\} \geq \frac{s^* + 1}{2}, \quad \text{где} \quad \gamma_1 = \frac{q_1 + 1}{q_1q_2 - 1}, \quad \gamma_2 = \frac{q_2 + 1}{q_1q_2 - 1}, \]

s^* задано формулой (11.5). □
60. ОТСУТСТВИЕ РЕШЕНИЙ ДЛЯ СИСТЕМ СМЕШАННОГО ТИПА

Рассмотрим системы смешанного параболо-гиперболического

\[
\begin{aligned}
&\frac{\partial^2 u}{\partial t^2} \geq L_{m_1}(\varphi_{p_1}(u)) + |v|^q, \\
&\frac{\partial v}{\partial t} \geq L_{m_2}(\varphi_{p_2}(v)) + |u|^q
\end{aligned}
\]

и эллиптико-гиперболического

\[
\begin{aligned}
&\frac{\partial^2 u}{\partial t^2} \geq L_{m_1}(\varphi_{p_1}(u)) + |v|^q, \\
&0 \geq L_{m_2}(\varphi_{p_2}(v)) + |u|^q
\end{aligned}
\]

типов. Определим операторы \(L_{m_1}, L_{m_2}, L_{m_1}^* \) и \(L_{m_2}^* \) как в предыдущих разделах.

Определение 60.1. Пара функций

\[(u, v) \in L_{loc}^{p_1}(\mathbb{R}_+^{N+1}) \cap L_{loc}^{q_1}(\mathbb{R}_+^{N+1}) \times L_{loc}^{p_2}(\mathbb{R}_+^{N+1}) \cap L_{loc}^{q_2}(\mathbb{R}_+^{N+1})\]

называется слабым решением в \(\mathbb{R}_+^{N+1} \) задачи (60.1) (соответственно (60.2)) с начальными данными \((u(\cdot, 0), v(\cdot, 0)) = (u_0(\cdot), v_0(\cdot))\) и \(\frac{\partial u}{\partial t}(\cdot, 0) = u_1(\cdot),\) принадлежащими \(L_{loc}(\mathbb{R}^N)\) (соответственно \(u(\cdot, 0) = u_0(\cdot)\) и \(\frac{\partial u}{\partial t}(\cdot, 0) = u_1(\cdot)\), если

\[
- \int_{\mathbb{R}^N} u_1(x)\zeta(x, 0) \, dx + \int_{\mathbb{R}^N} u_0(x) \frac{\partial \zeta}{\partial t}(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} u \frac{\partial^2 \zeta}{\partial t^2} \, dx \, dt \geq 0
\]

и

\[
- \int_{\mathbb{R}^N} v_0(x)\zeta(x, 0) \, dx - \int_{\mathbb{R}^N} v \frac{\partial \zeta}{\partial t} \, dx \geq 0
\]

выполняются для любой функции \(\zeta \in C_0^\infty(\mathbb{R}_+^{N+1}),\) \(\zeta \geq 0,\) для задачи (60.1) и соответственно (60.3) и

\[
0 \geq \int_{\mathbb{R}^N} \varphi_{p_2}(v) L_{m_2}^*(\zeta) \, dx \, dt
\]

для задачи (60.2).

Теорема 60.1. Пусть \(q_1 > \max(1, p_2)\) и \(q_2 > \max(1, p_1)\). Тогда не существует глобального нетривиального слабого решения \((u, v)\) дифференциальных уравнений (60.1) такого, что \(\int_{\mathbb{R}^N} u_1 \, dx \geq 0\) и \(\int_{\mathbb{R}^N} v_0 \, dx \geq 0\), если выполнено одно из следующих условий:

\[
\begin{aligned}
q_1 \leq 2q_2/(q_2 + 1), & \quad m_2 q_1/(q_1 - p_2) \geq m_1 q_2/(q_2 - p_1), & N \leq m_1 (q_2 + 1)/(2(q_2 - p_1)); \\
q_1 \leq 2q_2/(q_2 + 1), & \quad m_2 q_1/(q_1 - p_2) < m_1 q_2/(q_2 - p_1), & N \leq m_2 q_1/(q_2 + 1)/(2q_2(q_2 - p_2)); \\
q_1 \geq 2q_2/(q_2 + 1), & \quad m_2 q_1/(q_1 - p_2) \geq m_1 q_2/(q_2 - p_1), & N \leq m_1 q_2/(q_1(q_2 - p_1)); \\
q_1 \geq 2q_2/(q_2 + 1), & \quad m_2 q_1/(q_1 - p_2) < m_1 q_2/(q_2 - p_1), & N \leq m_2/(q_1 - p_2).
\end{aligned}
\]
Доказательство. Рассмотрим неотрицательную пробную функцию $\zeta \in C_0^\infty(\mathbb{R}_+^{N+1})$ такую, что

$$
\begin{align*}
&\int_0^\infty \int_{\mathbb{R}^N} \left(|\frac{\partial \zeta}{\partial t}|^{q_1'} + |L_{m_1}^*(\zeta)|^{q_1'/(q_1'-p_2)} \zeta^{-p_2/(q_1'-p_2)} \right) \, dx \, dt + \\
&\quad + \int_0^\infty \int_{\mathbb{R}^N} \left(|\frac{\partial^2 \zeta}{\partial t^2}|^{q_2'} + |L_{m_2}^*(\zeta)|^{q_2'/(q_2'-p_1)} \zeta^{-p_1/(q_2'-p_1)} \right) \, dx \, dt < \infty.
\end{align*}
$$

(60.6)

Неравенства (59.11), (59.12) и (59.14) остаются справедливыми, а (59.13) заменяется на

$$
- \int_0^\infty \int_{\mathbb{R}^N} v \frac{\partial \zeta}{\partial t} \, dx \, dt \leq \left(\int_0^\infty \int_{\mathbb{R}^N} |v|^{q_1} \zeta \, dx \, dt \right)^{1/q_1} \left(\int_0^\infty \int_{\mathbb{R}^N} |\frac{\partial \zeta}{\partial t}|^{q_1'} \zeta^{1-q_1'} \, dx \, dt \right)^{1/q_1'} \leq
$$

$$
\leq \frac{1}{4} \int_0^\infty \int_{\mathbb{R}^N} |v|^{q_1} \zeta \, dx \, dt + C_{2,1} \int_0^\infty \int_{\mathbb{R}^N} |\frac{\partial \zeta}{\partial t}|^{q_1'} \zeta^{1-q_1'} \, dx \, dt.
$$

(60.7)

Выбирая ζ так, чтобы

$$
\int_{\mathbb{R}^N} u_0(x) \frac{\partial \zeta}{\partial t}(x, 0) \, dx = 0,
$$

из (59.11), (59.12), (59.14) и (60.7) получаем

$$
2 \int_{\mathbb{R}^N} (u_1 + v_0) \zeta(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} (|v|^{q_1} + |u|^{q_2}) \zeta \, dx \, dt \leq
$$

$$
\leq C_1 \int_0^\infty \int_{\mathbb{R}^N} \left(|\frac{\partial^2 \zeta}{\partial t^2}|^{q_2'} + |\frac{\partial \zeta}{\partial t}|^{q_1'} \right) \zeta^{1-q_2'} \, dx \, dt +
$$

$$
+ C_2 \int_0^\infty \int_{\mathbb{R}^N} \left(|L_{m_1}^*(\zeta)|^{q_2'/(q_2'-p_1)} \zeta^{-p_1/(q_2'-p_1)} + |L_{m_2}^*(\zeta)|^{q_1'/(q_1'-p_2)} \zeta^{-p_2/(q_1'-p_2)} \right) \, dx \, dt.
$$

(60.9)

Выбирая, как и раньше, ζ, φ, κ и μ, получаем

$$
2 \int_{\mathbb{R}^N} (u_1 + v_0) \zeta(x, 0) \, dx + \int_0^\infty \int_{\mathbb{R}^N} (|v|^{q_1} + |u|^{q_2}) \zeta \, dx \, dt \leq
$$

$$
\leq C_3 (R^{-2q_2'/(\kappa+2/\kappa+2N/\mu)} + R^{-4q_2'/(\kappa+2/\kappa+2N/\mu)}) +
$$

$$
+ C_4 (R^{-2m_1q_2/((\mu(q_2-p_1)+2)/\kappa+2N/\mu)} + R^{-2m_2q_1/((\mu(q_1-p_2)+2/\kappa+2N/\mu)}).
$$

(60.10)

Неравенства (59.22) переходят в

$$
N \leq \theta/(q_1) - 1,
$$

$$
N \leq \theta(q_2) - 1,
$$

$$
N \leq m_2q_1/(q_1-p_2) - \theta,
$$

$$
N \leq m_1q_2/(q_2-p_1) - \theta.
$$

(60.11)
(где $\theta = \mu/\kappa > 0$). Действуя, как и ранее, и учитывая, что

$$1/(q_1 - 1) \geq (q_2 + 1)/(q_2 - 1) \iff q_1 \leq 2q_2/(q_2 + 1),$$

получаем утверждение теоремы. □

Теорема 60.2. Пусть $q_1 > \max(1, p_2)$ и $q_2 > \max(1, p_1)$. Тогда не существует глобального нетривиального слабого решения (u, v) дифференциальных неравенств (60.2) такого, что $\int_{\mathbb{R}^N} u_1 dx \geq 0$, если выполнено одно из следующих условий:

$$m_1q_2/(q_2 - p_1) \leq m_2q_1/(q_1 - p_2), \quad N \leq m_1(q_2 + 1)/(2(q_2 - p_1));$$

$$m_1q_2/(q_2 - p_1) > m_2q_1/(q_1 - p_2), \quad N \leq m_2q_1(q_2 + 1)/(2q_2(q_1 - p_2)).$$

Доказательство аналогично доказательству теоремы 59.3 с заменой неравенства (60.10) на

$$2 \int_{\mathbb{R}^N} u_1 \zeta(x, 0) dx + \int_0^\infty \int_{\mathbb{R}^N} (|v|^q + |u|^q)\zeta dx dt \leq C_3 R^{-4q_2/\kappa + 2/\kappa + 2N/\mu} +$$

$$+ C_4(R^{-2m_1q_2/(\mu(q_2 - p_1)) + 2/\kappa + 2N/\mu} + R^{-2m_2q_1/(\mu(q_1 - p_2)) + 2/\kappa + 2N/\mu}). \quad (60.12)$$

Тогда (60.11) сводится к

$$N \leq \theta(q_2 + 1)/(q_2 - 1),$$

$$N \leq m_2q_1/(q_1 - p_2) - \theta,$$

$$N \leq m_1q_2/(q_2 - p_1) - \theta. \quad (60.13)$$

Доказательство завершается аналогично теореме 59.3. □

Отметим, что приведенные результаты получены совместно с Л. Вероном [179].
ДОПОЛНЕНИЯ

А. ПОЛУЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ НЕРАВЕНСТВА НА ГРУППАХ ГЕЙЗЕНБЕРГА

Здесь мы рассмотрим теоремы отсутствия глобальных нетривиальных решений нелинейных уравнений и неравенств на группах Гейзенберга. Приводимые результаты получены совместно с Л. Вероном в работе [178].

Группа Гейзенберга \mathbb{H}^N размерности $2N+1$ представляет собой евклидово пространство $\mathbb{R}^{2N+1} = \{(x, y, \tau) \in \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}\}$, оснащенное групповой операцией

$$
\eta \circ \tilde{\eta} = \left(x + \tilde{x}, y + \tilde{y}, \tau + \tilde{\tau} + 2 \sum_{i=1}^{N} (x_i \tilde{y}_i - y_i \tilde{x}_i) \right),
$$

где $\eta = (x, y, \tau) = (x_1, \ldots, x_N, y_1, \ldots, y_N, \tau)$ и $\tilde{\eta} = (\tilde{x}, \tilde{y}, \tilde{\tau}) = (\tilde{x}_1, \ldots, \tilde{x}_N, \tilde{y}_1, \ldots, \tilde{y}_N, \tilde{\tau})$. Это групповое умножение наделяет \mathbb{H}^N структурой группы Ли. Оператор Лапласа Δ_H на \mathbb{H}^N получается из векторных полей $X_i = \frac{\partial}{\partial x_i} + 2y_i \frac{\partial}{\partial \tau}$ и $Y_i = \frac{\partial}{\partial y_i} - 2x_i \frac{\partial}{\partial \tau}$ следующим образом:

$$
\Delta_H = \sum_{i=1}^{N} (X_i \circ X_i + Y_i \circ Y_i).
$$

Легко получить явное выражение

$$
\Delta_H u = \sum_{i=1}^{N} \left(\frac{\partial^2 u}{\partial x_i^2} + \frac{\partial^2 u}{\partial y_i^2} + 4y_i \frac{\partial^2 u}{\partial x_i \partial \tau} - 4x_i \frac{\partial^2 u}{\partial y_i \partial \tau} + 4(x_i^2 + y_i^2) \frac{\partial^2 u}{\partial \tau^2} \right).
$$

Оператор Δ_H является вырождающимся эллиптическим оператором, удовлетворяющим условию Хёрмандера первого порядка. Он инвариантен относительно операции умножения слева в группе, так как

$$
\Delta_H (u(\eta_0 \circ \eta)) = (\Delta_H u)(\eta_0 \circ \eta) \quad \forall (\eta_0, \eta) \in \mathbb{H}^N \times \mathbb{H}^N.
$$

На \mathbb{H}^N естественно определить расстояние от η до начала координат

$$
|\eta|_H = \left(\tau^2 + \sum_{i=1}^{N} (x_i^2 + y_i^2)^2 \right)^{1/4}.
$$

349
Это расстояние аналогично параболическому расстоянию для оператора теплопроводности в \(\mathbb{R}_+ \times \mathbb{R}^N \). Его роль определяется тем фактом, что если \(u(\eta) = u(|\eta|_H) \), то

\[
\Delta_H u(\rho) = a(\eta) \left(\frac{d^2 u}{d\rho^2} + \frac{Q - 1}{\rho} \frac{du}{d\rho} \right),
\]

где \(\rho = |\eta|_H, a(\eta) = \rho^{-2} \sum_{i=1}^{N} (x_i^2 + y_i^2) \) и \(Q = 2N + 2 \). Это последнее число \(Q \) называется однородной размерностью \(\mathbb{H}^N \).

Отсутствие положительных решений нелинейных эллиптических неравенств вида

\[
\Delta_H u + |\eta|_H^p u^p \leq 0
\]

изучалось Гарофало и Ланконелли [79] при некоторых ограничениях на \(u \) и позднее Биринделли, Капущо Долчетта и Кутри [29] при существенно меньших ограничениях (только положительность \(u \)). Эти авторы доказали, что если \(\gamma > -2 \) и \(1 < p \leq (Q + \gamma)/(Q - 2) \), то не существует положительного решения задачи (A.7), определенного на всей группе \(\mathbb{H}^N \).

Доказательство основано на специальном выборе пробных функций.

Мы модифицировали этот подход и доказываем аналогичные результаты, но без предположения о знаке \(u \). Точнее, пусть \(a \) — ограниченная измеримая функция, определенная на \(\mathbb{H}^N \). Тогда не существует определенной на всей \(\mathbb{H}^N \) локально интегрируемой функции \(u \in L^p_{\text{loc}}(\mathbb{H}_N, |\eta|_H^p d\eta) \), удовлетворяющей неравенству

\[
\Delta_H (au) + |\eta|_H^p |u|^p \leq 0,
\]

какие бы ни были \(\gamma > -2 \) и \(1 < p \leq (Q + \gamma)/(Q - 2) \). Наш метод, аналогично [179], существенно использует размерностный анализ, тогда как тип оператора не играет особой роли, только его инвариантность относительно переменных. Аналогичные результаты получены для эллиптических гамильтоновых систем, параболических и гиперболических неравенств вида

\[
\begin{align*}
\{ & \Delta_H (a_1 u) + |\eta|_H^p |v|^p_1 \leq 0, \\
& \Delta_H (a_2 u) + |\eta|_H^p |v|^p_2 \leq 0; \\
& \frac{\partial u}{\partial t} \geq \Delta_H (au) + |\eta|_H^p |u|^p; \\
& \frac{\partial^2 u}{\partial t^2} \geq \Delta_H (au) + |\eta|_H^p |u|^p.
\end{align*}
\]

Например, в случае неравенства (A.10) доказано, что не существует нетривиального слабого решения \(u \) при условиях \(\int_{\mathbb{R}^{2N+1}} u(\eta, 0) d\eta \geq 0, \gamma > -2 \) и \(1 < p \leq (Q + \gamma + 2)/Q \). Для неравенства (A.11) решение отсутствует, если \(\int_{\mathbb{R}^{2N+1}} \frac{\partial u}{\partial t}(\eta, 0) d\eta \geq 0, \gamma > -2 \) и \(1 < p \leq (Q + \gamma + 1)/(Q - 1) \). Эти результаты можно сравнить с аналогичными результатами для полулинейных уравнения теплопроводности и волнового уравнения.

Эллиптические неравенства. Пусть \(a \) — ограниченная измеримая функция, \(p > 1 \) и \(\gamma \) — действительные числа. Будем соотносить точки в \(\mathbb{H}^N \) с точками в \(\mathbb{R}^{2N+1} \). Также напомним, что естественная мера Хаара в \(\mathbb{H}^N \) идентична мере Лебега \(d\eta = dx dy d\tau \) в \(\mathbb{R}^{2N+1} = \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R} \).

Определение A.1. Слабым решением в дифференциального неравенства

\[
\Delta_H (au) + |\eta|_H^p |u|^p \leq 0
\]
в \mathbb{R}^{2N+1} называется локально интегрируемая функция $u \in L^p_{\text{loc}}(\mathbb{R}^{2N+1}, |\eta|_H^2 d\eta)$, удовлетворяющая неравенству

$$\int_{\mathbb{R}^{2N+1}} (au\Delta_H \zeta + |\eta|_H^2 |u|^p \zeta) \, d\eta \leq 0 \tag{A.13}$$

для всех $\zeta \in C^2_0(\mathbb{R}^{2N+1})$, $\zeta \geq 0$.

Теорема А.1. Пусть $\gamma > -2$ и $1 < p \leq (Q + \gamma)/(Q - 2)$. Тогда не существует решения $u(x)$ неравенства (A.12), определенного в \mathbb{R}^{2N+1}.

Доказательство. Пусть u — слабое решение и ζ — гладкая неотрицательная пробная функция. Из (A.13)

$$\int_{\mathbb{R}^{2N+1}} |\eta|_H^2 |u|^p \zeta \, d\eta \leq \int_{\mathbb{R}^{2N+1}} au\Delta_H \zeta \, d\eta. \tag{A.14}$$

Выбираем ζ так, что

$$\int_{\mathbb{R}^{2N+1}} |\Delta_H \zeta|^{p'} |\zeta^{1-p'}| |\eta|_H^{\gamma(1-p')} \, d\eta < \infty, \tag{A.15}$$

где $p' = p/(p - 1)$, и такой выбор возможен, если положить ζ постоянной в окрестности нуля. Тогда

$$\left| \int_{\mathbb{R}^{2N+1}} au\Delta_H \zeta \, d\eta \right| \leq \|a\|_{L^\infty} \left(\int_{\mathbb{R}^{2N+1}} |\Delta_H \zeta|^{p'} |\zeta^{1-p'}| |\eta|_H^{\gamma(1-p')} \, d\eta \right)^{1/p'} \left(\int_{\mathbb{R}^{2N+1}} |\eta|_H^2 |u|^p \zeta \, d\eta \right)^{1/p} \leq \frac{1}{2} \int_{\mathbb{R}^{2N+1}} |\eta|_H^2 |u|^p \zeta \, d\eta + C \int_{\mathbb{R}^{2N+1}} |\Delta_H \zeta|^{p'} |\zeta^{1-p'}| |\eta|_H^{\gamma(1-p')} \, d\eta. \tag{A.16}$$

В дальнейшем C обозначает различные постоянные, которые не зависят от членов, используемых в предельных переходах. Тогда из (A.13) и (A.16) следует

$$\int_{\mathbb{R}^{2N+1}} |\eta|_H^2 |u|^p \zeta \, d\eta \leq C \int_{\mathbb{R}^{2N+1}} |\Delta_H \zeta|^{p'} |\zeta^{1-p'}| |\eta|_H^{\gamma(1-p')} \, d\eta. \tag{A.17}$$

Теперь полагаем

$$\zeta(\eta) = \zeta(x, y, \tau) = \varphi \left(\frac{\tau^\kappa + |x|^\mu + |y|^\mu}{R^2} \right),$$

где $\varphi \in C^\infty_0(\mathbb{R}_+)$, $0 \leq \varphi \leq 1$, и

$$\varphi(r) = \begin{cases} 0, & r \geq 2, \\ 1, & 0 \leq r \leq 1, \end{cases} \tag{A.18}$$

R — положительный параметр, $\kappa > 0$ и $\mu > 0$ будут определены позднее. Тогда

$$\Delta_H \zeta = \sum_{i=1}^N \left(\frac{\partial^2 \zeta}{\partial x_i^2} + \frac{\partial^2 \zeta}{\partial y_i^2} + 4y_i \frac{\partial^2 \zeta}{\partial x_i \partial \tau} - 4x_i \frac{\partial^2 \zeta}{\partial y_i \partial \tau} + 4(x_i^2 + y_i^2) \frac{\partial^2 \zeta}{\partial \tau^2} \right) =$$

$$= \left[\mu(|x|^{2\mu-2} + |y|^{2\mu-2}) + 4\kappa^2(|x|^2 + |y|^2)^{2\kappa-2} \right] \left(\frac{d^2 \varphi}{dr^2} \circ \rho \right) R^{-4} +$$

$$+ \left[\mu(\mu + N - 2)(|x|^{\mu-2} + |y|^{\mu-2}) + 4\kappa(\kappa + 1)(|x|^2 + |y|^2)^{\kappa-2} \right] \left(\frac{d \varphi}{dr} \circ \rho \right) R^{-2}, \tag{A.19}$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
где \(\rho = R^{-2}(\tau^2 + |x|^\mu + |y|^\mu) \). Чтобы оценить правую часть (A.19), сделаем замену переменных

\((x, y, \tau) = \eta \mapsto \tilde{\eta} = (\tilde{x}, \tilde{y}, \tilde{\tau}) \)

\[
\tau = R^{2/\mu} \tau, \quad x = R^{2/\mu} \tilde{x}, \quad y = R^{2/\mu} \tilde{y}. \tag{A.20}
\]

Пусть \(\tilde{\rho}(\tilde{x}, \tilde{y}, \tilde{\tau}) = \tilde{\tau}^2 + |\tilde{x}|^\mu + |\tilde{y}|^\mu \) и \(\Omega = \{(\tilde{x}, \tilde{y}, \tilde{\tau}) \in \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R} : \tilde{\tau}^2 + |\tilde{x}|^\mu + |\tilde{y}|^\mu \leq 2\} \). Тогда

\[
\Delta_H \zeta = R^{-4/\mu} \left[\mu(|\tilde{x}|^{2\mu-2} + |\tilde{y}|^{2\mu-2}) \left(\frac{d^2 \varphi}{d\tau^2} \circ \tilde{\rho} \right) + \mu(\mu + N - 2)(|\tilde{x}|^{\mu-2} + |\tilde{y}|^{\mu-2}) \left(\frac{d^2 \varphi}{d\tau^2} \circ \tilde{\rho} \right) \right] + \\
+ R^{4/\mu - 4/\kappa} \left[4\kappa^2(|\tilde{x}|^2 + |\tilde{y}|^2)\tilde{\tau}^{2\kappa-2} \left(\frac{d^2 \varphi}{d\tau^2} \circ \tilde{\rho} \right) + 4\kappa(\kappa - 1)(|\tilde{x}|^2 + |\tilde{y}|^2)\tilde{\tau}^{\kappa-2} \left(\frac{d^2 \varphi}{d\tau^2} \circ \tilde{\rho} \right) \right]. \tag{A.21}
\]

Поскольку \(d\eta = R^{4N/\mu + 2/\kappa} d\tilde{\eta} \), оценивая (A.17) с помощью (A.21), получаем

\[
\int_{\mathbb{R}^{2N+1}} |\Delta_H \zeta|^{1-p'} |\eta|_H^{\gamma(1-p')} \, d\eta \leq C(R^{-4p'/\mu + 4N/\mu + 2/\kappa} + R^{4p'/\mu - 4p'/\kappa + 4N/\mu + 2/\kappa}) \times \\
\times \left(R^{2\gamma(1-p')/\mu} + R^{\gamma(1-p')/\kappa} \right) \int_{\Omega} \left(\left(\frac{d^2 \varphi}{d\tau^2} \circ \tilde{\rho} \right) \left| \tilde{\tau}^{p'} \right| + \left(\frac{d^2 \varphi}{d\tau^2} \circ \tilde{\rho} \right) \right) \left(\varphi \circ \tilde{\rho} \right)^{1-p'} \, d\tilde{\eta}, \tag{A.22}
\]

где \(C \) зависит от \(\mu \) и \(\kappa \). Окончательно (A.17) дает

\[
\int_{\mathbb{R}^{2N+1}} |\eta|_H^{\gamma} |u|^p \zeta \, d\eta \leq C(R^{-4p'/\mu + 4N/\mu + 2/\kappa} + R^{4p'/\mu - 4p'/\kappa + 4N/\mu + 2/\kappa})(R^{2\gamma(1-p')/\mu} + R^{\gamma(1-p')/\kappa}). \tag{A.23}
\]

Введением показателей

\[
\alpha_1 = -4p'/\mu + 4N/\mu + 2/\kappa + 2\gamma(1-p')/\mu,
\alpha_2 = -4p'/\mu + 4N/\mu + 2/\kappa + \gamma(1-p')/\kappa,
\alpha_3 = 4p'/\mu - 4p'/\kappa + 4N/\mu + 2/\kappa + 2\gamma(1-p')/\mu,
\alpha_4 = 4p'/\mu - 4p'/\kappa + 4N/\mu + 2/\kappa + \gamma(1-p')/\kappa
\]

задача сводится к оптимизации параметров \(\mu \) и \(\kappa \), чтобы получить \(\alpha_i \leq 0, i = 1, \ldots, 4 \). Полагая \(\theta = \mu/\kappa > 0 \), остается найти условия, при которых

\[
\begin{cases}
4N \leq 4p' - 2\theta + 2\gamma(p' - 1), \\
4N \leq 4p' - 2\theta + \gamma(p' - 1), \\
4N \leq -4p' + 4p' \theta - 2\theta + 2\gamma(p' - 1), \\
4N \leq -4p' + 4p' \theta - 2\theta + \gamma(p' - 1) \theta.
\end{cases} \tag{A.25}
\]

Если обозначить через \(\theta \mapsto A_i(\theta), i = 1, \ldots, 4 \), линейные функции в правых частях неравенств (A.25), можно заметить, что эти линейные функции принимают одинаковое значение \(A^* = 2(2 + \gamma)(p' - 1) \) для \(\theta = 2 \) (которое является оптимальным). Следовательно, (A.25) удовлетворяется тогда и только тогда, когда

\[
2N \leq 2(2 + \gamma)(p' - 1) \iff p \leq (2N + 2 + \gamma)/(2N) = (Q + \gamma)/(Q - 2). \tag{A.26}
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
В случае, когда

\[1 < p < (Q + \gamma)/(Q - 2), \]

получаем \(\theta > 0 \), так что все неравенства (A.25) строгие. Тогда все показатели \(\alpha_i \) отрицательны для \(i = 1, \ldots, 4 \). Поскольку \(\lim_{R \to \infty} \zeta(\eta) = \lim_{R \to \infty} \zeta R(\eta) = 1 \), то, устрояя \(R \) к бесконечности в (A.23), получаем

\[\int_{\mathbb{R}^{2N+1}} |\eta|^\gamma_H |u|^p d\eta = 0. \quad (A.27) \]

Если же \(p = (Q + \gamma)/(Q - 2) \), берем \(\mu = 2, \kappa = 1 \) и сначала получаем из (A.23), что

\[\int_{\mathbb{R}^{2N+1}} |\eta|^\gamma_H |u|^p d\eta < \infty. \]

Затем положим \(\Omega_R^* = \{(\tilde{x}, \tilde{y}, \tilde{\tau}) \in \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}_+ : R^2 \leq \tau + |x|^2 + |y|^2 \leq 2R^2 \} \). Поскольку \(\varphi(r) \) постоянна для \(r \in [0, \infty) \setminus (1, 2) \), будем иметь

\[\left| \int_{\Omega_R^*} au \Delta_H \zeta d\eta \right| = \left| \int_{\Omega_R^*} au\Delta_H \zeta d\eta \right| \leq \left(\int_{\Omega_R^*} |\Delta_H \zeta|^{p'} |\zeta| \left(\int_{\Omega_R^*} |\eta|^\gamma_H |u|^p d\eta \right)^{1/p} \right)^{1/p'} \left(\int_{\Omega_R^*} |\eta|^\gamma_H |u|^p d\eta \right)^{1/p'} \left(\int_{\Omega_R^*} |\eta|^\gamma_H |u|^p d\eta \right)^{1/p}. \quad (A.28) \]

Далее из (A.14), (A.28) получаем

\[\int_{\mathbb{R}^{2N+1}} |\eta|^\gamma_H |u|^p \zeta d\eta \leq \|a\|_{L^\infty} \left(\int_{\mathbb{R}^{2N+1}} |\Delta_H \zeta|^{p'} |\zeta| \left(\int_{\Omega_R^*} |\eta|^\gamma_H |u|^p d\eta \right)^{1/p} \right)^{1/p'} \left(\int_{\Omega_R^*} |\eta|^\gamma_H |u|^p d\eta \right)^{1/p} \]

\[\times \left(\int_{\Omega_R^*} |\eta|^\gamma_H |u|^p d\eta \right)^{1/p} \leq C \left(\int_{\Omega_R^*} |\eta|^\gamma_H |u|^p d\eta \right)^{1/p}. \quad (A.29) \]

(мы использовали здесь (A.23) с \(\alpha_i = 0 \) для \(i = 1, \ldots, 4 \)). Из интегрируемости \(|\eta|^\gamma_H |u|^p \) в \(\mathbb{R}^{2N+1} \) следует, что

\[\lim_{R \to \infty} \int_{\Omega_R^*} |\eta|^\gamma_H |u|^p d\eta = 0. \quad (A.30) \]

Тогда правая часть (A.28) стремится к нулю при \(R \to \infty \) и снова приходим к (A.27). \(\square \)

Замечание A.1. Известно [29], что при \(p > (Q + \gamma)/(Q - 2) \) задача (A.12) имеет положительное решение в \(\mathbb{R}^{2N+1} \).

Рассмотрим теперь системы эллиптических уравнений и неравенств.

Определение A.2. Пусть \(a_1 \) и \(a_2 \) — две ограниченные измеримые функции в \(\mathbb{R}^{2N+1} \). Сла́бым решением системы дифференциальных неравенств

\[\begin{cases} \Delta_H (a_1 u) + |\eta|^\gamma_H |u|^p \leq 0, \\ \Delta_H (a_2 v) + |\eta|^\gamma_H |u|^p \leq 0 \end{cases} \quad (A.31) \]

23 ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
в \mathbb{R}^{2N+1} называется пара локально интегрируемых функций (u, v), $v \in L^p_{\text{loc}}(\mathbb{R}^{2N+1}, |\eta|^{\gamma_1} d\eta)$ и $u \in L^p_{\text{loc}}(\mathbb{R}^{2N+1}, |\eta|^{\gamma_2} d\eta)$, удовлетворяющих неравенствам

$$
\int_{\mathbb{R}^{2N+1}} (a_1 u \Delta_H \zeta + |\eta|^{\gamma_1} |v|^{p_1} \zeta) \, d\eta \leq 0, \quad \int_{\mathbb{R}^{2N+1}} (a_2 v \Delta_H \zeta + |\eta|^{\gamma_2} |u|^{p_2} \zeta) \, d\eta \leq 0 \quad (A.32)
$$

для всех $\zeta \in C_0^2(\mathbb{R}^{2N+1})$, $\zeta \geq 0$.

Теорема А.2. Пусть $\gamma_j > -2$ и $1 < p_j \leq (Q + \gamma_j)/(Q - 2)$ для $j = 1, 2$. Тогда не существует глобального нетривиального слабого решения (u, v) неравенства (A.31), определенного в \mathbb{R}^{2N+1}.

Доказательство. Следуя схеме доказательства теоремы А.1, выберем неотрицательную пробную функцию ζ, удовлетворяющую

$$
\int_{\mathbb{R}^{2N+1}} |\Delta_H \zeta|^{p_1} |\eta|^{\gamma_1(1-p_1)} \frac{1}{|\eta|^{\gamma_1(1-p_1)}} \, d\eta + \int_{\mathbb{R}^{2N+1}} |\Delta_H \zeta|^{p_2} |\eta|^{\gamma_2(1-p_2)} \frac{1}{|\eta|^{\gamma_2(1-p_2)}} \, d\eta < \infty, \quad (A.33)
$$

и получим

$$
\int_{\mathbb{R}^{2N+1}} |\eta|^{\gamma_1} |v|^{p_1} \zeta \, d\eta \leq \int_{\mathbb{R}^{2N+1}} a_1 u \Delta_H \zeta \, d\eta \leq \left(\int_{\mathbb{R}^{2N+1}} |\Delta_H \zeta|^{p_1} |\eta|^{\gamma_1(1-p_1)} \, d\eta \right)^{1/p_1} \left(\int_{\mathbb{R}^{2N+1}} |\eta|^{\gamma_1} |v|^{p_1} \zeta \, d\eta \right)^{1/p_1} \leq \frac{1}{2} \int_{\mathbb{R}^{2N+1}} |\eta|^{\gamma_1} |v|^{p_1} \zeta \, d\eta + C \int_{\mathbb{R}^{2N+1}} |\Delta_H \zeta|^{p_1} |\eta|^{\gamma_1(1-p_1)} \, d\eta \quad (A.34)
$$

и

$$
\int_{\mathbb{R}^{2N+1}} |\eta|^{\gamma_2} |u|^{p_2} \zeta \, d\eta \leq \int_{\mathbb{R}^{2N+1}} a_2 v \Delta_H \zeta \, d\eta \leq \left(\int_{\mathbb{R}^{2N+1}} |\Delta_H \zeta|^{p_2} |\eta|^{\gamma_2(1-p_2)} \, d\eta \right)^{1/p_2} \left(\int_{\mathbb{R}^{2N+1}} |\eta|^{\gamma_2} |u|^{p_2} \zeta \, d\eta \right)^{1/p_2} \leq \frac{1}{2} \int_{\mathbb{R}^{2N+1}} |\eta|^{\gamma_2} |u|^{p_2} \zeta \, d\eta + C \int_{\mathbb{R}^{2N+1}} |\Delta_H \zeta|^{p_2} |\eta|^{\gamma_2(1-p_2)} \, d\eta \quad (A.35)
$$

Следовательно,

$$
\int_{\mathbb{R}^{2N+1}} |\eta|^{\gamma_1} |v|^{p_1} \zeta \, d\eta + \int_{\mathbb{R}^{2N+1}} |\eta|^{\gamma_2} |u|^{p_2} \zeta \, d\eta \leq 2C \int_{\mathbb{R}^{2N+1}} |\Delta_H \zeta|^{p_1} |\eta|^{\gamma_1(1-p_1)} \, d\eta + 2C \int_{\mathbb{R}^{2N+1}} |\Delta_H \zeta|^{p_2} |\eta|^{\gamma_2(1-p_2)} \, d\eta. \quad (A.36)
$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Теперь берем $\zeta(\eta) = \zeta(x, y, \tau) = \varphi \left(\frac{2^{n+1}|x|^p + |y|^p}{R^2} \right)$, проводим замену переменных (A.20) и окончательно получаем

$$
\int_{\mathbb{R}^{2N+1}} |\eta|^{\gamma_1} |v|^{p_1} \zeta \, d\eta + \int_{\mathbb{R}^{2N+1}} |\eta|^{\gamma_2} |u|^{p_2} \zeta \, d\eta \leq C (R^{-4p_1'/\mu + 4N/\mu + 2/\kappa} + R^{4p_1'/\mu - 4p_1'/\kappa + 4N/\mu + 2/\kappa}) (R^{2\gamma_1(1-p_1')/\mu} + R^{\gamma_1(1-p_1')/\kappa}) + C (R^{-4p_2'/\mu + 4N/\mu + 2/\kappa} + R^{4p_2'/\mu - 4p_2'/\kappa + 4N/\mu + 2/\kappa}) (R^{2\gamma_2(1-p_2')/\mu} + R^{\gamma_2(1-p_2')/\kappa}) \leq C \sum_{i=1}^{4} (R^{\alpha_i^1} + R^{\alpha_i^2}),
$$

где

$$
\begin{align*}
\alpha_1^1 &= -4p_j'/\mu + 4N/\mu + 2/\kappa + 2\gamma_j(1 - p_j')/\mu, \\
\alpha_1^2 &= -4p_j'/\mu + 4N/\mu + 2/\kappa + \gamma_j(1 - p_j')/\kappa, \\
\alpha_2^1 &= 4p_j'/\mu - 4p_j'/\kappa + 4N/\mu + 2/\kappa + 2\gamma_j(1 - p_j')/\mu, \\
\alpha_2^2 &= 4p_j'/\mu - 4p_j'/\kappa + 4N/\mu + 2/\kappa + \gamma_j(1 - p_j')/\kappa
\end{align*}
$$

для $j = 1, 2$. При $\theta = \mu/\kappa > 0$ этот набор неравенств сводится к системе

$$
\begin{cases}
4N \leq 4p_j' - 2\theta + 2\gamma_j(p_j' - 1), \\
4N \leq 4p_j' - 2\theta + \gamma_j(p_j' - 1)\theta, \\
4N \leq -4p_j' + 4p_j'\theta - 2\theta + 2\gamma_j(p_j' - 1), \\
4N \leq -4p_j' + 4p_j'\theta - 2\theta + \gamma_j(p_j' - 1)\theta.
\end{cases}
$$

Для $\theta = 2$ эта система в свою очередь приводит к неравенству

$$
2N \leq 2(2 + \gamma_j)(p_j' - 1), \quad j = 1, 2,
$$

что дает $p_j \leq (Q + \gamma_j)/(Q - 2)$. Доказательство завершается аналогично теореме A.1.

Параболические неравенства. Рассмотрим сначала параболическое неравенство вида

$$
\frac{\partial u}{\partial t} \geq \Delta_H (au) + |\eta|^{\gamma_1} |u|^p
$$

в $\mathbb{R}^{2N+1} \times \mathbb{R}_+ = \mathbb{R}^{2N+1}_+$, где $a = a(\eta, t)$ — ограниченная измеримая функция.

Определение A.3. Слабым решением $u(x, t)$ дифференциального неравенства (A.41) в \mathbb{R}^{2N+1}_+ с начальным условием $u_0 \in L^\infty_{\text{loc}}(\mathbb{R}^{2N+1})$ называется локально интегрируемая функция $u \in L^\infty_{\text{loc}}(\mathbb{R}^{2N+1}_+, |\eta|^{\gamma_1} \, d\eta \, dt)$, удовлетворяющая неравенству

$$
\int_0^\infty \int_{\mathbb{R}^{2N+1}} \left(u \frac{\partial \zeta}{\partial t} + a u \Delta_H \zeta + |\eta|^{\gamma_1} |u|^p \zeta \right) \, d\eta \, dt + \int_{\mathbb{R}^{2N+1}} u_0(\eta)\zeta(\eta, 0) \, d\eta \leq 0
$$

для всех $\zeta \in C^2(\mathbb{R}^{2N+1}_+), \; \zeta \geq 0$.

Теорема A.3. Пусть $\gamma > -2, 1 < p \leq (Q + 2 + \gamma)/Q$ и $\int_{\mathbb{R}^{2N+1}_+} u_0(\eta) \, d\eta \geq 0$. Тогда не существует глобального нетривиального слабого решения $u(x, t)$ неравенства (A.41), определенного в \mathbb{R}^{2N+1}_+.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234

23*
Доказательство. Выбираем \(\zeta \) такое, что
\[
\int_0^\infty \int_{\mathbb{R}^{2N+1}} \left(\left| \frac{\partial \zeta}{\partial t} \right|^{p'} + |\Delta_H \zeta|^{p'} \right) \zeta^{1-p'} |\eta|_H^{(1-p')} d\eta dt < \infty. \tag{A.43}
\]
Тогда из (A.42) следует
\[
\int_0^\infty \int_{\mathbb{R}^{2N+1}} |\eta|_H |u|^p \zeta d\eta dt + \int_{\mathbb{R}^{2N+1}} u_0(\eta) \zeta(\eta, 0) d\eta \leq - \int_0^\infty \int_{\mathbb{R}^{2N+1}} \left(u \frac{\partial \zeta}{\partial t} + au \Delta_H \zeta \right) d\eta dt \leq \int_0^\infty \int_{\mathbb{R}^{2N+1}} |\eta|_H |u|^p \zeta d\eta dt \leq \int_0^\infty \int_{\mathbb{R}^{2N+1}} \left(\left| \frac{\partial \zeta}{\partial t} \right|^{p'} + |\Delta_H \zeta|^{p'} \right) \zeta^{1-p'} |\eta|_H^{(1-p')} d\eta dt. \tag{A.44}
\]
Далее
\[
\int_0^\infty \int_{\mathbb{R}^{2N+1}} |\eta|_H |u|^p \zeta d\eta dt + 2 \int_{\mathbb{R}^{2N+1}} u_0(\eta) \zeta(\eta, 0) d\eta \leq 2C \int_0^\infty \int_{\mathbb{R}^{2N+1}} \left(\left| \frac{\partial \zeta}{\partial t} \right|^{p'} + |\Delta_H \zeta|^{p'} \right) \zeta^{1-p'} |\eta|_H^{(1-p')} d\eta dt. \tag{A.45}
\]
Полагая \(\zeta(\eta, t) = \zeta(x, y, \tau, t) = \varphi \left(\frac{\tau^\alpha + \|\eta\|^{\alpha} + \|\eta\|^\alpha + t}{\|\eta\|} \right) \), где параметры \(\alpha > 0, \mu > 0 \) и \(\sigma > 0 \) подлежат определению, и используя оценку
\[
\int_0^\infty \int_{\mathbb{R}^{2N+1}} \left| \frac{\partial \zeta}{\partial t} \right|^{p'} |\eta|_H^{(1-p')} d\eta dt \leq CR^{-2p'/\sigma+2/\alpha+2/\sigma+4N/\mu} (R^{2q(1-p')/\mu} + R^{q(1-p')/\sigma}), \tag{A.46}
\]
получаем
\[
\int_0^\infty \int_{\mathbb{R}^{2N+1}} |\eta|_H |u|^p \zeta d\eta dt + 2 \int_{\mathbb{R}^{2N+1}} u_0(\eta) \zeta(\eta, 0) d\eta \leq CR^{4N/\mu+2/\alpha+2/\sigma} \times \left(R^{-4p'/\mu} + R^{4p'/\mu-4p'/\sigma} + R^{-2p'/\sigma} \right) \times
\]
\[
\times (R^{2q(1-p')/\mu} + R^{q(1-p')/\sigma}) \int_\Omega \left(\left| \frac{d\varphi}{dr} \circ \rho \right|^{p'} + \left| \frac{d^2\varphi}{dr^2} \circ \rho \right|^{p'} \right) (\varphi \circ \rho)^{-1-p'} d\tilde{\eta}. \tag{A.47}
\]
Полагая \(\theta = \mu/\alpha > 0 \) и \(\omega = \mu/\sigma > 0 \), найдем условия, при которых справедливы неравенства
\[
\begin{align*}
4N & \leq 4p' - 2\theta - 2\omega + 2\gamma(p'-1), \\
4N & \leq 4p' - 2\theta - 2\omega + \gamma(p'-1)\theta, \\
4N & \leq -4p' + 4p'\theta - 2\theta - 2\omega + 2\gamma(p'-1), \\
4N & \leq -4p' + 4p'\theta - 2\theta - 2\omega + \gamma(p'-1)\theta, \\
4N & \leq 2p'\omega - 2\theta - 2\omega + 2\gamma(p'-1), \\
4N & \leq 2p'\omega - 2\theta - 2\omega + \gamma(p'-1)\theta.
\end{align*}
\tag{A.48}
\]
Труды математического института им. В.А. Стеклова, 2001, т. 234
Для $\theta = 2 = \omega$ эта система сводится к

$$4N \leq 4p' - 8 + 2\gamma(p' - 1) \iff p \leq (Q + \gamma + 2)/Q.$$ \quad (A.49)

Так как функции в правых частях (A.48) линейны, то этот выбор θ и ω является оптимальным. Когда $1 < p < (Q + \gamma + 2)/Q$, все степени R в (A.47) отрицательны. Устремляя R к бесконечности и применяя лемму Фату, приходим к неравенству

$$\int_0^\infty \int_{\mathbb{R}^{2N+1}} |\eta_H|^2 |u|^p d\eta dt + 2 \int_{\mathbb{R}^{2N+1}} u_0(\eta) d\eta \leq 0,$$ \quad (A.50)

следовательно, такой функции $u \neq 0$ не существует, поскольку $\int_{\mathbb{R}^{2N+1}} u_0(\eta) d\eta \geq 0$.

Когда $p = (Q + \gamma + 2)/Q$, из (A.47) сначала получаем $\int_0^\infty \int_{\mathbb{R}^{2N+1}} |\eta_H|^2 |u|^p d\eta dt < \infty$. Используя вид (A.44) и тот факт, что $\varphi \equiv 1$ для $0 \leq r \leq 1$, приходим к требуемому результату аналогично доказательству теоремы A.1. \Box

Замечание A.2. Условие интегрируемости u_0 может быть ослаблено и заменено на

$$\limsup_{R \to \infty} \int_{\mathbb{R}^{2N+1}} u_0(\eta)\varphi \left(\frac{\tau + |x|^2 + |y|^2}{R^2} \right) dx dy d\tau \geq 0.$$

Гиперболические неравенства на группах Гейзенберга. Теперь рассмотрим неравенство гиперболического типа

$$\frac{\partial^2 u}{\partial t^2} \geq \Delta_H (au) + |\eta_H|^2 |u|^p$$ \quad (A.51)

в $\mathbb{R}^{2N+1} \times \mathbb{R}_+ = \mathbb{R}^{2N+1,1}_+$, где $a = a(\eta, t)$ — ограниченная измеримая функция.

Определение A.4. Локально интегрируемая функция $u \in L^p_{\text{loc}}(\mathbb{R}^{2N+1,1}_+, |\eta_H|^2 d\eta dt)$ называется слабым решением дифференциального неравенства (A.51) в $\mathbb{R}^{2N+1,1}_+$ с начальными данными u_0, $u_1 \in L^1_{\text{loc}}(\mathbb{R}^{2N+1}_+)$, если неравенство

$$\int_0^\infty \int_{\mathbb{R}^{2N+1}} \left(-u \frac{\partial^2 \zeta}{\partial t^2} + au\Delta_H \zeta + |\eta_H|^2 |u|^p \zeta \right) d\eta dt - \int_{\mathbb{R}^{2N+1}} u_0(\eta) \frac{\partial \zeta}{\partial t}(\eta, 0) d\eta + \int_{\mathbb{R}^{2N+1}} u_1(\eta) \zeta(\eta, 0) d\eta \leq 0$$ \quad (A.52)

выполняется для всех $\zeta \in C_0^\infty(\mathbb{R}^{2N+1,1}_+)$, $\zeta \geq 0$.

Теорема A.4. Пусть $\gamma > -2$, $1 < p < (Q + 1 + \gamma)/(Q - 1)$ и $\int_{\mathbb{R}^{2N+1}} u_1(\eta) d\eta \geq 0$. Тогда не существует глобального нетривиального слабого решения $u(x, t)$ неравенства (A.51), определенного в $\mathbb{R}^{2N+1,1}_+$.

Доказательство следует схеме доказательства теоремы A.3, поэтому отметим только основные отличия. Пусть u — решение и ζ — гладкая неотрицательная пробная функция такая, что

$$\int_0^\infty \int_{\mathbb{R}^{2N+1}} \left(\left| \frac{\partial^2 \zeta}{\partial t^2} \right|^p + |\Delta_H \zeta|^p \right) \zeta^{1-p'} |\eta_H|^{\gamma(1-p')} d\eta dt < \infty.$$ \quad (A.53)

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Тогда

\[
\int_0^\infty \int_{\mathbb{R}^{2N+1}} |\eta|_H^r |u|^p \zeta \, d\eta \, dt + \int_{\mathbb{R}^{2N+1}} u_1(\eta) \zeta(\eta, 0) \, d\eta - \int_{\mathbb{R}^{2N+1}} u_0(\eta) \frac{\partial \zeta}{\partial t}(\eta, 0) \, d\eta \leq \int_0^\infty \int_{\mathbb{R}^{2N+1}} \left(u \frac{\partial^2 \zeta}{\partial t^2} - au \Delta_H \zeta \right) \, d\eta \, dt \leq
\]

\[
\int_0^\infty \int_{\mathbb{R}^{2N+1}} \left(|\partial^2 \zeta|_{L^2}^{p'} + \|a\|_{L^\infty} |\Delta_H \zeta|^{p'} \right) \zeta^{1-p'} |\eta|_H^{(1-p')r} \, d\eta \, dt \leq \left(\int_0^\infty \int_{\mathbb{R}^{2N+1}} |\eta|_H^r |u|^p \zeta \, d\eta \, dt + C \int_0^\infty \int_{\mathbb{R}^{2N+1}} \left(|\partial^2 \zeta|_{L^2}^{p'} + \|a\|_{L^\infty} |\Delta_H \zeta|^{p'} \right) \zeta^{1-p'} |\eta|_H^{(1-p')r} \, d\eta \, dt \right)^{1/p} \leq
\]

\[
\leq \frac{1}{2} \int_0^\infty \int_{\mathbb{R}^{2N+1}} |\eta|_H^r |u|^p \zeta \, d\eta \, dt + C \int_0^\infty \int_{\mathbb{R}^{2N+1}} \left(|\partial^2 \zeta|_{L^2}^{p'} + \|a\|_{L^\infty} |\Delta_H \zeta|^{p'} \right) \zeta^{1-p'} |\eta|_H^{(1-p')r} \, d\eta \, dt. \quad (A.54)
\]

Выбирая пробную функцию \(\zeta \) так, чтобы

\[
\int_{\mathbb{R}^{2N+1}} u_0(\eta) \frac{\partial \zeta}{\partial t}(\eta, 0) \, d\eta \leq 0, \quad (A.55)
\]

из (A.54), (A.55) получаем

\[
\int_0^\infty \int_{\mathbb{R}^{2N+1}} |\eta|_H^r |u|^p \zeta \, d\eta \, dt + 2 \int_{\mathbb{R}^{2N+1}} u_1(\eta) \zeta(\eta, 0) \, d\eta \leq 2C \int_0^\infty \int_{\mathbb{R}^{2N+1}} \left(|\partial^2 \zeta|_{L^2}^{p'} + \|a\|_{L^\infty} |\Delta_H \zeta|^{p'} \right) \zeta^{1-p'} |\eta|_H^{(1-p')r} \, d\eta \, dt. \quad (A.56)
\]

Полагаем \(\zeta(\eta, t) = \zeta(x, y, \tau, t) = \varphi \left(\frac{x^2 + |x|^4 + |\tau|^4}{R^{4r/\mu}} \right) \), где параметры \(\kappa > 0, \mu > 0 \) и \(\sigma > 1 \) подлежат определению. Заметим, что выбор \(\sigma > 1 \) обеспечивает выполнение условия (A.55). Более того,

\[
\int_0^\infty \int_{\mathbb{R}^{2N+1}} |\partial^2 \zeta|_{L^2}^{p'} \zeta^{1-p'} |\eta|_H^{(1-p')r} \, d\eta \, dt \leq CR^{-4p'/\sigma + 2/\kappa + 2/\sigma + 4N/\mu} (R^{2r(1-p')/\mu} + R^{(1-p')/\kappa}). \quad (A.57)
\]

Тогда (A.47) заменяется на

\[
\int_0^\infty \int_{\mathbb{R}^{2N+1}} |\eta|_H^r |u|^p \zeta \, d\eta \, dt + 2 \int_{\mathbb{R}^{2N+1}} u_1(\eta) \zeta(\eta, 0) \, d\eta \leq CR^{4N/\mu + 2/\kappa + 2/\sigma} \left(R^{-4p'/\mu} + R^{4p'/\mu - 4p'/\kappa} + R^{-4p'/\kappa} \right) \times
\]

\[
\times (R^{2r(1-p')/\mu} + R^{(1-p')/\kappa}) \int_\Omega \left(\left| \frac{d^2 \varphi}{dt^2} \circ \tilde{\rho} \right|^{p'} \right) \varphi \circ \tilde{\rho}^{1-p'} d\tilde{\eta}, \quad (A.58)
\]
а (A.48) меняется на
\[
\begin{align*}
4N & \leq 4p' - 2\theta - 2\omega + 2\gamma(p' - 1), \\
4N & \leq 4p' - 2\theta - 2\omega + \gamma(p' - 1)\theta, \\
4N & \leq -4p' + 4p'\theta - 2\theta - 2\omega + 2\gamma(p' - 1), \\
4N & \leq -4p' + 4p'\theta - 2\theta - 2\omega + \gamma(p' - 1)\theta, \\
4N & \leq 4p'\omega - 2\theta - 2\omega + 2\gamma(p' - 1), \\
4N & \leq 4p'\omega - 2\theta - 2\omega + \gamma(p' - 1)\theta,
\end{align*}
\] (A.59)
где \(\theta = \mu/\kappa > 0\) и \(\omega = \mu/\sigma > 0\). Если выбрать \(\theta = 2\) и \(\omega = 1\), все четыре линейные функции в правой части (A.59) принимают одно значение \(4p' + 2\gamma(p' - 1) - 6\) и условие оптимальности сводится к следующему:
\[
4N \leq 4p' + 2\gamma(p' - 1) - 6 \iff p \leq (Q + 1 + \gamma)/(Q - 1),
\] (A.60)
что является условием теоремы. Что касается условия \(\sigma > 1\), то оно предполагается выполненным.

Замечание A.3. Аналогично замечанию A.2 можно заменить условие на \(u_1\) более слабым
\[
\limsup_{R \to \infty} \int_{\mathbb{R}^{2N+1}} |\eta_i|^{2p} |\eta|^2 dt + 2 \int_{\mathbb{R}^{2N+1}} u_1(\eta) d\eta \leq 0,
\] (A.61)
если \(1 < p < (Q + 1 + \gamma)/(Q - 1)\), или
\[
\limsup_{R \to \infty} \int_{\mathbb{R}^{2N+1}} |\eta_i|^{2p} |\eta|^2 dt + 2 \int_{\mathbb{R}^{2N+1}} u_1(\eta) d\eta < \infty,
\] (A.62)
если \(p = (Q + 1 + \gamma)/(Q - 1)\), и, следовательно, аналогично ранее использованным рассуждениям
\[
\limsup_{R \to \infty} \int_{\mathbb{R}^{2N+1}} |\eta_i|^{2p} |\eta|^2 dt + 2 \int_{\mathbb{R}^{2N+1}} u_1(\eta) d\eta = 0. \quad \square
\]

Замечание A.4. Анализ обыкновенных дифференциальных уравнений
\[
\frac{du}{dt} = u^p \quad \text{и} \quad \frac{d^2u}{dt^2} = u^p \quad \text{в} \quad \mathbb{R}_+
\] (A.63)
показывает естественность условий на знак начальных данных.

Отметим еще раз, что приведенные в этом разделе результаты получены совместно с Л. Вероном [178].

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Здесь приводится ряд полученных Г.Г. Лаптевым результатов об отсутствии глобальных решений полуглинейных эволюционных дифференциальных неравенств второго порядка по пространственной переменной x и высокого порядка по времени t. По переменной x мы предполагаем, что задачи ставятся во внешности шара $|x| > R, R > 0$ (см. [126, 51, 142, 130]).

К настоящему времени стала очевидной необходимость выделить некоторые общие свойства, влияющие на отсутствие решения эволюционных уравнений и неравенств, чтобы в рамках единого подхода охватить задачи как параболические и гиперболические, так и "эволюционные высокого порядка", которые в данном контексте схожи с обыкновенными дифференциальными неравенствами [196, 195, 207]. В этом разделе делается попытка провести такое исследование на базе метода пробных функций, систематически используемого в настоящей книге. Заметим, что все другие известные подходы неприменимы в данном случае из-за отсутствия линейной теории рассматриваемых задач.

Установим сначала вспомогательные оценки некоторых интегралов емкостного типа. Рассмотрим стандартную срезающую функцию [227, 188] $\zeta(y) \in C^\infty(\mathbb{R}_+)$ со следующими свойствами:

$$0 \leq \zeta(y) \leq 1, \quad \zeta(y) = \begin{cases} 1, & 0 \leq y \leq 1, \\ 0, & y \geq 2. \end{cases}$$

Введем функцию

$$\eta(y) = (\zeta(y))^{kp_0}$$

с некоторыми положительными параметрами p_0 и k, где k — натуральное. Для первой и второй производных (для $1 < p \leq p_0$) устанавливаются оценки

$$|\eta'(y)|^p = (kp_0)^p \zeta^{kp_0(p-1)} \zeta^{p_0-p} |\zeta'|^p \leq c_\eta p^{p-1}(y),$$

$$|\eta''(y)|^p \leq (kp_0)^p \zeta^{kp_0(p-1)} \zeta^{kp_0-2p} ((kp_0 - 1)|\zeta'|^2 + |\zeta| |\zeta''|)^p \leq c_\eta p^{p-1}(y)$$

с некоторой постоянной c_η. Действуя аналогично, легко проверить выполнение такого рода оценки для произвольной порядка k, т.е.

$$|\eta^{(k)}(y)|^p \leq c_\eta p^{p-1}(y).$$

Вводя замену переменной $y = t/\rho^\theta$, где $\theta > 0, \rho > 2R$, t — новая переменная, для функции $\eta(t/\rho^\theta)$, у которой

$$\text{supp} \left| \eta \left(\frac{t}{\rho^\theta} \right) \right| = \{ t < 2\rho^\theta \}, \quad \text{supp} \left| \frac{d^k \eta(t/\rho^\theta)}{dt^k} \right| = \{ \rho^\theta < t < 2\rho^\theta \},$$

легко установить неравенство

$$\int \sup \left| \frac{d^k \eta(t/\rho^\theta)}{dt^k} \right|^p |\eta^{-p} \left(\frac{t}{\rho^\theta} \right) dt \leq c_\eta \rho^{-\theta(kp_0-1)}. \quad \text{(B.1)}$$
Параметр θ в дальнейшем будет подбираться в зависимости от оператора.
Для пространственной переменной x, $|x| = r$, вводим функции $\eta(r/\rho)$,

$$\xi(x) \equiv \xi(r) = \frac{1}{R^s} - \frac{1}{r^s} \quad (B.2)$$

и

$$\psi_\rho(x) \equiv \psi_\rho(r) = \left(\frac{1}{R^s} - \frac{1}{r^s}\right) \eta\left(\frac{r}{\rho}\right), \quad (B.3)$$

где в дальнейшем положим $s = N - 2$. При $r \gg R$ первый сомножитель в определении ψ_ρ ведет себя как $1/R^s$ и $0 \leq \psi_\rho(x) \leq 1/R^s$. Отметим некоторые свойства функции ψ_ρ: $\psi_\rho = 0$ и $\frac{\partial \psi_\rho}{\partial r} \geq 0$ для $r = R$.

Получим оценки для первой и второй производных функции $\psi_\rho(r)$ (с учетом предположения $r > 2R$):

$$\left|\frac{\partial \psi_\rho}{\partial r}\right|^p \leq \frac{s}{r^{s+1}} \eta\left(\frac{r}{\rho}\right) + \left(\frac{1}{R^s} - \frac{1}{r^s}\right) \eta'\left(\frac{r}{\rho}\right) \leq c \eta^{p-1} \left(\frac{r}{R^s}\right) \left(1 + \frac{r^p}{\rho^p}\right),$$

$$\left|\frac{\partial^2 \psi_\rho}{\partial r^2}\right|^p \leq \left|s(s+1) \frac{2}{r^{s+2}} \eta\left(\frac{r}{\rho}\right) + \frac{2s}{r^{s+1}} \eta'\left(\frac{r}{\rho}\right) + \left(\frac{1}{R^s} - \frac{1}{r^s}\right) \frac{1}{r^2} \eta''\left(\frac{r}{\rho}\right)\right|^p \leq$$

$$\leq c \eta^{p-1} \left(\frac{r}{R^s}\right) \left(1 + \frac{r^p}{\rho^p} + \frac{r^{2p}}{\rho^{2p}}\right),$$

где константа c не зависит от r и ρ. Объединяя эти неравенства, приходим к оценке для оператора Лапласа

$$|\Delta \psi_\rho(x)|^p = \left|\frac{\partial^2 \psi_\rho}{\partial r^2} + \frac{N - 1}{r} \frac{\partial \psi_\rho}{\partial r}\right|^p \leq c \left|\frac{\partial^2 \psi_\rho}{\partial r^2}\right|^p + \frac{c}{r^p} \left|\frac{\partial \psi_\rho}{\partial r}\right|^p \leq$$

$$\leq c \eta^{p-1} \left(\frac{r}{R^s}\right) \frac{1}{r^{p+1}} \left(1 + \frac{r^p}{\rho^p} + \frac{r^{2p}}{\rho^{2p}}\right) \leq c \psi_\rho^{p-1}(x) \frac{1}{r^{2p}} \left(1 + \frac{r^p}{\rho^p} + \frac{r^{2p}}{\rho^{2p}}\right). \quad (B.4)$$

На последнем этапе мы использовали очевидное при $r > 2R$ соотношение

$$\frac{1}{R^s} - \frac{1}{r^s} \geq \frac{1}{r^s} - \frac{1}{2sR^s} \geq \frac{c}{R^s}.$$

Теперь положим $s = N - 2$. Напомним, что $\Delta \left(\frac{1}{r^s}\right) = 0$ для $r \neq 0$. Поэтому $\Delta \psi_\rho = 0$ для $r < \rho$ и $\text{supp} |\Delta \psi_\rho| = \{\rho < r < 2\rho\}$. На множестве $\text{supp} |\Delta \psi_\rho|$ справедлива оценка

$$1 + \frac{r^p}{\rho^p} + \frac{r^{2p}}{\rho^{2p}} \leq c,$$

где постоянная c не зависит от r и ρ. Следовательно, из (B.4) для $\rho < r < 2\rho$ получим

$$|\Delta \psi_\rho(x)|^p \leq c \psi_\rho^{p-1}(x) \frac{1}{\rho^{2p}}.$$
откуда для любого параметра $\sigma \in \mathbb{R}$ вытекает оценка

$$\int_{\text{supp} |\Delta \psi|} \frac{|\Delta \psi_\rho(x)|^p}{\psi_\rho^{-1}(x)|x|^{\sigma(p-1)}} \, dx \leq c \int_{\rho}^{2\rho} \frac{|\psi_\rho^{p-1}(x)|^p}{\psi_\rho^{-1}(x)|x|^{\sigma(p-1)}} \, dr \leq c_\rho \rho^{-p(\sigma+2)+N+\sigma}. \quad (B.5)$$

Таким образом, для общей пробной функции вида

$$\varphi_\rho(x, t) = \eta \left(\frac{t}{\rho^2} \right) \psi_\rho(x) \quad (B.6)$$

с учетом интегрирования по переменной t получим

$$\int \int_{\text{supp} |\Delta \varphi_\rho|} \frac{|\Delta \varphi_\rho(x, t)|^p}{\psi_\rho^{-1}(x)|x|^{\sigma(p-1)}} \, dx \, dt \leq \int_{\rho}^{2\rho} \eta \left(\frac{t}{\rho^2} \right) \, dt \int_{\text{supp} |\Delta \psi|} \frac{|\Delta \psi_\rho|^p}{\psi_\rho^{-1}|x|^{\sigma(p-1)}} \, dx \leq c_\rho \rho^{-p(\sigma+2)+N+\sigma}. \quad (B.7)$$

Заметим, что построенная функция $\varphi_\rho(x, t)$ принадлежит анизотропному пространству Соболева $W^{2,k,\infty}_{x,t}(\Omega \times (0, \infty))$ функций, имеющих производные 2-го порядка по x и k-го по t из $L^\infty(\Omega \times (0, \infty))$.

Теперь оценим (c учитом (B.1)) аналогичный интеграл для произвольной порядка k по переменной t:

$$\int \int_{\text{supp} |\Delta \varphi_\rho|} \left| \frac{\partial^k \varphi_\rho(x, t)}{\partial t^k} \right|^p \varphi_\rho^{1-p}(x, t)|x|^{\sigma(1-p)} \, dx \, dt \leq$$

$$\leq \int \int_{\text{supp} |\Delta \varphi_\rho|} \left| \frac{\partial^k \eta(t/\rho^2)}{\partial t^k} \right|^p \eta^{1-p} \left(\frac{t}{\rho^2} \right) \, dt \int_{R<|x|<2\rho} \frac{\psi_\rho(x)}{|x|^{\sigma(p-1)}} \, dx \leq$$

$$\leq c_\rho \rho^{-\theta(kp-1)} \int_{R}^{2\rho} \frac{r^{N-1}}{r^{\sigma(p-1)}} \, dr \leq c_\rho \left\{ \begin{array}{ll}
\rho^{N-\sigma(p-1)-\theta(kp-1)}, & \text{если } N - \sigma(p-1) > 0, \\
\rho^{-\theta(kp-1)} \ln \rho, & \text{если } N - \sigma(p-1) = 0, \\
\rho^{-\theta(kp-1)} R^{N-\sigma(p-1)}, & \text{если } N - \sigma(p-1) < 0.
\end{array} \right. \quad (B.8)$$

При $\theta = 2/k$ первый показатель степени ρ в этой оценке совпадает с показателем из (B.7):

$$N - \sigma(p-1) - \theta(kp-1) = \theta - p(\sigma+2) + N + \sigma = -p(\sigma+2) + N + \sigma + 2/k.$$

Поскольку далее в модельной задаче мы считаем $\sigma = 0$, выделим этот случай отдельно. Тогда из правой части неравенства (B.8) остается первый вариант и общая оценка (при $\theta = 2/k$) принимает вид

$$\int \int_{\text{supp} |\Delta \varphi_\rho|} \left| (-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho \right|^p \varphi_\rho^{1-p} \, dx \, dt \leq c_\rho \rho^{-2p+N+2/k}. \quad (B.9)$$
Пусть теперь $T > 0$ фиксировано. Нам понадобятся аналогичные (B.1), (B.7) и (B.8) оценки в области $t > T$:

$$
\int \sup |\frac{dk\eta(t/\rho^\theta)}{dt^k}|^p \eta^{-\theta(p(k+\gamma)-1-\gamma)} dt \leq c_\eta \rho^{-\theta(p(k+\gamma)-1-\gamma)},
$$

(B.10)

$$
\int \int \sup |\Delta \varphi^p(x,t)|^p \varphi^{p-1} \frac{dt}{t^{\gamma(p-1)}} dx dt \leq \int \int \sup \frac{\eta(t/\rho^\theta)}{t^{\gamma(p-1)}} dt dx \leq \int \varphi(x,t) dx \leq c_\varphi \rho^{-\theta(p(k+\gamma)-1-\gamma)+N},
$$

(B.12)

При $\theta = 2/k$

$$
-\gamma(p-1) + \theta - 2p + N = -\theta(p(k+\gamma) - 1 - \gamma) + N = -2\gamma(p-1)/k - 2p + N + 2/k.
$$

Модельная задача: отсутствие глобального решения. Пусть $R > 0$. Введем область $\Omega = \mathbb{R}^N \setminus B_R$ (т.е. внешность шара B_R) и рассмотрим вопросы отсутствия глобального нетривиального решения задачи для некоторого натурального числа k:

$$
\begin{cases}
\frac{\partial^k u}{\partial t^k} - \Delta u \geq |u|^q, & (x,t) \in \Omega \times (0,\infty), \\
u(t) \geq 0, & (x,t) \in \partial \Omega \times (0,\infty), \\
\frac{\partial^{k-1} u}{\partial t^{k-1}}(x,0) \geq 0, & x \in \Omega.
\end{cases}
$$

(B.13)

Далее слабое решение будет пониматься в следующем смысле.

Определение B.1. Пусть $u(x,t) \in C(\Omega \times [0,\infty))$ и определены локально суммируемые слеы $\frac{\partial^k u}{\partial t^k}$, $i = 1, \ldots, k - 1$, при $t = 0$. Функция $u(x,t)$ называется слабым решением задачи (B.13), если для любой неотрицательной пробной функции $\varphi(x,t) \in W_{x,t}^{2,k,\infty}(\Omega \times (0,\infty))$, такой, что $\varphi|_{\partial B_R \times (0,\infty)} = 0$, и финитной по переменным $r = |x|$ и t, выполнено интегральное неравенство

$$
-\int_0^\infty \int_{\partial B_R} \frac{\partial \varphi}{\partial r} dx dt + \int_0^\infty \int_{\Omega} \left(-1\right)^k \frac{\partial^k \varphi}{\partial t^k} - \Delta \varphi \right) dx dt \geq
$$

$$
\geq \int_0^\infty \int_{\Omega} |u| q \varphi dx dt + \sum_{i=1}^{k-1} (1)^i \int_{\Omega} \frac{\partial^{k-1-i} u}{\partial t^{k-1-i}}(x,0) \frac{\partial^i \varphi}{\partial t^i} (x,0) dx dt + \int_0^\infty \int_{\Omega} \frac{\partial^{k-1} u}{\partial t^{k-1}}(x,0) \varphi(x,0) dx dt.
$$
Замечание В.1. В приведенном определении не ставилось целью получить предельные условия на гладкость или суммируемость решения $u(x, t)$. Возможны обобщения на решения из L^q при дополнительных предположениях о суммируемости следов на границе шара. Чтобы не затруднять изложение, ограничившись непрерывными решениями на замыкании Ω, которые имеют непрерывный след на границе шара ∂B_R.

Замечание В.2. Мы не рассматриваем вопросы продолжения решений после точки разрушения и не исследуем свойства разрушающихся решений (для параболических задач см., например, [71, 75, 72, 73, 77]). Однако, используя предлагаемый подход, можно получить оценку сверху времени существования решения (другие методы изложены в [131, 175, 132, 103]).

Замечание В.3. Еще одним возможным применением предлагаемого метода является исследование задач с операторами дифференцирования нецелого порядка [192].

Теорема В.1. Пусть

$$1 < q \leq q^*_k = \frac{N + 2/k}{N - 2 + 2/k}$$

задача (B.13) не имеет глобального нетривиального слабого решения.

Эта теорема включает в себя как частные случаи несколько классических результатов для параболических и гиперболических задач. Заметим, что хотя мы и не исследуем вопрос о неулучшаемости q^*_k, в приводимых ниже примерах q^*_k совпадают с уже известными точными показателями.

При $k = 1$ получаем критический показатель Фужиты–Хаякавы $q^*_1 = 1 + \frac{2}{N}$, при $k = 2$ имеем критический показатель Като $q^*_2 = \frac{N+1}{N-1}$ для гиперболических уравнений. Наконец, интересно отметить, что при $k \to \infty$ в пределе приходим к точному критическому показателю для эллиптических неравенств $q^*_\infty = \frac{N}{N-2}$.

Необходимо также упомянуть, что в отличие от многих работ здесь рассматриваются решения без предположения об их положительности. Вместо этого требуется положительность (неотрицательность) на границе. Для эволюционного неравенства высокого порядка принцип максимума в общем случае не имеет места, поэтому из положительности граничных значений не следует положительность решения в области.

Доказательство теоремы В.1. Пусть $u(x, t)$ — глобальное нетривиальное слабое решение задачи (B.13). Согласно определению В.1 с пробной функцией $\varphi(x, t) = \varphi_\rho(x, t)$, введенной по формуле (B.6), при $p = q' > 1$ и $\theta = 2/k$ с учетом очевидных равенств

$$\frac{\partial^i \varphi_\rho(x, 0)}{\partial t^i} \equiv 0, \quad i = 1, \ldots, k - 1,$$

это означает

$$\int\limits_{\Omega} \frac{\partial^{k-1} u}{\partial t^{k-1}}(x, 0) \varphi_\rho(x, 0) \, dx + \int\limits_0^\infty \int\limits_{\Omega} |u|^q \varphi_\rho \, dx \, dt \leq$$

$$\leq - \int\limits_0^\infty \int\limits_{\partial B_R} u \frac{\partial \varphi_\rho}{\partial t} \, dx \, dt + \int\limits_{\text{supp} \{|-1|^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho|\}} u \left(-1\right)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho \right) \, dx \, dt. \quad (B.14)$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
В. ЭВОЛЮЦИОННЫЕ НЕРАВЕНСТВА ВЫСОКОГО ПОРЯДКА

Как уже отмечалось ранее, производная $\frac{\partial \rho}{\partial r}$ при $r = R$ неотрицательна, а следовательно, и $\frac{\partial \rho}{\partial r} |_{r=R} \geq 0$, поэтому первый интеграл в правой части будет неположительным благодаря условию $u|_{\partial B_R \times (0, \infty)} \geq 0$.

Для оценки последнего интеграла в (V.14) применим неравенство Гельдера. Получим

$$
\int_0^{\infty} \int_{\Omega} \left| u \right|^q \varphi_\rho(x,0) dx + \int_0^{\infty} \int_{\Omega} \left| u \right|^q \varphi_\rho(x,t) dx dt =
$$

$$
= \int_0^{\infty} \int_{\Omega} \frac{\partial^{k-1} u}{\partial t^{k-1}}(x,0) \varphi_\rho(x,0) dx + \int_0^{\infty} \int_{\supp (-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho} \left| u \right|^q \varphi_\rho(x,t) dx dt + \int_0^{\infty} \int_{\supp (-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho} \left| u \right|^q \varphi_\rho(x,t) dx dt \leq
$$

$$
\leq \int_0^{\infty} \int_{\supp (-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho} \left| u \right|^q \varphi_\rho(x,t) dx dt \leq \left(\int_0^{\infty} \int_{\supp (-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho} \left| u \right|^q \varphi_\rho(x,t) dx dt \right)^{1/q'},
$$

откуда, отбрасывая неотрицательные начальные условия и с учетом оценки (В.9) (при $p = q'$) для последнего интеграла справа, будем иметь

$$
\int_0^{\infty} \int_{\supp (-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho} \left| u \right|^q \varphi_\rho(x,t) dx dt \leq \left(\int_0^{\infty} \int_{\supp (-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho} \left| u \right|^q \varphi_\rho(x,t) dx dt \right)^{1/q'},
$$

где

$$
\left(\int_0^{\infty} \int_{\supp (-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho} \left| u \right|^q \varphi_\rho(x,t) dx dt \right)^{1/q'} \leq \left(\int_0^{\infty} \int_{\supp (-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho} \left| u \right|^q \varphi_\rho(x,t) dx dt \right)^{1/q'} \leq c_0 p^{-2q' + N + 2/k}.
$$

Так как подинтегральное выражение в левой части не зависит от ρ, можем перейти к пределу по $\rho \to \infty$. В случае

$$
-2q' + N + 2/k \leq 0
$$

это приводит к соотношению

$$
\int_0^{\infty} \int_{\supp (-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho} \left| u \right|^q \varphi_\rho(x,t) dx dt \leq c_0.
$$

Тогда в силу абсолютной непрерывности интеграла Лебега по мере и ввиду оценки $\varphi_\rho \leq \xi$ имеем

$$
\int_{\supp (-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho} \left| u \right|^q \varphi_\rho(x,t) dx dt \leq \int_{\supp (-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho} \left| u \right|^q \varphi_\rho(x,t) dx dt = \varepsilon(\rho) \to 0, \quad \rho \to \infty.
$$

Возвращаясь теперь к неравенству (V.15), получим

$$
\int_0^{\infty} \int_{\varphi_\rho(x,t) = \xi(x)} \left| u \right|^q \varphi_\rho(x,t) dx dt \leq \varepsilon^{1/q'}(\rho)^{1/q'} \to 0
$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
при $\rho \to \infty$, т.е. в пределе

$$\int_0^\infty \int_\Omega |u|^q \xi \, dx \, dt = 0.$$

Так как $\xi > 0$ в Ω, то $u \equiv 0$, что противоречит предположению о существовании ненулевого решения.

Из неравенства

$$-2q' + N + 2/k \leq 0$$

получаем условие отсутствия глобального нетривиального решения из формулировки теоремы $1 < q \leq q^*$. □

Неоднородная задача. По аналогии с (V.13) рассмотрим неравенство с дополнительным слагаемым $w(x) \geq 0$, $w(x) \neq 0$, $w(x) \in L^1_{\text{loc}}(\Omega)$, т.е. неоднородную задачу [184, 9]

$$
\begin{align*}
\begin{cases}
\frac{\partial^k u}{\partial t^k} - \Delta u \geq |u|^q + w(x), & (x, t) \in \Omega \times (0, \infty), \\
u \geq 0, & (x, t) \in \partial \Omega \times (0, \infty), \\
\frac{\partial^{k-1} u}{\partial t^{k-1}}(x, 0) \geq 0, & x \in \Omega.
\end{cases}
\end{align*}

(B.17)

Определение B.2. Пусть $u(x, t) \in C(\Omega \times [0, \infty))$ и определены локально суммируемые сле́ды $\frac{\partial u}{\partial t^i}$, $i = 1, \ldots, k - 1$, при $t = 0$. Функция $u(x, t)$ называется слабым решением задачи (B.17), если для любой неотрицательной пробной функции $\varphi(x, t) \in W^{2, k, \infty}_c(\Omega \times (0, \infty))$, такой, что $\varphi|_{\partial B_R \times (0, \infty)} = 0$, и финитной по переменным $r = |x|$ и t, выполнено интегральное неравенство

$$-\int_0^\infty \int_\Omega w \frac{\partial \varphi}{\partial x} \, dx \, dt + \int_0^\infty \int_\Omega u \left((-1)^k \frac{\partial^k \varphi}{\partial t^k} - \Delta \varphi\right) \, dx \, dt \geq \int_0^\infty \int_\Omega |u|^q \varphi \, dx \, dt +$$

$$+ \sum_{i=1}^{k-1} (-1)^i \int_\Omega \frac{\partial^{k-1-i} u}{\partial t^{k-1-i}}(x, 0) \frac{\partial^i \varphi}{\partial t^i}(x, 0) \, dx + \int_\Omega \frac{\partial^{k-1} u}{\partial t^{k-1}}(x, 0) \varphi(x, 0) \, dx + \int_0^\infty \int_\Omega w(x) \varphi \, dx \, dt.$$

Теорема B.2. При

$$1 < q < q^* = \frac{N}{N - 2}$$

задача (B.17) не имеет глобального нетривиального слабого решения, каким бы малым ни было $w(x) \geq 0$, $w(x) \neq 0$.

Доказательство. Следуя доказательству теоремы B.1, получаем априорную оценку

$$\int_0^{\rho^{2/k}} \int_{R<|x|<\rho} w(x) \xi(x) \, dx \, dt + \int_{R<|x|<\rho} \frac{\partial^{k-1} u}{\partial t^{k-1}}(x, 0) \xi(x) \, dx + \int_{\varphi(x,t) = \xi(x)} |u|^q \xi(x) \, dx \, dt \leq c_1 \rho^{-2q' + N + 2/k},$$

откуда

$$c_1 \rho^{-2q' + N + 2/k} \geq \int_0^{\rho^{2/k}} \int_{R<|x|<\rho} w(x) \xi(x) \, dx \, dt \geq \rho^{2/k} c_w$$

(B.18)
при ρ таких, что

$$\int_{R<|x|<\rho} w(x) \xi(x) \, dx \geq c_w \equiv \text{const} > 0.$$

Для получения противоречия при $\rho \to \infty$ достаточно предположить, что $-2q' + N < 0$, т.е.

$$q < \frac{N}{N-2}.$$

Теорема доказана. \square

Такого рода результаты для параболических задач были получены в работе [184]. Там же на основе теоремы сравнения доказано, что и в критическом случае $q = q^*$ задача не имеет решения, однако для гиперболического и общего эволюционного неравенства вопрос остается открытым. Как видно из теоремы B.2, критический показатель для неоднородной задачи совпадает с эллиптическим независимо от порядка уравнения k.

Возможно изучить и зависимость критического показателя от роста неоднородности.

Теорема B.3. Пусть $w(x) \geq \frac{c_w}{|x|^q}$, где $\beta > 2$. Тогда задача (B.17) не имеет глобального нетривиального слабого решения при $1 < q < \frac{\beta}{\beta-2}$.

Доказательство. При условиях теоремы неравенство (B.18) принимает вид

$$c_1 \rho^{-2q' + N + 2/k} \geq \rho^{2/k} \rho^{-\beta} c_w,$$

откуда $c_1 \geq c_w \rho^{2q' - \beta}$. Неравенство невозможно, если $2q' - \beta > 0$, т.е. $q < \frac{\beta}{\beta-2}$. \square

Сингулярное неравенство. Пусть $R > 0$ и $-2 < \sigma < +\infty$. Рассмотрим проблему отсутствия слабых решений задачи

$$\left\{ \begin{array}{l}
\frac{\partial^k u}{\partial t^k} - \Delta u \geq |x|^\sigma|u|^q,
(x, t) \in \Omega \times (0, \infty), \\
u \geq 0,
(x, t) \in \partial \Omega \times (0, \infty), \\
\frac{\partial^{k-1} u}{\partial t^{k-1}}(x, 0) \geq 0,
x \in \Omega.
\end{array} \right. \quad \text{(B.19)}$$

Определение B.3. Пусть $u(x, t) \in C(\overline{\Omega} \times [0, \infty))$ и определены локально суммируемые слея $\frac{\partial^i u}{\partial t^i}$, $i = 1, \ldots, k-1$, при $t = 0$. Функция $u(x, t)$ называется слабым решением задачи (B.19), если для любой неотрицательной пробной функции $\varphi(x, t) \in W_{x, t}^{2k} (\Omega \times (0, \infty))$, такой, что $\varphi|_{\partial B_R \times (0, \infty)} = 0$, и финитной по переменным $r = |x|$ и t, выполнено интегральное уравнение

$$-\int_0^\infty \int_{\partial B_R} u \frac{\partial \varphi}{\partial r} \, dx \, dt + \int_0^\infty \int_{\Omega} \left(-1\right)^k \frac{\partial^k \varphi}{\partial t^k} \Delta \varphi \, dx \, dt \geq \int_0^\infty \int_{\Omega} |x|^\sigma|u|^q \varphi \, dx \, dt + \sum_{i=1}^{k-1} (-1)^i \int_{\Omega} \frac{\partial^{k-1-i} u}{\partial t^{k-1-i}}(x, 0) \frac{\partial^i \varphi}{\partial t^i}(x, 0) \, dx + \int_{\Omega} \frac{\partial^{k-1-i} u}{\partial t^{k-1-i}}(x, 0) \varphi(x, 0) \, dx. \quad \text{(B.20)}$$

Теорема B.4. При $\sigma > -2$ у

$$1 < q \leq q^* = \frac{N + 2/k + \sigma}{N - 2 + 2/k}$$

задача (B.19) не имеет глобального нетривиального слабого решения.
ДОПОЛНЕНИЯ

Не включенный в теорему В.4 случай $\sigma \leq -2$, так называемые критическая и суперкритическая сингулярности, вызвал большой интерес после появления работы [32], в которой рассматривается аналогичная задача в ограниченной области (см. также разд. 6, 28, 52 и работы [215, 234, 236]). Основной результат состоит в том, что задача в шаре B_R с критической или суперкритической сингулярностью (в точке $|x| = 0$) не имеет глобального по времени t решения для всех $q > 1$. Более того, параболическая задача не имеет даже локального по t решения. Это явление получило название “полного и мгновенного разрушения” решения.

Доказательство теоремы В.4. Пусть $u(x, t)$ — нетривиальное решение. Из (B.20) с пробной функцией $\varphi(x, t) = \varphi_\rho(x, t)$, определенной в (B.6), с $p = q' > 1$, $\theta = 2/k$ имеем

$$
\int_\Omega \frac{\partial^{k-1} u}{\partial t^{k-1}}(x, 0)\varphi_\rho(x, 0) \, dx + \int_0^\infty \int_\Omega |u|^q |x|^\sigma \varphi_\rho \, dx \, dt \leq
$$

$$
\leq - \int_0^\infty \int_{\partial B_R} u \frac{\partial \varphi_\rho}{\partial t} \, dx \, dt + (-1)^k \int_0^\infty \int_{\partial B_R} u \frac{\partial^k \varphi_\rho}{\partial t^k} \, dx \, dt -
$$

$$
- \int_{\Delta \varphi_\rho = 0} u \Delta \varphi_\rho \, dx \, dt + (-1)^k \int_{\Delta \varphi_\rho \neq 0} u \frac{\partial^k \varphi_\rho}{\partial t^k} \, dx \, dt - \int_{\Delta \varphi_\rho \neq 0} u \Delta \varphi_\rho \, dx \, dt. \quad (B.21)
$$

Первый интеграл в правой части неположителен, второй и третий равны нулю. Применяя неравенство Гельдера к оставшимся интегралам, получим

$$
\int_\Omega \frac{\partial^{k-1} u}{\partial t^{k-1}}(x, 0)\varphi_\rho(x, 0) \, dx + \int_0^\infty \int_\Omega |u|^q |x|^\sigma \varphi_\rho \, dx \, dt \leq
$$

$$
\leq \int_{\text{supp} \frac{\partial^k \varphi_\rho}{\partial t^k}} |u| \cdot |\frac{\partial^k \varphi_\rho}{\partial t^k}| \, dx \, dt + \int_{\text{supp} \Delta \varphi_\rho} |u| \cdot |\Delta \varphi_\rho| \, dx \, dt \leq
$$

$$
\leq \left(\int_{\text{supp} \frac{\partial^k \varphi_\rho}{\partial t^k}} |u|^q |x|^\sigma \varphi_\rho \, dx \, dt \right)^{1/q} \left(\int_{\text{supp} \frac{\partial^k \varphi_\rho}{\partial t^k}} \left| \frac{\partial^k \varphi_\rho}{\partial t^k} \right|^q |1-q|^k |x|^{\sigma(1-q)} \, dx \, dt \right)^{1/q'} +
$$

$$
+ \left(\int_{\text{supp} \Delta \varphi_\rho} |u|^q |x|^\sigma \varphi_\rho \, dx \, dt \right)^{1/q} \left(\int_{\text{supp} \Delta \varphi_\rho} |\Delta \varphi_\rho|^{q} |\varphi_\rho|^{1-q} |x|^{\sigma(1-q)} \, dx \, dt \right)^{1/q'}. \quad (B.22)
$$

Наконец, используя неравенство Юнга с параметром, получаем

$$
\int_{\varphi_\rho(x, t) = \xi(x)} |u|^q |x|^\sigma \xi(x) \, dx \, dt \leq c \int_{\text{supp} \frac{\partial^k \varphi_\rho}{\partial t^k}} \left| \frac{\partial^k \varphi_\rho}{\partial t^k} \right|^q |q-1|^q |x|^{\sigma(1-q)} \, dx \, dt +
$$

$$
+ c \int_{\text{supp} \Delta \varphi_\rho} |\Delta \varphi_\rho|^{q} |\varphi_\rho|^{1-q} |x|^{\sigma(1-q)} \, dx \, dt. \quad (B.23)
$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
Последнее слагаемое в силу (B.7) (с \(p = q' \) и \(\theta = 2/k \)) не превосходит
\[c_\rho^{-q'(\sigma+2)+N+\sigma+2/k}. \]

Если
\[-q'(\sigma+2)+N+\sigma+2/k \leq 0, \quad (B.24) \]
то последний интеграл в (B.23) ограничен при \(\rho \to \infty \).

Что касается первого интеграла в правой части (B.23), легко видеть, что в условиях (B.24) этот интеграл также ограничен. Действительно, если \(N - \sigma(q' - 1) > 0 \), показатель роста в (B.8) совпадает с \(-q'(\sigma+2)+N+\sigma+2/k \leq 0 \). Если же \(N - \sigma(q' - 1) \leq 0 \), то множитель \(\rho^{-\theta(kq'-1)} \) стремится к нулю при \(\rho \to \infty \) и, следовательно, рассматриваемый интеграл ограничен.

Переходя к пределу при \(\rho \to \infty \), в случае (B.24) приходим к оценке
\[\int_0^\infty \int_\Omega |u|^q |x|^{\sigma} \xi \, dx \, dt \leq c_0, \]
откуда с помощью стандартных рассуждений получаем отсутствие глобального нетривиального решения при выполнении неравенства (B.24). \(\square \)

Введем теперь сингулярность по \(t \). Пусть \(T > 0, R > 0 \) и \(-k < \gamma \leq 0 \). Рассмотрим задачу отсутствия слабых решений задачи

\[
\begin{align*}
\frac{\partial^k u}{\partial t^k} - \Delta u &\geq t^\gamma |u|^q, \quad (x,t) \in \Omega \times (T, \infty), \\
u &\geq 0, \quad (x,t) \in \partial \Omega \times (T, \infty), \\
\frac{\partial^{k-1} u}{\partial t^{k-1}}(x,T) &\geq 0, \quad x \in \Omega.
\end{align*}
\]

Определение В.4. Пусть \(u(x,t) \in C(\overline{\Omega} \times [T, \infty)) \) и определены локально суммируемые следы \(\frac{\partial^i u}{\partial t^i}, \quad i = 1, \ldots, k - 1 \), при \(t = T \). Неотрицательная функция \(u(x,t) \) называется слабым решением задачи (B.25), если для любой неотрицательной пробной функции \(\varphi(x,t) \in W_{x,t}^{2,k,\infty}(\Omega \times (T, \infty)) \), такой, что \(\varphi|_{\partial B_R \times (T, \infty)} = 0 \), и финитной по переменным \(r = |x| \) и \(t \), выполнено интегральное неравенство

\[
-\int_T^\infty \int_\Omega u \frac{\partial \varphi}{\partial t} \, dx \, dt + \int_T^\infty \int_\Omega \left(-1)^k \frac{\partial^k \varphi}{\partial t^k} - \Delta \varphi \right) \, dx \, dt \geq \]

\[
\geq \int_T^\infty \int_\Omega t^\gamma |u|^q \varphi \, dx \, dt + \sum_{i=1}^{k-1} (-1)^i \int_\Omega \frac{\partial^{k-1} u}{\partial t^{k-1}}(x,T) \frac{\partial^i \varphi}{\partial t^i}(x,T) \, dx + \int_\Omega \frac{\partial^{k-1} u}{\partial t^{k-1}}(x,T) \varphi(x,T) \, dx. \quad (B.26)
\]

Теорема B.5. Пусть \(-k < \gamma \leq 0 \) и

\[1 < q \leq q^* = \frac{N + 2/k + 2\gamma/k}{N - 2 + 2/k} \]

задача (B.25) не имеет глобального нетривиального слабого решения.
Доказательство. Пусть \(u(x, t) \) — нетривиальное решение. Действуя аналогично доказательству теоремы B.4 (очевидно, мы можем брать ту же самую пробную функцию \(\varphi_\rho \), в частности \(\theta = 2/k \)), получаем

\[
\int \int_{\varphi_\rho(x, t) = \xi(x)} |u|^q t^\gamma \xi(x) \, dx \, dt \leq c \int \int_{\text{supp } \Delta \varphi_\rho} \left| \partial^k \varphi_\rho \right|^{q'} \varphi_\rho^{1-q' t^\gamma(1-q')} \, dx \, dt + c \int \int_{\text{supp } |\Delta \varphi_\rho|} \left| \Delta \varphi_\rho \right|^{q'} \varphi_\rho^{q' \gamma(1-q') - 1} \, dx \, dt.
\]

(В.27)

Первое слагаемое в силу (B.12) \((c = q') \) не превосходит

\[
c \rho^{-2\gamma(q' - 1)/k - 2q' + N + 2/k},
\]

поэтому интеграл ограничен при

\[-2\gamma(q' - 1)/k - 2q' + N + 2/k \leq 0.\]

(В.28)

В силу нашего предположения \(\gamma < 0 \) справедливо неравенство \(1 - \gamma(q' - 1) > 0 \), поэтому второй интеграл (по оценке (B.11)) также ограничен при условии (В.28).

Тогда, переходя к пределу при \(\rho \rightarrow \infty \), приходим к оценке

\[
\int \int_T |u|^q t^\gamma \xi \, dx \, dt \leq c_0,
\]

откуда вытекает отсутствие глобального нетривиального решения при выполнении условия (В.28).

Теорема доказана. □

Параболическому случаю \((k = 1) \) задачи (B.25) уделяется много внимания, в частности, аналогичный результат, но для \(\gamma \geq 0 \) приводится в обзорах [121, 55]:

\[
1 < q < q^* = \frac{N + 2 + 2\gamma}{N}.
\]

Насколько известно авторам, соответствующее гиперболическое неравенство ранее не рассматривалось.

Система неравенств. Рассмотрим слабо связанную систему

\[
\begin{align*}
\frac{\partial^k u}{\partial t^k} - \Delta u & \geq |v|^{q_1}, & (x, t) & \in \Omega \times (0, \infty), \\
\frac{\partial^k v}{\partial t^k} - \Delta v & \geq |u|^{q_2}, & (x, t) & \in \Omega \times (0, \infty), \\
u & \geq 0, & (x, t) & \in \partial \Omega \times (0, \infty), \\
\frac{\partial^{k-1} u}{\partial t^{k-1}}(x, 0) & \geq 0, & \frac{\partial^{k-1} v}{\partial t^{k-1}}(x, 0) & \geq 0, & x & \in \Omega.
\end{align*}
\]

(В.29)

Теорема B.6. Задача (B.29) не имеет глобального нетривиального слабого решения (определаемого стандартным образом), если

\[
\max \{\gamma_1, \gamma_2\} \geq \frac{N - 2 + 2/k}{2}, \quad \gamma_1 = \frac{q_1 + 1}{q_1 q_2 - 1}, \quad \gamma_2 = \frac{q_2 + 1}{q_1 q_2 - 1}, \quad q_1 > 1, \quad q_2 > 1.
\]
Доказательство. Пусть (u, v) — слабое решение задачи (B.29). Выберем пробную функцию, как в доказательстве теоремы B.1, и будем использовать соответствующие обозначения.

Применив определение слабого решения неравенства Гельдера, приходим к неравенствам

$$
\int_{\Omega} \frac{\partial^{k-1} u}{\partial t^{k-1}}(x, 0)\varphi_\rho(x, 0) \, dx + \int_0^\infty \int_{\Omega} |v|^{q_1}\varphi_\rho \, dx \, dt \leq \left(\int_{\text{supp} \{(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\}} |u|^{q_2}\varphi_\rho \, dx \, dt \right)^{1/q_2} \times
$$

$$
\int_{\text{supp} \{(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\}} \int_{\text{supp} \{(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\}} \left|(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\right|^{q_2} \varphi_\rho^{1-q_2} \, dx \, dt \right)^{1/q_2}
$$

$$
= \left(\int_{\text{supp} \{(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\}} \int_{\text{supp} \{(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\}} |u|^{q_2}\varphi_\rho \, dx \, dt \right)^{1/q_2} \times
$$

$$
\equiv \left(\int_{\text{supp} \{(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\}} \int_{\text{supp} \{(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\}} \left|(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\right|^{q_1} \varphi_\rho^{1-q_1} \, dx \, dt \right)^{1/q_1}
$$

$$
= \left(\int_{\text{supp} \{(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\}} \int_{\text{supp} \{(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\}} |v|^{q_1}\varphi_\rho \, dx \, dt \right)^{1/q_1} \equiv J_1^{1/q_1},
$$

причем согласно (B.9)

$$
J_1 \leq c_0 \rho^{-2q_2+N+2/k}, \quad J_2 \leq c_0 \rho^{-2q_1+N+2/k}.
$$

Подставим неравенство (B.31) в (B.30). Тогда

$$
\int_{\Omega} \frac{\partial^{k-1} u}{\partial t^{k-1}}(x, 0)\psi_\rho(x) \, dx + \int_0^\infty \int_{\Omega} |v|^{q_1}\varphi_\rho \, dx \, dt \leq \left(\int_{\text{supp} \{(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\}} |u|^{q_2}\varphi_\rho \, dx \, dt \right)^{1/(q_1q_2)} \times
$$

$$
\int_{\text{supp} \{(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\}} \int_{\text{supp} \{(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\}} \left|(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\right|^{q_2} \varphi_\rho^{1-q_2} \, dx \, dt \right)^{1/q_2} \times
$$

$$
\equiv \left(\int_{\text{supp} \{(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\}} \int_{\text{supp} \{(-1)^k \frac{\partial^k \varphi_\rho}{\partial t^k} - \Delta \varphi_\rho\}} |v|^{q_1}\varphi_\rho \, dx \, dt \right)^{1/q_1} \equiv J_2^{1/(q_1q_2)} J_1^{1/q_2},
$$

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234 24*
откуда после упрощения степеней получаем
\[
\int_0^\infty \int_\Omega |u|^{q_2} \varphi_\rho \, dx \, dt \leq \left(J_2^{q_2-1} J_1^{q_1(q_2-1)} \right)^{1/(q_1q_2-1)} \leq C \rho^{((N-2+2/k)(q_1q_2-1)-2(q_1+1))/(q_1q_2-1)} = C \rho^{N-2+2/k-2\gamma_1}. \tag{B.32}
\]
Отсюда, рассуждая, как и раньше, выводим отсутствие неривиального решения \(v(x,t)\) в случае
\[N - 2 + 2/k - 2\gamma_1 \leq 0.\]
Аналогично, подставляя (B.30) в (B.31), приходим к оценке
\[
\int_0^\infty \int_\Omega |u|^{q_2} \varphi_\rho \, dx \, dt \leq \left(J_2^{q_2-1} J_1^{q_1(q_2-1)} \right)^{1/(q_1q_2-1)} \leq C \rho^{((N-2+2/k)(q_1q_2-1)-2(q_2+1))/(q_1q_2-1)} = C \rho^{N-2+2/k-2\gamma_2}, \tag{B.33}
\]
т.е. нетривиальное решение \(u(x,t)\) отсутствует при
\[N - 2 + 2/k - 2\gamma_2 \leq 0.\]
Очевидно, что если хотя бы одна из функций \(u(x,t)\) или \(v(x,t)\) тождественно равна нулю, то равна нулю и другая. Таким образом, условие отсутствия нетривиального решения принимает вид
\[
\max\{\gamma_1, \gamma_2\} \geq \frac{N - 2 + 2/k}{2},
\]
что и требовалось доказать. \(\square\)

Приведем частные случаи теоремы B.6. При \(k = 1\) (параболическая система) приходим к варианту результата Эскобедо–Херреро для внешности шара [142]: задача
\[
\begin{align*}
\frac{\partial u}{\partial t} - \Delta u &\geq |u|^{q_1}, \\
\frac{\partial v}{\partial t} - \Delta v &\geq |u|^{q_2}, \\
u &\geq 0, \quad v \geq 0, \quad (x,t) \in \partial \Omega \times (0,\infty), \\
u(x,0) &\geq 0, \quad v(x,0) \geq 0, \quad x \in \Omega,
\end{align*}
\]
не имеет глобального нетривиального слабого решения при
\[
\max \left\{ \frac{q_1 + 1}{q_1q_2 - 1}, \frac{q_2 + 1}{q_1q_2 - 1} \right\} \geq \frac{N}{2}.
\]
При \(k = 2\) для гиперболической системы
\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} - \Delta u &\geq |u|^{q_1}, \\
\frac{\partial^2 v}{\partial t^2} - \Delta v &\geq |u|^{q_2}, \\
u &\geq 0, \quad v \geq 0, \quad (x,t) \in \partial \Omega \times (0,\infty), \\
u(x,0) &\geq 0, \quad v(x,0) \geq 0, \quad x \in \Omega,
\end{align*}
\]
не имеет глобального нетривиального слабого решения при
\[
\max \left\{ \frac{q_1 + 1}{q_1q_2 - 1}, \frac{q_2 + 1}{q_1q_2 - 1} \right\} \geq \frac{N}{2}.
\]

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
утверждение об отсутствии решения справедливо при

\[
\max \left\{ \frac{q_1 + 1}{q_1 q_2 - 1}, \frac{q_2 + 1}{q_1 q_2 - 1} \right\} \geq \frac{N - 1}{2}.
\]

В пределе при \(k \to \infty \) приходим к известным условиям отсутствия решения для эллиптической системы:

\[
\max \left\{ \frac{q_1 + 1}{q_1 q_2 - 1}, \frac{q_2 + 1}{q_1 q_2 - 1} \right\} \geq \frac{N - 2}{2}.
\]

Используя предлагаемый подход, можно рассмотреть также системы неравенств с сингулярными коэффициентами и установить зависимость критического показателя от включенных в систему неоднородностей. Ещё одним вариантом обобщения теоремы В.6 являются утверждения об отсутствии решений систем смешанного типа, включающих в себя параболическое и гиперболическое неравенства, т.е. эволюционные неравенства разных порядков.
СПИСОК ЛИТЕРАТУРЫ

374
СПИСОК ЛИТЕРАТУРЫ

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
376

СПИСОК ЛИТЕРАТУРЫ

378

СПИСОК ЛИТЕРАТУРЫ

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Details</th>
</tr>
</thead>
</table>
СПИСОК ЛИТЕРАТУРЫ 381

188. Бессов О.В., Ильин В.П., Никольский С.М. Интегральные представления функций и теоремы вложения. М.: Наука, 1996.

191. Голдштейн В.М., Резетткяк Ю.Г. Введение в теорию функций с обобщенными производными и квазиконформные отображения. М.: Наука, 1983.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2001, т. 234
204. Коньков А.А. Поведение решений полулинейных эллиптических неравенств в окрестности сингулярности // Докл. РАН. 1999. Т. 366, №5. С. 595–598.

208. Курта В.В. Некоторые вопросы качественной теории квазилинейных дифференциальных уравнений второго порядка // Дис. ... докт. физ.-мат. наук. М.: МИАН, 1994.

216. Лаптев Г.Г. Отсутствие решений эллиптических неравенств и систем гиперболического типа в конической области // Изв. РАН. Сер. мат. В печати.

217. Лаптев Г.Г. Об отсутствии положительных решений эллиптических неравенств в конических областях // Мат. заметки. В печати.

218. Лаптев Г.Г. Об отсутствии решений эллиптических дифференциальных неравенств в окрестности конической точки границы // Изв. вузов. Сер. мат. В печати.

219. Лаптев Г.Г. Отсутствие решений полулинейных параболических дифференциальных неравенств в конусах // Мат. сб. В печати.

221. Милков В.М. Емкостные методы в задачах нелинейного анализа: Дис. ... докт. физ.-мат. наук. Тюмень: Тюмен. гос. ун-т, 1980.

226. Митидиери Э., Позожаев С.И. Некоторые общепринятые теоремы Берштейна // Диф. уравнения. В печати.

238. Хунг Нгуен Мань. Об отсутствии положительных решений нелинейных эллиптических уравнений второго порядка в конических областях // Диф. уравнения. 1998. Т. 34, №4. С. 533–539.