
DOI: https://doi.org/10.4213/tvp502

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use
http://www.mathnet.ru/eng/agreement

Download details:
IP: 54.70.40.11
January 21, 2019, 02:09:19
ROUGH BOUNDARY TRACE FOR SOLUTIONS OF $Lu = \psi(u)$

Dedicated to A. V. Skorokhod on his 70th birthday

Пусть L — эллиптический дифференциальный оператор второго порядка на \mathbb{R}^d, и пусть E — ограниченная область в \mathbb{R}^d с гладкой границей ∂E. С каждым положительным решением полулинейного дифференциального уравнения $Lu = \psi(u)$ в E связана пара (Γ, ν), где Γ — замкнутое подмножество ∂E и ν есть мера Радона на $O = \partial E \setminus \Gamma$. Мы называем эту пару грубым (rough) следом решения на ∂E. (В [6] был введен тонкий (thin) след, который позволяет различать решения с одинаковым грубым следом.)

Случай $\psi(u) = u^\alpha$ с $\alpha > 1$ был исследован с помощью различных методов Легаллом (Le Gall), Дынкиным и Кузнецовым, а также Маркусом и Вероном. В настоящей статье мы рассматриваем широкий класс функций ψ и существенно упрощаем доказательства, содержащиеся в наших предыдущих работах.

Ключевые слова и фразы: след решения на границе, умеренные решения, выметание, устранимые и тонкие подмножества границы, стохастические граничные значения, диффузия, ранг супердиффузии.

1. Conditions on L and ψ. Suppose that E is a bounded domain of class C^2,λ in \mathbb{R}^d and

$$Lu = \sum_{i,j} a_{ij} \frac{\partial^2 u}{\partial x^i \partial x^j} + \sum_i b_i \frac{\partial u}{\partial x^i}$$

is a uniformly elliptic operator with bounded smooth coefficients. We assume that a function $\psi(x, u)$ on $\mathbb{R}^d \times \mathbb{R}_+$ has the following properties.

1.A. For every x, $\psi(x, \cdot)$ is convex and $\psi(x, 0) = 0$, $\psi(x, u) > 0$ for $u > 0$.
1.B. $\psi(x, u)$ is continuously differentiable.
1.C. ψ is locally Lipschitz continuous in u uniformly in x, i.e., for every $c > 0$, there exists a constant $q(c)$ such that

$$\left| \psi(x; u_1) - \psi(x; u_2) \right| \leq q(c)|u_1 - u_2| \quad \text{for all } x \in E, \ u_1, u_2 \in [0, c]. \quad (1.1)$$

1.D. There is a constant a such that $\psi(x, 2u) \leq a\psi(x, u)$ for all x and u.

We study the set \mathcal{U} of all positive functions of class C^2 on E such that

$$Lu = \psi(u) \quad \text{in } E. \quad (1.2)$$

In addition to 1.A–1.C, we suppose that all positive bounded solutions of (1.2) in any subdomain D of E are uniformly bounded. Keller [8] and Osserman [9] have shown that

* Department of Mathematics, Cornell University, Ithaca, NY 14853, USA; e-mail: ebd1@cornell.edu
** Department of Mathematics, University of Colorado, Boulder, CO 80309-0395, USA; e-mail: Sergei.Kuznetsov@Colorado.edu

1) Partially supported by National Science Foundation Grants DMS-9970942 and DMS-9971009.
Rough boundary trace for solutions of \(Lu = \psi(u) \)

this property holds if a certain integral involving \(\psi \) is finite. All conditions listed in this section hold for \(\psi(x,u) = k(x) u^\alpha \) under mild conditions on \(k(x) \) if \(\alpha > 1 \).

We define a boundary trace of \(u \in \mathcal{U} \) by using two tools: (a) trace of moderate solutions; (b) sweeping of solutions.

2. Trace of moderate solutions. Two linear operators play a key role in our investigation: the Green operator \(G \) and the Poisson operator \(K \). They can be defined by probabilistic formulae

\[
Gf(x) = \Pi_x \int_0^\xi f(\xi_t) \, dt, \quad Kf(x) = \Pi_x f(\xi),
\]

where \(\xi = (\xi_t, \Pi_x) \) is the diffusion in \(E \) with the generator \(L \) and \(\xi \) is the first exit time of \(\xi \) from \(E \).

Denote by \(\mathcal{H} \) the set of all positive solutions of the linear equation \(Lu = 0 \) in \(E \). We call elements of \(\mathcal{H} \) harmonic functions.

A function \(u \in \mathcal{U} \) is called a moderate solution if \(u \leq h \) for some \(h \in \mathcal{H} \). Denote by \(\mathcal{U}_1 \) the set of all moderate solutions. We have proved in [4] that the formula

\[
u(x) = \int_{\partial E} k(x,y) \nu(dy),
\]

defines a one-to-one mapping \(i \) from \(\mathcal{U}_1 \) onto a subset \(\mathcal{H}_1 \) of \(\mathcal{H} \). We denote the inverse mapping by \(j \). For every \(u \in \mathcal{U}_1 \), \(h = j(u) \) is the minimal harmonic majorant of \(u \), and, for every \(h \in \mathcal{H}_1 \), \(u = i(h) \) is the maximal element of \(\mathcal{U}_1 \) dominated by \(h \). Clearly, mappings \(i \) and \(j \) are monotone. Moreover, \(i(h_1 + h_2) \leq i(h_1) + i(h_2) \) (see Section 4.3 in [6]).

Every \(h \in \mathcal{H} \) has a representation

\[
u(x) = \int_{\partial E} k(x,y) \nu(dy),
\]

where \(k(x,y) \) is the Poisson kernel and \(\nu \) is a finite measure on \(\partial E \). Formula (2.2) establishes a one-to-one correspondence between the set of all finite measures on \(\partial E \) and \(\mathcal{H} \).

If \(\nu \) and \(h \) are related by formula (2.2), then we write \(h = K \nu \). Put \(\nu \in \mathcal{M}_1 \) if \(K\nu \in \mathcal{H}_1 \).

We say that \(\nu \) is the trace of a moderate solution \(u \) if

\[
u = u + G\psi(u)
\]

Formula (2.3) defines a one-to-one correspondence between \(\mathcal{M}_1 \) and \(\mathcal{U}_1 \).

3. Sweeping. It is proved in [6] that \(\mathcal{U} \) with the partial order \(\leq \) is a complete lattice that is, for every subset \(C \) of \(\mathcal{U} \) there exist \(\text{Sup} C \) and \(\text{Inf} C \) in \(\mathcal{U} \) (writing \(v = \text{Sup} C \) means that: (i) \(v \in \mathcal{U} \); (ii) \(u \leq v \) for all \(u \in \mathcal{U} \); (iii) if \(w \in \mathcal{U} \) and \(u \leq w \) for all \(u \in \mathcal{U} \), then \(u \leq w \); writing \(v = \text{Inf} C \) has a similar meaning). For every pair \(u, v \in \mathcal{U} \), we put \(u \vee v = \text{Sup}\{u,v\}, u \wedge v = \text{Inf}\{u,v\} \). We proved in [6] that, if \(C \subset \mathcal{U} \) is closed under \(\vee \), then there exists a sequence \(u_n \in C \) such that \(u_n(x) \uparrow v(x) \) for all \(x \in E \). We have \(v(x) = \text{Sup}_C u(x) \) for all \(x \in E \).

We use this result to introduce a sweeping \(Q_B(u) \) of \(u \in \mathcal{U} \) to a closed subset \(B \) of \(\partial E \). We put

\[
u = u + G\psi(u)
\]

Formula (2.3) defines a one-to-one correspondence between \(\mathcal{M}_1 \) and \(\mathcal{U}_1 \).

3. Sweeping. It is proved in [6] that \(\mathcal{U} \) with the partial order \(\leq \) is a complete lattice that is, for every subset \(C \) of \(\mathcal{U} \) there exist \(\text{Sup} C \) and \(\text{Inf} C \) in \(\mathcal{U} \) (writing \(v = \text{Sup} C \) means that: (i) \(v \in \mathcal{U} \); (ii) \(u \leq v \) for all \(u \in \mathcal{U} \); (iii) if \(w \in \mathcal{U} \) and \(u \leq w \) for all \(u \in \mathcal{U} \), then \(u \leq w \); writing \(v = \text{Inf} C \) has a similar meaning). For every pair \(u, v \in \mathcal{U} \), we put \(u \vee v = \text{Sup}\{u,v\}, u \wedge v = \text{Inf}\{u,v\} \). We proved in [6] that, if \(C \subset \mathcal{U} \) is closed under \(\vee \), then there exists a sequence \(u_n \in C \) such that \(u_n(x) \uparrow v(x) \) for all \(x \in E \). We have \(v(x) = \text{Sup}_C u(x) \) for all \(x \in E \).

We use this result to introduce a sweeping \(Q_B(u) \) of \(u \in \mathcal{U} \) to a closed subset \(B \) of \(\partial E \). We put

\[
u = u + G\psi(u)
\]
4. Rough trace. Now we are prepared to define a rough trace of an arbitrary \(u \in \mathcal{U} \). We say that a compact set \(B \subset \partial E \) is \textit{moderate} for \(u \) if the solution \(u_B = Q_B(u) \) is moderate. Let \(\nu_B \) stand for the trace of \(u_B \). By 3.D, union of two moderate sets is moderate. Suppose that \(B \) is moderate and let \(\tilde{B} \subset B \). By 3.G, \(\tilde{B} \) is moderate and \(\nu_{\tilde{B}} \) is the restriction of \(\nu_B \) to \(\tilde{B} \).

A relatively open subset \(A \) of \(E' \) is called \textit{moderate} if all compact subsets of \(A \) are moderate. The union \(O \) of all moderate open sets is moderate. Clearly, there exists a unique measure \(\nu \) on \(O \) such that its restriction to an arbitrary compact subset \(B \) coincides with \(\nu_B \).

The measure \(\nu \) has the property: for every compact \(B \subset O \) the restriction of \(\nu \) to \(B \) belongs to the class \(\mathcal{K}_1 \). We denote by \(\mathcal{K}_1(O) \) the class of measures with this property. We call closed set \(\Gamma = \partial E \setminus O \) the \textit{special set of the solution} \(u \) and we call pair \((\Gamma, \nu)\) the \textit{rough trace} of \(u \) on \(\partial E \).

5. Solutions \(u_\nu \) and \(w_B \). The class \(\mathcal{U} \) is closed under pointwise convergence. Moreover, the class of solutions vanishing on a relatively open subset \(O \) of \(\partial E \) is also closed under pointwise convergence (see, for instance [2, Theorem 1.2]). Suppose that \(B_n \) are closed and \(\bigcup B_n \subset O \).

If \(u \in \mathcal{K}_1(O) \) and if \(\nu_n \) is the restriction of \(\nu \) to \(B_n \), then \(\nu_n \in \mathcal{K}_1 \) and \(u_{\nu_n} \) is an increasing sequence. We denote its limit by \(u_\nu \). It is easy to see that it does not depend on the choice of \(B_n \) and that \(u_\nu \leq u_\nu' \) if and only if \(\mu \leq \mu' \).

For every closed \(B \subset \partial E \), we put

\[
\nu_B = \sup \{ u \in \mathcal{U} : u \equiv 0 \text{ on } \partial E \setminus B \}.
\]

Note that, for every \(x \in E \), \(\nu_B(x) \) is equal to the supremum of \(u(x) \) over all \(u \in \mathcal{U} \). We have:

5.A. \(\nu_{B_1} \leq \nu_{B_2} \) if \(B_1 \subset B_2 \).
5.B. \(Q_B(u) \leq \nu_B \) for all \(u \in \mathcal{U} \).
5.C. \(Q_B(\nu_B) = \nu_B \).
5.D. \(\nu_{B_1 \cup B_2} \leq \nu_{B_1} + \nu_{B_2} \).
5.E. If \(B_n \subset B \), then \(\nu_{B_n} \leq \nu_B \).

5.A and 5.B follow from (3.1). By 5.B, \(Q_B(\nu_B) \leq \nu_B \). On the other hand, \(v = \nu_B \) satisfies conditions \(v \leq \nu_B, v \equiv 0 \) on \(\partial E \setminus B \) and \(Q_B(\nu_B) \) is a maximal solution with these properties. Hence, \(\nu_B \leq Q_B(\nu_B) \) which proves 5.C. To prove 5.D, we put \(B = B_1 \cup B_2 \) and we note that, by 5.C, 3.D and 5.B,

\[
\nu_B = Q_B(\nu_B) \leq Q_B(\nu_{B_1} + \nu_{B_2}) \leq \nu_{B_1} + \nu_{B_2}.
\]

Let us prove 5.E. Function \(\nu_n = \nu_{B_n} \) is a maximal element of \(\mathcal{U} \) vanishing on \(O_n = \partial E \setminus B_n \). By 5.A, \(\nu_n \downarrow \nu \geq \nu_B \). The limit \(\nu \) is a solution equal to 0 on \(O = \partial E \setminus B \). Hence, \(\nu \leq \nu_B \).

6. Removable and thin boundary sets. We say that a compact set \(B \subset \partial E \) is \textit{removable} if 0 is the only element of \(\mathcal{U} \) vanishing on \(\partial E \setminus B \). (In the literature, such sets are called removable boundary singularities for solutions of (2.1).) Clearly, \(B \) is removable if and only if \(\nu_B = 0 \). A set \(A \) is called \textit{thin} if all its compact subsets are removable.\(^2\) It follows from 5.A and 5.D that:

6.A. All closed subsets of a removable set are removable and all subsets of a thin set are thin.
6.B. The class of all removable sets and the class of all thin sets are closed under the finite unions.

We also have:

6.C. All thin Borel sets are not charged by any \(\nu \in \mathcal{K}_1 \).

\textit{Proof.} Since \(\mathcal{K}_1 \) contains, with every \(\nu \) its restriction to any \(B \), it is sufficient to show that, if \(\nu \in \mathcal{K}_1 \) is concentrated on a removable compact set \(B \), then \(\nu = 0 \). The Poisson kernel \(k(x,y) \) is bounded on every set \(\{|x-y| > \epsilon\}, \epsilon > 0 \), and it tends to 0 as

\(^2\) If \(X \) is a \((L, \psi)\)-superdiffusion, then, by Theorem 1.2 in [5], a compact set \(B \) is removable if and only if \(\mathbb{P}_x\{A \cap B \neq \emptyset\} = 0 \), where \(A \) is the range of \(X \).
Rough boundary trace for solutions of $Lu = \psi(u)$

$y \rightarrow \tilde{y} \in \partial E, \tilde{y} \neq y$. Therefore $h = K\nu = 0$ on $\partial E \setminus B$. The solution $i(h)$ satisfies the same condition because $i(h) \leq h$. Therefore $i(h) \leq \nu_B$. If $\nu_B = 0$, then $i(h) = 0$. Thus $h = 0$ and $\nu = 0$.

6.D. If compact $B \subset \Gamma$ and if $Q_B(w_T)$ is moderate, then B is removable.

Proof. By 5.A, $\nu_B \leq w_T$ and, by 5.C and 3.A, $\nu_B = Q_B(w_B) \leq Q_B(w_T)$. If $Q_B(w_T)$ is moderate, then so is ν_B. Hence, $\nu_B = i(h)$ for some $h \in \mathcal{H}$. By Theorem 4.3 in [6], $\nu_B = 2h \leq 2i(h)$, we have $v \leq 2w_B$. Hence, $v = 0$ on $\partial E \setminus B$ which implies that $v \leq \nu_B$. By the monotonicity of j, $2h = j(v) \leq j(\nu_B) = h$. Therefore $h = 0$ and $w_T = i(h) = 0$.

6.E. Suppose Γ is removable and $B_n = \{x \in \partial E: d(x, \Gamma) \geq \varepsilon_n\}$. If $\varepsilon_n \downarrow 0$, then $Q_B(u) \uparrow u$ for every $u \in \mathcal{U}$.

Proof. Put $\Gamma_n = \{y \in \partial E: d(y, \Gamma) \leq 2\varepsilon_n\}$. Note that $\Gamma_n \cup B_n = \partial E$ and $\Gamma_n \downarrow \Gamma$. By 3.E, 3.D and 5.D, $u = Q_{\partial E}(u) \leq Q_{\Gamma_n}(u) + Q_B(u)$. By 5.B and 5.E, $Q_{\Gamma_n}(u) \leq \nu_T \downarrow \nu_T = 0$.

7. Principal results. We say that x is an explosion point of a measure ν and we write $x \in \text{Ex}(\nu)$ if $\nu(U) = \infty$ for every neighborhood U of x. If $\nu(B) < \infty$ and if B is compact, then $\nu(B) < \infty$. Note that $O \cap \text{Ex}(\nu) = \emptyset$ for every measure $\nu \in \mathcal{H}(O)$.

We say that (Γ, ν) is a normal pair if:

(a) Γ is a closed subset of ∂E;

(b) $\nu \in \mathcal{H}(O)$, where $O = \partial E \setminus \Gamma$;

(c) the conditions

\[\Lambda \subset \Gamma \text{ is thin and contains no explosion points of } \nu, \]

\[\Gamma \setminus \Lambda \text{ is closed imply that } \Lambda = \emptyset. \tag{7.1} \]

We demonstrate that these conditions hold for the trace of an arbitrary solution u.

First, we prove a few auxiliary propositions.

7.A. If $u \in \mathcal{U}$ vanishes on a compact set $B \in \partial E$, then $Q_B(u) = 0$.

Indeed, by (3.1), $v = Q_B(u) = 0$ on $\partial E \setminus B$ and $v \leq u$. Hence, $v = 0$ on ∂E, and $v = 0$ by the comparison principle (see, e.g., [1, p. 113]).

7.B. Suppose that $\text{tr}(u) = (\Gamma, \nu)$. If $u = 0$ on an open subset O_1, then $O_1 \subset \Gamma = \emptyset$ and $\nu(O_1) = 0$.

Indeed, by 7.A, $Q_B(u) = 0$ for all compact subsets of O_1.

7.C. Let $\text{tr}(u) = (\Gamma, \nu)$. If Γ is removable and ν is finite, then u is moderate.

To prove this, we apply 6.E. Note that $h = K\nu \in \mathcal{E}$ and $u_n = Q_B(u) \leq K\nu \leq h$.

By 6.E, $u_n \uparrow u$. Hence, $u \leq h$.

Theorem 7.1. The trace of an arbitrary solution u is a normal pair.

Proof. Properties (a) and (b) follow immediately from the definition of the trace. Let us prove (c). Suppose that Λ satisfies the conditions (7.1) and let $\Gamma_0 = \Gamma \setminus \Lambda$. Theorem will be proved if we show that $v = Q_B(u)$ is moderate for every closed subset B_1 of $\Gamma_0 = \partial E \setminus \Gamma_0$. Indeed, this implies $O_0 \subset O$ and therefore $\Gamma_0 \subset \Gamma$, $\Lambda = \emptyset$.

Let (Γ_1, ν_1) be the trace of u. By 7.C, it is sufficient to prove that Γ_1 is removable and ν_1 is finite.

By 3.B, $v \leq u$ and, by 3.A, all moderate sets for u are also moderate for v. Hence $\Gamma_1 \subset \Gamma$. By 7.B, $\partial E \setminus B_1 \subset \partial E \setminus \Gamma_1$ because $v = 0$ on $\partial E \setminus B_1$. Hence, $\partial E \setminus B_1$ is moderate for v and it is contained in $O_1 = \partial E \setminus \Gamma_1$. We conclude that $\Gamma_1 \subset B_1 \cap \Gamma \subset \Lambda$. Hence, Γ_1 is removable.

Note that $B_1 \subset O \cup \Lambda$ does not contain explosion points of ν and therefore $\nu(B_1) < \infty$. Since $Q_B(v) = 0$ for $B \cap B_1 = \emptyset$, measure ν_1 vanishes on $\partial E \setminus B_1$. Since $v \leq u$, $v_1 \leq \nu$ on $O \subset O_1$. We have

\[\nu_1(O_1) = \nu_1(O_1 \cap B_1) = \nu_1((O_1 \setminus O) \cap B_1) + \nu_1(O \cap B_1) < \nu(O \cap B_1) < \infty \]

because $\Gamma \cap B_1$ is removable and therefore $\nu_1(\Gamma \cap B_1) = 0$ by 6.C. Theorem 7.1 is proved.

For every $u, v \in \mathcal{U}$ we put $u \odot v = \Sup\{u \in \mathcal{U}: u \leq u + v\}$. Note that $u_\mu \odot u_\nu = u_{\mu + \nu}$.

3) Here is the only place we use the property 1.D of ψ.
Theorem 7.2. If (Γ, ν) is a normal pair, then $u = w_\Gamma \oplus u_\nu$ is a solution with the trace (Γ, ν). Moreover, u is maximal among such solutions.

Proof. 1°. Let $B \subset O = \partial E \setminus \Gamma$. We claim that $Q_B(u) = u_{\nu_B}$, where ν_B is the restriction of ν to B. Indeed, B is contained in an open subset O_1 of ∂E such that $\overline{O}_1 \subset O$. Let ν_1 and ν_2 be the restrictions of ν to O_1 and to $O \setminus O_1$. Note that $u_\nu = u_{\nu_1} \oplus u_{\nu_2}$. By 3.D, $Q_B(u) = Q_B(u_{\nu_1}) + Q_B(u_{\nu_2})$. Since ν_2 does not charge a neighborhood of B, $u_{\nu_2}(B) = 0$. The same is true for w_B. By 7.A, $Q_B(w_B) = Q_B(u_{\nu_2}) = 0$. Hence, $Q_B(u) = Q_B(u_{\nu_1})$ and, by 3.A and 3.G, $Q_B(u) = Q_B(u_{\nu_1}) = u_{\nu_B}$.

2°. Denote the trace of u by (Γ_0, ν_0). It follows from 1° that $O \subset O_0$ and $\nu = \nu_0$ on O_0. Since ν is concentrated on O, we have $\nu \leq \nu_0$ and therefore $\operatorname{Ex}(\nu) \subset \operatorname{Ex}(\nu_0) \subset \Gamma_0 \subset \Gamma$. Every compact $B \subset \Lambda = \Gamma \setminus \Gamma_0$ is moderate for u (because $B \subset O_0$) and it is removable by 6.D. Thus, Λ is thin. Since $\Lambda \cap \operatorname{Ex}(\nu) = \emptyset$ and $\Gamma \setminus \Lambda = \Gamma_0$ is closed, $\Lambda = \emptyset$ by the definition of a normal pair.

3°. Let us show that an arbitrary solution v with the trace (Γ, ν) is dominated by $u = w_\Gamma \oplus u_\nu$. Since u is the maximal element of \mathcal{U} dominated by $w_\Gamma + u_\nu$, it is sufficient to show that $v \leq w_\Gamma + u_\nu$. Consider compact sets B_n and Γ_n such that $B_n \uparrow O$, $\Gamma_n \downarrow \Gamma$ and $B_n \cup \Gamma_n = \partial E$ for all n. By 3.E and 3.D, \begin{equation}

v = Q_{\partial E}(v) = Q_{B_n}(v) + Q_{\Gamma_n}(v). \tag{7.2}

\end{equation}

Let ν_n be the restriction of ν to B_n. Note that $Q_{B_n}(v) = u_{\nu_n} \leq u_\nu$. By 5.B, $Q_{\Gamma_n}(v) \leq w_{\Gamma_n}$ and, by 5.E, $w_{\Gamma_n} \downarrow w_\Gamma$. Therefore (7.2) implies that $v \leq u_\nu + w_\Gamma$. Theorem 7.2 is proved.

Remark. If X is a (L, ψ)-superdiffusion, then \begin{equation}

(w_\Gamma \oplus u_\nu)(x) = -\ln P_x\{\mathcal{R} \cap \Gamma = \emptyset, e^{-Z_\nu}\}, \tag{7.3}

\end{equation}

where \mathcal{R} is the range of X and Z_ν is the stochastic boundary value of $h = K\nu$ (see [3]).

REFERENCES