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STUDENT’S {-TEST FOR
GAUSSIAN SCALE MIXTURES

ABSTRACT. A Student type test is constructed under weaker than nor-
mal condition. We assume the errors are scale miztures of normal random
variables and compute the critical values of the suggested s-test. Our s-
test is optimal in the sense that if the level is at most «, the s-test
provides the minimal critical values. (The most important critical val-
ues are tablulated at the end of the paper.) For o € .05 the two-sided
s-test is identical with Student’s classical ¢-test. In general, the s-test is
a t-type test but its degree of freedom should be reduced depending on
o. The s-test is applicable for many heavy tailed errors including sym-
metric stable, Laplace, logistic, or exponential power. Our results explain
when and why the P-value corresponding to the t-statistic is robust if
the underlying distribution is a scale mixture of normal distributions.

0.1. INTRODUCTION

Student’s classical t-test [Student(1908)] is particularly vulnerable to
long-tailed non-normality. In this paper a new statistic is proposed to
guard against this situation. The new test is optimal in the sense that
1t minimizes the critical values in the family of Gaussian scale mixtures
when the level is at most a given number. Our theorems are closely related
to problems in Benjamini (1983) Sec. 6.1, and Basu and DasGupta (1995).

Let X1, X5,...,X,, be independent normal random variables with
common mean /i, not necessarily equal variances o7 (at least one of them
nonzero), X = > 7_ Xp/n, S% = > p_1(Xp — X)?/(n — 1) # 0 and
T, = V(X — 1)/ Sx.

Ifo,=00=...=0,, and

nxz

- 1
r r24+n—-1 (1)
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then for x > 0 and n > 2

bl

P{|T,| > «} = P{|jtn-1] > 2} = P{% > R},

where £1,&5, ... &, are 1.1.d. standard normal random variables, ¢,,_1 is
a t-distributed random variable with degree of freedom n — 1. (For the
idea of this equation, see Efron (1969), p. 1279.)
In the nonhomogeneous case denote the supremum of the double-tail
probability by
25,-1(z) := sup P{|T,| > z}. (2)

020
k=1,2,...,n

We also need the notation s,_i(2) = 1 —5,_1(z) and the inverse trans-

formation of (1): x = /R(n —1)/(n — R).

Theorem 1. For arbitrary x > 0 and n > 2,

Sp-1(z) = max P{tk_1> m},

R<k<n k—R

where s,_1(2) = 1/2if0 <2 <1, 5,-1(1) = 3/4, and sp,_1(x) = t_1 ()
for x > \/3(n—1)/(n—3).

Theorem 1 can easily be generalized for arbitrary scale mixtures of
Gaussian errors. Their pdf has the form fooo o((x — p)/o)d F(o), where
¢ is the standard normal pdf and F(e) is an arbitrary cdf on the non-
negative half-line. For scale mixtures of normal distributions see Efron
and Olshen (1978) and Gneiting (1997). Scale mixtures are important
in finance and in many other areas of applications where the errors are
heavy tailed, e.g., symmetric stable. Normal scale mixtures also include
Student’s ¢, Laplace, logistic, exponential power, etc. See, e.g., Kelker
(1971) and Gneiting (1997).

Theorem 1 obviously implies

Theorem 2. Let X1, Xs,...,X,, be an i.1.d. sample from a Gaussian
scale mixture and let Yy, be independent normal (0, 07) random variables,

Y = Yore Yi/n 52 = Yor (Vi —Y)2/(n —1). Then

X

P{ﬁ Ys—u > x} — /P{\/ﬁ % > x}kli[ldF(ak) < Foon(2).
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Introduce the notation

gk(R):P %>R IP{|tk_1|> %}U}

and
Ap(R) = grt1(R) — g (R).
Proposition.
(i) For k = 2,3,...,n — 1, there exists a unique point r(k) € (1,k),
such that Ap(R) < 0 if R < r(k) and Ap(R) > 0 ifr(k) < R < k;
() r(1):=1<r2)<r3) <...<r(n—1) < r(n), ie, the sequence
r(k) is strictly increasing;

(i) (k) — 3.

Corollary 1. (i) For Re€ [r(k—1),r(k)], k=2,3,...,n— 1,

Sp—1(x) =P {tk_l > %}1)} .

(ii) For R 2 r(n — 1),
Sp—1(x) = th_1(2).

According to our Table 1, the one-sided 0.025 level s-critical values
coincide the classical ¢-critical values. Splus can easily compute that
r(2) = 1.726, r(3) = 2.040 thus according to Table 1, for the one-
sided o = 0.125 critical values 5,_1(z) = #1(R) = 0.125 and similarly,
Sp-1(x) = 12(R) = 0.1. One can also compute that 5,_1 = tmin(n-1,13) =
.05.

Corollary 2. For & > 0, the scale mixture counterpart of the standard
normal cdf is

®* () := lim sp(x) = sup P(tr—1 </ (k=1)/(k—2%)). (%)

n—o00 22<k

(®*(—2x) = 1 = ®*(x)). For 0 < = < 1, ®*(x) = .5, &*(1) = .75, for
x> /3, ®*(x) = ®(x), where ®(z) is the standard normal cdf (®*(/3) =
®(v/3) = 0.958). For quantiles between .5 and .875 the sup in (x) is taken
at k = 2 and thus in this interval ®*(z) = C(x/+/(2 — ?)), where C(z)

is the standard Cauchy cdf. It is interesting to compare some ®* and ®
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critical values (when they do not coincide): 0.95 = ®(1.645) = ®*(1.650),

0.9 = ®(1.282) = &*(1.386), 0.875 = B(1.150) = ®*(1.307) (sce the last
row of Table 1).

On the robustness of ¢-statistic and on substitute t-statistics see, e.g.,
Tukey and McLaughin (1963). In this paper, it was found that “trimmed”
t is distributed approximately as a t-variable with reduced degrees of
freedom. This result is similar to ours: s-statistics are t-type statistics
with reduced degrees of freedom.

Our approach can also be applied for two-sample tests. In a forth-
coming paper the Behrens—Fisher problem will be discussed for Gaussian
scale mixture errors with the help of our s, (x) function.

If the error distribution is not necessarily a scale mixture of normal
distributions, but symmetric and unimodal, then according to a classical
result of Khintchin, the errors are scale mictures of centered uniform
distributions (see, e.g., Feller (1966), p. 155). Thus if the random variables
Uy, Us, ..., U, are independent and Uniform [—1, 1] distributed, then our
Theorems suggest that in this case 5,_1(x) should be replaced by

Up-1(x) = max

U +Uqy-- -+ Uy R(k‘—l)
R<k<n '

>
VUE+UZ -+ U2 k—R

We plan to return to this problem in another paper. For a related result
see Basu and DasGupta (1995).

Finally, on the history of Student’s test and on the problem of non-
normal errors see Fisher (1925), Pearson(1929), Rider (1929) and (1931),
Bartlett (1935), Landerman (1939), Rietz (1939), Hotelling (1961), Tukey
and McLaughin (1963), Efron (1969), Prescott (1975), Lee and Gurland
(1977), Eisenhart (1979), Cressie (1980), and Székely (1986).

0.2. PROOF oF THEOREM 1

Let & = (X — 0)/op be i.i.d. standard normal random variables.
Then the event A := {|T,,| > =} = {R Yor o — (000, Ukﬁk)z < 0}.
If R < 1, or equivalently, |#| < 1, the supremum in (2) is 25,_1(z) =
1, and this is reached when o1 = 63 = ... = 0,1 = 0, ¢y # 0. If
z > 1 or equivalently, 1 < R < n, then 4 = {(&, G¢) < 0}, where £ =
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(€1, ... ,€n)T ,G = D(RI — E)D, I is the n X n unit matrix,

0 o2 0 11 1
D = N ’ E = . . .
0 0 ... o, 11 ... 1
We can compute the eigenvalues Ay, k = 1,2, ..., n of the matrix GG from

its characteristic equation: f(A) := det(G — AI) = 0.
The next lemma is proved in Appendix.

Lemma 1.
) = (1 -3 RTIC—/\) [ (x=Rre}) =0. (3)
k=1 k k=1

This equation has a single negative root because for A < 0 only the
first factor in (3) can be 0, and the sum in the first factor decreases mono-
tonically from n/R > 1 (when A = 0) to 0 as A — oo. For concreteness,
denote the unique negative root of (3) by A,, thus for all other roots
Ar =20 (k=1,2,...,n—1). Since the sum of the roots of (3) is equal to
the negative of the coefficient of A»~! in the expansion of (3), we have

S h=(R=1)> op. (4)

The following lemma is also proved in the Appendix.

Lemma 2. Let§;,:=0,1,...,n be i.i.d. standard normal random vari-
ables. Then for all n and pq, pio, ..., pn =20,

A It 7 dt
P{€0 2;#2&}_ ﬂ.o/\/{(14_15)\/1_[2:1(1-1-(1‘1‘75)”0.

This means

n 2
P{A}:P{ZAk§g<o}:P %M =
k=1 > |§i|€l§

k=1
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:/ 21+ )"t dt . (5)
H (1+| (1—|—t))

The event A does not change if we multiply every o by the same
positive constant thus without the loss of generality we can suppose

n 2

O
E —t _ =1. 6
kIlRU%—I—l ()

This means A,, = —1 and thus
I (1+ ) -

(1+)"~! (kli[l (1%15“’“)) / (1%15 - 1) = (1J;t)n ‘f <_1——1|-t) ‘

so, after change of variables s = —1/(1 +1¢) in (5), we get

1

-1 ds 1 VR s3 1ds

P{A) = / = [— - S
" ﬂz - k) e+
k=1 k=1
where zy = Ro?. Condition (6) now has the form

=R. 8
P (8)

k=1

First we show 25,(1) = 1/2 for all n. By the integral representation
(5), we have the inequality:

n—1
P{&Z > ZM&%} <P{ &> & ZAk}
k=1

On the other hand, by (4) and (8), we have

1) & 1 R
A =1 1—-— >1 1—-—
T A +( R);% +( R)nn_R,
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therefore

R—1) 2 n(R—1)
o < 2 2 nR-D\| _,_2 ME-1)
s 1(1‘)\P{§n>€1<1—|— p— 1 71_arctan 1+ p—
Thus if 2 = R = 1 we get 25,(1) < 1/2 and equality can be reached via
the choice 21 = 22 #0, 23 =24 = ... =2, = 0.

Finally, consider the most important case when R > 1. Assume the
supremum of (7) is taken at some finite point x = (21, 23, ..., 2,). With
the notation

-1 n
U(x,s) = ° n\/ﬁ , P(X,S)IZL,
VP ) [Ti (2e + 5) o @t Dk +9)

we can rewrite (7) in the following way:

1
1 [ U(x,s)
P{A} = — ds.
{4} 71'/\/1—5 ’
0
Now, fix all z;’s except #; = y and z; = z and consider z; = y as a
function of z. By (8),
d 1)?
dy _ +1" )
dz (z+1)?
Assuming z > 0, y > 0,
1
dP{A A h( P(
{ - ——/ (@0 PGS e sy as, (10)
2w Vv1—s
0
where
__*F"Y
(14 2)?
atps (ot 19)

fEv) = )y T9) ~ Gt o+

a=yz—1, b=y+z+2.
Define a functional L(h) as follows

j ) ey

>l|>—‘
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Then
pay=rm. - i),
dL(h) A, dh
=S )—i—L(E). (12)

The next lemma is proved in the Appendix.
Lemma 3.
dh
= A(h—h?
- = Al ).

Finally, if y > 0, z > 0 in the point of maximum x and z # y, then by
the necessary condition of maximum, L(h) = 0 and by Lemma 3 and (12),
d?P{A}  3A?

dz2 4

L(h*) > 0,

which contradicts the maximality of P{A}. So at the point of maximum
all nonzero x;’ s are equal.

The only claim we have not proved: s,_i(z) = ¢
\/3(n —1)/(n — 3). This follows from Proposition 1 (iii).
The theorem is proved.

—1(z) for = >

0.3. PROOF OF PROPOSITION 1

(i) Tt is easy to see that Ap(k) = gp+1(k) > 0. On the other hand, (7)

implies
B 1/1 s12(1 — 5)=1/2d s
= - =
0

1+s<k 1>)k :

where the integrand is strictly decreasing, therefore Ap(1) < 0 for all
positive k. So Ap(R) = 0 for at least one R € (1, k).
If we differentiate

Ar(R) = ¢—<<§)) / <1+%2) " du—
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R(k—1

k—R

or (E 2 0\ "%
g | (i) o
(k- DI (50 )
with respect to R we can see that Ai(R) cannot have more than one
Zero.

(ii) For small & the monotonicity of the function r(k) can be seen
from computing the actual values of r(k). Some approximate r-values
are the following: r(2) = 1.726, r(3) = 2.040, r(4) = 2.226, r(5) =
2.352, #(6) = 2.442, r(7) = 2.510, #(8) = 2.568, (9) = 2.607, r(10) =
2.642,...,r(20) = 2.881, r(120) = 2.967. For general k let us rewrite the
definition of r(k), the equation Ax(R) = gr4+1(R) — gr(R) = 0, as follows:

Rkk_—Rl .
2r (5) / ( u? )_5
1 du=
w(k=Dr (5 i !
k+}§k—R k41
st Uy
=z 1+ du. 12
T (E) + 7 u (12)

This equation defines r(k) for all real numbers £ > 1 and we can show
that the derivative (k) > 0. We omit the details of the routine but long
proof.

(iii) Let us now prove the most interesting part of Proposition 1.
Rewrite equation (12) as follows

Mk/pAk(u)du:/qu(u)du, (13)

where
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_ [REk-1) B Rk
P=V"%-r > 1" Vifi-r

By Stirling’s formula, as z — oo, we have

L
360]P

1 1

One can easily show that the sequence r(k), £ = 1,2, ... is bounded, thus
it has a finite limit 7*.

If R =r"+0o(1), we have

0l <1

bl

1 1
InT(z) = -2+ (z— 5) lnz—i—ln\/Qﬂ'—l—@

thus,

q=p-+

thus the k=2 order asymptotics of (13) is

Ve
Vrr(l=r*) e u —ut 41 a2
¢ 7 4 — ¢ Tdu=0.

0

Integration by parts shows r* = 3.

0.4. APPENDIX

Proof of Lemma 1. It is sufficient to consider the case o3 # 0 for all
k. Then f(A) = det (A — G) = det D? det (/\D_2 — RI+ E) Introduce
ap = /\0'k_2 — R.

ar +1 1 1
1 ar+1 ... 1
det (AD™? — RI + E) = det . : , . =
1 1 o.oap+1
ar+1 1 1 1
_ —ay as 0 _
= det _a 0 as o | = (a1 + Dagas...an+
—ay 0 ay
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1+z 1+z azds . _
+ Z = H

which proves Lemma 1.

1 1
1+—++a ot —],

2 Ap

Proof of Lemma 2 [16]. Denote

1

g(x) = P{¢2> ) = %/z_ﬂa_%dz =
0

oQ

1
\/_

The last integral is a degenerate Tricomi hypergeometric function (see

Bateman and Erdelyi (1953) 6.5 (2) and (6)):

t

rie”F [(L41)7 % Fdt.

1
U(a,c, z) = /ta_l(l +1)7%te7*'dt, Rea >0, Rez>0,

['(a)
0
and
U(a,c,2)=2"U(l —c+a,2—c,z).
Thus
7 1 tx 3 x 1 11
1+t)y 2e2dt=V(1,—-,— | =272V |-, =, — | =
Ja=+o (135) =0 (555
0
N LT,
= (—) x_E/t S(1+t)" e Tdt,
T
0
therefore,

- 1 _ g
P{€§>Zm&2}:E9(T):/t Sty e T e =
k=1 0
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L d
S VL OVITL O+ T+ Op)

Lemma 2 is proved.

Proof of Lemma 3. It is easy to check that
(Yy+38)(z435)=a+08s+(1—s) (A1)
By (9), we have

d d
2yt = A, —6=1+y’=A6,
dz dz

d d

75 (W s)(z +35)) = ——(a+0s) = Ala + fFs),
so, for the first term in A,

i( o+ Bs )_A(l—s)z(oz—l—ﬁs)
dz \(y+s)(z+s5)) (y+35)2(z+s)?

With V := P(x,s) and v := 2s (o + (1 + 5)3/2),

av_d L (v =
dz  dzl—s\y+s z4+s/

_d 1 2a+p3s+2(1—-5) Ay

21—s (y+s)z+s)  (y+5)2z+s)?

therefore, for the second term in A,
d g
- = A
dz ((y+5)2(z+5)2V) (43)
Ay ((1—5)2—(a+68)+ v )
(+s)?=+9)V 1 (y+9)(z+59) (y+9)?(z+9)2V /)"
Finally, (A1), (A2), and (A3) imply Lemma 3.
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Table 1. Critical z-values for the one-sided s-test

n-1 0.125 | 0.100 | 0.050 | 0.025
2 1.625 | 1.886 | 2.920 | 4.303
3 1.495 | 1.664 | 2.353 | 3.182
4 1.440 | 1.579 | 2.132 | 2.776
5 1.410 | 1.534 | 2.015 | 2.571
6 1.391 | 1.506 | 1.943 | 2.447
7 1.378 | 1.487 | 1.895 | 2.365
8 1.368 | 1.473 | 1.860 | 2.306
9 1.361 | 1.462 | 1.833 | 2.262
10 1.355 | 1.454 | 1.812 | 2.228
11 1.351 | 1.448 | 1.796 | 2.201
12 1.347 | 1.442 | 1.782 | 2.179
13 1.344 | 1.437 | 1.771 | 2.160
14 1.341 | 1.434 | 1.761 | 2.145
15 1.338 | 1.430 | 1.753 | 2.131
16 1.336 | 1.427 | 1.746 | 2.120
17 1.335 | 1.425 | 1.740 | 2.110
18 1.333 | 1.422 | 1.735 | 2.101
19 1.332 | 1.420 | 1.730 | 2.093
20 1.330 | 1.419 | 1.725 | 2.086
21 1.329 | 1.417 | 1.722 | 2.080
22 1.328 | 1.416 | 1.718 | 2.074
23 1.327 | 1.414 | 1.715 | 2.069
24 1.326 | 1.413 | 1.712 | 2.064
25 1.325 | 1.412 | 1.709 | 2.060

100 | 1.311 | 1.392 | 1.664 | 1.984

500 | 1.307 | 1.387 | 1.652 | 1.965

1,000 | 1.307 | 1.386 | 1.651 | 1.962
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