
DOI: https://doi.org/10.4213/rm542

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
29 января 2019 г., 00:15:23
В МОСКОВСКОМ МАТЕМАТИЧЕСКОМ ОБЩЕСТВЕ (УМН, ТОМ 57, ВЫП. 4) 177

СОВЕРШЕННО УРАВНОВЕЩЕННЫЕ ГИПЕРГЕОМЕТРИЧЕСКИЕ РЯДЫ И КРАТНЫЕ ИНТЕГРАЛЫ

В. В. Зудилин

Цель данной заметки – установить связь между двумя объектами: совершенно уравновешенными гипергеометрическими рядами

\[F_k(h) = F_k(h_0, h_1, \ldots, h_k) := \frac{\prod_{j=1}^{k+1} \Gamma(h_j + \mu)}{\Gamma(1 + h_0 - h_j + \mu)} (1 + \frac{1}{2}h_0, \ldots, h_1, 1 + h_0 - h_1, \ldots, h_0 - h_k) \]

и кратными интегралами

\[J_k(a, b) = J_k \left(\frac{a_0, a_1, \ldots, a_k}{b_1, \ldots, b_k} \right) = \int \ldots \int_{[0,1]^k} \prod_{j=1}^{k+1} \frac{x_j^{a_j - 1} (1 - x_j)^{b_j - a_j - 1}}{1 - (1 - \ldots (1 - (1 - x_k|x_k - 1) \ldots|x_1) x_1)^{a_0}} \, dx_1 \, dx_2 \ldots \, dx_k. \]

Теорема. Пусть \(k \geq 1 \) и параметры \(h_0, h_1, \ldots, h_{k+2} \in \mathbb{C} \) удовлетворяют условиям

\[1 + \text{Re} h_0 > \frac{2}{k+1} \sum_{j=1}^{k+2} \text{Re} h_j, \quad \text{Re}(1 + h_0 - h_j) > \text{Re} h_j > 0 \quad \text{для} \quad j = 2, \ldots, k+1 \]

и \(h_1, h_{k+2} \neq 0, -1, -2, \ldots \). Тогда имеет место тождество

\[\frac{\prod_{j=1}^{k+1} \Gamma(1 + h_0 - h_j - h_{j+1})}{\Gamma(h_1) \Gamma(h_{k+2})} \cdot F_{k+2}(h_0; h_1, \ldots, h_{k+2}) = J_k \left(h_1, h_2, h_3, \ldots, h_{k+1} \right) \]

1 + h_0 - h_{j+1} > Re h_{j+1} > Re h_j > 0 \quad \text{для} \quad j = 2, \ldots, k+1.

Доказательство проводится методом математической индукции. Для \(k = 1 \) утверждение теоремы следует из предыдущего случая теоремы Дугалла [1, §4.4, формула (1)]. Для \(k \geq 2 \), полагая \(\varepsilon_k = 0 \) при \(k \) четном и \(\varepsilon_k = 1 \) при \(k \) нечетном, мы пользуемся соотношением

\[J_k \left(\frac{a_0, a_1, \ldots, a_{k-1}, a_k}{b_1, b_2, \ldots, b_{k-1}, b_k} \right) = \frac{\Gamma(b_k - a_k)}{\Gamma(a_0)} \cdot \frac{1}{2\pi i} \int_{t_0 - i\infty}^{t_0 + i\infty} \frac{\Gamma(a_0 + t) \Gamma(a_k + t) \Gamma(-t)}{\Gamma(b_k + t)} e^{\varepsilon_k \pi i t} dt, \]

где \(t_0 \in \mathbb{R}, \text{Re} a_0 > t_0 > 0, \text{Re} a_k > t_0 > 0, \text{Re} b_k > \text{Re} a_0 + \text{Re} a_k \), и интеграл в левой части (4) сходится. Представляя гипергеометрический ряд (1) в виде контурного интеграла Бырса и применяя к подынтегральному выражению в правой части (4) индукционное предположение, мы получаем требуемое тождество (3).

Отметим, что ряд в правой части (3) допускает менее элегантное представление в виде замерованной суммы элементов кратного интеграла по кубу \([0,1]^{k+2}\) (см. [2, лемма 1]). Им из приведенной теоремы и неиспользованных результатов С.А. Задойнина [3], [4] вкладывается также представление совершенно уравновешенного гипергеометрического ряда (1) в виде кратного интеграла, предложенного в работах В.Н. Сорокина [5], [6].
Несмотря на аналитический характер теоремы, тождество (3) мотивировано арифметическими результатами для значений дист-функции Римана (дист-а-знакений) и целых положительных точек [5]-[13]. Известно [13], что в случае целочисленных параметров h совершенно уравновешенный гипергеометрический ряд (1) является Q-линейной формой от четных или нечетных дист-знакений и зависимости от четности $k \geq 4$. Поэтому если целые положительные параметры a, b удовлетворяют дополнительному условию

$$b_1 + a_2 = b_2 + a_3 = \cdots = b_{k-1} + a_k,$$

то интеграл (2) является Q-линейной формой от дист-знакений одинаковой четности. Специализация $a_j = n + 1, b_j = 2n + 2$ приводит к совпадению кратных интегралов и совершенно уравновешенных гипергеометрических рядов, высказанному нами в качественном в [13, 9], обозначая соответствующие интегралы (2) через $J_{k,n}$ и приведя арифметические результаты из [12, лемма 4.2.4-4.4], мы заключаем, что

$$D_{k+1}^{n+1} \Phi_n^{-1} \cdot J_{k,n} \in \mathbb{Z}(k) + \mathbb{Z}(k-2) + \cdots + \mathbb{Z}(3) + \mathbb{Z} \quad \text{для нечетного} \quad k,$$

где D_n – кратное общее кратное чисел $1, 2, \ldots, n$, а Φ_n – произведение простых чисел $p < n$, для которых $2/3 \leq \{n/p\} < 1 \{ \cdots \}$ – дробная часть числа. Включая (6) (с множителем D_n вместо $D_{k+1}^{n+1} \Phi_n^{-1}$) были предложены Д. Васильевым [14, см. также [14, комментарий к теореме 2]] и доказаны нами для $k = 5$ (случай $k = 3$ разобран в [7]). Так как обратно, мы даем частичный ответ к вопросу Васильева. Выбор $a_j = r + 1, b_j = (r + 1)n + 2n + 1$ (или, эквивалентно, $h_0 = (2r + 1)n$ и $h_j = r + 1$ для $j = 1, \ldots, k + 2$ и целым $r \geq 1$, зависящим от заданного нечетного k, приводит к почти тем же линейным формам от нечетных дист-знакений, рассмотренной Г. Рихтером [10] и доказательство его замечательного результата о бесконечности множества пары-значений чисел среди $\zeta(3), \zeta(5), \zeta(7), \ldots$.

Кроме того, следует отметить очевидную инвариантность в подстановке (5) величины

$$\frac{F_{k+2}(h_0; h_1, \ldots, h_{k+2})}{\prod_{j=2}^{k+2} \Gamma(h_j)} = \frac{J_{k}(a, b)}{\prod_{j=2}^{k+2} \Gamma(a_j) \cdot \Gamma(b_1 + a_2 - a_0 - a_1)} \cdot \prod_{j=2}^{k+2} \Gamma(b_j - a_j),$$

под действием (h, R)-триангулирующей группы Φ порядка $(k+2)!$, состоящей из всех перестановок параметров h_1, \ldots, h_{k+2}. Этот результат также имеет теоремо-числовые приложения. В случаях $k = 2$ и (k, R)-композициях $(x_{k-1}, x_k) \mapsto (1 - x_k, 1 - x_{k-1})$ и (2) реализуют дополнительное преобразование с равенством (2), так и (1a); для $k \geq 4$ это преобразование недоступно, поскольку нарушается условие (5). Группы (Φ, c) порядком 120 и 1920 для $k = 2$ и $k = 3$ соответственно известны [8, 9]. Дж. Рих и К. Вьюлл применяют их, чтобы получить экспоненты мер ортогональности чисел $\zeta(2)$ и $\zeta(3)$. В случае $k \geq 4$ группа Φ допускает строгую интерпретацию как группа перестановок параметров $e_{ij} = h_i - 1, 1 \leq j < i \leq k + 2$, и $e_{ji} = h_0 - h_j - h_i, 1 \leq j < i \leq k + 2$ (детали см. в [13, §9]).

Список литературы