
DOI: https://doi.org/10.4213/sm165

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением
http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
19 апреля 2019 г., 23:43:33
В работах доказываются две теоремы. В теореме 1 определена связность μ-регулярных графов без 3-линей. В теореме 2 получены необходимые и достаточные условия для того, чтобы связный полный регулярный граф μ ≥ 1 был отелим. Отде-
лимым мы называем граф Г, у которого для любой вершины a из В подгра-
пов Г2(a) содержат вершины b, c на расстоянии 2 в Г2(a), и μ-подграф для любой такой
пары не пересекает окрестность вершины a.

Библиография: 4 названия.

§1. Введение

Мы рассматриваем неориентированные графы без петель и кратных ребер. Если a, b вершины графа Г, то через d(a, b) обозначим расстояние между a и b, а через
Гi(a) обозначим подграф, индуцированный Г на множестве всех вершин графа Г,
которые находятся на расстоянии i от вершины a. Заметим, что если все, если
Δ = множество из множества вершин графа Г, то подгра-
пов Г на Δ. Подграф Г1(a) мы будем называть окрестностью вершины a и обозначать через [a]. Через a1 обозначим подграф на множестве
{a} \cup [a].

Граф Г называется регулярным валентности k, если [a] содержит k вершин для любой вершины a из Г. Граф Г называется μ-регулярным графом с парамет-
рами (v, k, μ), если |Г| = v, граф Г регулярен валентности k и каждая пара вершин
из Г, которые находятся на расстоянии 2 в Г, имеет μ общих смежных с ними вер-
шин. Более того, подграф на этих μ вершинах будут называть μ-подграфом. Граф Г
на v вершинах называем реберно регулярным с параметрами (v, k, λ), если он ре-
гулярен валентности k и каждое ребро лежит в к треугольниках. Граф Г называется регулярным графом с параметрами (v, k, λ, μ), если он μ-регулярен и реберно ре-
гулярен с соответствующими параметрами. Вполне регулярный граф называется сильным регулярным графом, если он имеет диаметр 2.

Граф Терзиоллерира – это неоплый граф Г такой, что для любых двух вершин
a, b на расстоянии 2 подгра-
пов [a] \cap [b] является квадратом порядка μ для некоторого
фиксируемого μ ≥ 0.

Через (m1, . . . , mn) обозначим полный многокольцовой граф, с долями порядка
m1, . . . , mn. Граф (m, 1) называется m-кольцом, если m ≥ 2. Граф на множестве
X1 \times \cdots \times Xn называется m1 \times \cdots \times mn-графом, если |X1| = m1, а пары (x1, . . . , xn)
и \((y_1, \ldots, y_n)\) смежны тогда и только тогда, когда существует единственное \(i\) такое, что \(x_i \neq y_i\). При \(m = 1\), для всех \(i\) этот граф называется графом Хеммингга
\(H(n, m)\) или \(m\)-мерным решеточным графом. Треугольным графом \(T(m)\) называется граф с множеством неупорядоченных пар из \(X\) в качестве вершин, \(|X| = m\) и пары \(\{a, b\}, \{c, d\}\) смежны тогда и только тогда, когда они имеют общий элемент.

Антиподальный граф диаметра 3 из 12 вершинах, у которого окрестность любой вершины – пятиугольник, назовем графом икосаэдра.

Пусть \(F\) некоторый класс графов. Граф \(G\) называется локально \(F\)-графом, если окрестность каждой вершины из \(G\) принадлежит \(F\). Большое число исследований было посвящено изучению свойств локально \(F\)-графов при различных ограничениях на класс графов \(F\). Обзор этих работ можно найти, например, в [4]. Известно строение локально \(m \times 2\)-графов [4, теорема 9.1.3]. Очевидно, что такие графы не содержат 3-кольч в окрестности любой вершины. Теорема 1 данной статьи посвящена классификации \(\mu\)-регулярных локально \(F\)-графов, где \(F\) – класс графов, не содержащих 3-кольч. Заметим, что в этом случае сам граф не содержит 3-лап.

Теорема 1. Пусть \(G\) – связный \(\mu\)-регулярный граф без 3-лап. Тогда \(G\) либо не содержит 3-кольч, либо является \(\alpha\)-расширением одного из следующих графов:

1. регулярного графа Тервиллера с \(\mu = 1\) диаметра \(\geq 2\);
2. прямоугольной решетки \(m \times n\) при \(m \geq 3, n \geq 3\);
3. треугольного графа \(T(m)\) при \(m \geq 6\);
4. графа Шлегли (дополнительного к точечному графу обобщенного четырехразмерника \(GQ(2,4)\));
5. графа икосаэдра.

Примеры регулярных графов без 3-лап имеются среди графов вершин и ребер полуправильных многогранников. Граф усечённого тетраэдра (рис. 1) является \(\mu\)-регулярным с \(\mu = 1\), но не реберно регулярным графом. Граф кубооктаэдра (рис. 2), наоборот, реберно регулярен, но не является \(\mu\)-регулярным.

Граф \(G\) назовем \(\alpha\)-регулярным, если для любой вершины \(a\) из \(G\) подграф \(G_2(a)\) содержит вершины \(b, c\), на расстоянии 2 в \(G_2(a)\), и \(\mu\)-подграф \([b] \cap [c]\) для любой такой пары не пересекает \([a]\).

Для любого графа \(G\) с 4-циклом, удовлетворяющего условиям теоремы 1, имеет место альтернатива: либо граф \(G\) не содержит 3-кольч, либо граф \(G\) \(\alpha\)-регулярным. Результат, полученный в теореме 1, позволяет описать вполне регулярные \(\alpha\)-регулярные графы.

Теорема 2. Пусть \(G\) – связный вполне регулярный граф с параметрами \((\nu, k, \lambda, \mu)\), \(\mu > 1\). Граф \(G\) \(\alpha\)-регулярный тогда и только тогда, когда он является...
ОБ ОТДЕЛИМЫХ ГРАФАХ С НЕКОТОРЫМИ УСЛОВИЯМИ РЕГУЛЯРНОСТИ

Рис. 1. Граф усечённого тетраэдра

Рис. 2. Граф кубооктаэдра

Одним из следующих графов:

1) граф Хемминга $H(n, m)$ при $m \geq 3$, $n \geq 2$;
2) треугольный граф $T(m)$ при $m \geq 6$;
3) граф Шлефли;
4) граф икосаэдра.

Некоторые свойства регулярных отделимых графов получены в §2. В §3 рассматриваются регулярные отделимые графы с 3-замками, в которых любой μ-подграф содержит не менее двух вершин. В §4 проведена редукция μ-регулярных гра-
§ 2. О регулярных отделимых графах

В этом параграфе Г — связный регулярный граф. Мы предполагаем, что для любой вершины \(a \) из графа \(G \) подграф \(G_2(a) \) содержит вершины \(b, c \) на расстоянии 2 в \(G_2(a) \), и для любых двух таких вершин \([b] \cap [c] \) не пересекает \([a] \).

Лемма 2.1. Если \(ad \) — ребро из графа \(G \), то подграф \([a] - [d] \) не содержит вершин, находящихся на расстоянии 2 в \(G_2(d) \). В частности, он является объединением изолированных клик.

Доказательство. Пусть \(b, c \) — вершины из \([a] - [d] \), находящиеся на расстоянии 2 в \(G_2(d) \). По условию \([b] \cap [c] \) не пересекает \([d] \). Противоречие с тем, что \([b] \cap [c] \) содержит вершину \(a \) из \([d] \).

Лемма 2.2. Пусть \(d(a, b) = 2 \) и \(c \in [a] \cap [b] \).

1. Если \(c \) — смежные вершины из \([a] \cap [b] \), то \(c - [c] \) и \([c] - [c] \) содержатся в \([a] \cup [b] \).

2. Если \(w \in [c] - (a \cup b) \), то содержание вершин \(c \) связана компонента из \(\mu \)-подграфа \([a] \cap [b] \) лежит в \([w] \).

3. Подграф \([c] - [a] \) \(\cap [b] \) является кликой.

Доказательство. (1) Допустим, что \([c] - [c] \) содержит вершину \(d \) не лежащую в \([a] \cup [b] \). Тогда \(G_2(d) \) содержит 2-лапу \(\{e; a, b\} \). Противоречие с тем, что \([a] \cap [b] \) содержит вершину \(c \) из \([d] \).

(2) Достаточно доказать, что \([w] \) содержит любую смежную с \(c \) вершину \(d \) из \([a] \cap [b] \). Но если \(d \notin [w] \), то \(\{d; a, b\} \) будет 2-лапой из \(G_2[w] \).

(3) По лемме 2.1 \([c] - a \) является объединением изолированных клик, в одной из которых лежит \(b \).

Лемма 2.3. Пусть \(a, c \) — смежные вершины из \(G \) и \([a] \cap [c] \) содержит 3-клин \(\{d, e, f\} \). Тогда содержание вершины компонента \(\Lambda \) из \([d] \cap [e] \cap [f] \) совпадает с \(K(a) \).

Доказательство. Положим \(\Delta = \bigcap_{x \in \Lambda} [x] \). Из леммы 2.2 (2) следует, что \(\Lambda \) — связная компонента из \(\mu \)-подграфа \([y] \cap [z] \) для любых двух вершин \(y, z \) из \(\{d, e, f\} \).

В частности, \([y] \cap [z] \) не пересекает \(\Delta \).

По лемме 2.2 (1) каждая вершина \(x \) из \([a] - [c] \) смежна по крайней мере с двумя вершинами из \(\{d, e, f\} \), поэтому \([a] - [c] \) и \([c] - [a] \) лежат в \(\Delta \). Покажем, что \([x] \) лежит в \(\Lambda \cup \Delta \) для любой вершины \(x \) из \(\Lambda \). Для этого достаточно показать, что \([a] \cap [c] \subset \Lambda \cup \Delta \). Пусть \(g \in [a] \cap [c] \) — \(\Lambda \) и \(g \) не смежна с некоторой вершиной \(w \) из \(\Lambda \). Выберем \(w_0, w_1, \ldots, w_n = w \) — путь в \(\Lambda \) и \(i \) — наибольший номер такой, что \(w_i \) не содержит \(g \). Как показано выше, \([w_{i-1}] - [w_i] \subset \Lambda \). Противоречие с выбором \(g \).

Допустим, что \([c] - [a] \) содержит вершину \(b \) (ясно, что \(b \in \Lambda \)). Покажем, что в этом случае \(\Gamma = \Lambda \cup \Delta \). Для этого достаточно доказать, что \([x] \subset \Lambda \cup \Delta \) для любой вершины \(x \) из \(\Delta \). Но если \(x \in \Delta \) и \(g \) — вершина из \([x] \), не лежащая в \(\Lambda \cup \Delta \), то \(G_2(g) \) содержит 2-лапу \(\{c; a, b\} \), причем \([a] \cap [b] \) содержит вершину \(x \) из \([g] \). Противоречие.
Итак, либо $\Lambda = K(a)$, либо $\Gamma = \Lambda \cup \Delta$. Но в последнем случае по условию $\Gamma_2(a) = \Lambda - a^\perp$ содержит 2-лапу $\{w; x, y\}$. Противоречие с тем, что $[x] \cap [y]$ содержит Δ.

Лемма 2.4. Пусть $d(a, b) = 2$.

1. Если $c \in [a] \cap [b]$ и $c \neq [c]$ не лежит в $a^\perp \cup b^\perp$, то содержащая с связной компоненты из $[a] \cap [b]$ совпадает с $K(c)$.
2. Если $[a] \cap [b]$ содержит ребро cd и $c \notin K(d)$, то $[a]$ и $[d]$ лежат в $a^\perp \cup b^\perp$.

Доказательство. Первое утверждение следует из леммы 2.3, а второе является следствием первого.

Лемма 2.5. Верны следующие утверждения:

1. Если bc - ребро из $\Gamma_2(a)$ и $d \in ([a] \cap [b]) - [c]$, то любая вершина из $[c] \cap [d]$ лежит в $a^\perp \cup b^\perp$.
2. Если $acbd$ - индуцированный пятиугольник из Γ, то любая вершина из $[c] \cap [d]$ лежит в b^\perp или смежна с a и e.

Доказательство. (1) Пусть $[c] \cap [d]$ содержит вершину w, не лежащую в $a^\perp \cup b^\perp$. Тогда 2-лапа $\{c; b, w\}$ лежит в $\Gamma_2(a)$. Противоречие с тем, что $[b] \cap [w]$ содержит вершину d из $[a]$.

(2) Пусть $w \in ([c] \cap [d]) - b^\perp$. Из первого утверждения леммы и симметричности пятиугольника следует, что $w \in [a] \cap [c]$. Лемма доказана.

Лемма 2.6. Если $\{a, b, c, d, e\} - (2,3)$-подграф из Γ, то $[y]$ не лежит в $a^\perp \cup b^\perp$ и $x^\perp \cap y^\perp = K(x) \cup K(y)$ для любых $x \in \{a, b\}, y \in \{c, d, e\}$.

Доказательство. Пусть $f \in [a] \cap [c]$. Если f смежна с d, то f лежит в содержащей a связной компоненте Λ из $[a] \cap [d]$ и по лемме 2.4 (1) $\Lambda = K(a)$. Допустим, что f не смежна с d и e. Если $f \notin [b]$, то $\{b, d, e\} - 2$-лапа из $\Gamma_2(f)$. Противоречие с тем, что $[d] \cap [c]$ содержит вершину a из $[f]$. Значит, $[c] \cap [a] - K(a) \subset [b]$. Если $[c]$ не лежит в $a^\perp \cup b^\perp$, то по лемме 2.4 (1) содержащая с связная компонента из $[a] \cap [b]$ совпадает с $K(c)$. В частности, в этом случае $a^\perp \cap c^\perp = K(a) \cup K(c)$.

Предположим, что $[c] \subset a^\perp \cup b^\perp$. По условию $\Gamma_2(c)$ содержит 2-лапу $\{z; u, w\}$. Бez ограничения общности, $u \in [a] - [b], w \in [b] - [a]$. Если $z \in [a] - [b]$, то мы получим индуцированный пятиугольник $acbzw$. По лемме 2.5 (2) вершина d из $[a] \cap [b]$ смежна с w и z. Противоречие с тем, что $([a] \cap [d]) - K(a)$ содержится в $[b]$.

Итак, $z \in [a] \cap [b]$.

Если z не смежна c вершиной x из $\{e, d\}$, то $\{c, x, z\}$ является 3-кластикой из $[a] \cap [b]$. Повторная рассуждения из начала доказательства леммы, убедимся, что $([z] \cap [a]) - K(a)$ лежит в $[a] \cap [b]$. Если же $z \in [e] \cap [d]$, то $z \in K(a)$. Полученное противоречие доказывает лемму.

§ 3. Отделенные реберно регулярные графы, содержащие 3-лапы

В этом параграфе мы докажем

Предложение 1. Пусть Γ - связный отделенный реберно регулярный граф с параметрами (t, k, λ), в котором для любых двух вершин a, b на расстоянии 2 в Γ подграф $[a] \cap [b]$ содержит не менее двух вершин. Если Γ содержит 3-лапу, то Γ - граф Хемминга $H(n, m), n \geq 3, m \geq 3$.
Пусть G удовлетворяет условиям предложения 1.

Лемма 3.1. Если $[a]$ содержит 3-коклику, то $[a]$ является объединением изолированных клик порядка $\lambda + 1$.

Доказательство. Пусть $\{c, d, e\} - 3$-коклика из a^\perp. По лемме 2.4 (1) связная компонента из μ-подграфа $[c] \cap [d]$, содержащая a, совпадает с $K(a)$. Из реберной регулярности графа G следует, что $K(a) = \{a\}$. Отсюда c, d лежат в изолированных кликах из $[a]$ порядка $\lambda + 1$. Далее, любая вершина из $[a]$ лежит в некоторой 3-коклике из $[a]$.

Лемма 3.2. Если $[a]$ содержит 3-коклику, то окрестность каждой вершины из G содержит 3-коклику. Более того, для любых двух вершин на расстоянии 2 в G подграф $[x] \cap [y]$ является 2-кокликою.

Доказательство. Ввиду связности графа G достаточно убедиться, что произвольная вершина c из a^\perp смежна с некоторой 3-кокликой. Пусть c^\perp не содержит 3-коклику. Тогда $[c] - a^\perp$ является кокликой, так как $[c] \cap a^\perp -$ изолированная $\lambda + 1$-коклика из $[c]$. Противоречие с тем, что $k - (\lambda + 1) \geq 2(\lambda + 1)$.

Пусть теперь $b \in \Gamma_2(a)$ и $[a] \cap [b]$ содержит две различные вершины c, d. По лемме 2.4 (1) каждая из вершин в $[a] \cap [b]$ изолирована в $[a] \cap [b]$. Значит, $[a] \cap [b]$ - коклика. Если $[a] \cap [b]$ содержит более двух вершин, то по лемме 2.6 $a^\perp \cap c^\perp = K(a) \cup K(c)$. Поэтому $\lambda = 0$, G не содержит треугольников. Если $fg -$ ребро из $\Gamma_2(a)$, то $[a] \cap [f] \cap [g]$ пусто. Для $\lambda > 0$ $[a] \cap [f] \cap [g]$ мешают 3-коклику $axfg$. Противоречие с леммой 2.5 (2). Лемма доказана.

Если G является вполне регулярным графом с параметрами (v, k, λ, μ), $\mu > 1$, и G не содержит индуцированных пятиугольников и полных подграфов на четырех вершинах с одним удаленным ребром, то $n = k/(\lambda + 1) - 1$ целое число,

$$|\Gamma_i(a)| \leq \frac{n! (\lambda + 1)^i}{i! (n - i)!} = C_n^i (\lambda + 1)^i$$

для любой вершины a графа G и $i \geq 0$. Более того, G имеет диаметр $d \leq n$ и число вершин $v \leq (\lambda + 2)^n$.

Если $v = (\lambda + 2)^n$, то $\mu = 2$ и G является графом Хемминга $H(n, \lambda, 2)$.

Чтобы завершить доказательство предложения 1 нам потребуется частичное обозрение последнего утверждения в случае, когда $\mu = 2$.

Предложение 2. Пусть G является вполне регулярным графом с параметрами (v, k, λ, μ) и G не содержит индуцированных пятиугольников. Если все μ-подграфы из графа G являются 2-кокликами, то G — граф Хемминга $H(n, m)$, $n = k/(\lambda + 1)$, $m = \lambda + 2$.

Пусть граф G удовлетворяет условиям предложения 2. Так как все μ-подграфы из G являются 2-кокликами, то окрестность любой вершины в G — объединение n изолированных клик порядка $\lambda + 1$. Пусть $a, b \in G$ и $d(a, b) = i$.

Лемма 3.3. Подграф $\Gamma_i(a) \cap [b]$ является i-кокликою.
ДОКАЗАТЕЛЬСТВО. Пусть вершина c принадлежит $\Gamma_{i-1}(a) \cap [b]$. По индукции, $\Gamma_{i-2}(a) \cap [c] = \{w_1, \ldots, w_{i-1}\}$ является $(i - 1)$-коклиной.

Так же, как и в [2], рассмотрим подграф

$$V = \bigcup_{j=1}^{i-1} [w_j] \cap [b].$$

По лемме 2.2 из работы [2] подграф V содержит i-коклику. Поскольку любой μ-подграф $[w_j] \cap [b]$ является 2-коклиной и содержит вершину c, то V не может содержать более, чем i вершин. Лемма доказана.

Лемма 3.4. Для любой вершины b из $\Gamma_i(a)$ $|b \cap \Gamma_{i+1}(a)| = (n - i)(\lambda + 1)$.

ДОКАЗАТЕЛЬСТВО. Пусть $W = \Gamma_i(a) \cap [b] = \{w_1, \ldots, w_i\}$. Подграф W является i-кокликой по лемме 3.3, а подграфы $[w_j] \cap [b]$, $1 \leq j \leq i$, являются λ-кликами. Так как, $|b \cap \Gamma_{i+1}(a)|$ совпадает с $|b| - \bigcup_{j=1}^{i} w_j^i$, то $|b \cap \Gamma_{i+1}(a)| = k - i(\lambda + 1) = (n - i)(\lambda + 1)$. Лемма доказана.

Лемма 3.5. Справедливо равенство $v = (\lambda + 2)^n$.

ДОКАЗАТЕЛЬСТВО. Докажем сначала, что $|\Gamma_i(a)| = C_n^{i}(\lambda + 1)^i$, для чего подсчитаем число ребер между $\Gamma_i(a)$ и $\Gamma_{i+1}(a)$. По леммам 3.3 и 3.4 мы имеем следующее равенство $|\Gamma_{i+1}(a)| = |\Gamma_i(a)|(n - i)(\lambda + 1)$. Значит, по индукции,

$$|\Gamma_{i+1}(a)| = \frac{n!}{(i + 1)!} \frac{(\lambda + 1)^{i+1}}{(n - i - 1)!} = C_n^{i+1}(\lambda + 1)^{i+1}.$$

Теперь предложение 2 следует из теоремы Х. Еномото.

Из лемм 2.5 (2) и 3.1 следует, что если Граф G, удовлетворяющий условиям предложения 1, не содержит пятиугольников. Предложение 1 вытекает из леммы 3.2 и предложения 2.

§ 4. Редукция μ-регулярных графов без 3-лап

В этом параграфе мы докажем следующее

ПРЕДЛОЖЕНИЕ 3. В связном μ-регулярном графе Γ без 3-лап либо все μ-подграфы являются кликами, либо диаметр Γ равен 2.

Графы диаметра 2, удовлетворяющие условиям предложения 3, описаны в работе [1].

Лемма 4.1. Если a, b — смежные вершины в графе Γ без 3-лап, то $[a] - b^1$ и $[b] - a^1$ являются кликами.

ДОКАЗАТЕЛЬСТВО. Пусть $[a] - b^1$ содержит две несмежные вершины c, d. Тогда b, c, d — 3-коклика из $[a]$. Лемма доказана.
Доказательство предложения 3. Пусть Γ удовлетворяет условиям предложения 3 и не удовлетворяет его заключению. Вершину x из Г назовем плохой, если $\Gamma_3(x)$ не пусто, противном случае — хорошей. Поскольку Γ не удовлетворяет заключению предложения, то Γ содержит плохие вершины. Вершину x из Г назовем сильной, если $[x] \cap [y]$ содержит несмежные вершины для некоторого $y \in \Gamma_2(x)$, а пару x, y — сильной парой.

Лемма 4.2. Если a, b — сильная пара вершин, а c, d — несмежные вершины из $[a] \cap [b]$, то $a^+ \cup b^+ = c^+ \cup d^+$, и любая вершина из $\Gamma_2(a) \cap \Gamma_2(b)$ образует сильную пару с некоторой вершиной из $[a] \cap [b]$.

Доказательство. Поскольку $[a]$ и $[b]$ не содержат 3-кольца, то $[a] \cup [b] \subset c^+ \cup d^+$ и, значит, $a^+ \cup b^+ = c^+ \cup d^+$. Отсюда $[b] - [a] \subset \Gamma_2(a)$.

Пусть $w \in \Gamma_2(a) \cap \Gamma_2(b)$ и $[x] \cap [w]$ — кика для любого $x \in \{a, b, c, d\}$. Поляммы $\Delta = ([a] \cup [b]) \cap [w]$.

Пусть теперь $[a] \cap \Delta = [c] \cap \Delta$. Выбери вершину x из $[a] \cap [w]$. Тогда $[x]$ содержит μ вершин из $[b] \cap \Delta$ и $\mu - \alpha$ вершин из $[d] \cap \Delta = \Delta - [c]$. Без ограничения общности можно считать $\alpha \geq \mu/2$.

Пусть $x \in [a] \cap [d] \cap \Delta$, $y \in [b] \cap [c] \cap \Delta$. Если вершины x, y не смежны, то $[x] \cap [y]$ содержит w и вторая вершина из Δ. Противоречие. Значит, вершина x смежна с μ вершинами из $[b] \cap \Delta$. Противоречие с тем, что $[b] \cap [x]$ содержит еще вершину d.

Пусть теперь $[a] \cap \Delta = [c] \cap \Delta$. Выбери вершину x из $[a] \cap [w]$. Тогда $[x]$ содержит μ вершин из $[b]$, причем $[x] \cap \Delta = \Delta$. Далее, $[x]$ не содержит вершину d из $[a] \cap [b]$, поэтому $[x]$ содержит некоторую вершину из $[b] \cap [w]$.

Пусть $[x]$ содержит α вершин из $[a] \cap [b]$. Тогда $[x]$ содержит $\mu - \alpha$ вершин из $[b] \cap [w]$. Заметим, что $x^+ \cap a^+ = x^+ \cap c^+$, иначе $[x]$ содержит 3-кольцо. Выбери вершину y из $([b] \cap [w]) - ([x] \cap [y])$ и пусть $[y]$ содержит β вершин из $[a] \cap [b]$. Тогда $[x] \cap [y]$ содержит w, $\mu - \alpha$ вершин из $[b] \cap [w]$, $\mu - \beta$ вершин из $[a] \cap [w]$. Отсюда $(\mu - \alpha) + (\mu - \beta) < \mu$ и $\mu < \alpha + \beta$. Таким образом, $[x] \cap [y]$ содержит вершину z из $[a] \cap [b]$, и w, z — сильная пара.

Лемма 4.3. Любая сильная вершина является хорошей.

Доказательство. Достаточно доказать это утверждение для вершины a. Пусть $e \in \Gamma_3(a)$ и $a fe$ — 3-путь. Если $g \in [b]$, то μ-погра $[a] \cap [g]$ лежит в $[b]$, иначе $[g]$ содержит b, e и вершину из $([a] \cap [g]) - [b]$, которые образуют 3-кольцо, что противоречит условиям предложения 3. По лемме 4.2 $[g] - [a] \subset \Gamma_2(a)$. Противоречие. Значит, $[g]$ не содержит вершин, образующих сильную пару с вершиной a.

Если $g \in \Gamma_2(b)$, то по лемме 4.2 g образует сильную пару с некоторой вершиной $x \in [a] \cap [b]$. Пусть y, z — несмежные вершины из $[x] \cap [g]$. Тогда e смежна с одной из этих вершин, например с y. Тогда $g \in \Gamma_2(a) \cap [b]$. Заменив g на вершину y, a на вершину из $[a] \cap [g]$ в 3-путь $a fe$, получим противоречие с утверждением предыдущего абзаца. Значит, $g \notin b^+ \cup \Gamma_2(b)$.

По лемме 4.2 $f \in [c] \cup [d]$. Пусть для определенности fc — ребро. Тогда мы получим путь $be fg$ и $g \in \Gamma_3(b)$. Противоречие с тем, что $[f]$ содержит вершину a, которая образует сильную пару с b.

Таким образом, $\Gamma_3(a)$ пусто и каждая сильная вершина является хорошей. В частности, $\Gamma - (a^+ \cup b^+) = \Gamma_2(a) \cap \Gamma_2(b)$. Лемма доказана.

Пусть Δ — множество плоских вершин, a, b — фиксированная сильная пара. Если Δ содержит плоскую вершину e из $[a] \cap [b]$, то $\Gamma_3(e) \subset \Gamma_2(a) \cap \Gamma_2(b)$. Противоречие с
тем, что $\Gamma_2(a) \cap \Gamma_2(b)$ состоит из хорошей вершины. Значит, $\Delta \subset ([a] - [b]) \cup ([b] - [a])$. Таким образом, если e — плохая вершина, то она смежна с единственной вершиной из $[a], b)$ для любой пары a, b.

Выберем плохую вершину e из $[a] - [b]$. Пусть $\Lambda = \Gamma - (a^+ \cup b^+), c, d$ — несмежные вершины из $[a] \cap [b]$. Для любых двух вершин x, y на расстоянии 2 в Γ через $\Lambda(x, y)$ обозначим подграф $\Gamma = (x^+ \cup y^+).$ Фиксируем плохую вершину e из $[a] - [b]$ и вершину f из $\Gamma_3(e)$. Заметим, что ввиду леммы 4.2 любой μ-подграф для вершины e из пути длины 3 является кликой.

Лемма 4.4. Вершина f принадлежит $[b] - [a]$, и Λ содержится в $[c] \cup [f]$.

Доказательство. Поскольку e — плохая вершина, то $f \in [b] - [a]$. Далее, $e \in [c] \cup [d]$. Пусть e не смежна с вершиной y в Λ. По лемме 4.2 y образует сильную пару с некоторой вершиной x из $[a] \cap [b]$. Так как $e \notin [g]$, то e смежна с x. Отсюда $f \notin [x]$, поэтому f смежна с y. Лемма доказана.

Заметим, что e, f принадлежат $c^+ \cup d^+$. Пусть, для определенности, $e \in c^+$. Тогда $f \in d^+$.

Лемма 4.5. Пусть x, y — вершины из графа Γ такие, что $d(x, y) = 2$. Если $u \in [x] - [y], w - e$ и вершина из $[y] - [x]$, то $[u] \cap \Lambda(x, y) = [w] \cap \Lambda(x, y)$.

Доказательство. Так как $[a] - x^+$ является клейкой, содержащей w, то $[a] \cap \Lambda(x, y) \subset [w]$. Аналогично, $[w] \cap \Lambda(x, y)$ содержится в $[u]$.

Лемма 4.6. Если $d(x, y) = 2$, то $\Lambda(x, y) - кия из $k - 2\mu + 1$ вершин, соответствующая $c_2(x) \cap \Gamma_2(y)$.

Доказательство. Заметим, что $[e]$ содержит вершину g из $[b] - [a]$, иначе $[b] \cap [b] \subset [a]$ и e — хорошая вершина. Ясно, что $[f] \cap [g]$ — кия из $b^+ - [a]$, так как $a \in \Lambda(f, g)$ и по лемме 4.5 $[e] \cap \Lambda = [g] \cap \Lambda$. Теперь $[b] \subset f^+ \cup g^+$, поэтому $\Lambda(f, g)$ содержится в a^+ и состоит из $k - 2\mu + 1$ вершин.

Если $y \in \Lambda$, то $[y]$ содержит не более 2μ вершин из $f^+ \cup g^+$. Отсюда $y \in \Gamma_2(f) \cap \Gamma_2(g)$ и $[y]$ содержит $k - 2\mu$ вершин из $\Lambda(f, g)$. Таким образом, $\Lambda(f, g)$ — кия. Так как $\Lambda(x, y) = k - 2\mu + 1$ для любых двух вершин на расстоянии 2, то последнее рассуждение можно повторить для любой такой пары вершин x, y.

Лемма 4.7. Справедливость соотношения $\Gamma = e^+ \cup f^+, |\Gamma| = 6\mu, |k| = 3\mu - 1$ и $|\Lambda| = \mu$.

Доказательство. По лемме 4.6 $|\Gamma| = 3(k - \mu + 1)$. С другой стороны, если $x \in \Gamma - (e^+ \cup f^+)$, то $|\Gamma| \geq 2(k + 1) + k - 2\mu + 1$. Но тогда $\mu = 0$, противоречие.

Значит, $|\Gamma| = 2(k + 1)$ и $k = 3\mu - 1$. Лемма доказана.

Вершину x назовем 0-точкой для Λ, если $|x] \cap \Lambda| = 0$.

Лемма 4.8. Вершины e и f не могут быть 0-точками для подграфа Λ.

Доказательство. Пусть e — 0-точка для Λ. Тогда $\Lambda(e, b) = \Lambda$ и e^+ содержит $[a] - [b]$. В этом случае $[f]$ не содержит вершин из $[a] - [b]$ и $[a] \cap [f] = [a] \cap [b]$, противоречие с леммой 4.3. Лемма доказана.

Зафиксируем вершину $u \in [c] \cap \Lambda, w \in [f] \cap \Lambda.$
Лемма 4.9. Подграф \(\Gamma(u, b) \) содержит все вершины из \(([a] - [b]) \cap [f] \) и лежит в \([d] \cap a^\perp \).

Доказательство. Виду леммы 4.6 \(\Gamma(u, b) \) содержится в \(a^\perp - [b] \). Если \(h \) — вершина из \(([a] - [b]) \cap [f] \), смежная с \(u \), то \([h] \) содержит 3-коклину \(\{a, f, u\} \), что противоречит условию теоремы 1. \(\Gamma(u, b) \cap [f] \) содержится в \([d] \), так как \([a] \cap [f] \) — клика из \(d^\perp \). Пусть \(\Gamma(u, b) - [f] \) содержит вершину \(x \), не смежную с \(d \). Тогда \(x \in [c] - [d] \). Если \(y \in [f] \cap ([a] - [b]) \), то \(xy \) — ребро, так как \(\Gamma(u, b) - [f] \) — клика.

С другой стороны, \([c] \cap [f] \) — клика из \(b^\perp \), поэтому \(y \in [d] - [c] \). По лемме 4.5, приведенной к \(\Lambda = \Lambda(c, d) \) и \(\Lambda(u, b), [x] \cap \Lambda = [y] \cap \Lambda \) и \([f] \cap \Lambda(u, b) = [w] \cap \Lambda(u, b) \), поэтому \(w \in [x] \). Противоречие с выбором \(x \). Лемма доказана.

Из симметричности следует, что подграф \(\Gamma(w, c) \) содержит все вершины из \(([d] - [c]) \cap [e] \) и лежит в \([a] \cap d^\perp \). Аналогично, подграф \(\Gamma(u, d) \) содержит все вершины из \(([c] - [d]) \cap [f] \) и лежит в \([b] \cap c^\perp \). Подграф \(\Gamma(w, a) \) содержит все вершины из \(([b] - [a]) \cap [e] \) и лежит в \([c] \cap b^\perp \).

Лемма 4.10. Справедливы следующие утверждения:

1. \(\Gamma(u, b) \cup \Gamma(w, c) = ([a] \cap [f]) \cup ([d] \cap [e]) \);
2. \(\Gamma(u, d) \cup \Gamma(w, a) = ([b] \cap [e]) \cup ([c] \cap [f]) \).

Доказательство. Докажем только первое равенство. Заметим, что включение слева направо следует из леммы 4.9. Покажем, что \(\Gamma(u, b) \) не пересекает \(\Gamma(w, c) \). По лемме 4.5 \([f] \cap \Lambda(u, b) = [w] \cap \Lambda(u, b) \), поэтому \([f] \cap \Lambda(u, b) \) не пересекает \(\Gamma(w, c) \). Аналогично, \([c] \cap \Gamma(w, c) = [a] \cap \Gamma(w, c) \). Лемма доказана.

Рассмотрим теперь подграф \(\Sigma \), где

\[
\Sigma = \bigcup_{(x, y) \in A} \Gamma(x, y), \quad A = \{(u, b), (u, d), (w, a), (w, c)\}.
\]

Лемма 4.11. Подграф \(\Sigma \) состоит из 4\(\mu \) вершин.

Доказательство. Напомним, что по лемме 4.7 \(\Gamma(u, b) \) содержит \(\mu \) вершин. Поскольку все четыре подграфа, которые составляют \(\Sigma \), симметрично расположены в графе \(\Gamma \), то для доказательства леммы достаточно показать, что подграф \(\Gamma(u, b) \) не пересекает остальные подграфы \(\Gamma(x, y) \). Но \(\Gamma(u, b) \) не пересекает \(\Gamma(u, d) \) по лемме 4.9, а \(\Gamma(w, c) \) по лемме 4.10. Далее, \(\Gamma(u, b) \cap [f] \) содержится в \([w] \), так как \([b] - f^\perp \) клика из \([w] \). Аналогично, \(\Gamma(w, a) \cap [e] \) содержится в \([a] \), поэтому \(\Gamma(u, b) \) не пересекает \(\Gamma(w, a) \). Лемма доказана.

Завершим теперь доказательство предложения 3. Для этого выберем вершину \(x \) из множества \(\{e, f\} \) так, что \(|x \cap \Sigma| \geq 2\mu \). Пусть для определенности \(x = f \). Покажем, что \(\mu \)-подграф \([u] \cap [f] \) не пересекает \(\Sigma \). Напомним, что \([u] \cap [f] \) — клика, содержащая \(\Gamma(f) \), поэтому подграф \([u] \cap [f] \) не пересекает \(\Gamma(w, a) \) и \(\Gamma(w, c) \). Далее, \([u] \cap [f] \) не пересекает \(\Gamma(u, b) \) и \(\Gamma(u, d) \), по определению. Итак, \(\mu \)-подграф \([u] \cap [f] \) не пересекает \(\Sigma \). Однако по леммам 4.7 и 4.11 подграф \([f] \) — \(\Sigma \) содержит не более \(\mu - 1 \) вершин. Противоречие. Предложение 3 доказано.
§ 5. Вполне регулярные графы Тервилигера без 3-лап

Пусть $Г$ — связный вполне регулярный граф Тервилигера с параметрами (v,k,μ,λ), $\mu > 1$. Подграф Δ из графа $Г$ называется сингулярной прямой, если для любых различных a, b из Δ верно равенство $\Delta = \{x \in Г | x^+ \supset a^+ \cap b^+\}$.

По теореме Тервилигера [3] (см. также [4, теорема 1.16.3]) для любой вершины a графа $Г$ редуцированный граф для $[a]$ является сильно регулярным графом Тервилигера с параметрами

$$\nu = \frac{k}{s}, \quad \kappa = \frac{\lambda - s + 1}{s}, \quad \mu = \frac{\mu - 1}{s},$$

$$\lambda = \frac{(\lambda - s + 1)(\lambda - 2s + 1) - (\mu - 1)(k - \lambda - 1)}{s(\lambda - s + 1)},$$

где s — число вершин в классе эквивалентности для отношения \equiv, где $x \equiv y$, если $x^+ = y^+$ (редуцированный граф — это фактор-граф по отношению эквивалентности \equiv). Далее, каждая сингулярная прямая имеет $s + 1$ вершину, и каждая вершина лежит в k/s сингулярных прямых. В частности, число s делит наибольший общий делитель для чисел $k, \lambda + 1, \mu - 1$, а число $\lambda - s + 1$ делит $(\mu - 1)(k - s)$.

Предложение 4. Пусть $Г$ — связный реберно регулярный граф без 3-лап с параметрами (v, k, λ, μ), в котором все μ-подграфы являются кликами. Тогда $Г$ — вполне регулярный граф Тервилигера и либо $\mu = 1$, либо $Г$ — граф кососеда с параметрами $(12, 5, 2, 2)$.

Заметим, что попытка получения μ-регулярности в произвольном реберно регулярном графе без 3-лап наталкивается на контрипример (см. рис. 2 во введении).

Пусть граф $Г$ удовлетворяет условиям предложения 4.

Лемма 5.1. Граф $Г$ — вполне регулярный с $\mu = 2\lambda + 3 - k$.

Доказательство. Пусть $d(a, b) = 2$, $c \in [a] \cap [b]$ и $\mu = |[a] \cap [b]|$. Тогда по лемме 4.1 $[c]$ содержится в $a^+ \cup b^+$, поэтому $k = 2(\lambda + 1) - (\mu - 1)$. Итак, $\mu = 2\lambda + 3 - k$ и, следовательно, не зависит от выбора вершин a, b. Лемма доказана.

Пусть далее $\mu > 1$.

Лемма 5.2. Пусть $d(a, b) = 2$, $c \in [a] \cap [b]$. Тогда сингулярная прямая, которая проходит через вершины $\{a, c\}$, пересекает μ-подграф $[a] \cap [b]$ в единственной точке.

Доказательство. Пусть различные вершины c, d лежат на сингулярной прямой из a^+. Тогда $c^+ \cap d^+$ содержит $a^+ \cap c^+$ и вершину b. Противоречие с реберной регулярностью графа.

Лемма 5.3. Пусть ac — ребро, $b \in [c] - [a]$. Тогда для любой отличной от b вершины c из $[c] - [a]$ μ-подграф $[a] \cap [c]$ содержит единственную вершину c из $[a] \cap [b]$.

Доказательство. Предположим, что подграф $[a] \cap [b] \cap [c]$ содержит $\alpha + 1$ вершину, $\alpha > 0$. Пусть f отличная от c вершина из этого подグラФА. Тогда f не смежна с некоторой вершиной g из $([a] \cap [c]) - [b] \cup [e]$, и μ-подграф $[f] \cap [g]$ содержит $2(\mu - \alpha - 1)$ вершин из μ-подГРаФа $[a] \cap [b]$ и $[a] \cap [c]$, две вершины a, c и $(\alpha + 1)(s - 1)$.
вершин из сингулярных прямых, проходящих через \(a\) и вершину из \([a] \cap [b] \cap [c]\).
Отсюда \(\mu + \alpha(s - 3) + s - 1 \leq 0\). Но тогда \(s = 1\). Поскольку любой отличный
от пятиугольника граф Мура содержит 3-лапу [4, теорема 6.7.1], то \(\Gamma\) — локально
пятиугольный граф. Очевидно, что в этом случае заключение леммы выполняется.

Лемма 5.4. Параметр \(s\) равен \(\lambda + 2\mu + 3\).

Доказательство. Пусть \(b, c\) — вершины из графа \(\Gamma_2(a)\). По предыдущей лемме
\(\mu\)-пограничные \([a] \cap [b] \cap [c]\) пересекаются не более чем по одной вершине.
Пусть \(c \in [a] \cap [b]\). Если \([a] \cap [b] = [a] \cap [c]\) для любой вершины \(c\) из \([c] - a\), то весь
\(\mu\)-пограничный \([a] \cap [b] \cap [c]\) лежит в \(K(a)\), что противоречит регулярности графа \(\Gamma\).
Значит, \([a] \cap [b] \cap [c]\) пересекаются в точности по вершине \(c\). Ввиду леммы 4.1
\(([a] \cap [c]) - [b] \cap [c]\) — вершины из \([a] \cap [c]\) — \(([c] - [b] \cap [c])\) лежат на сингулярной прямой,
проходящей через \(a, c\). Значит, \(s = \lambda + 2\mu + 3\).
Лемма доказана.

Лемма 5.5. Граф \(\Gamma\) с \(s = \lambda + 2\mu + 3\) является графом икосаэдра.

Доказательство. По лемме 5.1 \(k = 2\lambda - \mu + 3\). По теореме Тервилигера
и из равенств \(\mu = \frac{s}{2}\pi + 1, \lambda = \frac{s}{2} + 2s\pi/3\) и \(k = 2s + 3s\pi/2\) мы имеем \(k = 2\pi, \lambda = \pi - 1\).
Если параметры редуцированного графа для \([a]\) удовлетворяют полюсовому случаю,
то число \((\lambda - \pi)^2 + 4(\pi - \pi)^2\) является квадратом, поскольку
то этот граф сильно регулярен. Подставляя \(k = \lambda = \pi - 1, \pi = 2\pi - 1\),
то получим \(\pi^2 + 10\pi + 9\). Однако, \(\pi^2 + 10\pi + 9\) меньше, чем \((\pi + 5)^2\) и больше,
чем \((\pi + 3)^2\). Значит, \(\pi^2 + 10\pi + 9 = (\pi + 4)^2\). Противоречие с тем, что это уравнение не имеет
целых корней. Если параметры редуцированного графа для \([a]\) удовлетворяют полюсовому случаю,
то \(\mu = 1\) и редуцированный граф для \([a]\) является пятиугольником. В этом случае \(s = 1, \lambda = 3s - 1\) и \(k = 5s\). Однако, по \(\mu\)-пограничному \([a] \cap [b]\)
строятся три вершины \(\Sigma\) порядка 2, \(\mu\) следующим образом: для любой вершины \(c\) из
\([a] \cap [b] \cap [c]\) в \(\Sigma\) включаем сингулярные прямые, проходящие через \(a, c\) и \(b, c\). Если те
вершины \(c, d\) различных графов из \([a] \cap [b]\), то \(c \cap d\) содержит \(\Sigma \cup \{a, b\}\). Отсюда
\(\lambda = 2\mu - \mu = 1\). Значит, 3, 1, 1, 3, 1, и снова \(\Gamma\) — локально пятиугольный граф.
По предположению 1.1.4 из [4] связный локально пятиугольный граф является
графом икосаэдра. Лемма доказана.

Объединяя результаты \$3, 3, 4, 5\), получаем теорему 2.

§ 6. Редукция регулярных графов Тервилигера без 3-лап

В этом параграфе мы докажем

Предложение 5. Связный регулярный граф Тервилигера без 3-лап является \(\alpha\)-расширением графа с \(\mu = 1\) или графа икосаэдра.

Граф усечённого тетраэдра (рис. 1 во введении) показывает, что регулярный
граф Тервилигера с \(\mu = 1\) не обязательно ребро регулярен.

Следующее утверждение справедливо для произвольных графов Тервилигера.

Лемма 6.1. Пусть \(\Gamma = \text{связный регулярный граф Тервилигера}, \ a = \text{вершина из } \Gamma.
Тогда для любого ребра \(bc\) из \([a] - K(a)\) найдется вершина \(d\), принадлежащая \(a\) и несмежная \(b\) и \(c\).
ДОКАЗАТЕЛЬСТВО. Воспроизведем рассуждения из пункта (2) доказательства леммы 3.4 работы [3]. Пусть a^c содержит $b^c \cup c^c$. По выбору b и с разность $[b] - c^c$ содержит вершину x из $[a]$, $[c] - b^c$ содержит y из $[a]$. Заметим, что вершины x и y не смежны, иначе $[x] \cap [c]$ содержит несмежные вершины b и y.

Теперь разность $([x] \cap [y]) - K(a)$ содержится в $[b] \cap [c]$. В самом деле, если z несмежная с b вершина из $[x] \cap [y]$, то z смежна с c по предположению, и $[b] \cap [z]$ содержит несмежные вершины x и c. Теперь $[y] \cap [b]$ содержит весь μ-граф $[x] \cap [y]$ и вершину c. Противоречие. Лемма доказана.

Пусть теперь Γ — контрпример к предложению 5 и параметры Γ равны (v, k, μ).

Лемма 6.2. Если b и c — несмежные вершины из $[c]$, $\lambda_1 = |[a] \cap [c]|$, $\lambda_2 = |[b] \cap [c]|$, то $\lambda_1 + \lambda_2 = k + \mu - 3$.

ДОКАЗАТЕЛЬСТВО. Поскольку график Γ не содержит 3-лап, то $[c] \subset a^c \cup b^c$. Противу $k = (\lambda_1 + \lambda_2) - (\mu - 1) + 2$.

Лемма 6.3. Если $ac - ребро из Γ, $a \notin K(c)$, $|[a] \cap [c]| = \frac{1}{2}(k + \mu - 3)$, то для любого ребра xy, $x \notin K(y)$, верно равенство $|[x] \cap [y]| = \frac{1}{2}(k + \mu - 3)$.

ДОКАЗАТЕЛЬСТВО. Ввиду связности графа Γ достаточно доказать требуемое равенство для ребра cb. Если $b \notin a^c$, то требуемое равенство следует из леммы 6.2. Если $b \in a^c$, то по лемме 6.1 $[c]$ содержит вершину d, несмежную с a и b. Теперь можно применить предыдущее рассуждение к параметрам a, d и b. Лемма доказана.

По выбору графа Γ найдутся такие вершины a, b на расстоянии 2 в Γ, что μ-граф $[a] \cap [b] \neq K(c)$ для некоторой вершины c из $[a] \cap [b]$. Положим $\lambda = \frac{1}{2}(k + \mu - 3)$.

Лемма 6.4. Для любой вершины x из $c^c-K(c)$ верно равенство $|[x] \cap [c]| = \lambda$.

ДОКАЗАТЕЛЬСТВО. Положим $\lambda_1 = |[a] \cap [c]|$, $\lambda_2 = |[b] \cap [c]|$ и выберем d из $(|[a] \cap [b]| - K(c))$. По лемме 6.2 $\lambda_1 + \lambda_2 = k + \mu - 3$. По лемме 6.1 $[c]$ содержит вершину x, несмежную с a и d. Тогда $|[x] \cap [c]| = \lambda_2$, и, следовательно, $|[x] \cap [d]| = \lambda_1$.

Симметрично, $[c]$ содержит вершину y, несмежную с b и d. Повторив рассуждения из предыдущего абзаца, получим $|[c] \cap [d]| = \lambda_2$. Теперь утверждение леммы следует из леммы 6.3. Лемма доказана.

Положим $\Lambda = c^c - K(c)$ и $\alpha = |K(c)|$.

Лемма 6.5. Все классы эквивалентности \mathfrak{P} в графе Λ имеют одинаковую мощность s, редуцированный граф $\overline{\mathfrak{P}}$ является пятиугольником. Более того, $\alpha = 2\mu - k$, $4s = k - \mu + 1$ и $\lambda = 2s + \alpha - 2$.

ДОКАЗАТЕЛЬСТВО. По лемме 6.4 и предложению 1.16.2 из [4] все классы эквивалентности \mathfrak{P} для $x \in \Lambda$ имеют одинаковую мощность s и редуцированный граф $\overline{\mathfrak{P}}$ является сильно регулярным графом Тервиинпепра с параметрами $(\mathfrak{P}, \overline{\mathfrak{P}})$, где $\mathfrak{P} = \frac{k - \alpha + 1}{s}$, $\overline{\mathfrak{P}} = \frac{\lambda + 2 - \alpha - s}{s}$, $\mu = \frac{\mu - \alpha}{s}$, и $\overline{\mathfrak{P}}$ вычисляется из прямоугольного соотношения. Ввиду предложения 4 параметр $\overline{\mathfrak{P}}$ равен 1. Следовательно, окрестность любой вершины в Λ расщепляется двумя кликами порядка $\overline{\mathfrak{P}} + 1$. Легко видеть, что в этом случае $\overline{\mathfrak{P}} = 0$ (см., например, [4, теорема 1.2.3]). Теперь граф $\overline{\mathfrak{P}}$ является пятиугольником и $\mu = \alpha + s$, $\lambda = 2s + \alpha - 2$, $k = 5s + \alpha - 1$. Лемма доказана.
Лемма 6.6. Ядро \(K(x) \) состоит из \(\alpha \) вершин для любой вершины \(x \) из графа \(\Gamma \).

Доказательство. Если \(|K(x)| < \mu \), то к графу \(x^\perp - K(x) \) применяем лемму 6.5 и получаем \(|K(x)| = \alpha \).

Пусть теперь \(|K(x)| = \mu \). Выберем путь \(c = w_0, w_1, \ldots, w_n = x \) и пусть \(i \) — наименьший номер такой, что \(|K(w_i)| = \mu \). Тогда \(w_{i-1}^\perp \cap w_i^\perp \) является кликой порядка \(\lambda + 2 \) из \(w_i^\perp \). По лемме 6.5, примененной к \(w_{i-1}^\perp - K(w_{i-1}) \), получаем \(\lambda + 2 = s + \alpha = 2s + \alpha \). Противоречие. Лемма доказана.

По леммам 6.5 и 6.6 редуцированный граф \(\overline{\Gamma} \) является вполне регулярным графом, и предложение 5 следует из предложения 4. Теперь теорема 1 вытекает из предложений 3, 5 и работы [1].

Список литературы

1. Кабанов В. В., Махнев А. А. Корабельно регулярные графы, в которых антикокреативны вершины корабельно регулярные // III Международная конференция по алгебре. Тез. докл. Красноярск, 1993. С. 139; Корабельно регулярные графы без 3-пуп. Т. 60. №4. 1996. С. 495-503.

Уральский государственный технический университет; Институт математики и механики УрО РАН

Поступила в редакцию 10.10.1994 и 20.09.1995