А. А. Власов, Сферические почти ньютоновские пульсации звезды в РТГ, *ТМФ*, 1996, том 106, номер 2, 320–324

DOI: https://doi.org/10.4213/tmf1118

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением
http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
9 апреля 2019 г., 05:52:44
A. A. Власов

СФЕРИЧЕСКИЕ ПОЧТИ НЬЮТОНОВСКИЕ ПУЛСАЦИИ ЗВЕЗДЫ В РТГ

Показано, что в отличие от ОТО в РТГ сферические пульсации звезды приводят к появлению квазистатичности во внешнем гравитационном поле.

Задача о пульсациях сферически-симметричной звезды в общей теории относительности (OTO) решена давно (см., например, [1, 2]). В релятивистской теории гравитации (РТГ) внешние уравнения гравитационного поля схожи с ОТО [3]:

\[R^{ij} - g^{ij} R / 2 = 8 \pi T^{ij}, \]
\[\nabla_j T^{ij} = 0, \]
\[D_j \psi^{ij} = 0, \]

где \(\nabla \) ковариантная производная по метрике \(g_{ij} \), \(D \) ковариантная производная по метрике \(g_{ij} \),

\[\sqrt{g} \gamma g^{ij} = \gamma^{ij} - \psi^{ij}. \]

Уравнение (2) является следствием тождества Бианки для (1).

Однако в ОТО уравнение (3) отсутствует так же, как и пространство Минковского с метрикой \(g_{ij} \). Кроме того, в РТГ подход к описанию гравитационных явлений полной: в РТГ рассматривают гравитацию как поле \(\psi^{ij} \), существующее и действующее на фронт глобальной, например инерциальной, системы координат пространства Минковского, соответственно и постановка задачи в РТГ ставится в выгравной заранее глобальной системе координат.

В этой связи в РТГ теорема Биркгофа имеет свою специфику по сравнению с ОТО, а именно, в РТГ можно только утверждать [3], что существует система координат, в которой вакуумное сферически-симметричное поле принимает известный шварцшильдов вид, но нельзя утверждать, в отличие от ОТО [1, 2, 4], что обязательна статичность вакуумного сферически-симметричного поля независимо от характера радиального движения источника, сохраняющего сферическую симметрию задачи.

Поэтому трациционное решение задачи о пульсациях сферически-симметричной звезды необходимо пересмотреть с позиций РТГ. Пульсации звезды будем по стандартной схеме рассматривать как малые возмущения на фундаментальное решение уравнений (1) (3).

Для вещества звезды тензор энергии-импульса возьмем в виде

\[T^{ij} = (\rho + \rho\Pi + p) u^i u^j - g^{ij} p, \]

320
СФЕРИЧЕСКИЕ ПОЛЯ НЬЮТОНОВСКИЕ ПУЛЬСАЦИИ ЗВЕЗДЫ В РТГ

где ρ — плотность вещества, $\rho\Pi$ — плотность внутренней энергии, p — давление вещества. Плотность удовлетворяет закону сохранения массы

$$\nabla_i (\rho u^i) = 0, \tag{5}$$

плотность внутренней энергии уравнению

$$d\Pi = \frac{p}{\rho^2} d\rho. \tag{6}$$

Уравнения (2) с учетом (4) (6) можно переписать следующим образом:

$$(\rho + \rho\Pi + p) \left(\frac{d}{ds} u^i - \frac{\partial}{\partial s} u^i \right) = p. \tag{7}$$

Статическое решение уравнений (1) (7) определяется соотношениями

$$u^0 = (\rho_{00})^{-1/2}, \quad u^\alpha = 0, \quad \rho_{0\beta} = 0,$$

$$\rho + \rho\Pi + p = -\partial^\alpha \partial_\alpha p. \tag{8}$$

Линеаризуем уравнения (1) (7) относительно эйлеровых вариаций $\delta u^0, \delta u^\alpha, \delta \rho, \delta p, \delta g_{ij}$. Тогда пространственная часть уравнений (7) записывается так:

$$(\rho + \rho\Pi + p) \left(u^0 \partial_0 \delta u^0 + \delta \Pi_{00} (u^0)^2 + 2 \Pi_{0j} \delta u^j u^0 \right) = \partial^\alpha \partial_\alpha \delta p + \delta g^{\alpha\beta} \partial_\beta \delta p - \partial^\alpha \partial_\alpha \rho_{00} = -\partial^\alpha \partial_\alpha p. \tag{9}$$

Уравнение непрерывности (5) для возмущений есть

$$\partial_0 (\rho \delta u^0) + \partial_0 (\rho \delta u^0) + \partial_0 (\rho \delta u^0) + \partial_0 (\sqrt{-g} \rho \delta u^0 + \partial_0 (\sqrt{-g} \rho \delta u^0) = 0. \tag{10}$$

Вариация $\delta \vec{u}$ определяется через вектор координатного смещения $\vec{\xi} (\vec{r} \rightarrow \vec{r} + \vec{\xi})$ так: $\delta \vec{u} = u^0 \frac{d\vec{\xi}}{dt}$, а вариация давления при постоянной энтропии

$$\delta p = \delta_{LP} - (\vec{\xi}, \nabla)p, \quad \delta_{LP} = \frac{p}{\rho} \Gamma_1 \delta_{LP}, \tag{11}$$

gде Γ_1 — так называемый неравнозетный показатель адабаты, δ_{LP} — лагранжевая вариация.

В почти ньютоновском приближении при $g_{ij} \approx \gamma_{ij} + h_{ij}, \quad h_{ij} = \psi_{ij} - \gamma_{ij} \psi / 2, \quad h_{ij} = \text{diag}(-2U, 0, 0, 0), \quad h_{ij} \ll \gamma_{ij}, \quad \rho \Psi^2 \ll 1, \quad \delta \vec{u} = \vec{v} = \frac{\delta \vec{\xi}}{dt} \ll 1$ исходная система уравнений принимает следующий вид.

В случае статики из (8) получаем

$$\nabla p = \rho \nabla U, \tag{12}$$

$$\Delta U = -4\pi p. \tag{13}$$

6 Теоретическая и математическая физика, т. 106, № 2, 1996 г.
При этом уравнение (3) удовлетворяется автоматически.

Для возмущений, полагая в нулевом приближении $\delta h_{ij} = \delta \psi_{ij} - \gamma_{ij}\delta \psi/2 = \text{diag}(-2\delta U, 0, 0, 0)$, имеем из (9) (10)

$$\frac{\partial \delta \psi}{\partial t} = -\nabla \delta \rho + \frac{\delta \rho \nabla \rho}{\rho} + \rho \nabla \delta U,$$

(14)

$$\Delta \delta U = -4\pi \delta \rho,$$

(15)

$$\frac{\partial \delta \rho}{\partial t} = -(\nabla, \nabla \delta \rho).$$

(16)

Уравнение (3) записывается так:

$$D_2 \partial \psi_{ij} = 0,$$

(17)

t.е. (17) связывает между собой различные компоненты возмущений гравитационного поля.

Рассмотрим частный случай постоянной плотности (в ОТО см., например, [1, 2]). Тогда при $\rho = \rho_0 = \text{const}$ из (12) (13) получаем

$$U = \frac{2\pi \rho_0}{3}(3R^2 - r^2), \quad p = \frac{\pi (\rho_0)^2}{3}(R^2 - r^2),$$

(18)

здесь R радиус звезды в форме шара, потенциал $h_{00} = -2U$ гладко на границе спит со статическим внешним гравитационным полем $h_{00} = -2\frac{m}{r}$ (остальные компоненты h_{ij} равны нулю), масса звезды m есть $\frac{2\pi \rho_0 R^3}{3}$.

Для гармонических сферических волн уравнение $\tilde{\xi}(t, r) = \frac{\xi}{r} \exp(-i\omega t) \xi(r)$ рассмаитриваемой почти ньютоновской звезды из (12) (18) с учётом (11) получаем следующее уравнение на ξ:

$$(1 - x^2)\xi'' + \left(-4x + \frac{3}{x}\right)\xi' + \left[-2 - \frac{2}{x^2} + \frac{\omega^2 + 16\pi \rho_0/3}{2\pi \rho_0 \Gamma_1/3} \right] \xi = 0,$$

(19)

где $x = r/R$, $\xi' = d\xi/dx$.

Решение (19) с граничными условиями $\xi(0) = 0$, $\xi(1) = \text{const} \neq 0$ известно:

$$\xi = \sum_{n=0}^{N} a_n x^{n+1}, \quad a_{2n+1} = 0, \quad a_{n+2} = a_n \frac{n^2 + 5n + 4 - A}{n^2 + 7n + 10}, \quad A = \frac{3(\omega)^2}{2\pi \rho_0 \Gamma_1} + \frac{8}{\Gamma_1} - 2,$$

$$\frac{(\omega)^2}{3} \left[\Gamma_1 (N + 2)(N + 3) - 8 \right], \quad N = 0, 2, 4, \ldots$$

(20)

Из (15) получаем

$$\delta U(r) = 4\pi \rho_0 R \sum_{n=0}^{N} \frac{a_n}{n+2} (x^{n+2} - 1) + \text{const}.$$

(21)

Из (20), в частности, следует, что звезда неустойчива при $\Gamma_1 < 4/3$.

Итак мы повторили известные рассуждения ОТО [1, 2].

Теперь с использованием уравнения (17) вычисляем, как внутренние решения для $\delta \psi_{ij}$ в РГГ сопрягаются с внешними.
Условия гладкой спинной на границе $R + \xi(t, R)$ колеблющегося шара имеют вид

\[
[\psi_{ij} + \delta \psi_{ij}]_{\text{in}} = [\psi_{ij} + \delta \psi_{ij}]_{\text{ex}}, \quad (22a)
\]

\[
\partial_k [\psi_{ij} + \delta \psi_{ij}]_{\text{in}} = \partial_k [\psi_{ij} + \delta \psi_{ij}]_{\text{ex}}. \quad (22b)
\]

где внутреннее неизменное гравитационное поле $\psi_{ij} = \text{diag}(-4U, 0, 0)$ строится с помощью (18), а внешнее неизменное поле $\psi_{ij} = \text{diag}(-4m/r, 0, 0)$.

Из уравнений (17) для гармонических пульсаций по $\delta \psi_{00}$ определяем остальные компоненты:

\[
i \omega \delta \psi_{00} = -\frac{1}{r^2} \partial_r (r^2 \delta \psi_{Or}), \quad (23a)
\]

\[
i \omega \delta \psi_{Or} = -\frac{1}{r^2} \partial_r (r^2 \delta \psi_{rr}) - \frac{2}{r} \delta \psi_{0r}. \quad (23b)
\]

Уравнения (23) показывают, что между вариантами компонент гравитационного поля существуют соотношения

\[
\delta \psi_{Or} \sim \rho^{1/r} R \delta \psi_{00}, \quad \delta \psi_{rr} \sim \rho^{1/r} R \delta \psi_{Or}, \quad \rho^{1/2} R \ll 1,
\]

t.e. по сравнению с вариацией нулевой компоненты вариации остальных компонент являются величинами более высокого порядка малости и не дают вклада в результат (20) (21), однако оказываются существенными при рассмотрении условий спинки.

Совместное решение (20) (23) приводит с учетом гладкой спинки статических решений ψ_{ij} на границе $r = R$ к результату

\[
[\delta \psi_{00}(R)]_{\text{in}, \text{ex}} = 0, \quad (24a)
\]

t.e. константа в (21) равна нулю, и

\[
[\delta \psi_{Or}(R)]_{\text{in}} = [\delta \psi_{Or}(R)]_{\text{ex}} = \frac{A}{R^2}, \quad (24b)
\]

где

\[
[\delta \psi_{Or}(R)]_{\text{in}} = -16 \pi \rho_0 i \omega R^2 \sum_{N=0}^{N} \frac{a_n}{3(n + 3)}.
\]

Из (20) (24) следует, что (00) компонента возмущенного внутреннего гравитационного поля $\psi_{00} + \delta \psi_{00}$ гладко сплачивается с упомянутым ранее статическим внешним решением $\psi_{00} = -\frac{4m}{r}$, но уже $(0r)$ компонента внутреннего гравитационного поля, $\delta \psi_{Or}$, гладко сплачивается с нестационарным внешним решением $\delta \psi_{Or} = \exp(+i \omega t) \frac{A}{r^2}$ (удовлетворяющим в рассматриваемом приближении уравнению $(\Delta \delta \psi)_{Or} = 0$); остальные компоненты гравитационного поля сходятся из уравнения $(23b)$ не определяются.

Однако по аналогии теоремы Биркгофа в РТГ для гладких гравитационных полей все зависящие от времени возмущения δh_{ij} статической внешней метрики h_{ij} могут быть представлены в виде

\[
\delta h_{ij} = D^i \eta^j + D^j \eta^i.
\]
Это позволяет записать в сферических координатах с учётом (24) следующее:

\[
\begin{align*}
\delta R^0 &= \delta \varphi^0 = - \exp(+i\omega t) \frac{A}{r^2} = D_0 \eta^r, \\
\delta h^{rr} &= 2D^r \eta^r = -2D^r \eta^r, \\
\delta h^{\theta \theta} &= 2D^\theta \eta^\theta = -\frac{2}{r} \eta^r.
\end{align*}
\]

Из (25a) следует, что \(\frac{\eta^r}{r} = - \exp(+i\omega t) \frac{A}{16\pi r^2} \), т.е. из формул (25b) и (25a) можно найти оставшиеся компоненты возмущённого внутреннего гравитационного поля.

Таким образом, при пульсациях звезды, сохраняющих её сферическую симметрию, внутреннее гравитационное поле \(h_{ij} + \delta h_{ij} \) в РТГ с необходимостью является нестатическим, явно зависящим от характеристик пульсаций (частот, амплитуд) и при гармонических пульсациях будет иметь гармонические меняющиеся со временем составляющие.

Такую периодичность внутреннего гравитационного поля легко можно обнаружить, сравнивая, например, поля звезд с различными частотами колебаний, т.е. с различными векторами \(\eta^j(\omega) \) (25).

Список литературы

А.А. Власов

SPHERICAL QUASI-NEWTONIAN STELLAR PULSATIONS IN RTG

It is shown that in Relativistic Theory of Gravity, in contrast to GTR the spherically symmetric stellar pulsations lead to the nonstatic behaviour of an external gravitational field.