
DOI: https://doi.org/10.4213/tvp3906

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use
http://www.mathnet.ru/eng/agreement

Download details:
IP: 54.70.40.11
December 25, 2019, 20:07:08
Time change representation of stochastic integrals

Поступила в редакцию 30.VI.1998

© 2001 г.

KALLSEN J.*, SHIRYAEV A. N.**

TIME CHANGE REPRESENTATION OF STOCHASTIC INTEGRALS

By the Dambis and Dubins–Schwarz theorem, any stochastic integral $M = (\int_0^T H_s \, dW_s)_{t \in \mathbb{R}_+}$ with respect to a Brownian motion may be written as a Brownian motion with random time change, i.e.,

$M = (\tilde{W}_t)_{t \in \mathbb{R}_+}$

for some Brownian motion $(\tilde{W}_t)_{t \in \mathbb{R}_+}$ and some random time change $(\tilde{T}_t)_{t \in \mathbb{R}_+}$. In [7] and [5] it was shown that this statement is valid for Brownian motion with symmetric α-stable noise. We use the cumulant process to give short new proofs. In addition, we show that this statement cannot be extended to other processes of Lévy.

Keywords and phrases: stable Lévy processes, cumulant process, stochastic integral, time change.

1. Time change representations. We generally use the notation of [2]–[4]. The transposed of a vector or matrix X is denoted as X^T and its components are denoted by superscripts. Stochastic and Stieltjes integrals are written as $\int H_s \, dX_s$.

Increasing processes are identified with their corresponding Lebesgue–Stieltjes measure.

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, P)$ be a filtered probability space as in [4, Definition 1.1.2]. By a Lévy process we refer to a process with stationary independent increments in the sense of [4, II.4.1]. Similar to [8, Definition 7.5.1], we make the following

Definition 1. Let $\alpha \in (0, 2]$. An α-stable Lévy motion is a Lévy process X such that X_1 (or equivalently any X_t) has a strictly α-stable distribution (i.e., $X_1 \sim S_\alpha(\sigma, \beta, \mu)$ for some $\alpha \in (0, 2] \setminus \{1\}$, $\sigma \in \mathbb{R}_+$, $\beta \in [-1, 1]$, $\mu = 0$ or $\alpha = 1$, $\sigma \in \mathbb{R}_+$, $\beta = 0$, $\mu \in \mathbb{R}$). We call X a symmetric α-stable Lévy motion if the distribution of X_1 (or equivalently any X_t) is even symmetric α-stable (i.e., $X_1 \sim S_\alpha(\sigma, 0, 0)$ for some $\alpha \in (0, 2]$, $\sigma \in \mathbb{R}_+$).

Definition 2. 1. A time change is a right-continuous increasing $[0, \infty)$-valued process $(T_\theta)_{\theta \in \mathbb{R}_+}$ such that T_θ is a stopping time for any $\theta \in \mathbb{R}_+$. It is called finite if $T_\theta < \infty$ almost surely for any $\theta \in \mathbb{R}_+$.

2. By $\tilde{\mathcal{F}}_\theta := \mathcal{F}_{T_\theta}$ we define the time-changed filtration $(\tilde{\mathcal{F}}_\theta)_{\theta \in \mathbb{R}_+}$.

3. The inverse time change $(\tilde{T}_t)_{t \in \mathbb{R}_+}$ is defined as $\tilde{T}_t := \inf\{\theta \in \mathbb{R}_+: T_\theta > t\}$.

4. A process X is called $(T_\theta)_{\theta \in \mathbb{R}_+}$-adapted if X is constant on $[T_\theta, T_\theta^+]$ for any $\theta \in \mathbb{R}_+$.

Remark. If X is a semimartingale on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, P)$ and $(T_\theta)_{\theta \in \mathbb{R}_+}$ is a finite time change, then the process $(\tilde{X}_\theta)_{\theta \in \mathbb{R}_+}$ defined by $\tilde{X}_\theta := X_{T_\theta}$ is a semimartingale.

* Universität Freiburg, Institut für Mathematische Stochastik, Eckerstr., 1, D79104 Freiburg, Germany; e-mail: kallsen@neyman.mathematik.uni-freiburg.de

** Математический институт им. В. А. Стеклова РАН, ул. Губкина, 8, 117966 Москва, ГСП-1, Россия; e-mail: shiryaev@mi.ras.ru

1) Работа второго автора поддержана Alexander von Humboldt Foundation и Российским фондом фундаментальных исследований (грант № 99-01-00152).
on \(\Omega, \mathcal{F}, (\bar{F}_t)_{t \in \mathbb{R}_+}, \mathbb{P} \) (cf., e.g., [2, (10.12)]). Many other properties are generally only preserved if \(X \) is \((\bar{T}_t)_{t \in \mathbb{R}_+}\)-adapted. For details cf. [2, Chapter X].

We are concerned with the following representation property which follows from the Dambis and Dubins-Schwarz theorem (cf. [6, Theorem V.1.6]).

Theorem 1. Let \(X \) be a standard Brownian motion. Moreover, let \(M := H \cdot X \) for some \(H \in L(X) \) such that \(\int_0^t H_s^2 \, ds \to \infty \) for \(t \to \infty \). Then there exist a filtration \((\bar{F}_t)_{t \in \mathbb{R}_+}\) on \((\Omega, \mathcal{F}) \), a process \((\bar{W}_t)_{t \in \mathbb{R}_+}\), and a finite time change \((\bar{t}_t)_{t \in \mathbb{R}_+}\) such that

1. \(\bar{W} \) is a \((\bar{t}_t)_{t \in \mathbb{R}_+}\)-adapted Brownian motion on \((\Omega, \mathcal{F}, (\bar{F}_t)_{t \in \mathbb{R}_+}, \mathbb{P})\),
2. \(M = (\bar{W}_{\bar{t}_t})_{t \in \mathbb{R}_+} \).

If we define the \((\Omega, \mathcal{F}, (\bar{t}_t)_{t \in \mathbb{R}_+}, \mathbb{P})\)-time change \((\bar{T}_t)_{t \in \mathbb{R}_+}\) by \(T_\theta := \inf\{t \in \mathbb{R}_+: \int_0^t H_s^2 \, ds > \theta\} \), then we may choose \(\bar{F}_\theta = \mathcal{F}_{T_\theta} \), \(\bar{W}_\theta = M_{T_\theta} \) and \(\bar{T}_t \) as the inverse time change of \(T \). In particular, \(\bar{t}_t = \int_0^t H_s^2 \, ds \) for \(t \in \mathbb{R}_+ \).

The previous theorem can be generalized to symmetric \(\alpha \)-stable Lévy motions (cf. [7] and [5]).

Theorem 2. Let \(X \) be a symmetric \(\alpha \)-stable Lévy motion. Moreover, let \(M := H \cdot X \) for some \(H \in L(X) \) such that \(\int_0^t H_s^\alpha \, ds \to \infty \) for \(t \to \infty \). Then there exist a filtration \((\bar{F}_t)_{t \in \mathbb{R}_+}\) on \((\Omega, \mathcal{F})\), a process \((\bar{W}_t)_{t \in \mathbb{R}_+}\), and a finite time change \((\bar{t}_t)_{t \in \mathbb{R}_+}\) such that

1. \(\bar{W} \) is a \((\bar{t}_t)_{t \in \mathbb{R}_+}\)-adapted Lévy process on \((\Omega, \mathcal{F}, (\bar{F}_t)_{t \in \mathbb{R}_+}, \mathbb{P})\) with \(\text{Law}(\bar{W}) = \text{Law}(X) \)
2. \(M = (\bar{W}_{\bar{t}_t})_{t \in \mathbb{R}_+} \).

If we define the \((\Omega, \mathcal{F}, (\bar{t}_t)_{t \in \mathbb{R}_+}, \mathbb{P})\)-time change \((\bar{T}_t)_{t \in \mathbb{R}_+}\) by \(T_\theta := \inf\{t \in \mathbb{R}_+: \int_0^t H_s^\alpha \, ds > \theta\} \), then we may choose \(\bar{F}_\theta = \mathcal{F}_{T_\theta} \), \(\bar{W}_\theta = M_{T_\theta} \) and \(\bar{T}_t \) as the inverse time change of \(T \). In particular, \(\bar{t}_t = \int_0^t H_s^\alpha \, ds \) for \(t \in \mathbb{R}_+ \).

Proof. First step. Obviously, \((\bar{T}_t)_{t \in \mathbb{R}_+}\) is a finite time change (cf. [4, 1.1.28]). Choose \(A_t = t \) for any \(t \in \mathbb{R}_+ \). Let \(q \in \mathbb{Q}_+ \) and \(\tau_q := \inf\{t \geq q: \int_0^t H_s^\alpha \, ds > 0\} \). Note that \(H = 0 \) \(\mathbb{P} \)-almost everywhere on \([q, \tau_q]\), which implies that \((\mathbb{P} \otimes A)\cdot([q, \tau_q]) = 0 \). By Lemma 3, \(1_{[q, \tau_q]} \cdot M = (1_{[q, \tau_q]}H) \cdot X \) is a semimartingale with characteristics \((0,0,0)\) and hence it is 0 up to indistinguishability. Therefore, \(M \) is constant on \([q, \tau_q]\) outside some \(\mathbb{P} \)-null set. Since \((T_{\theta_-}, T_{\theta}) = \bigcup([q, \tau_q]: q \in \mathbb{Q}_+ \text{ with } T_{\theta_-} < q \leq T_{\theta})\), we have that \(M \) is constant on any interval \((T_{\theta_-}, T_{\theta})\), \(\theta \in \mathbb{R}_+ \). By right-continuity, it follows that \(M = (\bar{T}_t)_{t \in \mathbb{R}_+} \)-adapted.

Second step. Let \(U \in L(X) \). The cumulant process of \(X \) is of the form \(\mathcal{X}^U(X) = \kappa(U) \cdot A \), where \(\kappa(\cdot) \) is given by \(\kappa(u) = \gamma f(e^{iu} - 1 - iux1_{[-1,1]}(x))|x|^{-(1+\alpha)} \) for \(\alpha \neq 2 \) and \(\kappa(u) = -\gamma u^2 \) for \(\alpha = 2 \) (with some constant \(\gamma \in \mathbb{R}_+ \), cf., e.g., [8, p. 6] and Lemma 4). Straightforward calculations show that \(\kappa(|u|^{\alpha}) = |u|^\alpha \kappa(u) \) for any \(u, v \in \mathbb{R} \).

Third step. Let \(u \in \mathbb{R} \). If \(\mathcal{X}^M, \mathcal{X}^\bar{L} \) denote the cumulant processes of \(M \) and \(\bar{L} \), respectively, Lemmas 2 and 5 yield that \(\mathcal{X}^M(u) = \mathcal{X}^X(uH) \) and \(\mathcal{X}^\bar{L}(u) = \mathcal{X}^X(uH) \). Together, it follows that

\[
\mathcal{X}^\bar{L}(u) = \mathcal{X}^M(u)T_\theta = \mathcal{X}^X(uH)T_\theta = \kappa(uH) \cdot A T_\theta = \kappa(u)|H|^\alpha \cdot A T_\theta
\]

for any \(\theta \in \mathbb{R}_+ \). From Lemma 4 and [4, II.2.42, II.4.19], it follows that \(\bar{L} \) is a Lévy process with the same distribution as \(X \).

Fourth step. By [2, (10.2)] and Lemma 6, \(\bar{T} \) is a finite time change and \(\bar{t}_t = \int_0^t |H_s|^\alpha \, ds \) for \(t \in \mathbb{R}_+ \). The continuity of \(\bar{T} \) implies that \(\bar{L} \) is \((\bar{t}_t)_{t \in \mathbb{R}_+}\)-adapted. Since \(t \in [T_{\theta_-}, T_{\theta}] \) and \(M = (\bar{T}_t)_{t \in \mathbb{R}_+} \)-adapted, it follows that \(\bar{L}_{\bar{t}_t} = M_{T_{\theta}T_{\bar{t}_t}} = M_t \) for \(t \in \mathbb{R}_+ \).
If we consider only nonnegative integrands \(H \), we can extend the statement to asymmetric \(\alpha \)-stable Lévy motions (including deterministic linear functions).

Theorem 3. Let \(X \) be an \(\alpha \)-stable Lévy motion. Moreover, let \(M := H \cdot X \) for some nonnegative \(H \in L(X) \) such that \(\int_0^\infty H_d \) is finite for \(t \to \infty \). Then there exist a filtration \((\mathcal{F}_t)_{t \in \mathbb{R}_+}\) on \((\Omega, \mathcal{F})\), a process \((\bar{L}_t)_{t \in \mathbb{R}_+}\), and a finite time change \((\bar{T}_t)_{t \in \mathbb{R}_+}\) such that

1. \(\bar{L} \) is a \((\bar{T}_t)_{t \in \mathbb{R}_+}\)-adapted Lévy process on \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, \mathbb{P})\) with \(\text{Law}(\bar{L}) = \text{Law}(X) \) and
2. \(M = (\int_0^t H_s \, ds)_{t \in \mathbb{R}_+} \).

If we define the \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, \mathbb{P})\)-time change \((T_t)_{t \in \mathbb{R}_+}\) by \(T_t := \inf\{s \in \mathbb{R}_+ : \int_0^s H_s \, ds \geq t\} \), then we may choose \(\mathcal{F}_t = \mathcal{F}_{T_t} \), \(L_t = M_{T_t} \) and \(\bar{T} \) as the inverse time change of \(T \). In particular, \(\bar{T}_t = \int_0^t H_s \, ds \) for \(t \in \mathbb{R}_+ \).

Proof. This is shown along the same lines as the previous theorem. Only the second step has to be modified slightly. Here,

\[
\kappa(u) = \gamma_1 \int_{(0, \infty)} (e^{iuX} - 1)x^{-(1+\alpha)} \, dx \\
+ \gamma_2 \int_{(-\infty, 0)} (e^{iuX} - 1)|x|^{-(1+\alpha)} \, dx, \quad \alpha < 1,
\]

\[
\kappa(u) = iu \mu + \gamma_1 \int (e^{iuX} - 1 - iux 1_{[-1, 1]}(x)) |x|^{-(1+\alpha)} \, dx, \quad \alpha = 1,
\]

\[
\kappa(u) = \gamma_1 \int_{(0, \infty)} (e^{iuX} - 1 - iux) x^{-(1+\alpha)} \, dx + \gamma_2 \int_{(-\infty, 0)} (e^{iuX} - 1 - iux) |x|^{-(1+\alpha)} \, dx, \quad 1 < \alpha < 2,
\]

\[
\kappa(u) = -\gamma_1 u^2, \quad \alpha = 2
\]

(with some constants \(\gamma_1, \gamma_2 \in \mathbb{R}_+, \mu \in \mathbb{R} \), cf. [9, Theorem 14.7] or [10, III.1.c, Theorem 3]). Again, straightforward calculations show that \(\kappa(uv) = v^\alpha \kappa(u) \) for any \(u, v \in \mathbb{R}_+ \).

The following result shows that there are no other Lévy processes such that an analogous statement holds.

Theorem 4. Suppose that \(X \) is a real-valued Lévy process with the following property: For any \(H \in \mathbb{R} \setminus \{0\} \) there exist a filtration \((\mathcal{F}_t)_{t \in \mathbb{R}_+}\) on \((\Omega, \mathcal{F})\), a process \((\bar{L}_t)_{t \in \mathbb{R}_+}\), and a finite time change \((\bar{T}_t)_{t \in \mathbb{R}_+}\) such that

1. \(\bar{L} \) is a \((\bar{T}_t)_{t \in \mathbb{R}_+}\)-adapted Lévy process on \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, \mathbb{P})\) with \(\text{Law}(\bar{L}) = \text{Law}(X) \) and
2. \(HX = (\int_0^t H_s \, ds)_{t \in \mathbb{R}_+} \).

Then \(X \) is a symmetric \(\alpha \)-stable Lévy motion.

If we claim the above property only for any \(H \in (0, \infty) \), it follows that \(X \) is an \(\alpha \)-stable Lévy motion.

Proof. Let \(H \in (0, \infty) \) and \(u \in \mathbb{R} \). Note that the cumulant processes of Lévy processes are deterministic, linear in time, and characterized by the Lévy–Khinchine triplet. By Lemmas 2 and 5, the cumulant process of \(HX \) is of the form

\[
\kappa(u) A_t = \mathcal{X}_X(uH)_t = \mathcal{X}_H(u) \bar{T}_t = \kappa(u) A_{\bar{T}_t}
\]

if we set \(A_t = t \) and \(\mathcal{X}_X(u) = \kappa(u) \cdot A \) denotes the cumulant process of \(X \) and \(\bar{L} \). The process \((A_{\bar{T}_t})_{t \in \mathbb{R}_+}\) can be written as \(A_{\bar{T}_t} = a \cdot A_t + N_t \) for some \((\mathcal{F}_t)_{t \in \mathbb{R}_+}\)-predictable, nonnegative process \(a \) and some increasing process \(N \) which is orthogonal to Lebesgue measure (cf. [4, 1.3.13]). Since the left-hand side of equation (1) is absolutely continuous with respect to Lebesgue measure, it follows that \(\kappa(uH) \cdot A = (\kappa(u)a) \cdot A \), which implies that \(\kappa(uH) \) is a multiple of \(\kappa(u) \), say \(\kappa(uH) = f(H)\kappa(u) \) with some function \(f : (0, \infty) \to (0, \infty) \). Note that \(f(H H') = f(H) f(H') \) and \(f \) is continuous because of the continuity.
of \(\kappa \). Therefore, \(\ln(f(\exp(-))) \) is a linear function, hence \(f(H) = H^\alpha \) for some \(\alpha \in \mathbb{R} \). Note that \(\alpha = 0 \) is only possible for \(\kappa = 0 \), in which case \(X = 0 \). Suppose that \(\alpha
eq 0 \).

Second step. Let \(k_1, k_2 \in (0, \infty) \). Since \(u \mapsto \exp(\kappa(u)) \) is the characteristic function of \(X_1 \), we have that

\[
\left(p^{k_1}X_1 + p^{k_2}X_1 \right)^\wedge(u) = \exp\left(\kappa(uk_1) + \kappa(uk_2) \right) = \exp\left((k_1^\alpha + k_2^\alpha)\kappa(u) \right) = \exp\left(\kappa(u(k_1^\alpha + k_2^\alpha)^{-\alpha}X_1) \right)^\wedge(u),
\]

where \((p^Y)^\wedge \) denotes the characteristic function of \(Y \). It follows that \(X_1 \) is strictly stable.

Third step. If the property in the theorem holds for negative \(H \), the same reasoning as above yields that \(\kappa(uf(-1)) = f(-1)\kappa(-u) \) for some \(f(-1) \in \mathbb{R} \) that does not depend on \(u \). From \(\kappa(uf(-1)) = f(-1)\kappa(-u) = (f(-1))^2\kappa(u) \) it follows that \(f(-1) = 1 \). This implies that \((p^{X_1})^\wedge(u) = (p^{X_1})^\wedge(-u) \), which in turn yields that \(\operatorname{Law}(X_1) = \operatorname{Law}(-X_1) \). Hence, \(X_1 \) is symmetric stable.

It is an open question whether the previous theorem still holds if we remove the constraint that \(\tilde{L} \) is \((\tilde{T}_t)_{t \in \mathbb{R}_+} \)-adapted.

2. Tools from stochastic calculus.

Lemma 1. Let \(Z \) be a semimartingale such that \(Z_-, Z_- \in (C \setminus \{0\}) \)-valued. Then there exists an up to indistinguishability unique \(C \)-valued semimartingale \(X \) such that \(X_0 = 0 \) and \(Z = Z_0 \mathcal{G}(X) \). It is given by \(X = (1/Z_-) Z \).

Proof. The existence and explicit form of \(X \) follows from \(1 + (Z_-/Z_0) \cdot ((1/Z_-) \cdot Z) = 1 + (Z_-/(1/Z_-)) \cdot Z/Z_0 = Z/Z_0 \). Now let \(X \) be any semimartingale such that \(Z_0 = 0 \) and \(Z = Z_0 \mathcal{G}(X) \). Then \(X = ((1/Z_-) Z_-) \cdot X = (1/Z_-) \cdot (Z_- \cdot X) = (1/Z_-) \cdot Z \), which yields the uniqueness.

Definition 3. We call the process \(X \) in the previous lemma **stochastic logarithm** of \(Z \) and write \(\mathcal{L}(Z) := X \).

Let \(X \) be a \(\mathbb{R}^d \)-valued semimartingale whose characteristics \((B, C, \nu) \) relative to some truncation function \(h: \mathbb{R}^d \to \mathbb{R}^d \) are given in the form \(B = b \cdot A, C = c \cdot A, \nu = A \otimes F \), where \(A \in \mathfrak{M}_{uc}^+ \) is a predictable process, \(b \) is a predictable \(\mathbb{R}^d \)-valued process, \(c \) is a predictable \(\mathbb{R}^d \times \mathbb{R}^d \)-valued process whose values are nonnegative, symmetric matrices, and \(F \) is a transition kernel from \((\Omega \times \mathbb{R}_+, \mathcal{F})\) into \((\mathbb{R}^d, \mathcal{B}^d)\). By [4, Proposition II.2.9] such a representation always exists.

Definition 4. Suppose \(\mathbb{R}^d \)-valued process \(U \in L(X) \). The **cumulant process** \(\mathcal{X}(U) \) of \(U \) in \(U \) is defined as the predictable part of finite variation in the canonical decomposition of the special semimartingale \(\mathcal{L}(\exp(iU \cdot X)) \) (in the sense of [4, 1.4.22]).

Remark. Note that \(\exp(iU \cdot \mathcal{L}(X)) \) is bounded and hence is a complex special semimartingale. Therefore, \(\mathcal{L}(\exp(iU \cdot X)) = \exp(-iU \cdot X) \cdot \exp(iU \cdot X) \) is a special semimartingale as well (cf. [2, (2.51)])

Lemma 2. Let \(H \in L(X) \) and \(U \in L(H^T \cdot X) \). Then \(\mathcal{X}^H \cdot \mathcal{X}(U) = \mathcal{X}^X(UH) \).

Proof. From \(H \in L(X), U \in L(H^T \cdot X) \), it follows that \(UH \in L(X) \) (cf. [1, Proposition 5.1]). The assertion is now readily obtained from \(\exp(iU \cdot (H^T \cdot X)) = \exp(i(UH)^T \cdot X) \).

Lemma 3. Let \(H \in L(X) \). Then the characteristics \((\tilde{B}, \tilde{C}, \tilde{\nu}) \) of \(H^T \cdot X \) relative to some truncation function \(h_1: \mathbb{R} \to \mathbb{R} \) are of the form \(\tilde{B} = \tilde{b} \cdot A, \tilde{C} = \tilde{c} \cdot A, \tilde{\nu} = A \otimes \tilde{F} \), where

\[
\tilde{b}_t = H^T_t b_t + \int (h_1(H^T_t x) - H^T_t h(x)) F_t(dx),
\]
\[
\tilde{c}_t = H^T_t c_t H_t,
\]
\[
\tilde{F}_t(G) = \int 1_G(H^T_t x) F_t(dx) \quad \text{for any} \ G \in \mathcal{B} \ \text{with} \ 0 \notin G.
\]
Proof. For locally bounded integrands the lemma is proved in [4, IX.5.3]. Since $H \in L_{10c}^1(X^c)$, it follows that $\tilde{C} = \langle H^T \cdot X^c, H^T \cdot X^c \rangle = (H^T \cdot H) \cdot A$ (cf. [1, Proposition 5.2] and [3, 1a]). Moreover, $\Delta(H^T \cdot X) = H^T \Delta X$ implies that $1_G(x) \mu_{H^T \cdot X} = 1_G(H^T x) \mu_X$ and hence $1_G(x) \tilde{v} = 1_G(H^T x) \nu$ for any $G \in \mathbb{B}$ with $0 \notin G$. By [1, Proposition 5.2], there exist a set $\Delta \in \mathcal{P} \otimes \mathfrak{B}^d$ and a predictable process $\tilde{B} \in \mathfrak{F}^d$ such that

$$X = X_0 + X^c + z_1 \Delta_c(x) \ast (\mu_X - \nu) + z_1 \Delta(x) \ast \mu_X + \tilde{B},$$

$$\nu = (H^T \cdot X) \ast \nu = (H^T \cdot z_1 \Delta_c(x) \ast \mu_X + \tilde{B}).$$

Since X can also be written in its canonical semimartingale representation $X = X_0 + X^c + h(x) \ast (\mu_X - \nu) + (x - h(x)) \ast \mu_X + B$, it follows from [1, Proposition 5.3] that $\tilde{B} = B + (z_1 \Delta_c(x) - h(x)) \ast \nu = (b + f(z_1 \Delta_c(x) - h(x)) F(dx)) \ast A$. Similarly, the canonical semimartingale representation of $H^T \cdot X$ equals $H^T \cdot X = x^c + h_1(H^T x) \ast (\mu_X - \nu) + (H^T x - h_1(H^T x)) \ast \mu_X + \tilde{B}$, which yields, again using [1, Proposition 5.3],

$$\tilde{B} = H^T \cdot \tilde{B} + (h_1(H^T x) - H^T x_1 \Delta_c(x)) \ast \nu \ast \nu \ast A.$$

This proves the assertion.

Lemma 4. Let $U \in L(X)$. Then $X^X(U) = \kappa(U) \cdot A$, where

$$\kappa(U)_i = i U_i^T b_i - \frac{1}{2} U_i^T c_i U_i + \int \left(i U_i^T x - 1 - i U_i^T h(x) \right) F_i(dx).$$

Proof. First step. From Lemmas 2 and 3 it follows that $X^X(U) = X^U \cdot X(1)$ and $\kappa(U) = \kappa U \cdot X(1)$, where $\kappa U \cdot X$ is defined as κ but for the process $U \cdot X$ instead of X. Therefore, it suffices to prove the statement for \mathbb{R}^1-valued X with $X_0 = 0$ and $U = 1$.

Second step. Let $Y := i X$. Applying Ito's formula (e.g. as in [1, Lemma 5.5]) yields that exp(iX) = $\exp(Y) = s(Y + i \frac{1}{2} (Y^e, Y^c) + (e^x - 1 - x) \ast \mu_Y)$ and hence $L := \mathcal{L}(\exp(iX)) = Y + i \frac{1}{2} (Y^e, Y^c) + (e^x - 1 - x) \ast \mu_Y$. Note that $Y = i (B + X^c + h(x) \ast (\mu_X - \nu) + (x - h(x)) \ast \mu_X)$. Together, we obtain that

$$L = i B + i X^c + i h(x) \ast (\mu_X - \nu) - \frac{1}{2} (X^e, X^c) + (e^{ix} - 1 - i h(x)) \ast \mu_X.$$

On the other hand, the canonical decomposition of L is $L = V + L^e + z \ast (\mu_L - \nu_L) = V + L^e + (e^{ix} - 1) \ast (\mu_X - \nu)$, where $V \in \mathcal{V}$ is predictable. From [1, Proposition 5.3] it follows that $V = i B - \frac{1}{2} C + (e^{ix} - 1 - i h(x)) \ast \nu = \kappa(1) \cdot A$. Therefore $X^X(U) = \kappa(1) \cdot A$ as claimed.

Remark. In particular, the cumulant process $X^X(U)$ for $U \in L(X)$ can be obtained from the cumulant processes $X^X(u), u \in \mathbb{R}^d$. Also note that by [4, II.2.42] the cumulant processes $X^X(u), u \in \mathbb{R}^d$, uniquely determine the characteristics (B, C, ν) of X.

Lemma 5. Let $(T_\theta)_{\theta \in \mathbb{R}^d}$ be a finite time change such that X is $(T_\theta)_{\theta \in \mathbb{R}^d}$-adapted. Then the process $(\tilde{X}_\theta)_{\theta \in \mathbb{R}^d}$ defined by $\tilde{X}_\theta := X_{T_\theta}$ is a semimartingale on $(\Omega, \mathcal{F}, (\tilde{\mathcal{F}}_\theta)_{\theta \in \mathbb{R}^d}, \mathbb{P})$ whose characteristics ($\tilde{B}, \tilde{C}, \tilde{\nu}$) are of the form

$$\tilde{B}_\theta = B_{T_\theta}, \quad \tilde{C}_\theta = C_{T_\theta}, \quad 1_G \ast \tilde{v}_\theta = 1_G \ast \nu_{T_\theta}.$$
for $\theta \in \mathbb{R}^+$, $G \in \mathcal{B}^d$ with $0 \notin G$. Moreover, its cumulant process satisfies
\[\mathcal{X}^X(u)_\theta = \mathcal{X}^X(u)_{T_\theta} \quad \text{for } \theta \in \mathbb{R}^+, \ u \in \mathbb{R}^d. \]

Proof. The statement on \(\mathcal{C} \) follows from \[2, (10.17)a\]. The \((T_\theta)_{\theta \in \mathbb{R}^+}\)-adaptedness of \(X \) implies that \(1G^* \mu^X_{T_\theta^-} = \sum_{t \leq T_\theta} 1G(\Delta X_t) = \sum_{t \leq T_\theta} 1G(\Delta X_t) = 1G^* \mu^X_{T_\theta} \), hence \(\mu^X \) is \((T_\theta)_{\theta \in \mathbb{R}^+}\)-adapted in the sense of \[2, (10.25)\]. Since \(\Delta \mathcal{X} \) is \((T_\theta)_{\theta \in \mathbb{R}^+}\)-adapted in the sense of \[2, (10.27)\], it follows from \[2, (10.27)\] that \(1G^* \nu_\theta \) is \((T_\theta)_{\theta \in \mathbb{R}^+}\)-adapted in the sense of \[2, (10.17)b\]. Since \(B \) is \((T_\theta)_{\theta \in \mathbb{R}^+}\)-adapted,\(\nu_\theta \) is \((T_\theta)_{\theta \in \mathbb{R}^+}\)-adapted, hence \(J^* \) is \((T_\theta)_{\theta \in \mathbb{R}^+}\)-adapted. Finally, observe that by Lemma 4, \(\mathcal{X}^X(u)_\theta = \mathcal{X}^X(u)_{T_\theta} \).

Remark. Even though the semimartingale property is preserved under arbitrary finite time changes, Lemma 5 generally ceases to hold. For example, even a continuous process may have fixed times of discontinuity after a time change. Under \((T_\theta)_{\theta \in \mathbb{R}^+}\)-adaptedness, however, many properties are preserved (cf. \[2, Chapter X\]).

We end with a characterisation of \(L(X) \) for \(\alpha \)-stable Lévy motions \(X \) which can be found in \[5\] (cf. also \[7\]). We give a more direct proof here.

Lemma 6. Let \(X \) be a nonconstant \(\alpha \)-stable Lévy motion and \(H \) a predictable real-valued process. Then \(H \in L(X) \) if and only if \(\int_0^t |H_s|^\alpha ds < \infty \) \(\mathbb{P} \)-almost surely for any \(t \in \mathbb{R}^+ \).

Proof. Since \(H = H' + H'' \) with \(H'_t := H_t^{1(|H_t|>1)} + 1_{|H_t| \leq 1} \) and \(H''_t := (H_t - 1)1_{|H_t| \leq 1} \), it suffices to consider the case \(|H| \geq 1 \). By \((B,C,\nu)\) we denote the characteristics of \(X \) relative to \(h: \mathbb{R} \to \mathbb{R} \), i.e., \(B_t = bt \), \(C_t = ct \), \(\nu = \lambda \otimes F \), where \((b,c,F)\) is the Lévy–Khintchine triplet of \(\text{Law}(X_1) \). By \[1, Proposition 5.2\], \(H \in L(X) \) holds if and only if \(H \in L_{\text{loc}}^{1}(X') \), \(Hx1_{|Hx| \leq 1} \in G_{\text{loc}}(\mu^X) \), \(|Hx1_{|Hx|>1}|^\alpha \mu^X \in \mathcal{Y} \), and \(H \in L_{\text{loc}}(\mathcal{B}) \), where \(\mathcal{B} = B + (x1_{|Hx| \leq 1} - h(x)) * \nu \). By \(\alpha \in (0,2) \) we denote the index of stability of \(X \).

Case 1. \(\alpha = 2 \). In this case \(\mu^X = 0 \), \(B = 0 \), and \(X \) is a continuous local martingale. Therefore, \(H \in L(X) \) if and only if \(H \in L_{\text{loc}}^{1}(X') \), i.e., if and only if \(H^2 \cdot (X,X) \in \mathcal{Y} \). Since \((X,X)' = ct \), the claim follows.

Case 2. \(\alpha \not= 2 \). Note that \(\mathcal{X}^X = 0 \). Moreover, \(|Hx1_{|Hx|>1}|^\alpha \mu^X \in \mathcal{Y} \) holds automatically because \(|Hx1_{|Hx|>1}|^\alpha \mu^X \) is a finite sum for fixed \(t \). By \[4, II.1.33c\], \(Hx1_{|Hx| \leq 1} \in G_{\text{loc}}(\mu^X) \) if and only if \(H^2x^21_{|Hx|<1} \nu \mu^X \in \mathcal{Y} \). But note that \(\nu = \lambda \otimes F \) and \(\int H^2x^21_{|Hx|<1} F(dx) = |H|^\alpha \int y^21_{|y|<1} F(dy) \), because \(F \) is the density of \(X \), \(x \in \mathbb{R}^d \), and \(0 < \alpha < 2 \). Since \(\int y^21_{|y|<1} F(dy) < \infty \), it follows that \(H^2x^21_{|Hx|<1} \nu \mu^X \in \mathcal{Y} \) if and only if \(F \in L^{1\alpha} \) or \(\int_0^t |H|^\alpha dt \in \mathcal{Y} \). For the drift part, we have to distinguish several cases.

Firstly, let \(\alpha = 1 \). If we choose a symmetric \(h \), then \(x1_{|Hx| \leq 1} - h(x) \) \(\nu \mu^X \in \mathcal{Y} \) if and only if \(B = 0 \) or \(\int_0^t |H|^\alpha dt \in \mathcal{Y} \).

Secondly, let \(\alpha \in (1,2) \). By \[9, Theorem 14.7\], we can use \(h(x) = x \) and have \(B = 0 \) for this choice of \(h \). Consequently, \(\mathcal{B} = -x1_{|Hx|>1} \nu \). Therefore, \(H \in L_{\text{loc}}(\mathcal{B}) \) holds if \(|Hx1_{|Hx|>1}| \nu \in \mathcal{Y} \), i.e., \(\int |y1_{|y|>1} F(dy) < \infty \), a similar reasoning as above yields that \(|Hx1_{|Hx|>1}| \nu \in \mathcal{Y} \) if and only if \(F = 0 \) or \(\int_0^t |H|^\alpha dt \in \mathcal{Y} \).

Finally, let \(\alpha \in (0,1) \). By \[9, Theorem 14.7\], we can use \(h(x) = 0 \) and have \(B = 0 \) for this choice of \(h \). Therefore, \(\mathcal{B} = x1_{|Hx| \leq 1} \nu \) in this case. Note that \(\int |y1_{|y|<1} F(dy) < \infty \). As for \(\alpha > 1 \), it follows that \(H \in L_{\text{loc}}(\mathcal{B}) \) holds if \(\int_0^t |H|^\alpha dt \in \mathcal{Y} \).
REFERENCES

Поступила в редакцию 4.V.2000

© 2001 г.

Введение. Первоначальный вариант этого сообщения был направлен в редакцию журнала «Теория вероятностей и ее применения» еще в начале 1985 года. Однако в том варианте отсутствовали указания на иллюстрации таких применений полученных результатов и предложенной комбинаторной техники, которые могли бы представлять чисто вероятностный интерес. Поэтому автор решил в конечном счете ограничиться публикацией формулировок главных результатов в тезисах [6]. Впоследствии к ним были даны комментарии в докладе на IV Всемирном конгрессе Общества им. Бернулли в Вене (август 1996 г.), а в докладе на Международном