Ю. М. Воробьев, О линеаризации гамильтононовых систем на пуассоновых многообразиях, Матем. заметки, 2005, том 78, выпуск 3, 323–330

DOI: https://doi.org/10.4213/mzm2601
О ЛИНЕАРИЗАЦИИ ГАМИЛЬТОНОВЫХ СИСТЕМ НА ПУАССОНОВЫХ МНОГООБРАЗИЯХ
Ю. М. Воробьев

Линеаризация гамильтоновой системы на пуассоновом многообразии вдоль данного (сингулярного) симплетического листа определяет некую динамическую систему на нормальном расслоении к листу, которая называется системой в вариациях. Показано, что система в вариациях допускает согласованную гамильтонову структуру, если существует трансверсаль к листу, которая инвариант относительно фазового потока исходной системы. В случае, когда трансверсальная алгебра Ли симплетического листа является полупростой, это условие оказывается также необходимым.

Библиография: 10 названий.

1. Введение. Пусть имеется пуассоново многообразие \((M, \Psi)\) со скобкой Пуассона

\[
\{F, G\}_\Psi = \Psi(dF, dG) = \Psi^{\text{1}}(y) \frac{\partial F}{\partial y^I} \frac{\partial G}{\partial y^J}
\]

(здесь и далее суммирование проводится по повторяющимся индексам). Пусть задана гамильтонова система \((M, \Psi, H)\), соответствующая гамильтонову векторному полю

\[
X_H = \Psi^1 dH = -\Psi^{\text{1}}(y) \frac{\partial H}{\partial y^I} \frac{\partial}{\partial y^I};
\]

здесь \(\Psi^1: T^*M \rightarrow TM\) — морфизм векторных расслоений, индуцированный тензором Пуассона \(\Psi\). В соответствии с общей схемой [1], [2], процедура линеаризации для динамической системы \((M, X_H)\) задает векторное поле \(\text{Var}(X_H)\) на касательном расслоении \(TM\). Динамическая система, соответствующая \(\text{Var}(X_H)\), называется системой в вариациях векторного поля \(X_H\) на \(TM\). В локальных координатах \((y^I, u^J)\) на \(TM\) система в вариациях имеет вид

\[
\dot{y}^I = -\Psi^{\text{1}}(y) \frac{\partial H}{\partial y^I} ;
\]

\[
\dot{u}^J = -(\frac{\partial \Psi^{JS}(y)}{\partial y^I} \frac{\partial H}{\partial y^S} + \Psi^{JS} \frac{\partial^2 H}{\partial y^I \partial y^I}) u^I .
\]

Работа выполнена при частичной поддержке программы CONACYT, грант № 35212-E.
Инвариантное определение векторного поля $\text{Var}(X_H)$ дается с помощью канонической инволюции на TTM [1]. Как известно, система (1.1), (1.2) является гамильтоновой относительно тангенциальной пуассоновой структуры на TM [1].

Наша цель — изучение линеаризованной гамильтоновой динамики на заданном (сингилярном) симплектическом листе. Пусть задан замкнутый симплектический лист (B, ω) пуассонова многообразия (M, Ψ) с симплектической структурой

$$\omega = \frac{1}{2} \omega_{ij}(\xi) d\xi^i \wedge d\xi^j.$$ \hspace{1cm} (1.3)

Ограничение X_H на B является гамильтоновым векторным полем на (B, ω),

$$v_f = X_H|_B = \omega^{is}(\xi) \frac{\partial f}{\partial \xi^s},$$

где $f = H|_B$. Пусть $T_B M$ — ограничение касательного расслоения TM на лист B. Нормальным расслоением $E = T_B M / TB$ к листу B называется векторное расслоение $\pi: E \to B$ над B, слоем которого над ξ является факторпространство $E_\xi = T_\xi M / T_\xi B$.

Пусть $p: T_B M \to E$ — естественная проекция. Так как подмножество Б инвариантно относительно фазового потока поля X_H, векторное поле $\text{Var}(X_H)$ имеет два инвариантных подмножества TB и $T_B M$ в TM. Можно показать, что векторное поле $\text{Var}(X_H)$ является проектируемым относительно p, т.е., на E существует единственное векторное поле $\text{var}_B (X_H)$ такое, что

$$(d_u p) \text{Var}(X_H)(u) = \text{var}_B (X_H)(p(u))$$

для любых $u \in T_\xi M$ и $\xi \in B$. Динамическая система $(E, B, \text{var}_B (X_H))$ называется системой в вариациях поля X_H на B. Размерность соответствующего фазового пространства E (тотального пространства нормального расслоения к листу B) совпадает с размерностью исходного многообразия, $\dim E = \dim M$. Кроме того, подмножество $B \subset E$ (как нулевое сечение расслоения E) инвариантно относительно фазового потока поля $\text{var}_B (X_H)$. Итак, система в вариациях представляет собой естественную линеаризованную модель для исходной гамильтоновой системы X_H на B. Нас интересует следующий вопрос: при каких условиях векторное поле $\text{var}_B (X_H)$ является гамильтоновым относительно некоторой пуассоновой структуры на E? Эта задача, например, возникает при изучении (нелинейной) гамильтоновой динамики вблизи (сингилярного) симплектического листа в контексте теории возмущений. В общем случае, процедура линеаризации может разрушить свойство гамильтонности векторного поля $\text{var}_B (X_H)$. В симплектическом случае этот эффект изучался в работах [3–5]. В данной статье мы приводим некоторые результаты, касающиеся существования гамильтоновой структуры для $\text{var}_B (X_H)$. В основе этих результатов лежит понятие линеаризованной пуассоновой структуры симплектического листа [6], [7].

2. Существование гамильтоновых структур. Рассмотрим дуальное расслоение $E^* \subset T_B^* M$ к E, которое будем называть конормальным расслоением к листу B, и которое совпадает с ядром морфизма расслоения $\Psi_B^*: T_B^* M \to T_B M$, $\ker \Psi_B^* = E^*$. Тогда каждый слой расслоения E^* наследует структуру алгебры Ли $[\cdot, \cdot]_{\text{fib}}$, которая однозначно определяется следующим условием: для произвольных функций k, \tilde{k}, заданных на M и постоянных вдоль листа B, выполняется соотношение $[\eta, \tilde{\eta}]_{\text{fib}} = d([k , \tilde{k}]_{\Psi})|_B$, [6], [7].
где $\eta = dk|_B$, $\bar{\eta} = d\bar{k}|_B$. Расслоение E^* является локально-тривиальным с типичным листом \mathfrak{g}, который называется трансверсальной алгеброй Ли симплектического листа B. Таким образом, нормальное расслоение пространства E становится локально-тривиальным расслоением Ли–Пуассона над симплектической базой (B, ω_B). Соответствующая послойная структура Ли–Пуассона индуцирует вертикальный тензор Пуассона Λ на E, который называется линеаризованной трансверсальной пуассоновой структурой исходного тензора Пуассона Ψ на листе B [8], [9].

ОПРЕДЕЛЕНИЕ 2.1. Пуассонова структура Π на E называется согласованной, если она корректно определена в окрестности нулевого сечения B и удовлетворяет следующим условиям:

(i) (B, ω_B) является симплектическим листом пуассоновой структуры Π;
(ii) линеаризованная трансверсальная пуассонова структура бивекторного поля Π на B совпадает с Λ.

Под трансверсалью \mathcal{L} к B мы будем понимать подрасслоение в T_BM, являющееся дополнительным к TB,

$$T_BM = TB \oplus \mathcal{L}. \quad (2.1)$$

Пусть Fl_H^t — фазовый поток гамильтонова векторного поля X_H. Так как $B \subset E$ — это инвариантное подмногообразие для X_H, дифференциал $d \mathrm{Fl}_H^t$ действует на T_BM, оставляя TB инвариантным.

ТЕОРЕМА 2.2. Если фазовый поток гамильтонова векторного поля X_H допускает инвариантную трансверсаль \mathcal{L} к B,

$$d\mathrm{Fl}_H^t(\mathcal{L}) = \mathcal{L}, \quad (2.2)$$

то система в вариациях $\vartheta_B(X_H)$ поля X_H на B является гамильтоновой относительно некоторой согласованной пуассоновой структуры Π на E и некоторой функции $F \in C^\infty(E),$

$$\vartheta_B(X_H) = \Pi^t(dF). \quad (2.3)$$

Ниже для доказательства этой теоремы мы приводим построение согласованной пуассоновой структуры Π и функции Гамильтона F.

3. Согласованные пуассоновы структуры. Следуя [6], [7], напомним процедуру, которая позволяет, начиная с тройки (M, Ψ, B), построить класс согласованных пуассоновых структур на E, параметризованных трансверсальами к B.

Имеется естественное расщепление

$$T_BE = TB \oplus E. \quad (3.1)$$

Фиксируем трансверсаль \mathcal{L} к B. Ясно, что \mathcal{L} является подрасслоением T_BE, которое изоморфно E. Ограничение проекции p на слой \mathcal{L}_x дает изоморфизм на E_x.

Под экспоненциальным отображением, соответствующим трансверсали \mathcal{L} к B, будем понимать диффеоморфизм f из некоторой окрестности подмногообразия B в E на другую окрестность B в M, удовлетворяющий следующим условиям:

$$f|_B = \mathrm{id}_B, \quad (d_xf)(e) = p^{-1}(e)$$
для любого \(e \in E_\xi \) и \(\xi \in B \). В частности, \((d_\xi f)(E_\xi) = L_\xi\). Экспоненциальное отображение существует в силу теоремы о трубчатой окрестности.

Рассмотрим поднятие \(f^* \Phi \) исходной пуссонаевой структуры \(\Phi \) при экспоненциальном отображении \(f \). Выберем базис \(\{e_\sigma\} \) локальных сечений \(E^* \). Пусть \(\{e_\sigma\} \) – дуальный базис расслоения \(E \). Рассмотрим координатную систему \((\xi^i, x^\sigma) \) на \(E \), где \((\xi^i) \) – координаты вдоль \(B \), а \(\{x^\sigma\} \) – нормальные координаты к \(B \), ассоциированные с базисом \(\{e_\sigma\} \), \(B = \{x = 0\} \). Тогда \(f^* \Phi \) является согласованным тензором Пуассона на \(E \). Соответствующие попарные сокби для координатных функций вблизи \(B \) имеют вид

\[
\begin{align*}
\{\xi^i, \xi^j\} f^* \Phi &= -\omega^{ij} - \omega^{is} R_{smn} \omega^{mj} x^\nu + O_2, \\
\{\xi^i, x^\sigma\} f^* \Phi &= \omega_{ij} \theta^\sigma_{j\nu} x^\nu + O_2, \\
\{x^\alpha, x^\beta\} f^* \Phi &= \lambda^\alpha_{\beta \nu} x^\nu + O_2.
\end{align*}
\] (3.2) (3.3) (3.4)

Здесь \(\omega^{ij}(\xi), \omega_{ij}(\xi) = \delta^i_j \) – коэффициенты симплектической формы (1.3), а \(\lambda^\alpha_{\beta \nu}, \theta^\sigma_{ij}, R_{smn} \) – гладкие функции на \(B \). Символ \(O_k \) обозначает член порядка \(k \) в формальном разложении функции в ряд Тейлора в точке \(x = 0 \). Отметим, что функции \(\lambda^\alpha_{\beta \nu} = \lambda^\alpha_{\beta \nu}(\xi) \) являются структурными константами скобок Ли на слое \(E \) относительно базиса \(\{e_\sigma\} \).

Через \(\Omega^k(B, E) \) будем обозначать пространство векторно-значных \(k \)-форм на \(B \) со значениями в пространстве гладких сечений пространства \(E \). В частности, \(\Omega^0(B, E) = C^\infty(B; E) \) является пространством векторно-значных функций на \(E \). Введем матрично-значную 1-форму \(\theta^\sigma \) и векторно-значную 2-форму \(\mathcal{R} \mathcal{L} = (\mathcal{R}_\sigma) \in \Omega^2(B, E^*) \) с компонентами

\[
\theta^\sigma_\beta = \theta^\sigma_{ij}(\xi) \ d\xi^i, \quad \mathcal{R}_\sigma = \frac{1}{2} \mathcal{R}_{ij\sigma}(\xi) \ d\xi^i \land d\xi^j
\]

относительно базиса \(\{e_\sigma\} \). Можно показать [10], что существует линейная связность \(\nabla \mathcal{L} \) на \(E \), для которой форма связности относительно базиса \(\{e_\sigma\} \) задается в точности 1-формой \(\theta^\sigma \). Важное наблюдение состоит в следующем: параллельный перенос \(\nabla \mathcal{L} \) сохраняет послойную структуру Ли–Пуассона линейной связности \(E \). Кроме того, форма кривизны связности \(\nabla \mathcal{L} \) выражается через \(\mathcal{R} \mathcal{L} \) следующим образом:

\[
\mathrm{Curv} \nabla \mathcal{L} = d\theta^\sigma \land \theta^\sigma \land \theta^\sigma = -\mathrm{ad}^* \circ \mathcal{R} \mathcal{L}.
\]

Здесь \(\mathrm{ad}^* \) – оператор коприсоединенного представления, действующий на слоях расслоения \(E \). Через

\[
\mathrm{hor}_i \overset{\text{def}}{=} \frac{\partial}{\partial \xi^i} - \theta^\sigma_{ij}(\xi) x^\nu \frac{\partial}{\partial x^\sigma}
\] (3.5)

обозначим горизонтальный лифт базисного векторного поля \(\partial/\partial \xi^i, i = 1, \ldots, \dim B \). Также введем скалярную 2-форму \(\mathcal{F} = \frac{1}{2} \mathcal{F}_{ij}(\xi, x) \ d\xi^i \land d\xi^j \) на \(E \) с коэффициентами

\[
\mathcal{F}_{ij}(\xi, x) \overset{\text{def}}{=} \omega_{ij}(\xi) - x^\nu \mathcal{R}_{ij\nu}(\xi).
\] (3.6)

Заметим, что \(\mathcal{F}_{ij}(\xi, 0) = \omega_{ij}(\xi) \) и, следовательно, \(\det[\mathcal{F}_{ij}(\xi, 0)] \neq 0 \ \forall \xi \in B \). Таким образом, 2-форма \(\mathcal{F} \) является невырожденной в открытой области

\[
\mathcal{N} = \{(\xi, x) \in E \mid \det[\mathcal{F}_{ij}(\xi, x)] \neq 0\},
\]
содержащей B. Элементы обратной к $[\mathcal{F}_{ij}]$ матрицы обозначим через $\mathcal{F}^{ij} = \mathcal{F}^{ij}(\xi, x)$, $\mathcal{F}^{is}\mathcal{F}_{sj} = \delta^i_j$. Введем бивекторное поле $\Pi_{\mathcal{L}}$ на $\mathcal{N} \subseteq \mathcal{E}$, ассоциированное с данными $(\nabla \mathcal{L}, \mathcal{H})$, которые задаются соотношением

$$
\Pi_{\mathcal{L}} \overset{\text{def}}{=} -\frac{1}{2} \mathcal{F}^{ij} \text{hor}_i \wedge \text{hor}_j + \Lambda.
$$

(3.7)

Здесь бивекторное поле Λ на \mathcal{E} задано соотношением

$$
\Lambda = \frac{1}{2} \lambda_{\nu}^{\alpha\beta}(\xi) x^\nu \frac{\partial}{\partial x^\alpha} \wedge \frac{\partial}{\partial x^\beta}
$$

и определяет линеаризованную трансверсальную пулсонову структуру тензорного поля Ψ на B.

Предложение 3.1 [8]. Для любой трансверсаль \mathcal{L} векторное поле $\Pi_{\mathcal{L}}$ в (3.7) задает согласованное тензор Пуассона на $\mathcal{N} \subseteq \mathcal{E}$.

Заметим, что пулсонову структуру $\Pi_{\mathcal{L}}$ не зависит от выбора трансверсаль \mathcal{L} с точностью до изоморфизма в окрестности B (см. [6], [7]). Этот факт ведет к понятию линеаризованной пулсоновой структуры данного симплектического листа B.

Пусть задано линейное векторное поле \mathcal{V}_f на \mathcal{E}, которое проектируется на гамильтоново векторное поле v_f на (B, ω), $\mathcal{V}_f = v_f^i(x) \frac{\partial}{\partial x^i} + V^\alpha_{\nu}(\xi) x^\nu \frac{\partial}{\partial x^\alpha}$.

где $V = (V^\alpha_{\nu}(\xi))$ – матрично-значная функция на B.

Предложение 3.2. Линейное векторное поле \mathcal{V} является гамильтоновым относительно пулсоновой структуры $\Pi_{\mathcal{L}}$ и послойно линейной функции $F = \pi^* f - \langle x, \eta \rangle$, $\eta \in C^\infty(B, \mathcal{E})$, тогда и только тогда, когда пара (η, V) удовлетворяет следующим уравнениям на B:

$$
d\eta - (\theta \mathcal{L})^T \eta = -i_{v_f} \mathcal{R}_{\mathcal{L}},
$$

(3.8)

$$
V = -(i_{v_f} \theta \mathcal{L} + \text{ad}^* \circ \eta).
$$

(3.9)

Здесь i_{v_f} обозначает внутреннее произведение векторного поля v_f и дифференциальной формы на B.

4. Инвариантные трансверсали и динамическое кручение. Пусть f – экспоненциальное отображение, ассоциированное с трансверсально \mathcal{L}. Рассмотрим поднятие пулсоновой структуры $f^* \Psi$ на E. Симплектический лист (B, ω) является также симплектическим листом для $f^* \Psi$, что нормальное расслоение отождествляется с E. Разлагая гамильтонову систему $(E, f^* \Psi, f^* H = H \circ f)$ в ряд Тейлора в точке $x = 0$ и используя соотношения (3.2)–(3.4), получаем

$$
\frac{d\xi^i}{dt} = \omega^{is}(\xi) \frac{\partial f(\xi)}{\partial \xi^s} + \gamma^i_s(\xi) x^\nu + O_2,
$$

(4.1)

$$
\frac{dx^\sigma}{dt} = \left[\lambda_{\nu}^{\alpha\beta}(\xi) \eta_{\beta}(\xi) - \theta_{ij}^\nu(\xi) \omega^{js}(\xi) \frac{\partial f(\xi)}{\partial \xi^s} \right] x^\nu + O_2.
$$

(4.2)
Здесь \(f(\xi) = f^*H(\xi, 0) \) и
\[
\eta_\nu(\xi) = -\frac{\partial (f^*H)}{\partial x^\nu}(\xi, 0),
\]
(4.3)
а гладкие функции \(\Upsilon^i_\nu \) на \(B \) заданы соотношениями
\[
\Upsilon^i_\nu = -\omega^{ij} \frac{\partial \eta^j}{\partial \xi^i} + \omega^{ij} \theta^\alpha_{\mu j} \eta_\alpha + \omega^{is} \bar{R}_{sm\nu} \omega^{mj} \frac{\partial f}{\partial \xi^i}.
\]
(4.4)
С помощью функций \(\eta_\nu \) определим вектор-функцию функции \(\eta^L = \eta_\nu(\xi) \otimes e^\nu(\xi) \) на \(B \) (глобальное сечение расслоения \(E^* \)). Кроме того, можно показать, что \(\Upsilon^i_\nu \) задают векторное поле
\[
\Upsilon^L = \Upsilon^i_\nu(\xi) x^\nu \frac{\partial}{\partial \xi^i}
\]
на \(E \), которое можно назвать \(\text{kручением} \) фазового потока поля \(X_{f^*H} \) относительно разложения (2.1). Зануление кручения \(\Upsilon^L = 0 \) имеет следующую интерпретацию: трансверсальный инвариант относительно \(d\tilde{F}^t_{f^*H} \). Ниже мы увидим, что \(\eta^L \) и \(\Upsilon^L \) зависят от выбора \(L \).

Теперь из соотношения (4.2) следует, что система в вариациях гамильтонова векторного поля \(X_{f^*H} \) на \(B \) имеет вид
\[
\frac{d\xi}{dt} = v_f,
\]
(4.5)
\[
\frac{dx}{dt} = -(ad^*_\eta + i_{v_f} \theta)x.
\]
(4.6)
Соответственно, векторное поле можно представить в виде
\[
\text{var}_B(X_{f^*H}) = \text{hor}_{v_f} - \left< \text{ad}^*_\eta x, \frac{\partial}{\partial x} \right>.
\]
(4.7)
Здесь \(\text{hor}_{v_f} \) является горизонтальным лифтом гамильтонова векторного поля \(v_f \) относительно связности \(\nabla L \).

Теперь рассмотрим две трансверсали \(L \) и \(\tilde{L} \) к \(B \). Пусть \(l: T_B M \to \tilde{L} - \text{проекция вдоль} \ T_B \) в соответствии с разложением (3.1). Заведомо базис \(\{ n_\sigma \} \) (локальных) сечений расслоения \(L \), можно ввести базис \(\{ \tilde{n}_\sigma \} \) сечений расслоения \(\tilde{L} \) в виде \(\tilde{n}_\sigma(\xi) = l_\xi(n_\sigma(\xi)) \). Тогда имеем
\[
\tilde{n}_\sigma(\xi) = n_\sigma + u_\sigma(\xi),
\]
(4.8)
где \(u_\sigma \) - некоторые векторные поля на \(B \), \(u_\sigma(\xi) \in T_\xi B \). Используя эти векторные поля \(\text{и симплектическую} \ 2\text{-форму} \ \omega \) на \(B \), определим векторно-значную 1-форму \(\varrho \in \Omega^1(B, E^*) \) следующим образом:
\[
\varrho := -(i_{u_\sigma}) \otimes e^\nu,
\]
(4.9)
или, в координатном виде, как \(\varrho_{ij} = \omega_{ij} u^j \). Так как \(\omega \) невырожденная форма, при фиксированном \(L \) формула (4.9) заменяет однозначное соответствие между множеством всех
трансверсалей к B и пространством $\Omega^1(B, \mathfrak{e}^*)$ векторно-значных 1-форм на B. Непосредственные вычисления показывают, что данные, соответствующие \mathcal{L} и $\tilde{\mathcal{L}}$, удовлетворяют соотношениям

$$\nabla^{\tilde{\mathcal{L}}} = \nabla^{\mathcal{L}} - ad^* \vartheta,$$

$$\mathcal{R}^{\tilde{\mathcal{L}}} = \mathcal{R}^{\mathcal{L}} + (\nabla^{\mathcal{L}})^* g^{\mathcal{L}} + \frac{1}{2} [g^{\mathcal{L}} \wedge g^{\mathcal{L}}].$$

(4.10)

(4.11)

Кроме того,

$$\eta^{\tilde{\mathcal{L}}} = \eta^{\mathcal{L}} - L_u f.$$

(4.12)

Из этих соотношений вытекает следующее утверждение.

ПРЕДЛОЖЕНИЕ 4.1. Система в вариациях, соответствующая гамильтоновой системе $X_{\mathfrak{g}^* H}$ не зависит от выбора экспоненциального отображения f,

$$\text{var}_B(X_{\mathfrak{g}^* H}) = \text{var}_B(X_H).$$

Сравнивая (3.8) и (4.7) с (4.4), мы видим, что условие $\Gamma^{\mathcal{L}} = 0$ эквивалентно уравнениям (3.8), (3.9) для $\eta^{\mathcal{L}}$ в (4.3). Таким образом, из предложения 3.2 следует основной результат нашей статьи.

ТЕОРЕМА 4.2. Пусть существует трансверсальный \mathcal{L}, которая инвариантна относительно $d \Phi_{\mathfrak{g}^* H}$. Пусть $\Pi^{\mathcal{L}}$ - соответствующая пуссонова структура в (3.7). Тогда векторное поле $\text{var}_B(X_H)$ является гамильтоновым относительно $\Pi^{\mathcal{L}}$ и функции

$$F^{\mathcal{L}}(\xi, x) = f(\xi) - \langle x, \eta^{\mathcal{L}}(\xi) \rangle.$$

В частном случае, анализируя уравнения (3.8), (3.9), можно вывести следующий критерий.

ТЕОРЕМА 4.3. Если трансверсальная алгебра \mathfrak{lie} и симплектического листа \mathfrak{g} является полуэфильной, то существование X_H-инвариантной трансверсаль является необходимым и достаточным условием для того, чтобы система в вариациях $\text{var}_B(X_H)$ была гамильтоновой в классе согласованных гамильтоновых структур на E.

С помощью этого критерия можно описать возможные препятствия к существованию гамильтоновой структуры в следующей простой ситуации.

ПРИМЕР 4.4. Пусть $B = (a, b) \times S^1$ - двумерный цилиндр с введенной на нем канонической симплектической структурой $\omega = ds \wedge d\tau$, где $s \in (a, b)$ и $\tau (\text{mod} 2\pi)$ - угловая координата на окружности $S^1 = \mathbb{R} / 2\pi \mathbb{Z}$. Рассмотрим циклические пуссоновы скобки на \mathbb{R}^3, связанные с алгеброй $\mathfrak{so}(3)$,

$$\{x^1, x^2\} = x^3, \quad \{x^2, x^3\} = x^1, \quad \{x^3, x^1\} = x^2.$$

Рассмотрим $M = (a, b) \times S^1 \times \mathbb{R}^3$ как прямое произведение двух пуссоновых многообразий. Ясно, что $B = (a, b) \times S^1$ является симплектическим листом многообразия M. Рассмотрим гамильтонову систему на M, соответствующую функции

$$H = 1 - \langle x, \phi(s, \tau) \rangle + O_2,$$
где $\phi(s, \tau) = \phi(s, \tau + 2\pi)$ — гладкая вектор функция, 2π-периодическая по τ. Соответствующая система в вариациях гамильтонового поля X_H на листе B имеет вид

$$\dot{s} = 0, \quad \dot{\tau} = 1,$$
$$\frac{dx}{d\tau} = \phi(s, \tau) \times x.$$

(4.13)

(4.14)

Ясно, что (4.14) представляет собой однопараметрическое семейство периодических линейных систем на \mathbb{R}^3. Пусть $M(s)$ — соответствующая матрица монодромии, гладко зависящая от s. Тогда можно показать, что система (4.13), (4.14) допускает согласованную гамильтонову структуру тогда и только тогда, когда $M(s)$ удовлетворяет уравнению типа Лакса

$$\frac{dM(s)}{ds} = [M(s), A \circ \mu(s)]$$

для некоторой гладкой вектор-функции $\mu(s)$. Здесь $A \circ \mu(s)$ обозначает (3×3) кососимметричную матрицу векторного произведения на \mathbb{R}^3. Отсюда следует, что спектр $M(s)$ не зависит от s (т.е. монодромия обладает свойством изоспектральной деформации). В противном случае, когда рев $M(s)$ меняется вместе с изменением s, система (4.13), (4.14) не допускает согласованную гамильтонову структуру.

Автор благодарит М. В. Карасева и Рубена Флореса Эспинозу за полезные обсуждения различных аспектов данной работы.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ