А. Ю. Плахов, А. М. Степин, О рассеянии в многочастичных и бильярдных динамических системах, *Матем. сб.*, 1999, том 190, номер 7, 73–102

DOI: https://doi.org/10.4213/sm417

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением
http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
9 января 2019 г., 10:31:19
А. Ю. Плехов, А. М. Степин

О рассеянии в многочастичных и бильярдных динамических системах

Введение

В работе изучается рассеяние в многочастичных системах с потенциальным взаимодействием на прямой, а также рассеяние в динамических системах бильярдного типа с выпуклым конфигурационным пространством.

Движение \((x(t), y(t))\) натуральной памилюговой (или бильярдной) системы имеет асимптотический импульс вперед \(y^+\) (соответственно назад \(y^-\)), если \(\lim_{t \to \pm \infty} y(t) = y^\pm\). В случае лагранжевой системы соответствующие величины \(v^\pm\) называются асимптотическими скоростями. Есипотенциальное слагаемое в функции Лагранжа достаточно быстро убывает на бесконечности, то возможное дальнейшее уточнение асимптотического поведения движений. Например, в том случае, когда конфигурационное пространство есть область в евклидово пространстве, асимптотическое поведение координаты может иметь вид \(x(t) = v^\pm t + x^\pm + o(1)\) при \(t \to \pm \infty\).

Отображение \(\sigma: (x^-, v^-) \mapsto (x^+, v^+)\) называется отображением рассеяния системы; оно связано с оператором (и матрицей) рассеяния соответствующего лагранжевого анала этой системы. Известны примеры, когда отображение рассеяния оказывается треугольным, т.е. имеет блочно-треугольную матрицу Якоби (см. [1]–[4]). Свойство треугольности рассеяния непосредственно связано с существованием у системы полного набора полиномиальных по импульсам первых интегралов.

Работа поддержана при поддержке Российского фонда фундаментальных исследований (грант № 99-01-01104) и фонда INTAS (грант № 0041896).
Отображение рассеяния $\sigma: (x^-, p^-) \mapsto (x^+, p^+)$ является каноническим отно-
сительно $2$-формы $\sum d\pi_i/dx_i$. В случае треугольного рассеяния это обстоятель-
ство позволяет полностью вычислить $\sigma$. Для многочастичных систем на прямой от-
вет получается так: отображение $\sigma$ представляю в виде композиции двухчастич-
ных отображений рассеяния. Прямым и обратным задачам рассеяния для классиче-
ских многочастичных систем посвящены работы [5]–[8].

В упомянутых выше статьях рассматриваются лишь системы взаимодейству-
ющих частиц разных масс. Основная цель настоящей работы – определить наборы
масс, для которых соответствующие многочастичные системы на прямой могут
иметь треугольное рассеяние. В связи с этой задачей естественно возникает и ана-
логичный вопрос относительно билинейных систем.

Так, рассматриваются гамильтоновы системы с конфигурационным простран-
ством $Q = \{ x \in \mathbb{R}^d : x_1 < \cdots < x_d \}$ и функцией Гамильтона вида

$$H(p, x) = \sum_{i=1}^{d} \frac{p_i^2}{2m_i} + \sum_{i=1}^{d-1} u_i(x_{i+1} - x_i) + W(x), \quad (\ast)$$

в частности системы с попарным взаимодействием; предполагается, что

$$u_i \in C^2(\mathbb{R}^+), \quad \int_{0}^{\infty} |u_i'(\xi)| d\xi < \infty,$$

$$\lim_{\xi \to 0^+} u_i(\xi) = +\infty, \quad \lim_{\xi \to 0^+} \frac{u_i'(\xi)}{u_i(\xi)} = -\infty, \quad i = 1, \ldots, d-1,$$

$$W \in C^2 \left( \frac{Q}{\bigcup_{i=1}^{d-2} \{ x : x_i = x_{i+2} \} } \right).$$

Эти условия обеспечивают существование асимптотических импульсов у движе-
ний системы $(\ast)$, а также выполнение следующего условия. Для любого вектора
$v = (v_1, \ldots, v_d) \in \mathbb{R}^d, v_1 < \cdots < v_d$, найдется такое число $t_0 \in \mathbb{R}^+$, что каждый
вектор $tv, t > t_0$, принадлежит множеству $M^+$ асимптотических импульсов впе-
ред тех движений, у которых существует асимптотический импульс назад. Анало-
гичным свойством обладает и множество $M^-$, получаемое из $M^+$ обращением
времени.

ОПРЕДЕЛЕНИЕ. Рассеяние для гамильтоновых систем вида $(\ast)$ назовем про-
стым, если

1) для любого вектора $v = (v_1, \ldots, v_d), v_1 > \cdots > v_d$, достаточно большой
длины (зависящей от направления $v$) найдется движение, имеющее асимп-
тотические импульсы $p^\pm$, причем $p^- = v$;

2) на $M^-$ существует функция $f$ такая, что $p^+ = f(p^-)$.

Это обобщение понятия треугольного рассеяния продиктовано желанием вклю-
чить в рассмотрение системы с дальнейдействующими потенциалами взаимодей-
ствия (см. [9], [10]). Вычисление наборов масс, для которых многочастичные системы
с гамильтонианом $(\ast)$ имеют простое рассеяние, проводится с помощью исследова-
ния асимптотики движений на поверхностях постоянной энергии $E$. При $E \to \infty$
отражение от гладкой потенциальной стенки, призывающей к заданной уравне-
нием \( x_i = x_{i+1} \) гиперплоскости, переходит в биллярное отражение в координатах
\( \xi_i = \sqrt{m_i} x_i \), а между моментами отражений движения выписываются.

Таким образом, проекции движений системы (*) на конфигурационное пространст
ство сходятся при \( E \to \infty \) к биллярным траекториям в купе

\[
\widetilde{Q} = \left\{ \xi : \frac{\xi_1}{\sqrt{m_1}} \leq \cdots \leq \frac{\xi_d}{\sqrt{m_d}} \right\}.
\]

Системе с функцией Гамильтона (*) сопоставим биллярную систему в \( \widetilde{Q} \). Оказывает
ется, что свойство простоты рассеяния в многочленной системе наследуется пределой биллярной системой. Для билларды в области \( V \subset \mathbb{R}^d \) простое рассея
ние определяется аналогично предыдущему со следующим изменением в п. 1): для
любого \( v \in \mathbb{R}^d \) такого, что полупрямая \( tv, t < 0 \), пересекает \( V \) по лучу, сущест
вует движение с асимптотически скоростями \( v^\pm \), причем \( v^- = v \). Отметим, что предложение о наследовании свойства простоты есть частный случай общего утверждения о предельном поведении отображения рассеяния, когда постоянная энергия стремится к бесконечности.

Биллярды системы в выпуклых многогранниках, имеющие простое рассея
ние, характеризует предложение (см. теоремой 1 ниже).

Биллярд в выпуклом конечном многограннике \( V \) обладает простым рассеян
ием в том и только в том случае, если \( V \) изометричен замыканию камеры относительно конечной группы Кокетера.

Вычисление, использующее это необходимое и достаточное условие, приводит к следующему утверждению (см. §1).

Если система из \( n \) \((n > 5)\) точечных масс на прямой, свободно двига
щихся между моментами столкновений и упруго отражается при парах столкновениях, имеет трехульное рассеяние, то набор масс \( m_1, \ldots, m_n \) принадлежит (с точностью до обращения номерации \( i \to n+1-i \)) одному из двух типов:

\[
m_i = \frac{c}{(i-1+k)(i+k)}, \quad i = 1, \ldots, n, \quad k > 0, \quad c > 0 \quad \text{или} \quad m_1 = \cdots = m_n;
\]

\[
m_i = \frac{c}{(i-1+k)(i+k)}, \quad i = 1, \ldots, n-1, \quad m_n = \frac{c}{n-1+k}, \quad k > 0, \quad c > 0.
\]

Теорема 1 и утверждение о наследовании простоты рассеяния предельной (при \( E \to \infty \)) биллярной системой приводят в §2 к перечислению наборов масс, для которых система (*) может иметь простое рассеяние: (теорема 2).

В §3 рассматриваются биллярды в некомпактных выпуклых областях. Сопутствующий конус \( K \) такой области \( Q \) — это объединение лучей с вершиной в точке \( x \in Q \), прилегающих к \( Q \). Если биллярд в \( Q \) обладает простым рассеянием и \( K \) имеет внутренние точки, то \( K \) есть замыкание камеры относительно некоторой группы Кокетера. Если биллярд в выпуклом замкнутом множестве \( V \subset \mathbb{R}^d \), содержащем некоторый угол, имеет простое рассеяние, то \( V \) — многоугольник, причем
линейные части отражений относительно его сторон порождают группу Кокстера \( W \cong I_2(n) \), а некоторый параллельный сдвиг многоугольника \( V \) содержится в камере группы \( W \) (теорема 3).

Приведенные выше результаты аннонсированы в [11], [12].

Предварительный вариант настоящей статьи написан во время пребывания одного из авторов (А. С.) с визитом в институте Шрёдингера.

§1. Простое рассеяние и группы Кокстера

Рассмотрим систему из \( n \) точечных частиц на прямой, свободно движущихся между моментами парных столкновений и упруго отражающихся при таких столкновениях. Движения с к-кратными, \( k > 2 \), столкновениями определены, вообще говоря, лишь до первоначального \( \leq - \infty \) момента времени, когда происходит непарное столкновение. Для почти всех точек фазового пространства этой системы движения с начальными условиями в этих точках определены во все моменты времени. Обозначим координаты частиц (в числах этих чисел) через \( x_1, \ldots, x_n \), а их массы - через \( m_1, \ldots, m_n \) соответственно.

В координатах \( \xi_i = \sqrt{m_i} x_i, i = 1, \ldots, n \), движение рассмотряемой системы частиц с суммарной энергией \( E = 1 \) описывает движение соответствующих фазовых точек \( (\xi, v) \), \( \xi = (\xi_1, \ldots, \xi_n) \), происходящие (между моментами столкновений) в прямом произведении многогранного конуса
\[
\{ \xi : \frac{\xi_1}{\sqrt{m_1}} \leq \cdots \leq \frac{\xi_n}{\sqrt{m_n}} \}
\]

и \( (n - 1) \)-мерной сферы единичного радиуса. При этом парное столкновение частиц с номерами \( i \) и \( i + 1 \) перекидывает, как указывает непосредственная проверка, бильярдное отражение (т.е. подчиняющееся закону: угол падения равен углу отражения) траектории "конфигурационной" точки \( \xi \) от гиперплоскости
\[
\{ \xi : \frac{\xi_i}{\sqrt{m_i}} = \frac{\xi_{i+1}}{\sqrt{m_{i+1}}} \}.
\]

Будем говорить, что движение \( (\xi(t), v(t)) \) натуральной системы имеет асимптотическую скорость \( v^+ \) (соответственно \( v^- \)), если \( v(t) \to v^\pm \) при \( t \to \pm \infty \). Величины \( v^+ \) и \( v^- \), рассматриваемые как функции на подмножествах \( M^+ \) и \( M^- \) фазового пространства \( \Omega \), где они определены, суть верхние интегралы системы.

По определению динамическая система упруго сталкивающихся частиц на прямой имеет простое рассеяние, если из состояния асимптотических скоростей вперед и назад для пары движений и существования их асимптотических скоростей вперед следует соединение последовательное.

Для бильярдной системы в некомпактной области \( D \subset \mathbb{R}^n \) простое рассеяние определяется аналогично: если для \( v \in \mathbb{R}^n \) пересечение \( D \cap \{ tv : t < 0 \} \) содержит луч, то найдется движение, для которого \( v^- = v \) и существует \( v^+ \), причем \( v^+ \) есть функция лишь от \( v^- \), т.е. не зависит от выбора движения, имеющего асимптотическую скорость вперед равную \( v^- \).

Отметим, что простота рассеяния в системе из \( n \) упруго сталкивающихся частиц на прямой эквивалентна простоте рассеяния для бильярда в соответствующем многогранном конусе в \( \mathbb{R}^n \).

В связи с этим представляет интерес найти необходимые и достаточные условия на геометрию выпуклого многогранного конуса \( V \) в вещественном евклидовом
О рассеянии в многочастичных и бильярдных системах

пространстве $X$, обеспечивающие простоту рассеяния бильярдной системы в этом
конусе. Пусть $V = \{x \in X : (x | e_i) \geq 0, i = 1, \ldots, m\}$, где $(\cdot | \cdot)$ - скалярное
произведение в $X$ и $e_i, i = 1, \ldots, m$, - единичные векторы. Без ограничения общности
можно предположить, что набор векторов $(e_i)_{i=1}^m$, определяющих конус $V$,
порождает $X$ и минимальен, т.е. для любого $j \in \{1, \ldots, m\}$

$$\{x : (x | e_i) \geq 0, i = 1, \ldots, j - 1, j + 1, \ldots, m\} \neq V.$$

**Теорема 1.** Рассеяние бильярдной системы в выпуклом многогранном ко
нусе $V$ конечномерного евклидова пространства оказывается простым в
том и только том случае, если конус $V$ изометричен замкнутую камеру отно
сительно конечной группы Кокстера, порожденной ортогональными от
ражениями.

**Доказательство.** Проверим сначала обратное утверждение. Предположим,
что область $V = \{x \in X : (x | e_i) > 0, i = 1, \ldots, m\}$ является камерой относительно группы Кокстера $W$, порожденной ортогональными отражениями
в $X$. Это означает, что многогранник $V$ есть камера относительно наименьшей
$W$-инвариантной системы гиперплоскостей, содержащей границу $\partial V$. Перенумеру
ем произвольным способом грани камеры $\hat{V}$ и обозначим через $s_i$ ортогональное
отражение относительно грани с номером $i$. Группа $W$ порождена комплектом от
ражений $\{s_i\}$.

Пусть $v^- \in X$ - вектор, для которого множество

$$\hat{V} \cap \{tv^-, t < 0\}$$

содержит луч. Тогда найдется движение бильярдной частицы, имеющее асимп
тотическую скорость назад равную $v^-$ и некоторую асимптомическую скорость вперед $v^+$. Существование таких движений устанавливаем следующим образом.
Через ребра (это ячейки корнемерности 2 в терминологии [13]) всевозможных кам
мер группы $W$ проведем гиперплоскости, параллельные вектору $v^-$. Выберем точку
$x \in V$, не принадлежащую этим гиперплоскостям. При движении из точки $x$ со
скоростью $-v^-$ бильярдная частица остается в $V$ и не совершает отражений. При
действии (вперед) из точки со скоростью $-v^-$ бильярдная частица после конечной
специфической серии отражений от границ камеры $\hat{V}$, скажем, с номерами $i_1, \ldots, i_n$ движется свободно (внизу выбора $x$) с некоторой скоростью $v^+ = gv^-$, где $g = s_{i_1} \cdots s_{i_n} \in W$. Отсюда следует, что $v^+ \in V$.

Для любого вектора $v^- \in X$ найдется не более одного элемента группы $W$, переводящего $v^-$ в вектор, принадлежащий камере $\partial V$ (это следствие свободос
ти действия группы $W$ на множество камер относительно $W$). Таким образом,
асимптотическая скорость вперед $v^+$ не зависит от выбора движения, имеющего
асимптотическую скорость назад равную $v^-$, т.е. рассеяние бильярдной системы
в многограннике $V$ - простое.

Доказательство прямого утверждения теоремы опирается на леммы 1.1 и 1.2,
формулируемые в следующих терминах.
ОПРЕДЕЛЕНИЕ 1. Грань
\[ \{ x \in X : (x \mid e_i) = 0, \quad \forall k \neq i \quad (x \mid e_k) > 0 \} \]
\[ \{ x \in X : (x \mid e_j) = 0, \quad \forall k \neq j \quad (x \mid e_k) > 0 \} \]
многогранника \( V \) называются соседними, если множество
\[ R_{ij} = \{ x \in X : (x \mid e_i) = (x \mid e_j) = 0, \quad \forall k \neq i, j \quad (x \mid e_k) > 0 \} \]
непусто.

ОПРЕДЕЛЕНИЕ 2. Величину угла между \( i \)-й и \( j \)-й гранями выпуклого многогранника \( V \) называют равной \( \varphi \in [0, \pi) \), если \( (e_i \mid e_j) = -\cos \varphi \).

Лемма 1.1. Если рассеяние бильярдной системы в многограннике \( V \) простое, то любые две его соседние грани образуют угол величиной \( \pi/k, \ k \in \mathbb{N} \).

Доказательство. 1. В неформальном изложении ключевой элемент доказательства выглядит так. Пусть \( F_i, F_j \) — соседние грани конуса \( V \) и \( R_{ij} \) — соответствующее ребро. Найдутся два бильярдных движения \( f_1, f_2 : \mathbb{R} \to \Omega \), обладающих следующим свойством: начальные скорости \( \Pi \circ f_1(0) \) и \( \Pi \circ f_2(0) \) этих движений равны; здесь \( \Pi \) обозначает проекцию фазового пространства на конфигурационное. Движения вперед \( f_1 |_{\mathbb{R}^+} \) и \( f_2 |_{\mathbb{R}^+} \) идут в двугранный угол, образованный гранями \( F_i \) и \( F_j \), и после конечной серии отражений от этих граней становятся свободными. При этом соответствующие полуэволюции \( (\Pi \circ f_l)[\mathbb{R}^+] \), \( l = 1, 2 \), проходят с разных сторон от ребра \( R_{ij} \). Далее, движения назад \( f_1(t) \) и \( f_2(-t) \), \( t \in [0, \infty) \), становятся свободными после конечного числа отражений от одних и тех же грани конуса \( V \); последнее означает, что точки, в которых происходит \( k \)-е отражение движения \( f_1(t) \) и \( k \)-е отражение движения \( f_2(t) \), принадлежат одной грани, зависящей, конечно, от номера \( k \). В итоге получаем, что асимптотические скорости назад для движений \( f_1 \) и \( f_2 \) совпадают. С другой стороны, вычисление рассеяния для бильярда в двугранным угле величины равной \( \pi/k \), \( k \in \mathbb{N} \), приводит к нетривиальной зависимости асимптотических скоростей вперед от начального положения бильярдной частицы. Утверждение леммы 1.1 отсюда следует.

2. Для построения движений \( f_1 \) и \( f_2 \), обладающих указанными выше свойствами, покажем, что множество \( M \) единичных векторов \( x = x_1 - x_2 \), где
a) \( x_1 \in R_{ij} \), \( \min_{k \neq i} (x \mid e_k) > \| x \| \),
b) \( x_2 \in L(e_i, e_j), (x \mid e_i) < 0, (x \mid e_j) < 0 \),
непусто и содержит в себя \( V \).
С этой целью выберем вектор \( y \in R_{ij} \) и положим \( x_1 = \alpha y \), причем скаляр \( \alpha \) подчиним неравенствам
\[ \frac{1}{\sqrt{\| y \|^2 + (y \mid e_k)}} < \alpha < \frac{1}{\| y \|} \]
для всех \( k \neq i, j \). Непосредственно проверяется, что при таком выборе \( x_1 \) для каждого единичного вектора \( x = x_1 - x_2 \), где \( x_2 \) обладает свойством б), выполняется также условие а), а следовательно, и неравенства \( (x \mid e_k) > 0, k = 1, \ldots, m \). Отметим, что множество \( M \) открыто на единичной сфере в \( X \).
Рассмотрим теорему, две векторов, попарно перпендикулярных, ортогональных граней F₁ и F₂, и две векторов, параллельных, ортогональных граней F₁ и F₂, которые ортогональны проведены в точках, где они пересекаются гранями F₁ и F₂. Ортогональность граней F₁ и F₂, проведенных параллельны проведенные в точках, где они пересекаются гранями F₁ и F₂, приводит к искомому результату.

5. Рассмотрим теорему, две векторов, попарно перпендикулярных, ортогональных граней F₁ и F₂, проведенных в точках, где они пересекаются гранями F₁ и F₂, и две векторов, параллельных, ортогональных граней F₁ и F₂, которые ортогональны проведены в точках, где они пересекаются гранями F₁ и F₂. Ортогональность граней F₁ и F₂, проведенных параллельны проведенные в точках, где они пересекаются гранями F₁ и F₂, приводит к искомому результату.

6. Рассмотрим теорему, две векторов, попарно перпендикулярных, ортогональных граней F₁ и F₂, проведенных в точках, где они пересекаются гранями F₁ и F₂, и две векторов, параллельных, ортогональных граней F₁ и F₂, которые ортогональны проведены в точках, где они пересекаются гранями F₁ и F₂. Ортогональность граней F₁ и F₂, проведенных параллельны проведенные в точках, где они пересекаются гранями F₁ и F₂, приводит к искомому результату.

7. Рассмотрим теорему, две векторов, попарно перпендикулярных, ортогональных граней F₁ и F₂, проведенных в точках, где они пересекаются гранями F₁ и F₂, и две векторов, параллельных, ортогональных граней F₁ и F₂, которые ортогональны проведены в точках, где они пересекаются гранями F₁ и F₂. Ортогональность граней F₁ и F₂, проведенных параллельны проведенные в точках, где они пересекаются гранями F₁ и F₂, приводит к искомому результату.
В самом деле, разложим рассматриваемые движения в сумму двух движений, одно из которых происходит в плоскости \( L\{e_i, e_j\} \), а другое — в ортогональном дополнении к этой плоскости. При этом вектор скорости в момент отражения от грани \( F_i \) (или \( F_j \)) преобразуется так, что его проекция на подпространство \( L\{e_i, e_j\} \) не меняется, а проекция скорости на \( L\{e_i, e_j\} \) подчиняется закону отражения для билайна в углах \( \{x \in L\{e_i, e_j\}, \forall j \neq i, (x | e_i) \geq 0 \} \). Поэтому число отражений от граней \( F_i \) и \( F_j \) конечно.

Далее, поскольку \( x_0^{(i)}, x_0^{(j)} \in V \), то \( (x_0^{(i)} | e_k) \geq 0 \) и \( (x_0^{(j)} | e_k) \geq 0 \) для всех \( k \).

Таким образом, для проверки того, что рассматриваемые полутраектории не отражаются от граней \( F_k \), \( k \neq i, j \), достаточно заметить следующее обстоятельство: во все моменты времени \( t > 0 \) соответствующие векторы скорости имеют положительные проекции на каждый вектор \( e_k \), \( k \neq i, j \). Так как эти векторы скорости имеют вид \( v_1 + \vec{d}_2 \), где \( ||\vec{d}_2|| = ||v_2|| \), то требуемое утверждение следует из условия а) п. 2.

6. В качестве исключений (см. п. 1) движений \( f_1, f_2 : \mathbb{R} \rightarrow \Omega \) возмущения движений, определенные начальными условиями \( (\Pi \circ f_1)(0) = x_0^{(i)}, (\Pi \circ f_2)(0) = x_0^{(j)}, (\Pi \circ f_1)(-0) = v = (\Pi \circ f_2)(-0) \), где вектор \( v \) выбран согласно пп. 2 и 3. Существование этих движений установлено выше (см. пп. 4 и 5).

**Лемма 1.2.** Пусть величины углов между соседними гранями многогранника \( V \) не превосходят \( \pi/2 \). Тогда

а) каждая грань этого многогранника является соседней по отношению к любой другой его грани,  
б) векторы \( e_i, i = 1, \ldots, m \), линейно независимы.

**Доказательство.** Отметим, что каждая грань \( F_i = \{x \in X : (x | e_i) = 0, \forall j \neq i, (x | e_j) > 0\} \) многогранника \( V \) есть непустое множество. В самом деле, согласно предположению о минимальности системы векторов \( \{e_i\}_{i=1}^m \), определяющей \( V \), выполнено включение \( \{x \in X : (x | e_j) > 0 \forall j \neq i\} \supseteq V \). Следовательно, существует такая точка \( x_1 \in \{x \in X : (x | e_j) > 0 \forall j \neq i\} \), что \( (x_1 | e_i) \leq 0 \) и \( (x | e_j) > 0 \) для всех \( j \neq i \). Соединяя отрезком точку \( x_1 \) и произвольную точку из \( V \). На этом отрезке найдется точка \( x_0 \in F_i \). Заметим кроме того, что

\[ F_i = \{x \in X : (x | e_i) = 0, (x | e_j) > 0 \forall j \neq i \} \]  

Отсюда вытекают следующие утверждения.

(1) Если углы между соседними гранями нетупые, то ортогональная проекция любой точки \( x_0 \in V \) на гиперплоскость \( \{x : (x | e_i) = 0\} \) приваджает \( V \) для каждого \( i = 1, \ldots, m \).

(ii) Если угол между \( F_i \) и \( F_j \) тупой, то ортогональная проекция любой точки \( x_0 \in F_j \) на гиперплоскость \( \{x : (x | e_i) = 0\} \) не приваджает \( V \).

Действительно, если грани \( F_i \) и \( F_j \) соседние, то для рассматриваемой проекции \( x_1 = x_0 - (x_0 | e_i)e_i \) имеет \( (x_1 | e_j) = (x_0 | e_j) - (x_0 | e_i)(e_i | e_j) \geq 0 \) и, следовательно, \( x_1 \in F_i \). Если же \( (e_i | e_j) > 0 \) и \( x_0 \in F_j \), то \( (x_1 | e_j) = (x_0 | e_j) - (x_0 | e_i)(e_i | e_j) < 0 \), стало быть, \( x_1 \in V \).
О рассеянии в многочастичных и билъярдных системах  81

Таким образом, если величины углов между соседними гранями многогранника V не превосходят π/2, то и углы между всеми его гранями по величине не превосходят π/2.

Для доказательства утверждения а) леммы запишем ортогональную проекцию x_1 произвольной точки x_0 ∈ V на подпространство \{x ∈ X : (x | e_i) = (x_0 | e_i) = 0\} в виде

\[ x_1 = x_0 + \alpha e_i + \beta e_j, \]

где

\[ \begin{pmatrix} 1 \\ (e_i | e_j) \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} (x_0 | e_i) \\ (x_0 | e_j) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \]

Учитывая неравенства -1 ≤ (e_i | e_j) ≤ 0, (x_0 | e_i) > 0 и (x_0 | e_j) > 0, видим, что α < 0 и β < 0. Отсюда следует неравенство

\[ (x_1 | e_k) = (x_0 | e_k) + \alpha (e_i | e_k) + \beta (e_j | e_k) > 0 \]

dля всех k ≠ i, j. Таким образом, x_1 ∈ R_{i,j} и, стало быть, F_i и F_j – соседние грани.

Утверждение б) леммы доказем от противного. Предположим, что найдется неразрывная нулевая линейная комбинация векторов e_i: \sum_{i=0}^{m} c_i e_i = 0. Запишем ее в виде

\[ \sum_i c_i^{(1)} e_i = \sum_j (-c_j^{(2)}) e_j, \]

gде c_i^{(1)} > 0 и c_j^{(2)} < 0. Полагая f = \sum_i c_i^{(1)} e_i, имеем

\[ \|f\|^2 = \sum_i \sum_j c_i^{(1)} (-c_j^{(2)}) (e_i | e_j) < 0 \]

и, стало быть, f = 0. Поскольку оно из суммы \sum_i, \sum_j непустая (пусть это будет \sum_i), то для любого x ∈ V получаем

\[ 0 = (x | \sum_i c_i e_i) = \sum_i c_i (x | e_i) > 0. \]

Это противоречие доказывает линейную независимость векторов e_i, i = 1, ..., m.

Теперь проведем доказательство необходимости в утверждении теоремы 1. Без ограничения общности можно предположить, что векторы e_1, ..., e_m образуют базис в X; стало быть, m = n := dim X. Из лемм 1.1 и 1.2 следует равенство (e_i | e_j) = -cos(\pi/m_{ij}), где M = (m_{ij}) – матрица Кокстера. Так называется симметричная матрица, если ее элементы суть натуральные числа или +∞, причем диагональные элементы и только они равны единице.

Существует (см. [13]) абстрактная группа W' с образующими элементами s_i, i = 1, ..., n, и определяющими соотношениями (s_i s_j)^{m_{ij}} = e, m_{ij} ≠ +∞. Поскольку биллинейная форма BM в R^n с матрицей (−cos(\pi/m_{ij})) невырождена (согласно лемме 1.2), группа W' имеет (см. [13]) геометрическое представление σ: W' → GL(R^n), образом которого является группа, порожденная отражениями.
относительно гиперплоскостей \( \{ x \in \mathbb{R}^n : B_M(x, f_i) = 0 \} \), где \( \{ f_i \}_{i=1}^n \) канонический базис в \( \mathbb{R}^n \).

Далее, матрица с элементами \( c_{ij}(x/m) = (e_i \mid e_j) \) положительно определена как непрерывная функция матрицы Грама системы \( \{ e_i \}_{i=1}^n \) в \( X \). Поэтому соответствующее \( f_i \rightarrow e_i, \ i = 1, \ldots, n, \) задает изоморфизм эвклидовых пространств \( (\mathbb{R}^n, B_M) \) и \( X \) (так как матрицы Грама систем \( \{ f_i \}_{i=1}^n \) и \( \{ e_i \}_{i=1}^n \) совпадают).

При этом отождествление группы \( W \), порожденной отражениями относительно граней конуса \( V \), переходит в геометрическое представление \( \sigma(W') \) группы Кокстера \( W' \), а множество внутренних точек конуса \( V \) переходит в множество \( C_0 \) трех векторов \( x \in \mathbb{R}^n \), для которых \( B_M(x, f_i) > 0 \) при всех \( i = 1, \ldots, n \).

Поскольку \( C_0 \) есть камера относительно \( \sigma(W') \) (см. [13; гл. V, §4, п. 8, предложение 9]), то \( V \) совпадает с замыканием камеры относительно \( \sigma(W') \cong W \). Теорема 1 доказана.

Применя теперь полученное необходимое и достаточное условие простоты распределения для билинзя в многогранном конусе к перечислению имеющих простое распределение систем \( n \) точечных масс \( m_1, \ldots, m_n \), \( n \geq 3 \), свободно движущихся на прямой между моментами столкновений и упруго отражающихся при иных столкновениях. (В связи с ограничением \( n \geq 3 \) на число частей заметим, что рассеяние системы двух частей на прямой всегда простое.) Как отмечалось выше, многочастичные системы на прямой сводятся к билинзю в многогранном конусе \( V \), ограниченном гиперплоскостями

\[
\Gamma_i = \left\{ \xi \in \mathbb{R}^n : \frac{\xi_i}{\sqrt{m_i}} = \frac{\xi_{i+1}}{\sqrt{m_{i+1}}}, \quad i = 1, \ldots, n-1 \right\},
\]

причем свойство простоты распределения сохраняется при таком переходе.

При вычислении всех возможных наборов масс \( \{ m_i \} \) в системах с простым распределением вспомогательной классификации непрерывных конечных групп, порожденных отражениями. Однако группа Кокстера, отвечающая по теореме 1 многограннику \( \tilde{V} \), — приходится. Для преодоления этого обстоятельства нужно учесть инвариантность рассматриваемой многочастичной системы относительно сдвигов \( x_i \rightarrow x_i + c \). В результате редукции такой симметрии (отделение движения центра масс) получаем билинзем в многогранном конусе

\[
V = \left\{ \xi \in \mathbb{R}^n : \frac{\xi_1}{\sqrt{m_1}} \leq \cdots \leq \frac{\xi_n}{\sqrt{m_n}}, \quad \sum \sqrt{m_i} \xi_i = 0 \right\}.
\]

Рассмотрим векторы

\[
e_i = \frac{1}{\sqrt{m_i}^{-1} + m_{i+1}^{-1}} \left( 0, \ldots, 0, -\frac{1}{\sqrt{m_i}}, \frac{1}{\sqrt{m_{i+1}}}, 0, \ldots, 0 \right),
\]

\( i = 1, \ldots, n-1; \)

\( e_i \) — это вектор единичной нормали к \( \Gamma_i \), лежащий по ту же сторону от \( \Gamma_i \), что и \( \tilde{V} \).

Непосредственное вычисление показывает, что

\[
(e_i | e_j) = 0, \quad \text{если} \quad |i - j| \geq 2,
\]

\[
(e_i | e_{i+1}) = -\left( 1 + \frac{m_{i+1}}{m_i} \right)^{-1/2} \cdot \left( 1 + \frac{m_{i+1}}{m_{i+2}} \right)^{-1/2}.
\]
О рассеении в многочастицных и бильярдных системах

Конус $V$ является замыканием камеры относительно некоторой (необходимо не-
приводимой) группы Кокстера в том и только том случае, когда

$$(e_i | e_{i+1}) = - \cos \frac{\pi}{k_i}, \quad k_i \in \mathbb{N}, \quad i = 1, \ldots, n - 2. \quad (1.3)$$

Из (1.1) следует, что соответствующий граф Кокстера не имеет точек ветвления,
т.е. каждая вершина этого графа соединена самое большее с двумя вершинами.
При этом возможны лишь следующие случаи:

тип $A_{n-1}$ ($n \geq 3$) \hspace{1cm} $k_i = 3, \quad i = 1, \ldots, n - 2; \quad (1.4)$
тип $B_{n-1}$ ($n \geq 3$) \hspace{1cm} $k_i = 4, \quad k_i = 3, \quad i = 2, \ldots, n - 2$ или
\hspace{1cm} $k_i = 3, \quad i = 1, \ldots, n - 3, \quad k_{n-2} = 4; \quad (1.5)$
тип $F_4$ ($n = 5$) \hspace{1cm} $k_1 = k_3 = 3, \quad k_2 = 4; \quad (1.6)$
тип $G_2$ ($n = 3$) \hspace{1cm} $k_1 = 6; \quad (1.7)$
тип $H_{n-1}$ ($n = 4$ или 5) \hspace{1cm} $k_1 = 5, \quad k_i = 3, \quad i = 2, \ldots, n - 2$ или
\hspace{1cm} $k_i = 3, \quad i = 1, \ldots, n - 3, \quad k_{n-2} = 5; \quad (1.8)$
тип $I_2(2)$ ($p = 5$ или $p \geq 7, n = 3$) $k_1 = p.$

ЗАМЕЧАНИЕ. Иногда тип $G_2$ включают в серию $I_2(p), p \geq 5$ (см., напри-
мер, [16]).

Вычисление масс $m_i$ с использованием приведенного выше списка и формул
$M_2$, $M_3$ приводит к следующей классификации наборов масс, для которых би-
лиярдные системы и части на прямой, $n \geq 3$, обладают простым рассеением.

ПРЕДЛОЖЕНИЕ 1.1. Если система $n$ точечных частиц на прямой, свобод-
но движущихся между моментами столкновений и упорно отражающихся
при всех столкновениях, имеет простое (или, что то же самое в этом
случае, треугольное) рассеяние, то набор равных масс $m_1, \ldots, m_n, n \geq 3,$
с точностью до обращения нумерации $i \mapsto n + 1 - i$ принадлежит следующему
списку (в скобках указан тип соответствующей группы Кокстера):

$$(A_{n-1}) \quad m_i = \frac{c}{(i - 1 + k)(i + k)}, \quad i = 1, \ldots, n, \quad k > 0, \quad c > 0; \quad (1.4)$$

$$(B_{n-1}) \quad m_i = \frac{c}{(i - 1 + k)(i + k)}, \quad i = 1, \ldots, n - 1,$$
\hspace{1cm} $m_n = \frac{c}{n - 1 + k}, \quad k > 0, \quad c > 0; \quad (1.5)$$

$$(F_4) \quad m_1 = \frac{c}{k - 1}, \quad m_2 = \frac{c}{k + 1}, \quad m_3 = \frac{c}{(k + 1)(2k - 1)}, \quad m_4 = \frac{c}{k}, \quad 1 < k < 2, \quad c > 0; \quad (1.6)$$

$$(H_3) \quad m_1 = \frac{c}{k - 3(k - 2)}, \quad m_2 = \frac{c}{(k - 2)(k - 1)}, \quad m_3 = \frac{c}{(k - 1)k}, \quad m_4 = \frac{c}{k + (2 - \sqrt{5})k^2}, \quad 3 < k < 2 + \sqrt{5}, \quad c > 0; \quad (1.7)$$
(H₄) \[
m_1 = \frac{c}{(k - 4)(k - 3)}, \quad m_2 = \frac{c}{(k - 3)(k - 2)}, \quad m_3 = \frac{c}{(k - 2)(k - 1)}, \quad m_4 = \frac{c}{(k - 1)k}, \quad m_5 = \frac{c}{k + (2 - \sqrt{5})k^2}, \quad 4 < k < 2 + \sqrt{5}, \quad c > 0; \tag{1.8}
\]

(Ι₂(ʻ)) \[
\left(1 + \frac{m_2}{m_1}\right) \left(1 + \frac{m_2}{m_3}\right) = \frac{1}{\cos^2(\pi/p)}, \quad p \geq 5 - \text{целое.} \tag{1.9}
\]

Система частиц с одинаковыми массами \(m_1 = \ldots = m_n = m\) получается как предельная для серии \(A_{n-1}\) при \(k \to \infty\) и \(ck^{-2} \to m\). При таком же предельном переходе в серии \(B_{n-1}\) получаем систему, состоящую из \(n - 1\) частиц одинаковой массы \(m\) и одной частицы бесконечно большой массы, что эквивалентно системе частиц, движущихся на полуциркуле упруго отражающихся от границ.

Отметим еще один предельный случай. Для серии \(Ι₂(p)\) при \(p \to \infty\) и фиксированных \(m_4\) и \(m_3\) масса \(m_2\) промежуточной частицы стремится к нулю и рассматриваемая система аппроксимирует систему двух частиц с потенциалом взаимодействия \(\text{const} \cdot x^{-2}\) в следующем смысле. Пусть \(X_j(t), j = 1, 3, \ldots\) - движение системы двух частиц на прямой с потенциальным взаимодействием \(a^2(X_3 - X_1)^{-2}, x_i(t; p, b) \to \text{движение рассматриваемой системы трех частиц с бильярдными столкновениями, отвечающее начальным условиям}

\[
x_j(0; p, b) = X_j(0), \quad \dot{x}_j(0; p, b) = \dot{X}_j(0), \quad j = 1, 3,
\]

\[
x_2(0; p, b) = b, \quad \frac{1}{2} m_2 \dot{x}_2^2(0; p, b) = a^2(X_3(0) - X_1(0))^{-2}.
\]

Оказывается, что для любого \(T > 0\) последовательности \(x_j(t; p, b) - X_j(t)\) и \(\dot{x}_j(t; p, b) - \dot{X}_j(t), j = 1, 3, \ldots\), при \(p \to \infty\) стремятся к нулю равномерно по \(b \in (X_1(0), X_3(0))\) и \(t \in [-T, T]\).

ЗАМЕЧАНИЕ. Как мы видели, система частиц с парными бильярдными столкновениями приводит к неприводимым группам, порожденным отражениями. Приводимыми группам Кокстера соответствуют динамические системы частиц, при надлежащих различным типам, причем частицы одного типа упруго отражаются при парных столкновениях, а частицы различных типов не взаимодействуют, т.е. свободно проникают одна через другую.

§ 2. Необходимое условие простоты рассеяния для гладких многочастичных систем

Предположим, что в области \(Q\) с кусочно гладкой границей задача римановой метрики и функция \(U\) со свойством: \(U(x) \to +\infty\), если \(x \to \partial Q\). Билиары в \(Q\) называют гладким пределом системы с функцией Гамильтона \(H = T + U\), где кинетическая энергия \(T\) определяется римановой метрикой. Например, в случае, когда

\[
H = \sum_{i=1}^n \frac{p_i^2}{2m_i} + U(x),
\]
$U$ задана в $\{ x \in \mathbb{R}^n : x_1 < \cdots < x_n \}$ и $U(x) \to +\infty$ при $x_{i+1} - x_i \to +0$, бильярдным пределом является система $n$ частиц на прямой с упругими парными столкновениями и свободным движением между моментами столкновений.

При некотором ограничении на рост функции $U$ можно доказать, что проекция конечного отрезка высокозергетического движения системы с функцией Гамильтона $H = T + U$ на конфигурационное пространство сходится (при $E \to \infty$) к отрезку бильярдной траектории в $\mathbb{R}^n$. О другом способе построения предельных систем с соударениями, при котором от бесконечности устраняются коэффициенты упругости и вязкости пола упругих и диссипативных сил, см. в [17].

В этом параграфе приведено условие на потенциал $U$, обеспечивающее наследование предельной бильярдной системой свойства простоты рассеяния. Точнее, для заданного бильярдного движения указан класс функций $U$, определенных в окрестности конфигурационной проекции этого движения, имеющих барьерные отталкивающие особенности (см. условие (A) ниже) в точках отражающих зеркал и обладающих следующим свойством. Конфигурационную проекцию исходного бильярдного движения можно сколь угодно точно аппроксимировать такой же проекцией высокозергетического движения системы с функцией Гамильтона вида $\frac{1}{2}\|p\|^2 + U(x)$; при этом импульсы, составляющие бильярдного движения и аппроксимирующих движения почти подобны. Отметим, что достаточное условие аппроксимируемости гарантирует также существование асимптотических импульсов $p^\pm$ по поводу различных условий существования $p^\pm$ см. также [8], [18].

Пусть задана бильярдная траектория $l: \mathbb{R} \to \mathbb{R}^d$ с единичной скоростью $v = \dot{l}$, конечным набором отражений от гиперплоскостей $\{ x \in \mathbb{R}^d : (x - l_i \mid n_i) = 0 \}$, $i = 1, \ldots, k$, согласно правилу $v(t_{i+1}) = v(t_i) - 2(v(t_i) \mid n_i)l_i$, где $t_i$ — момент $i$-го отражения, $l_i = l(t_i)$ и $\|n_i\| = 1$. Для определенности полагаем, что $(v(t_0) \mid n_i) < 0$, $t_0 = -\infty$, $t_{k+1} = +\infty$.

Рассмотрим функцию Гамильтона

$$H(p, x) = \frac{1}{2}\|p\|^2 + U(x) \tag{2.1}$$

c с потенциальной функцией $U$ класса $C^2$, определенной в окрестности множества $\bigcup_{i=0}^{k} \{ l(t) : t_i < t < t_{i+1} \}$, в полужесткостях $\{ x : (x - l_i \mid n_i) > 0, \|x - l_i\| < \varepsilon \}$, $\varepsilon > 0$, точек $l_i, i = 1, \ldots, k$, и удовлетворяющих следующим условиям.

(A) Для каждого $i = 1, \ldots, k$ функция $U$ представима в виде

$$U(x) = u((x - l_i \mid n_i)) + W(x),$$

где $u \in C^2(0, +\infty)$ и

$$\lim_{\xi \to 0^+} u(\xi) = +\infty, \quad \lim_{\xi \to 0^+} \frac{u'(\xi)}{u(\xi)} = -\infty,$$

функция $W$ — дифференцируемая класса $C^2$ с ограниченным градиентом.

(B) Функция $U$ определена на конусах

$$\frac{(v^- \mid x - l_i)}{\|x - l_i\|} < -1 + \varepsilon, \quad \frac{(v^+ \mid x - l_k)}{\|x - l_k\|} > 1 - \varepsilon,$$

где $v^- = v(t_1 - 1), v^+ = v(t_k + 1); \|\nabla U(x)\| < \varphi(\|x\|)$ для некоторой суммируемой функции $\varphi$. 

О рассеянии в многочастичных и бильярдных системах
Обозначим через \( R_i \) преобразование отображения \( v \mapsto v - 2(v \mid n_i)n_i \) и определим вектор-функцию \( \mathcal{G} \) равенством

\[
\mathcal{G}(t) = \begin{cases} 
-R_k \cdots R_1 \nabla U(l(t)), & t_{i-1} < t < t_i, \\
-\nabla U(l(t)), & t > t_k.
\end{cases}
\]

Эта функция имеет особенности в точках \( t_1, \ldots, t_k \); непосредственная проверка показывает, что интеграл \( \int_{-\infty}^{\infty} \mathcal{G}(t) \, dt \) существует в смысле главного значения.

Предложение 2.1. Если выполнены условия (А) и (Б), то для достаточно больших \( p \in \mathbb{R}^+ \) существует решение \( (x^{(p)}(t), \dot{x}^{(p)}(t)) \) системы с функцией Гамильтона (2.1), удовлетворяющей асимптотическим соотношениям

\[
\begin{align*}
\dot{x}^{(p)}(-\infty) &= pv, \\
\dot{x}^{(p)}(+\infty) &= pv + \frac{1}{p} \int_{-\infty}^{\infty} \mathcal{G}(t) \, dt + o\left( \frac{1}{p} \right), & p \to +\infty. 
\end{align*}
\]

Здесь введены обозначения

\[
\dot{x}^{(p)}(\pm \infty) = \lim_{t \to \pm \infty} \dot{x}^{(p)}(t).
\]

В доказательстве этого предложения используется следующая лемма.

Зафиксируем \( i \in \{1, k\} \), выберем числа \( T \in (t_{i-1}, t_i) \) и \( T' \in (t_i, t_{i+1}) \) и отметим, что функция \( W \) имеет ограниченный градиент (см. условие (А)) и в окрестности множества \( \{ l(t) : t \in [T, t_i) \cup (t_i, T'] \} \).

Лемма 2.1. Пусть \( (x^{(p)}(t), \dot{x}^{(p)}(t)), p > 0, \) – семейство решений системы с функцией Гамильтона (2.1), удовлетворяющие условиям

\[
\begin{align*}
x^{(p)} \left( \frac{T}{p} \right) &= l(T) + o(1), \\
\dot{x}^{(p)} \left( \frac{T}{p} \right) &= p v(T) + o(p), & p \to +\infty.
\end{align*}
\]

Тогда для достаточно больших значений \( p \) решение \((x^{(p)}(t), \dot{x}^{(p)}(t))\) продолжается на отрезок \( T/p \leq t \leq T'/p \) и выполнены соотношения

1) \( x^{(p)} \left( \frac{T'}{p} \right) = l(T') + o(1), \)

2) \( \dot{x}^{(p)} \left( \frac{T'}{p} \right) = p v(T') + o(p), & p \to +\infty. \)

Более того, верна следующая формула

3) \( \dot{x}^{(p)} \left( \frac{T'}{p} \right) = R_i \dot{x}^{(p)} \left( \frac{T}{p} \right) + \frac{1}{p} \left[ \frac{\delta U - (v(T) \mid J)}{v(T) \mid n_i} n_i - R_i J \right] + o \left( \frac{1}{p} \right), \)

где \( \delta U = U(l(T')) - U(l(T)) \) и \( J = \int_{T}^{T'} \nabla W(l(t)) \, dt. \)
Доказательство. Мы опускаем здесь верхний индекс в обозначении \( x^{(p)}(t) \).

Фиксируем ортогональную систему координат в \( \mathbb{R}^d \), для которой начальной является точка \( l_i \), а первым координатным ортом — вектор \( n_i \).

Выберем \( \theta = \theta^{(p)} \), то \( \theta^{(p)} \to 0 \) и \( U(\theta^{(p)}) = o(p^2) \) при \( p \to +\infty \). Обозначим через \( \tau_1 = \tau_1(p) \) наибольшую нижнюю границу тех \( t > T/p \), для которых \( x_1(t) < t^{(p)} \); такие моменты \( t \) существуют для достаточно больших \( p \). Непосредственная проверка показывает, что

\[
\sup_{t \in (T/p, \tau_1)} \| \dot{x}(t) - p \nu(T) \| = o(p),
\]

\[
\sup_{t \in (T/p, \tau_1)} \| x(t) - l(p) \| = o(1), \quad p \to +\infty.
\] (2.3)

Отсюда и из определения \( \tau_1 \) следует асимптотические (при \( p \to +\infty \)) формулы

\[
\tau_1 = \frac{t_i}{p} + o \left( \frac{1}{p} \right), \quad x_1(\tau_1) = \theta^{(p)}, \quad y(\tau_1) = l_i + o(1),
\]

\[
\dot{x}_1(\tau_1) = p \nu_1(T) + o(p).
\]

Обозначим через \( \tau_0 \) наименьшее из тех значений \( t > \tau_1 \), для которых \( \dot{x}_1(t) = 0 \). Из свойства (A) и неравенства \( \dot{x}_1(\tau_1) < 0 \) следует, что для всех достаточно больших \( p \) такое число \( \tau_0 \) существует.

Следующее соотношение проверяется непосредственным дифференцированием по \( t \):

\[
t - \tau_1 = \int_{x_1(t)}^{\theta} \frac{d\xi}{\sqrt{y - 2\hat{u}(\xi)}}, \quad \tau_1 < t \leq \tau_0;
\]

здесь \( y = x_1^2(\tau_1) \) и функция \( \hat{u}(\xi) \) определена на интервале \( x_1(\tau_0) < \xi < \theta \) равенством

\[
\hat{u}(x_1(t)) = u(x_1(t)) - u(\theta) + \int_{\tau_1}^{t} \frac{\partial W}{\partial x_1}(x(s)) \dot{x}_1(s) ds, \quad \tau_1 < t \leq \tau_0.
\]

Корректность последнего определения вытекает из свойства монотонности \( x_1(t) \) на интервале \( (\tau_1, \tau_0) \).

Отметим, что функция \( \hat{u} \) зависит от параметра \( p \) и имеют место следующие асимптотики при \( p \to +\infty \):

\[
\inf_{\xi} \hat{u}(\xi) \to +\infty, \quad \sup_{\xi} \frac{\hat{u}'(\xi)}{\hat{u}(\xi)} \to -\infty.
\] (2.4)

Таким образом, для достаточно больших \( p \) существует функция \( \xi = V(s) \), обратная к функции \( s(\xi) = 2\hat{u}(\xi) \).

Теперь значение \( \tau_0 - \tau_1 \) вычисляется по формуле

\[
\tau_0 - \tau_1 = \int_{2\hat{u}(\theta)}^{y} \frac{-dV(s)}{\sqrt{y - s}}.
\]
Полагая \( s = e^\sigma \), эту формулу можно записать в виде

\[
\tau_0 - \tau_1 = \frac{1}{\sqrt{y}} \left( \theta - V(y) \right) + \frac{1}{\sqrt{y}} \int_{\tau_2}^{T'} k(\sigma - \nu)\,dv(\sigma),
\]

(2.5)

где \( \nu = \ln y, \nu_1 = \ln(2\theta(\theta)), v(\sigma) = V(e^\sigma) \) и \( k(\sigma) = 1 - (1 - e^\sigma)^{-1/2} \). Из асимптомтики \( \sup_{0 < \sigma < \nu} v'(\sigma) = o(1) \) по параметру \( p \), которая следует из (2.4), и суммируемости функции \( k \) на полуси \((-\infty, 0)\) вытекает, что интеграл в правой части формулы (2.5) стремится к нулю при \( p \to +\infty \). Учитывая оценки \( \sqrt{\bar{y}} = p \cdot |v_1(T)| + o(p), \theta = o(1) \) и \( V(y) = o(1) \), из (2.5) получаем асимптомтику

\[
\tau_0 - \tau_1 = o \left( \frac{1}{p} \right), \quad p \to +\infty.
\]

(2.6)

Обозначим через \( \tau_2 \) наименьшее из тех \( t > \tau_0 \), для которых \( x_1(t) = \theta \), существование таких моментов \( t \) для достаточно больших \( p \) следует из условия (A). Вычисления, аналогичные проведенным выше (при оценке \( \tau_0 - \tau_1 \)), показывают, что

\[
\tau_2 - \tau_0 = o \left( \frac{1}{p} \right), \quad p \to +\infty.
\]

(2.7)

Далее, вычисляя изменение тангенциальной компоненты \( \dot{x} - (\dot{x} \mid n_i)n_i \), скорости \( \dot{x} \) на интервале \( (\tau_1, \tau_2) \), используя закон сохранения энергии и учитывая, что \( v(T') \) получается из \( v(T) \) применением отображения \( R_i \), имеем

\[
\dot{x}(\tau_2) = p \cdot v(T') + o(p),
\]

(2.8)

\[
x(\tau_2) = l_i + o(1).
\]

(2.9)

Наконец, для движения \((x(t), \dot{x}(t))\) системы с функцией Гамильтона (2.1) на интервале \( \tau_2 < t < T'/p \) с помощью асимптомтических соотношений (2.8) и (2.9) получаем оценки

\[
\sup_{\tau_2 < t < T'/p} \| \dot{x}(t) - p \cdot v(T') \| = o(p),
\]

\[
\sup_{\tau_2 < t < T'/p} \| x(t) - l(pt) \| = o(1), \quad p \to +\infty.
\]

(2.10)

Таким образом, утверждения 1) и 2) леммы доказаны.

Следующая формула выводится из уравнений движения:

\[
\dot{x} \left( \frac{T'}{p} \right) - \dot{x} \left( \frac{T}{p} \right) = -\frac{1}{p}(J + J_1 + J_2);
\]

(2.11)

здесь

\[
J = \int_T^{T'} \nabla W(l(t)) \, dt,
\]

\[
J_1 = \int_T^{T'} \left[ \nabla W \left( x \left( \frac{t}{p} \right) \right) - \nabla W \left( l(t) \right) \right] \, dt,
\]

\[
J_2 = \int_T^{T'} u' \left( x \left( \frac{t}{p} \right) - l_i \mid n_i \right) \, dt \cdot n_i.
\]
О Рассеянии в многочастичных и билилярных системах

Согласно оценкам (2.3), (2.10), (2.6) и (2.7) вектор-функция \( x(t/p) - l(t) \) стремится к нулю при \( p \to +\infty \) равномерно на отрезках \([T, pT]\) и \([pT, T']\). Следовательно, \( J_1 = o(1) \), \( p \to +\infty \).

Для вычисления \( \dot{x}(T'/p) \) с точностью до \( o(1/p) \) вспомогателься законом сохранения энергии. Из (2.11) имеем

\[
\dot{x} \left( \frac{T'}{p} \right) = \dot{x} \left( \frac{T}{p} \right) - \frac{1}{p} J + \alpha n_i + o \left( \frac{1}{p} \right),
\]

где два последних слагаемых ортогональны. Подстановка этого соотношения в закон сохранения энергии

\[
\dot{x} \left( \frac{T'}{p} \right)^2 + 2U(l(T')) = \dot{x} \left( \frac{T}{p} \right)^2 + 2U(l(T)) + o(1)
\]

приводит к уравнению относительно \( \alpha \), решая которое с учетом того, что скалярные произведения \( \langle \dot{x}(T/p), n_i \rangle \) и \( \langle \dot{x}(T'/p), n_i \rangle \) имеют разные знаки, получаем

\[
\alpha = -2 \left( \frac{\dot{x} \left( \frac{T}{p} \right)}{n_i} \right) + \frac{\delta U}{v(T) \mid n_i} - \frac{1}{p} \left( \frac{v(T) \mid J}{n_i} \right) + \frac{2}{p} (J \mid n_i) + o \left( \frac{1}{p} \right).
\]

Из (2.12) и (2.13) следует утверждение 3) леммы.

Доказательство предложения 2.1. Зафиксируем момент времени \( T_1 < t_1 \) и рассмотрим функцию

\[
\psi^{(p, t)}(\gamma) = \dot{x}^{(p)} \left( \frac{t}{p}, \gamma \right) - pv^-,
\]

где \((x^{(p)}(t, \gamma), \dot{x}^{(p)}(t, \gamma))\) — движение системы с функцией Гамильтона (2.1) и начальными условиями \( x^{(p)}(T_1/p, \gamma) = l(T_1), \dot{x}^{(p)}(T_1/p, \gamma) = pv^- + \gamma \).

Из свойства (Б) потенциала \( U \) следует, что для всех \( \gamma, \| \gamma \| = 1 \), и достаточно большем \( p \) функции \( \psi^{(p, t)}(\gamma) \) определены для всех значений параметра \( t < T_1 \) и при \( t \to -\infty \) равномерно сходятся в шаре \( \{ \gamma \in \mathbb{R}^d : \| \gamma \| \leq 1 \} \) к предельной функции \( \psi^{(p)}(\gamma) \), удовлетворяющей асимптотическому соотношению

\[
\psi^{(p)}(\gamma) = \gamma + \frac{1}{p} \int_{-\infty}^{T_1} \nabla U(l(t)) \, dt + o \left( \frac{1}{p} \right), \quad p \to +\infty.
\]

Лишищевское свойство градиента \( \nabla U \) (на компактах в области определения функции \( U \)) влечет непрерывность фазового потока с функцией Гамильтона (2.1) и как следствие непрерывность функций \( \psi^{(p, t)}(\gamma) \) и \( \psi^{(p)}(\gamma) \).

Рассмотрим непрерывное отображение \( \gamma \to \gamma - \psi^{(p)}(\gamma) \) шара \( \{ \gamma \in \mathbb{R}^d : \| \gamma \| \leq 1 \} \) в \( \mathbb{R}^d \). Из (2.14) видно, что при достаточно больших \( p \) это отображение переводит в себя единичный шар с центром в нуле. Следовательно, в этом шаре найдется неоднозначная точка \( \gamma = \gamma(p) \) отображения \( \gamma \to \gamma - \psi^{(p)}(\gamma) \).

Выберем движение \((x^{(p)}(\tau), \dot{x}^{(p)}(\tau)), \tau \in \mathbb{R} \), рассматриваемой гамильтоновой системы, полагая \( x^{(p)}(\tau) = x^{(p)}(\tau, \gamma(p)) \). Покажем, что это семейство движений — искомое.
Зафиксируем моменты времени \( T_i, i = 2, \ldots, k + 1 \), так, что \( t_1 < T_2 < t_2 < \cdots < T_k < t_k < T_{k+1} \), и докажем индукцией по \( i \) следующие соотношения:

\[
 x^{(p)} \left( \frac{T_i}{p} \right) = l(T_i) + o(1), \quad (2.15)
\]

\[
 \mathcal{R}_i x^{(p)} \left( \frac{T_i}{p} \right) = pv^+ + \frac{1}{p} \int_{-\infty}^{T_i} \mathcal{G}(t) \, dt + o \left( \frac{1}{p} \right), \quad p \to +\infty. \tag{2.16}
\]

Здесь

\[
 \mathcal{R}_i = \begin{cases} 
 R_k \cdots R_i, & 1 \leq i \leq k, \\
 I, & i = k + 1,
\end{cases}
\]

\( I \) обозначает тождественное отображение.

При \( i = 1 \) асимптотики (2.15) и (2.16) следует из (2.14), выбора \( \gamma(p) \) и равенства \( v^+ = \mathcal{R}_1 v^- \). Пусть (2.15) и (2.16) выполнены для некоторого \( i \leq k \). Согласно утверждению 1) леммы 2.1 соотношение (2.15) верно для \( i + 1 \).

Далее, величину \( J = p^{-1} \int_{T_i}^{T_{i+1}} \mathcal{G}(t) \, dt \) представим в виде \( J = J_1 + J_2 \), где

\[
 J_1 = \text{v.p.} \left[ -\frac{1}{p} \int_{T_i}^{T_i} \mathcal{R}_i m_i \cdot u' \left( (l(t) - l_i \mid n_i) \right) \, dt \\
 - \frac{1}{p} \int_{T_i}^{T_{i+1}} \mathcal{R}_{i+1} m_i \cdot u' \left( (l(t) - l_i \mid n_i) \right) \, dt \right] = \frac{1}{p} \mathcal{R}_{i+1} \left( \frac{\delta u}{u(T_i) \mid n_i} \right) n_i, \quad (2.17)
\]

и \( \delta u = u \left( (l(T_{i+1}) - l_i \mid n_i) \right) - u \left( (l(T_i) - l_i \mid n_i) \right) \). При таком выборе \( J_1 \) слагаемое \( J_2 \) задается формулой

\[
 J_2 = \frac{1}{p} \int_{T_i}^{T_i} \mathcal{R}_i \nabla W \left( (l(t) \mid n_i) \right) \, dt - \frac{1}{p} \int_{T_i}^{T_{i+1}} \mathcal{R}_{i+1} \nabla W \left( (l(t) \mid n_i) \right) \, dt = \frac{1}{p} \mathcal{R}_{i+1} \left( -\tilde{J} + 2J' \mid n_i \right), \quad (2.18)
\]

где \( \tilde{J} = \int_{T_i}^{T_{i+1}} \nabla W \left( (l(t) \mid n_i) \right) \, dt, J' = \int_{T_i}^{T_i} \nabla W \left( (l(t) \mid n_i) \right) \, dt. \)

Для приращения \( \delta W = W \left( (l(T_{i+1}) \mid n_i) \right) - W \left( (l(T_i) \mid n_i) \right) \), используя соотношение

\[
 \delta W = \int_{T_i}^{T_i} (\nabla W \left( (l(t) \mid n_i) \right) + \int_{T_i}^{T_{i+1}} (\nabla W \left( (l(t) \mid n_i \right) \right) \, dt
\]

и формулу \( v(T_{i+1}) = v(T_i) - 2n_i) n_i \), имеем представление

\[
 \delta W = \left( \tilde{J} \mid v(T_i) \right) - 2\left( v(T_i) \mid n_i \right) (\tilde{J} - J' \mid n_i). \tag{2.19}
\]
О рассеянии в многочастичных и бильярдных системах

Наконец, суммируя выражения (2.17) и (2.18) для $J_1$ и $J_2$ соответственно и учтяя соотношение (2.19) и равенство $\delta u + \delta W = \delta U$, получаем следующую формулу для интеграла $J$:

$$J = \mathcal{R}_{i+1} \frac{1}{p} \left[ \frac{\delta U - (v(T_i) \mid \bar{J}) n_i - R_i \bar{J}}{(v(T_i) \mid n_i)} \right].$$

Отсюда, имея в виду утверждение 3) леммы 2.1, приходим к заключению, что

$$\mathcal{R}_{i+1} \dot{x}^{(p)}(T_{i+1}/p) = \mathcal{R}_{i} \dot{x}^{(p)}(T_{i}/p) + J + o \left( \frac{1}{p} \right);$$

это доказывает формулу (2.16) для $i + 1$.

Оценка приращения скорости $\dot{x}^{(p)}$ на интервале $(T_{k+1}/p, \infty)$ дает

$$\dot{x}^{(p)}(+\infty) - \dot{x}^{(p)} \left( \frac{T_{k+1}}{p} \right) = - \frac{1}{p} \int_{T_{k+1}}^{\infty} \nabla U(l(t)) \, dt + o \left( \frac{1}{p} \right).$$

Сопоставляя равенства (2.20) и (2.16) при $i = k + 1$, получаем формулу (2.2).

Предложение доказано.

Это аппроксимационное утверждение позволяет из свойства простоты рассеяния многочастичных систем на прямой, движущихся (в определенном смысле) возмущениями бильярдных, вывести простоту (и даже треугольность) рассеяния в предельной бильярдной системе.

Рассмотрим динамическую систему $d$ частиц на прямой с конфигурационным пространством $Q = \{x : x_1 < x_2 < \cdots < x_d\} \subset \mathbb{R}^d$ и функцией Гамильтона вида

$$H = \frac{1}{2} \sum_{i=1}^{d} \frac{p_i^2}{m_i} + \sum_{i=1}^{d-1} u_i(x_{i+1} - x_i) + W(x),$$

где

$$u_i \in C^2(\mathbb{R}^+), \quad \int_0^\infty |u'_i(\xi)| \, d\xi < \infty,$$

$$\lim_{\xi \to 0+} u_i(\xi) = +\infty, \quad \lim_{\xi \to 0+} u'_i(\xi) = -\infty,$$

$$W \in C^2\left( Q \setminus \bigcup_{i=1}^{d-2} \{x : x_i = x_{i+2}\} \right).$$

Наряду с этой системой рассмотрим бильярдную систему частиц на прямой, имеющих массы $m_1, \ldots, m_d$ (в нумерации слева направо) и движущихся свободно между моментами столкновений, парные из которых предполагаются упругими. Аналогично предыдущему (см. предложение 2.1) устанавливается, что конфигурационными проектами движений системы с функцией Гамильтона (2.21), (2.22), прилежащих изоэнтропическим множеству $H = E$, можно соль угодно точно (при $E \to \infty$) аппроксимировать бильярдную траекторию в $Q$, причем импульсы, составляющие бильярдного и аппроксимирующих его движений почти подобны.
ПЕРЕДЛОЖЕНИЕ 2.2. Если система с функцией Гамильтона \((2.21), (2.22)\) имеет простое рассеяние, то соответствующая ей бильярдная система также имеет простое рассеяние.

ДОКАЗАТЕЛЬСТВО сводится к применению асимптотики (2.2). Согласно предположению найдется такая функция \(f: \mathbb{R}^d \to \mathbb{R}^d\), что для любого вектора \(v^- \in \mathbb{R}^d\) и достаточно больших \(p \in \mathbb{R}^+\) существует семейство движений \((x^{(p)}(t), \dot{x}^{(p)}(t))\), определяемых условием \(\dot{x}^{(p)}(\pm \infty) = pv^-\), для которых выполнено (2.2), причем \(\dot{x}^{(p)}(\pm \infty) = f(\dot{x}^{(p)}(\pm \infty))\). Следовательно, \(v^+ = \frac{1}{p}f(pv^-) + o(1)\). Устремляя \(p\) к бесконечности, отсюда видим, что \(v^+ = \lim_{p \to +\infty} \frac{1}{p}f(pv^-)\) зависит лишь от \(v^-\).

Следствием этого предложения и предложения 1.1 из §1 является необходимое условие на массы взаимодействующих частиц, образующих системы с простым рассеянием.

ТЕОРЕМА 2. Если система с функцией Гамильтона \((2.21)\) и транзитивно инвариантным потенциальным слагаемым, удовлетворяющим условию (2.22), имеет простое рассеяние, то либо набор чисел \(m_1, \ldots, m_d\) принадлежит списку (1.4)-(1.9), либо \(m_1 = \cdots = m_d\).

Отметим, что (связанная с вещественными простыми группами Ли) конструкция гамильтоновских систем, интегрируемых в классе полиномиальных по импульсам первых интегралов (см. [19]), позволяет предложить примеры имеющих простое (и даже треугольное) рассеяние систем, отвечающих наборам масс бесконечных серий \(A\) и \(B\).

§ 3. О рассеянии бильярд в выпуклых областях

1. Пусть \(Q \subset \mathbb{R}^d\) – выпуклая некомпактная область и \(x \in Q\). Объединение лучей с вершиной в точке \(x\), принадлежащих области \(Q\), будем называть сопрягающим конусом (для \(Q\)). Ясно, что любые два таких конуса с вершинами в точках \(x_1\) и \(x_2\) из \(Q\) можно совместить параллельным переносом.

ПРЕДЛОЖЕНИЕ 3.1. Если бильярд в выпуклой многогранной области \(Q\) обладает простым рассеянием, а сопрягающий конус \(K\) для \(Q\) имеет внутренние точки, то \(K\) есть замкнутая камера относительно некоторой группы Коксетера.

ДОКАЗАТЕЛЬСТВО. Отметим сначала, что для любого регулярного движения \((r(t), \dot{r}(t))\) в \(\mathbb{R} \times S^{d-1}\) можно построить регулярное движение в \(\mathbb{Q} \times S^{d-1}\) с таким же начальным (т.е. асимптотической наследственной и конечной (т.е. асимптотической предыдущей) скоростью, что и у движения \((r(t), \dot{r}(t))\). Для проверки этого утверждения расположим область \(Q\) и какой-либо сопрязающий конус \(K\) в центре в нулевой точке так, чтобы \(Q \subset K\) и \(K = \bigcup_{\epsilon > 0} \epsilon Q\), иначе говоря, чтобы \(K\) и \(Q\) совпадали вне круга, имеющего достаточно большой радиус (возможность этого следует из непустоты внутренности конуса \(K\)). Далее, выберем столь малое число \(\epsilon > 0\), что движение \((\tilde{r}(t), \tilde{\dot{r}}(t))\) в \(\mathbb{Q} \times S^{d-1}\), тождественно совпадающее с \((r(t), \dot{r}(t))\), обладает следующим свойством. Наблюдаемое движение \((\tilde{r}(t), \tilde{\dot{r}}(t))\) совпадает последовательности отображений от граней многогранников \(\mathbb{Q}\) и \(K\) соответственно (для предполагается, что нумерации граней согласованы, т.е. общие грани имеют одинаковые
номера). Движение \((\frac{1}{2}\dot{r}(t), \dot{r}(t))\) в \(\mathbb{Q} \times S^{d-1}\) имеет такую же последовательность отражений от граней области \(Q\), что и движение \((\dot{r}(t), \dot{r}(t))\) от граней многогранника \(\varepsilon Q\). Следовательно, конечные скорости движений \((r(t), \dot{r}(t))\) и \((\frac{1}{2}\dot{r}(t), \dot{r}(t))\) совпадают.

Рассмотрим теперь два регулярных движения в \(\mathbb{K} \times S^{d-1}\) с одной и той же начальной скоростью \(v^{-}\) и конечными скоростями \(v_{1}^{+}\) и \(v_{2}^{+}\). Согласно предыдущему построению прямые движения в \(\mathbb{Q} \times S^{d-1}\), имеющие начальную скорость \(v^{-}\) и конечные скорости \(v_{1}^{+}\) и \(v_{2}^{+}\). Из простоты рассеяния бильярда в \(Q\) следует, что \(v_{1}^{+} = v_{2}^{+}\). Следовательно, рассеяние бильярда в многогранном угле \(K\) простое и согласно теореме 1 угол \(K\) есть замыкание камеры относительно конечной группы Кокстера, порожденной ортогональными отражениями.

2. Этот и два следующих пункта посвящены уточнению предложения 3.1 для плоских бильярдов.

Рассмотрим выпуклое замкнутое множество \(V \subset \mathbb{R}^2\). Предполагается, что сопутствующий узел \(K = \{ v \in \mathbb{R}^2 : V \cap \mathbb{R}^2 v \text{ содержит луч} \} \cup \{0\}\) имеет непустую внутренность \(\mathring{K}\). Это условие эквивалентно тому, что \(V\) содержит некоторый угол неплоского раствора. Если \(v \in \mathring{K}\), то и любая полупрямая \(x + \mathbb{R}^2 v\) пересекает \(V\) по линии.

Назовем точку \(x \in \partial V\) регулярной, если через нее можно провести единственную прямую, не пересекающую \(V\). В регулярной граничной точке \(x\) определены единичный вектор \(n\) внутренней нормали к гранике и бильярдное отражение от границы. Бильярдное движение считается заданным до момента первого попадания в нерегулярную точку граничии.

Выберем ортогональную систему координат \(x_1, x_2\) таким образом, чтобы вектор \((0, -1)\) принадлежал \(K\). Для любого \(x_1\) пересечение вертикальной прямой \(\{(x_1, x_2) : x_2 \in \mathbb{R}\}\) с \(V\) есть луч \(\{(x_1, x_2) : x_2 < f(x_1)\}\) и тем самым \(V = \{x = (x_1, x_2) : x_2 \leq f(x_1)\}\). Отображение \(s \rightarrow x(s) = (s, f(s))\) задает взаимно однозначное соответствие между \(\mathbb{R}\) и \(\partial V\). Определенная таким образом функция \(f\) непрерывна на \(\mathbb{R}\) и дифференцируема вне (не более чем) счетного множества. Производная \(f'\) монотонно невыпукла (см. [20; §10]). Нерегулярные точки суть те, в которых \(f\) не дифференцируемы. Предель \(\lim_{s \to \pm \infty} f'(s)\) конечен; действительно, допустив противное, получим, что для сколь угодно большого числа \(M\) пересечения с \(V\) одного из лучей \(\{(t, -Mt) : t \geq 0\}, \{(t, -Mt) : t \geq 0\}\) ограничено, а это противоречит условию \((0, -1) \in \mathring{K}\).

Введем обозначения \(n_1 = \lim_{s \to -\infty} n_{x(s)}, n_r = \lim_{s \to +\infty} n_{x(s)}\). Здесь пределы берутся по множеству тех \(s\), для которых существует \(f'.\) Если \(x(s)\) — регулярная точка, то

\[
n_{x(s)} = \left(f'(s)^2 + 1\right)^{-1/2} \cdot (f'(s), -1),
\]

и поэтому имеем

\[
n_1 = \left(f^2(-\infty) + 1\right)^{-1/2} (f'(-\infty), -1),
\]

\[
n_r = \left(f^2(+\infty) + 1\right)^{-1/2} (f'(+\infty), -1).
\]

Из формул (3.1) и (3.2) следует, что вектор \(n_{x(s)}\) может быть представлен в виде

\[
n_{x(s)} = \alpha(s)n_1 + \beta(s)n_r, \quad \alpha(s) \geq 0, \quad \beta(s) \geq 0.
\]
Далее, непосредственно проверяется, что

\[ K = \{ v = (v_1, v_2) : v_1 \geq 0, v_2 \leq f'( + \infty ) \cdot v_1 \} \cup \{ v : v_1 \leq 0, v_2 \leq f'( - \infty ) \cdot v_1 \}. \]

Эта формула эквивалентна следующей:

\[ \tilde{K} = \{ v : (v \mid n_1) > 0, (v \mid n_r) > 0 \}. \tag{3.4} \]

Граница угла \( K \) есть объединение лучей \( \Gamma_l = \{ v : v_1 \leq 0, v_2 = f'( - \infty )v_1 \} \) и \( \Gamma_r = \{ v : v_1 \geq 0, v_2 = f'( + \infty )v_1 \} \), причем \( n_1 \) и \( n_r \) суть внутренние нормали к этим лучам.

Введем на множестве \( M = \mathbb{R} \times S^1 \) меру \( \mu \) согласно формуле

\[ d\mu (s, v) = \left| (n_{x(s)} \mid v) \right| dv(s) dw(v), \]

где \( \omega \) — лебедева мера на \( S^1 \) и \( d\nu(s) = \sqrt{1 + f''(s)} ds \) (мера \( \nu \) есть образ при отображении \( x^{-1} : x(s) \to s \) естественной, т.е. индуцированной длиной дуги, лебедевой меры на \( \partial V \)). Обозначим через \( M_1 \) множество точек \( (s, v) \in M \) таких, что луч, выпущенный из \( x(s) \) в направлении \( v \), трансверсално пересечет \( \partial V \) в регулярной точке \( x(s_1) \), \( s_1 \neq s \). Определим отображение \( T : M_1 \to M \), формулой \( T(s, v) = (s_1, v_1) \), где вектор \( v_1 \) получается из \( v \) отражением от границы в точке \( x(s_1) \). Отображение последовательна \( T \) сохраняет меру \( \mu \) (см., например, [21]).

Лемма 3.1. Существует вектор \( v_- \in \tilde{K} \) такой, что для почти всех \( s \) билатеральное движение со скоростью \( v_- \) перед первым отражением в точке \( x(s) \) не попадет в нерегулярную точку границы за конечное число отражений.

Доказательство. Рассмотрим множество

\[ \tilde{\mathcal{N}} = \bigcup_{k=0}^{\infty} T^k \mathcal{N}_0, \]

где \( \mathcal{N}_0 = \{ (s, v) \in M : x(s) \text{ — нерегулярная} \} \). Если \((s, v) \notin \tilde{\mathcal{N}}\), то билатеральное движение, имеющее скорость \( -v \) перед отражением в точке \( x(s) \), не попадет в нерегулярную точку за конечное число последующих отражений. Поскольку \( \mu(\mathcal{N}_0) = 0 \) и отображение \( T \) сохраняет меру, то \( \mu(\tilde{\mathcal{N}}) = 0 \). С другой стороны, имеем

\[ \mu(\tilde{\mathcal{N}}) = \int_{S^1} dv(s) \int_{\mathcal{N}_0} \left| (n_{x(s)} \mid v) \right| d\nu(s), \]

где \( \mathcal{N}_0 = \{ s : (s, v) \in \tilde{\mathcal{N}} \} \); следовательно, для почти всех \( v \)

\[ \int_{\mathcal{N}_0} \left| (n_{x(s)} \mid v) \right| d\nu(s) = 0. \tag{3.5} \]

В частности, равенство (3.5) справедливо для некоторого \( v_0 \in \tilde{K} \). Подынтегральная функция в (3.5) обращается в нуль (это следует из формул (3.3) и (3.4)); следовательно, множество \( \mathcal{N}_0 \subseteq \mathbb{R} \) имеет нулевую лебедеву меру. Положив \( v_- = -v_0 \), получим утверждение леммы.

Проекцию \( (s, v) \mapsto s \) обозначим через \( \Pi \). Предположим, что отображение \( T \) определено на некотором множестве \( \{(s, v(s)) : s \in A \} \), где \( v : A \to S^1 \).
Лемма 3.2. Пусть \( v(s) = v + a(s)n_1 + b(s)n_r \), где \( ||v|| = 1 \), \( a(s), b(s) > 0 \).

(i) Если

\[
(v \mid n_1) > 0, \quad (v \mid n_r) < 0, \quad (v(s) \mid n_1) > 0, \quad (v(s) \mid n_r) < 0
\]

и множество \( A \) неограничено снизу, то

\[
\lim_{A \ni s \to -\infty} \Pi \circ T(s, v(s)) = +\infty.
\]

(ii) Если

\[
(v \mid n_1) < 0, \quad (v \mid n_r) > 0, \quad (v(s) \mid n_1) < 0, \quad (v(s) \mid n_r) > 0
\]

и множество \( A \) неограничено сверху, то

\[
\lim_{A \ni s \to +\infty} \Pi \circ T(s, v(s)) = -\infty.
\]

Доказательство. Пункт (ii) сводится к предыдущему с помощью “противоположной” ориентации границы: \( s \mapsto x(-s) \). Для доказательства (i) выпустим из точки \( x(s) \) луч в направлении \( v \) и предположим, что он пересечет \( \partial V \) в точке, отличной от \( x(s) \). Пусть \( x(s_1) \) — первая точка такого пересечения, положим \( g_v(s) = s_1 \).

Из (3.6) и (3.2) следует, что вектор \( v \) может быть представлен в виде

\[
v = (1 + \varphi^2)^{-1/2}(1, \varphi),
\]

где \( f'(+\infty) < \varphi < f'(-\infty) \). Покажем, что функция \( g_v \) определена на множестве \((-\infty, s_1)\), где \( s_1 = \sup \{ s : f'(s) > \varphi \} \). Зафиксируем \( s < s_1 \) и положим

\[
F(\tau) = \frac{f(\tau) - f(s)}{\tau - s} - \varphi, \quad \tau \geq s_r,
\]

где \( s_r = \inf \{ s : f'(s) < \varphi \} \). Функция \( F \) непрерывна; непосредственно проверяется, что \( F(s_r) > 0 \) и \( \lim_{\tau \to +\infty} F(\tau) = f'(+\infty) - \varphi < 0 \). Следовательно, \( F(\tau) = 0 \) для некоторого \( \tau > s_r \). Таким образом, \( x(\tau) \) принадлежит лучу \( \{ x(s) + tv : t > 0 \} \).

Покажем теперь, что функция \( g_v \) монотонно убывает на \((-\infty, s_1)\). Пусть \( s_1 < s_2 < s_1 \) таково, что \( \tau_1 = g_v(s_1) < \tau_2 = g_v(s_2) \); имеем

\[
f(\tau_1) - f(s_1) = \varphi \cdot (\tau_1 - s_1), \quad f(\tau_2) - f(s_2) = \varphi \cdot (\tau_2 - s_2).
\]

Учитывая, что \( f(s_2) > f(s_1) + \varphi \cdot (s_2 - s_1) \) и \( f(\tau_2) < f(\tau_1) + \varphi \cdot (\tau_2 - \tau_1) \), из (3.9) получаем неравенство \( f(\tau_1) - f(s_1) > \varphi \cdot (\tau_1 - s_1) \), противоречащее (3.8).

Оказывается, что

\[
\lim_{s \to -\infty} g_v(s) = +\infty.
\]
Действительно, допустим конечность этого предела и перейдя к пределу при \( s \to -\infty \) в равенстве \( f(g_v(s)) - f(s) = \varphi \cdot (g_v(s) - s) \), получим в противоречии с (3.7), что \( f'(\infty) = \varphi \).

Вектор \( v(s) \), так же как и \( v \), может быть записан в виде \( v(s) = (1 + \varphi^2)^{-1/2}(1, \varphi) \), где \( f'(\infty) < \varphi < f'(\infty) \). Используя условия леммы и координатное представление (3.2), получаем, что вторая координата разности \( v(s) - v \) отрицательна; отсюда \( \psi < \varphi \).

Для проверки неравенства

\[
P \circ T(s, v(s)) > g_v(s) \quad (3.11)
\]

введем обозначения \( g_v(s) = \tau \), \( P \circ T(s, v(s)) = \tau' \). Аналогично (3.8) и (3.9) имеем

\[
f(\tau) - f(s) = \varphi \cdot (\tau - s),
\]

\[
f(\tau') - f(s) = \psi \cdot (\tau' - s).
\]

Допустим, что \( \tau' < \tau \), получим

\[
f(\tau) - f(\tau') \leq \varphi \cdot (\tau - \tau').
\]

Из (3.12)–(3.14) вытекает неравенство \( 0 \leq \varphi \cdot (s - \tau') + \psi \cdot (\tau' - s) \), противоречащее условию \( \psi < \varphi \). Из (3.10) и (3.11) следует утверждение (1) леммы.

3. Обозначение \( \mathcal{N} = \mathcal{N}_{-v_-} \) напомним, что \( \mathcal{N}_v \) и \( v_- \) введены в доказательстве леммы 3.1.

Лемма 3.3. Предположим, что \( n_x \neq n_1 \) для любой регулярной точки \( x \in \partial V \). Тогда для каждого достаточно малого \( s \notin \mathcal{N} \) отображение \( l(t, s) = (v_-, x(s) + tv_-) \), определенное при \( t < 0 \), продолжается до полного бильярдного движения, причем для асимптотического импульса (вперед) \( v_+(s) \) этого движения существует предел \( v_+ = \lim_{s \to -\infty} v_+(s) \) и \( v_+(s) \neq v_- \).

Доказательство. Рассмотрим движение бильярда в замкнутой \( K \) сопутствующего угла \( K \), совпадающего с \( l(t, s) \) при достаточно малых \( t \). Если \( s \ll -1 \), то первое отражение происходит от стороны \( \Gamma_1 \). Стандартное рассуждение, использующее конструктивно разработки бильярдной траектории, приводит к заключению, что происходит конечное число \( k \) отражений, не зависящее от \( s \), причем по четным (четные числа) по порядку отражения происходит от \( \Gamma_1 \) (соответственно от \( \Gamma_r \)). Обозначим через \( v_i \), \( i = 1, \ldots, k \), скорость непосредственно после \( i \)-го отражения и положим \( v_0 = v_- \). Ясно, что \( (v_- | n_{1, r}) < 0 \) и \( (v_k | n_{1, r}) > 0 \), а для \( i = 1, \ldots, k - 1 \) выполнены неравенства \( (-1)^i (v_i | n_{1, r}) < 0 \), \( (-1)^i (v_i | n_{1, r}) > 0 \).

Введем обозначения:

\[
(s_{i}(s), v_{i}(s)) = T^{-1}(s_{i}(s), v_{i}(s)), \quad (s_{i}(s), v_{i}(s)) = T^{-1}(s_{i}(s), v_{i}(s)).
\]

Таким образом, \( s_i(s) \) и \( v_i(s) \) суть точка \( i \)-го отражения и соответственно скорость сразу после \( i \)-го отражения для движения \( l(t, s) \).

Докажем по индукции, что \( s_i(s) \) и \( v_i(s) \) при \( 1 \leq i \leq k \) определены и удовлетворяют предельным соотношениям

\[
(3.15)
\]

\[
(3.15)
\]
при чем функции $a_i(s)$ и $b_i(s)$, определяемые формулой

$$v_i(s) = v_i - a_i(s)n_1 + b_i(s)n_r,$$

при достаточно малых $s$ обладают свойствами:

$$a_{i-1}(s) > 0, \quad b_{i-1}(s) > 0, \quad 2 \leq i \leq k,$$

$$a_0(s) = 0, \quad b_0(s) = 0,$$

$$a_k(s) > 0 \text{ при четном } k, \quad b_k(s) > 0 \text{ при нечетном } k. \quad (3.17)$$

Отсюда следует утверждение леммы. В самом деле, согласно (3.15) и (3.18) $v_k(s) \rightarrow v_k$ при $s \rightarrow -\infty$ и $v_k(s) \neq v_k$. Кроме того, имеем неравенства

$$(v_k(s) | n_l) > 0, (v_k(s) | n_r) > 0 \text{ и, стало быть, согласно (3.4) } v_k(s) \in K.$$ Таким образом, после $k$-го отражения большие отражения не будет.

Очевидно, при $i = 1$ соотношение (3.15)−(3.17) справедливы. Достаточно, чтобы они выполнены при некотором $i, 1 \leq i \leq k - 1$, и доказаем их для $i + 1$. Рассмотрим сначала случай нечетного $i$. Имеем

$$v_i(s) = v_{i-1}(s) - 2(v_{i-1} | n_{x(s_i(s))})n_{x(s_i(s))}$$

$$= v_{i-1} - 2(v_{i-1} | n_l)n_l + (a_{i-1}(s)n_l + b_{i-1}(s)n_r)$$

$$- 2[(a_{i-1}(s)n_l + b_{i-1}(s)n_r | n_l)n_l$$

$$+ 2[(v_{i-1}(s) | n_l)n_l - (v_{i-1}(s) | n_{x(s_i(s))})n_{x(s_i(s))}]. \quad (3.19)$$

Учитывая, что $v_{i-1} - 2(v_{i-1} | n_l)n_l = v_{i-1}, a_{i-1}(s) \rightarrow 0, b_{i-1}(s) \rightarrow 0, n_{x(s_i(s))} \rightarrow n_l$ при $s \rightarrow -\infty$, получаем из (3.19) второе предельное соотношение в (3.15):

$$v_i(s) \rightarrow v_i.$$ Используя представление (3.3) для вектора $n_x$ и (3.16), находим из (3.19), что

$$b_i(s) = b_{i-1}(s) - 2(v_{i-1}(s) | n_{x(s_i(s))}) \cdot \beta(s_i(s)). \quad (3.20)$$

Из условия $n_x \neq n_l$ следует, что $b_i(s) > 0$ для любого $s$. Кроме того, $v_{i-1}(s) | n_{x(s_i(s))}) \rightarrow (v_{i-1} | n_l) < 0$ и согласно индуктивному предположению $b_{i-1}(s) > 0$. Следовательно, в силу (3.20) $b_i(s) > 0$ для всех $s \ll -1$.

Теперь нам понадобится следующее утверждение: если векторы единичной длины $v^1$ и $v^2$ удовлетворяют неравенствам $(v^1 | n_l) > 0, (v^1 | n_r) < 0, i = 1, 2,$ и $v^2 = v^1 + bn_r \neq 0$, то $a$ и $b$ одинакового знака. Это следует из того, что $v^2 - v^1$ ортогонален вектору $v = v^1 + v^2$ и, следовательно, пропорционален $(v | n_l)n_l - (v | n_r)n_r$. Применяя это утверждение к векторам $v_i, v_i(s)$ и учитывая, что $b_i(s) > 0$, получаем второе неравенство в (3.17).

По лемме 3.2 с учетом индуктивного предположения $s_i(s) \rightarrow -\infty \quad (s \rightarrow -\infty)$ и доказанных неравенств $a_i(s) > 0, b_i(s) > 0$ имеем

$$\lim_{s \rightarrow -\infty} s_{i+1}(s) = \lim_{s \rightarrow -\infty} \Pi \circ T(s_i(s), v_i(s)) = +\infty.$$
В случае четного $i$ получаем следующую формулу, аналогичную (3.20):

$$a_i(s) = a_{i-1}(s) - 2(v_{i-1}(s) \mid n_{\varphi(s_i(s)))} \cdot \alpha(s_i(s)).$$  \hspace{1cm} (3.21)

Учитывая, что $\alpha(s) > 0$, $(v_{i-1}(s) \mid n_{\varphi(s_i(s)))} \to (v_{i-1} \mid n_r) < 0$ при $s \to -\infty$ и $a_{i-1}(s) > 0$, вытекающее из (3.21), неравенство $a_i(s) > 0$, поскольку коэффициенты $a_i(s)$, $b_i(s)$ в (3.16) одного знака, то и $b_i(s) > 0$.

Так же как и в случае нечетного $i$, имеем: $s_{i+1}(s) \to -\infty$ при $N \not= s \to -\infty$. Таким образом, соотношение (3.15)–(3.17) при $1 \leq i \leq k$ устанавливаются. Наконец, повторяя рассуждения, приведенные выше, для $i = k$, получаем соотношение (3.20) и из него неравенство $b_k(s) > 0$ в случае нечетного $k$, соотношение (3.21) и, следовательно, неравенство $a_k(s) > 0$ в случае четного $k$. Лемма полностью доказана.

Лемма 3.4. Если бильярд в $V$ имеет простое рассеяние, то $n_{\varphi(s)} = n_t$ при $s < s_0$ и $n_{\varphi(s)} = n_r$ при $s > s_1$ для некоторых $s_0, s_1 \in \mathbb{R}$, причем $(n_t \mid n_r) = -\cos \pi/n, n \in \mathbb{N}$.

Доказательство. Из леммы 3.3 (в предположении простоты рассеяния) вытекает, что $n_{\varphi(s_0)} = n_t$, для некоторого $s_0 \not= N$. С использованием (3.1) получаем равенство $f'(s_0) \equiv f'(-\infty)$, и, значит, $f'(s) \equiv \text{const}$ на $(-\infty, s_0)$. Таким образом, левая ветвь $\{x(s) : s < s_0\}$ границы $\partial V$ оказывается лучом. Рассматривая противоположную параметризацию границы $s \to x(-s)$, получаем, что и некоторая правая ветвь $\{x(s) : s > s_1\}$ границы также является лучом. Эти лучи не могут быть параллельными, поскольку согласно условию $V$ содержит некоторый угол. Если граничные лучи принадлежат одной прямой, то $V$ совпадает с полуплоскостью и, следовательно, утверждение леммы справедливо. В противном случае эти лучи принадлежат пересекающимся прямым. Можем принять, что точка пересечения этих прямых совпадает с начальной координатой. Продолжим рассматриваемые лучи до начала координат и предположим, что угол, образованный полученными лучами, не является делителем $\pi$. В таком случае имеются две билиарные траектории $l_1(t)$ и $l_2(t)$ в этом угле, которые обладают одинаковыми начальными и различными конечными скоростями. Ясно, что $M \cdot l_1(t)$ и $M \cdot l_2(t)$ для любого $M > 0$ также являются билиарными траекториями в этом угле. Выберем $M$ настолько большим, чтобы точки отражения траекторий $M \cdot l_1$ и $M \cdot l_2$ принадлежат $\partial V$; тогда в силу выпуклости $V$ обе эти траектории принадлежат $V$. Таким образом, получены два движения билиарда в $V$, имеющие одинаковые начальные и различные конечные скорости. Эта лемма показывает, что величина угла между лучами границы $\partial V$ равна $\pi/n$ для некоторого $n \in \mathbb{N}$.

4. Теорема 3. Если выпуклое замкнутое множество $V \subset \mathbb{R}^2$ содержит угол и билиард в $V$ имеет простое рассеяние, то для некоторых $n, m \in \mathbb{N}$ $V = \bigcap_{i=1}^{m} \{x : (x \mid e_i) > a_i\}$, причем векторы $e_1$ и $e_2$ образуют угол $\pi - \pi/n$, а все остальные векторы $e_i$ образуют с $e_1$ углы кратные $\pi/n$.

Доказательство. Согласно лемме 3.4 $\partial V$ содержит лучи $x((-\infty, s_0))$ и $x((s_1, +\infty))$, образующие угол $\pi/n$, $n \in \mathbb{N}$, пусть прямые, содержащие эти лучи, пересекаются в начале координат. Назовем регулярную точку $x \in \partial V$ неправильной, если угол между $n_{\varphi}$ и $n_1$ не кратен $\pi/n$, и правильной в противном случае. Предположим, что множество $A$ всех неправильных векторов включает...
Положим $a = \inf \{ r : A \subset B_r \}$, где $B_r$ — круг радиуса $r$ с центром в начале координат, и выберем $x_0 \in \mathbb{R}^d$ так, что $\|x_0\| = a$. Точка $x_0$ является предельной для $A$, причем существует предел $n_0 = \lim_{A \ni x \to x_0} n_x$.

Выпустим из $x_0$ луч в направлении $n_0$, он либо не пересекает $\partial V$, либо пересекает $\partial V$ в точке, не принадлежащей $B_n$. В самом деле, заметим, что для любой регулярной точки $x$ луч $\{tx : t > 1\}$ принадлежит $V$ и, стало быть, содержится в полуплоскости $\{y : (y - x | n_x) > 0\}$; следовательно, справедливо неравенство

$$ (x | n_x) \geq 0. \quad (3.22) $$

Переходя в этом неравенстве к пределу при $A \ni x \to x_0$, получаем, что $\|x_0 + t n_0\| > a$ при $t > 0$. Далее, можно выбрать достаточно близкую к $x_0$ точку $x_1 \in A$ и достаточно малое $\varepsilon > 0$ так, чтобы для любого единичного вектора $n$, удовлетворяющего условию $\|n - n_x\| < \varepsilon$, луч $\{x_1 + t n : t > 0\}$ также либо не пересекает $\partial V$, либо пересекает $\partial V$ в точке, не принадлежащей $B_n$.

Заметим, что $\partial V \setminus B_n$ является объединением прямолинейных интервалов (сторон), границы точек этих интервалов назовем вершинами. Отрежим $n$ раз область $V$ относительно сторон, взятых в произвольной последовательности. Отметим все образы вершин, получающиеся при всех возможных последовательностях отражений данного вида, и рассмотрим множество $O$ всех единичных векторов $v$, удовлетворяющих неравенству $\|v + n_x\| < \varepsilon$ и таких, что луч $\{x_1 - tv : t > 0\}$ и $\{x_1 + t \cdot \sigma v : t > 0\}$ не проходят через отмеченные точки: здесь $\sigma$ обозначает отражение $\sigma : v \to -2(v | n_x) n_x$. Ясно, что множество $O$ бесконечно.

Отметим, что для любой билиндрной траектории $l(t)$ в $V$ функция $\frac{d}{dt} \|l(t)\|^2$ монотонно возрастает. В самом деле, возрастание на интервалах свободного движения проверяется непосредственно дифференцированием, а в моменты отражений скачки этой функции нестроги. Последнее следует из закона билиндрного отражения и неравенства (3.22).

Лемма 3.5. Билиндрная траектория $l(t)$, $t > 0$, в $V$ испытывает не более $n$ соударений с границей в точках множества $\partial V \setminus B_n$.

Из определения множества $O$, леммы 3.5 и отмеченного выше монотонного возрастаания функции $\frac{d}{dt} \|l(t)\|^2$ следует, что для любого $v \in O$ движение $(l(t), \dot{l}(t))$, заданное начальными условиями $l(0) = x_1, \dot{l}(0) = v$, определено на всей прямой и имеет не более $2n + 1$ отражений, причем все точки отражения в моменты $t \neq 0$ принадлежат $\partial V \setminus B_n$.

Асимптотические скорости $\dot{l}(-\infty)$ и $\dot{l}(+\infty)$ получаются из $v$ и $\sigma v$ соответственно посредством последовательности отражений в правильных точках и, стало быть, $\dot{l}(\infty) = s_- v, \dot{l}(\infty) = s_+ \sigma v$, где $s_-$ и $s_+$ суть элементы группы $W$, порожденной отражениями относительно лучей $x((\infty, s_0))$ и $x((s_1, +\infty))$. С другой стороны, существует билиндрное движение с асимптотической скоростью $\dot{l}(\infty)$, испытывающее отражение лишь от этих лучей. Следовательно, его асимптотическая скорость вперед равна $s\dot{l}(\infty)$ для некоторого $s \in W$. В силу предположения
о простоте рассеяния имеем \( s(\infty) = \hat{\nu}(\infty) \); отсюда \( s_{n}^{-1} s_{n} = \sigma v \) для бесконечного множества векторов \( v \in O \). Таким образом, \( \sigma = s_{n}^{-1} s_{n} \), т.е. \( \sigma \in W \), что противоречит предположению о неправильности точки \( x_{1} \). Тем самым доказано, что \( A = \varnothing \).

Положим \( e_{1} = n_{1}, e_{2} = n_{r} \) и обозначим через \( e_{3}, e_{4}, \ldots, e_{m} \), \( m \leq n \), все различающиеся между собой вектора \( n_{x} \) для регулярных точек \( x \in \partial V \). Поскольку все такие точки правильные, все векторы \( e_{i}, i > 1 \), образуют с \( e_{1} \) углы кратные \( \pi/n \). Обозначив через \( a_{i}, i = 1, \ldots, m \), максимальное из чисел \( b \), таких, что \( \{ x : \langle x, e_{i} \rangle \geq b \} \supset V \), получаем утверждение теоремы.

Доказательство леммы 3.5. Группа \( W \) содержит ровно \( n \) отражений. Дополнение к прямым, относительно которых происходит эти отражения, распадается на \( 2n \) открытий углов. Два из этих углов совпадают с \( K \) и \(-K\), а остальные объединены в \( n - 1 \) пар, симметричных относительно прямой \( R \cdot (n_{1} + n_{r}) \).

Предположим, что имеется серия из \( m \) последовательных отражений в точках \( \partial V \setminus B_{a} \). Обозначим через \( v_{i}, i = 1, \ldots, m \), скорость после \( i \)-го отражения и через \( v_{0} \) — начальную скорость. Вектор \( v_{1} \) получается из \( v_{i-1} \) действия некоторого элемента из \( W \); следовательно, все \( v_{i} \) принадлежат множеству \( W v_{0} \), состоящему из \( 2n \) элементов, если \( v_{0} \) содержит в одном из углов, или состоящему из \( n \) элементов, если \( v_{0} \) принадлежит границе некоторого угла. Для любого \( u \in K \) справедливы неравенства:

\[
(v_{i-1} \mid u) < (v_{i} \mid u). \tag{3.23}
\]

Они следуют из закона отражения и неравенств \( (v_{i-1} \mid n_{i}) < 0, (n_{i} \mid u) > 0 \), где \( n_{i} \) обозначает вектор нормали в точке \( i \)-го отражения.

Из (3.23) видно, что все векторы набора \( \{ v_{0}, v_{1}, \ldots, v_{m} \} \) различны; кроме того, любая пара симметричных углов содержит не более одного вектора из этого набора. Последнее вытекает из того, что для любых двух векторов \( v' \) и \( v'' \), принадлежащих двум углам, образующим пару, можно выбрать \( u \in K \) так, чтобы

\[
(v' \mid u) = (v'' \mid u). \nonumber
\]

Следовательно, набор \( \{ v_{0}, \ldots, v_{m} \} \) не может содержать больше \( m + 1 \) элемента, т.е. \( m \leq n \). Если \( m < n \), то общее число соударений с границей, включая \( m \) отражений и возможное попадание в особую точку, не превосходит \( n \).

Если же \( m = n \), то \( v_{n} \in K \); это следует из (3.23) и того, что для \( u = n_{1} + n_{r} \), максимум \( (v_{i} \mid u), i = 0, \ldots, m \), достигается на том из векторов \( v_{i} \), который принадлежит \( K \). Таким образом, после \( n \)-го отражения соударений с границей больше не происходит. Лемма доказана.

5. Требование к множеству \( V \) в теореме 3, состоящее в том, что \( V \) содержит некоторый угол, существенно. Соответствующим примером может служить область, ограниченная парой болью. Из теоремы 3 следует, что среди областей с гладкой границей, содержащих угол, лишь полуплоскость имеет простое (треугольное) рассеяние.

Предложение 3.2. Пусть \( Q \subset \mathbb{R}^{d} \) — выпуклая область с гладкой границей, содержащая некоторый конус с непрерывной внутренностью. Бильярд в \( Q \) имеет простое рассеяние в том и только в том случае, если \( Q \) — полупространство.
ДОКАЗАТЕЛЬСТВО. Выберем внутреннюю точку \( n_0 \) сопутствующего конуса для \( Q \) и проведем касательную к \( \partial Q \) гиперплоскость \( \Pi \), перпендикулярную к \( n_0 \). Обозначим через \( \pi \) ортогональную проекцию границы области \( Q \) на гиперплоскость \( \Pi \). Ясно, что отображение \( \pi: \partial Q \to \Pi \) - гомеоморфизм. Нормаль \( n(x) \) к границе \( \partial Q \) в точке \( \pi^{-1}(x) \) есть непрерывная функция своего аргумента \( x \in \Pi \). Рассмотрим подмножество \( D \subset \Pi \) тех точек \( x \), для которых \( n(x) = n_0 \).

Утверждение. Из условия простоты рассеяния для бильярда в \( Q \) следует, что множество \( D \) открыто.

Проверим это. Если \( x \in D \), то существует окрестность \( O \ni x \) такая, что для любой точки \( x_1 \in O \) вектор \( -n_0 + 2(n(x_1) \cdot n_0)n(x_1) \) принадлежит сопутствующему конусу. Рассмотрим две бильярдные траектории в \( Q \), одна из которых, имея начальную скорость \( -n_0 \), отражается от границы \( \partial Q \) в точке \( \pi^{-1}(x) \), а другая, с той же начальной скоростью, \( -2n_0 + 2(n(x_1) \cdot n_0)n(x_1) \) соответственно. Из условия равенства конечных скоростей у движений с одинаковыми начальными скоростями получаем, что \( n(x_1) = n_0 \) и, следовательно, \( O \subset D \). Сопоставляя это с замкнутостью множества \( D \neq \emptyset \), а также учитывая связность \( \Pi \), имеем \( D = \Pi \), т.е. \( Q \) - полупространство.

Список литературы

11. Степанян А. М. Бильярдные и гамильтоновы секты с рассеянием // УМН. 1989. Т. 44. № 4. С. 212.
13. Бургун Н. Группы и алгебры Ли. Группы Контера и системы Тита; группы, порожденные отражениями; системы корней. М.: Мир, 1972.
18. Гальперин Г. А. О системах локально взаимодействующих и отталкивающих частиц, движущихся в пространстве // Труды ММФ. 1981. Т. 43. С. 142–196.

Институт физико-технических проблем РАН; Поступила в редакцию
Московский государственный университет им. М. В. Ломоносова 29.10.1998