П. В. Черников, Бикомпактное пространство гомотопически полноценно тогда и только тогда, когда оно есть абсолютный окрестностный $h$-ретракт, *Матем. заметки*, 2006, том 79, выпуск 2, 309–310

DOI: https://doi.org/10.4213/mzm2670
Математические заметки

Том 79 Выпуск 2 Февраль 2006

УДК 513.83

БИКОМПАКТНОЕ ПРОСТРАНСТВО ГОМОТОПИЧЕСКИ ПОЛНОЦЕНО ТОГДА И ТОЛЬКО ТОГДА, КОГДА ОНО ЕСТЬ АБСОЛЮТНЫЙ ОКРЕСТНОСТНЫЙ h-РЕТРАКТ

П. В. Черников

В заметке доказано, что бикомпактное пространство гомотопически полноценно тогда и только тогда, когда оно есть абсолютный окрестностный h-ретракт.

Библиография: 7 названий.

Топологическое пространство, гомотопически эквивалентное некоторому CW-комплексу, называется гомотопически полноценным пространством [1, с. 30]. В данной работе приводится описание бикомпактных гомотопически полноценных пространств.


Замкнутое подмножество A бикомпактного пространства X назовем окрестностным h-ретрактом X, если существуют окрестности A множества A в X и такое непрерывное отображение r: U → A, что r|A ≈ id_A. Отображение r называется h-ретракцией.

Бикомпактное пространство X назовем абсолютным окрестностным h-ретрактом, если каждое замкнутое подмножество A любого бикомпактного пространства X, гомеоморфное Y, является окрестностным h-ретрактом X.

Совокупность всех абсолютных окрестностных h-ретрактов обозначим через ANHR.

Лемма 1. Для того чтобы бикомпактное пространство была абсолютным окрестностным h-ретрактом, необходимо и достаточно, чтобы оно было гомеоморфно абсолютному h-ретракту A топологического куба I^r.

Доказательство стандартное.

Лемма 2. Для того чтобы бикомпактное пространство было абсолютным окрестностным h-ретрактом, необходимо и достаточно, чтобы для всякого непрерывного отображения f: A → Y замкнутого входила в себя любого бикомпактного пространства X в Y существовало такое непрерывное отображение g: U → Y, где U некоторая окрестность множества A в X, что g|A ≈ f.

Доказательство стандартное с использованием леммы 1.

Теорема. Бикомпактное пространство принадлежит ANHR тогда и только тогда, когда оно гомотопически эквивалентно некоторому CW-комплексу.
ДОКАЗАТЕЛЬСТВО. Пусть бикомпакт $Y$ принадлежит ANHR. Покажем, что $Y$ гомотопически эквивалентен $CW$-комплексу. По лемме 1 бикомпакт $Y$ гомеоморфен окрестности $\eta$-ретракту $A$ тихоновского куба $I^\eta$. Найдем открытое в $I^\eta$ множество $U \supset A$ и $\eta$-ретракцию $r: U \to A$. Согласно [4, с. 158] существует такой конечный поливер $P$, что $A \subset P \times I^\eta \subset U$, где $I^\eta$ — граница тихоновского куба $I^\eta$. Следовательно, бикомпакт $Y$ гомотопически доминируется поливером $P$ и, значит, имеет гомотопический тип $CW$-комплекса [5, с. 542].

Обратно, пусть бикомпакт $Y$ гомотопически эквивалентен некоторому $CW$-комплексу $K$. Пусть $X$ — бикомпактное пространство, $A$ — замкнутое подмножество $X$, $f: A \to Y$ — непрерывное отображение. Существуют такие непрерывные отображения $\varphi: Y \to K$, $\psi: K \to Y$, что $\psi\varphi \simeq id_Y$. Рассмотрим отображение $\varphi f: A \to K$. Найдется непрерывное продолжение $f': U \to K$ отображения $\varphi f$, где $U$ — окрестность множества $A$ в пространстве $X$. Рассмотрим отображение $g = \psi f'$, $g: U \to Y$. Имеем

$$g|_A = \psi f'|_A = \psi\varphi f \simeq f.$$

Следовательно, по лемме 2 $Y \in ANHR$.

Теорема доказана.

Приведем пример линейного связного (даже $\infty$-связного) метрического бикомпакта, не являющегося ANHR-пространством.

ПРИМЕР. Обозначим через $C$ замыкание в плоскости $\mathbb{R}^2$ графика функции $y = \sin(\pi/x)$, где $0 < x \leq 1$, и рассмотрим прямую дугу $L$ с концами $(0, 1)$ и $(1, 0)$, пересекающуюся с $C$ только в этих двух точках. Положим $X_0 = C \cup L$. Если бикомпакт $X_0$ принадлежит ANHR, то тогда по доказанной теореме он гомотопически эквивалентен некоторому $CW$-комплексу $K$. Очевидно, что $\pi_1(X_0) = 0$, $i \geq 0$, помимо по теореме Уайтхеда $CW$-комплекс $K$ стягиваем и, значит, бикомпакт $X_0$ стягиваем. Тогда $p_1 X_0 = p_1 \{pt\} = 0$, т.е. первое число Бetti $p_1 X_0$ бикомпакта $X_0$ и $p_1 \{pt\}$ однозначно простирается $(pt)$ равны. По классической теореме двойственности Александрова [6, с. 171] равенство $p_1 X_0 = p_1 \{pt\}$ означает, что дополнения $\mathbb{R}^2 \setminus X_0$ и $\mathbb{R}^2 \setminus \{pt\}$ имеют одно и то же число компонент. Противоречие. Таким образом, $X_0 \notin ANHR$.

ЗАМЕЧАНИЕ. Аналогичный пример пространства $Y$, не являющегося гомотопически полноценным, указан в [7, с. 453]. Но в этом примере пространство $Y$ не бикомпакто.