В. Р. Халилов, Заряженные векторные бозоны в магнитном поле при конечной температуре, \textit{TМФ}, 1998, том 114, номер 3, 439–453

DOI: https://doi.org/10.4213/tmf851

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением
http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
20 апреля 2019 г., 03:47:04
ЗАРЯЖЕННЫЕ ВЕКТОРНЫЕ БОЗОНЫ
В МАГНИТНОМ ПОЛЕ ПРИ
КОНЧЕЧНОЙ ТЕМПЕРАТУРЕ

Изучается поведение газа заряженных векторных бозонов конечной плотности во внешнем магнитном поле при конечной температуре. Бозо-эйнштейновская конденсация в присутствии однородного магнитного поля не происходит, хотя значительное количество бозонов будет находиться в основном состоянии. Показано, что в газе векторных бозонов может возникать спиновая намагниченность, а также, как можно определить полную вероятность рождения пар векторных бозонов из вакуума сильным магнитным полем при конечной температуре. Получены выражения, которые, по-видимому, можно охарактеризовать свободную энергию и магнитный момент вакуума, и, кроме того, выражения для плотности и магнитного момента рожденных полем пар векторных бозонов при конечной температуре.

1. ВВЕДЕНИЕ

Известно, что трёхмерный идеальный газ нерелятивистских массивных скалярных частиц может обнаруживать явление конденсации, предсказанное Бозе [1] и Эйнштейном [2], и эффект Мейсснера-Оксенфельда (МО) [3, 4] при температуре ниже чем некоторая критическая [5, 7]. Внешнее однородное магнитное поле существенно влияет на характер движения (квантование вокруг вектора направления) и спектр энергий (уровни Ланде) заряженных частиц. Впервые вопрос о бозе-эйнштейновской конденсации (БЭК) нерелятивистских скалярных заряженных бозонов исследовался в работе [3], автор которой пришел к выводу о невозможности БЭК скалярных заряженных частиц в присутствии даже слабого магнитного поля. Поэтому, что в рамках квантово-полевого подхода сам эффект БЭК в релятивистском случае можно интерпретировать как явление случайного нарушения симметрии соответствующей эффективной квантово-полевой модели [8-10]. Таким образом, изучение БЭК представляет собой самостоятельный интерес для квантовой теории поля. Недавние также напомним, что эффект Мейсснера рассматривается в качестве основного
условия, которое позволяет дать микроскопическую интерпретацию сверхпроводимости при низких температурах.

Новый интерес к проблемам магнетизма и БЭК газов релятивистских заряженных частиц в сильных внешних магнитных полях при конечной температуре (достаточно высокой) и плотности в пространствах произвольной размерности возник в последние годы. В частности, в работе [11] было отмечено, что в отсутствие БЭК релятивистский газ заряженных скалярных частиц должен проявить эффект Мейсснера в области высоких температур и, следовательно, вести себя подобно "релятивистскому сверхпроводнику". Общее доказательство невозможности БЭК для заряженных скалярных частиц в присутствии однородного магнитного поля в пространствах произвольной размерности дано Томсом [12].

Решение проблемы БЭК во внешнем магнитном поле необходимо как для развития теории, так и для экспериментальных приложений, тем более что в последние время БЭК (в отсутствие внешнего поля) активно изучается экспериментально [13-15]. БЭК, на видимому, впервые наблюдалась недавно при измерении атомов 87Rb в магнитной ловушке, пророждающей магнитоадвекционный потенциал [13]. Особенности подчеркнут, что система не представляла собой изотропный идеальный газ, в частности, вследствие анизотропии ограничивающего потенциала присутствие значительных значений импульсов приводило к перебачиванию, что приводило к некоторой аналогии со случаем БЭК заряженных бозонов в слабом магнитном поле. Существуют две точки зрения, касающиеся самой проблемы БЭК в присутствии внешнего поля (см., например, [16]), а именно, как понимать БЭК: 1) как нахождение конечной части полного числа частицы в основном квантовом состоянии при некоторой ненулевой температуре; 2) как существование критической температуры, при которой химический потенциал становится равным нулю и ниже которой значительное количество частиц образует конденсат в основном квантовом состоянии.

Интерес к изучению поведения заряженных частиц с различными спинами в сильных магнитных полях при конечной температуре обусловливается в настоящее время открытием сверхжёлких полей в нейтронных звездах [17, 18]. Эта задача также представляет интерес для электрослабой модели Вайнберга-Салома, т. к. эта модель содержит заряженные векторные W^\pm-бозоны. Поведение, которых в магнитном поле привлекает внимание исследователей, особенно в связи с возможностью появления в присутствии сверхжёлкого однородного магнитного поля так называемой нестабильной моли [19, 20]. Известно [19, 20], что спектр энергий заряженного векторного бозона массы m, заряда e и спина $S = 1$ в постоянном однородном магнитном поле, которое в декартовых координатах имеет вид $\mathbf{B} = (0, 0, B)$, определяется формулой

$$E_n(p) = \sqrt{m^2 + (2n + 1 - 2S)eB + p^2}, \quad S = -1, 0, 1,$$

где квантовое число n ($n = 0, 1, 2, \ldots$) числяет уровни Ландау, p — проекция импульса на направление магнитного поля. Для $n = 0, \quad p = 0, \quad S = 1$ величина E обращается в нуль при $B = B_{cr} \equiv m^2/e$, а при $B > B_{cr}$ становится чисто мнимой. Такое поведение
величины \(E \) отражает квантовую неустойчивость поля заряженного векторного бозона в присутствии внешнего сильного однородного магнитного поля, которая обусловлена взаимодействием магнитного момента бозона с внешним однородным магнитным полем [19, 20]. Соответствующая мода поля векторных бозонов называется нестабильной. Используя полный лагранжий электрослабой модели Вайнберга Салама, в котором также были учтены члены 4-го порядка, авторам работы [21] удалось при некоторых определенных условиях построить новые классические статические “магнитные” решения, описывающие \(W \)-бозонный квазиэлектр в сильном магнитном поле в “дренажном” приближении.

В данной статье будут рассмотрены магнитные свойства газа заряженных векторных бозонов в присутствии однородного магнитного поля при кинетической температуре. Будет показано, что в газе векторных бозонов может возникать спиновая намагниченность, а также оценена плотность образовавшихся пар за счет тепловых столкновений реальных частиц в плотной горячей среде во внешнем магнитном поле в области значений поля \(B \approx B_{cr} \). В статье рассмотрены квантовые радиационные изображки в эффективный потенциал, учет которых необходим, особенно в том случае, когда конденсат пар векторных бозонов образуется из вакуума вследствие воздействия на последний сверхсильно магнитного поля при кинетической температуре в области значений поля \(B > B_{cr} \).

Кроме того, в этой работе делается предположение, что в газе заряженных векторных бозонов из вакуума сильным магнитным полем при кинетической температуре может возникнуть конденсат пар векторных бозонов, образованных из вакуума в области значений поля \(B > B_{cr} \).

В статье используется система единиц, в которой \(c = \hbar = 1 \).

2. ТЕРМОДИНАМИЧЕСКИЙ ПОТЕНЦИАЛ

Термодинамический потенциал \(\Omega \) газа векторных бозонов как функция химического потенциала \(\mu \), индукции магнитного поля \(B \) и температуры \(T \equiv 1/\beta \) определяется формулой

\[
\Omega = \frac{eBV}{4\pi^2} \left\{ \int dp \ln \left[1 - \exp \beta \left(\mu - (m^2 - eB + p^2)^{1/2} \right) \right] + \sum_{n=0}^{\infty} g_n \int dp \ln \left[1 - \exp \beta \left(\mu - (m^2 + (2n + 1)eB + p^2)^{1/2} \right) \right] \right\},
\]

где \(V \) — объем, занимаемый газом, а \(g_n = 3 - 3\delta_{0n} \) — кратность вырождения возбужденных состояний. Приведена разложение логарифмов в (2) и интегрирование по \(p \), представим \(\Omega \) в...
виде

$$\Omega(\mu) \equiv \Omega_1 + \Omega_2 + \Omega_3 = \frac{V e B}{2 \pi^2 \beta} \left\{ -M_- \sum_{k=1}^\infty k^{-1} \exp(k \beta \mu) K_1(k \beta M_-) +
ight. $$
$$+ M_+ \sum_{k=1}^\infty k^{-1} \exp(k \beta \mu) K_1(k \beta M_+) - 3 \sum_{n=0}^\infty \sqrt{m^2 + (2n + 1)eB} \times $$
$$\left. \sum_{k=1}^\infty k^{-1} \exp(k \beta \mu) K_1 \left(k \beta \sqrt{m^2 + (2n + 1)eB} \right) \right\},$$

где $M_+ \equiv \sqrt{m^2 + eB}$, а $K_n(x)$ — функция Маклераля порядка n.

Если газ нейтрален и состоит из частиц и античастиц, то в вышеприведённых формулах необходимо $\exp(k \beta \mu)$ заменить на $2 \text{ch}(k \beta \mu)$. Как известно [5, 6], термодинамический потенциал как функция химического потенциала является действительной функцией для действительных значений химического потенциала μ, удовлетворяющих для частиц и античастиц с эффективной массой M_- условию

$$|\mu| \leq M_-.$$

Это условие вытекает из физического требования к числам заполнения частиц и античастиц с эффективной массой M_- быть положительно-определенными для любых действительных значений импульса p. Полная равновесная плотность частиц ρ определяется формулой

$$\rho = -\frac{1}{V} \frac{\partial \Omega}{\partial \mu}.$$ (5)

С помощью выражений (3) и (5) можно представить равновесную плотность бозонов в состоянии $n = 0$, $S = 1$ в виде

$$\rho_g = \frac{e B M_-}{2 \pi^2} \sum_{k=1}^\infty K_1(k \beta M_-) \exp(k \beta \mu).$$ (6)

Выражение для плотности (6) расходится, если химический потенциал μ стремится к его верхнему предельному значению M_- при низкой температуре ($\beta M_- \gg 1$), что легко показать, используя асимптотическое представление $K_1(x)$ при больших значениях x. В этом пределе выражение (6) радио k имеет вид расходящегося ряда $\sum_{k=1}^\infty k^{-1/2}$. Этот результат ранее был получен [22] методом преобразования Мелина. Расходящийся в ρ_g подразумевает, что значительное количество частиц может находиться в состоянии $n = 0$, $S = 1$ и иметь проекции импульсов на направление магнитного поля, отличные от нуля при любой конечной температуре. Поэтому БЭК невозможна в слабом однородном магнитном поле, по крайней мере, если мы интерпретируем БЭК в вышеречём магнитным поле и без него одинаково (о другом подходе к проблеме см. [16]).
Рассмотрим магнитные свойства газа векторных бозонов в слабом внешнем магнитном поле, т. е. когда индукция поля B удовлетворяет неравенству $B \ll m^2/e$. Будем также предполагать, что $eB/m < T < m$. Последнее просто означает, что расстояние между уровнями Ландау много меньше средней тепловой энергии. При этих условиях вклады Ω_1 и Ω_2 в (3) малы по сравнению с вкладом Ω_3, и поэтому $\Omega \approx \Omega_3$. В пределе относительно слабого внешнего магнитного поля $eB \ll m^2$ мы можем использовать для суммирования по n в Ω_3 формулу суммирования Эйлера

$$\sum_{n=0}^{\infty} f(n + 1/2) = \int_{0}^{\infty} f(x) \, dx + (1/24) f'(0)$$

(7)

и затем формулу [25]

$$\int_{1}^{\infty} dz \, z^2 K_1(kz) = \frac{1}{km} K_2(km).$$

(8)

В результате для Ω получаем представление

$$\Omega = \frac{3Vm^2}{2\pi^2\beta^2} \sum_{k=1}^{\infty} \exp(k\beta\mu) \left[\frac{1}{k^2} K_2(km\beta) - \frac{2(eBoB^2)^2}{4m^2} K_0(km\beta) \right].$$

(9)

Термодинамический потенциал (9) совпадает с термодинамическим потенциалом газа скалярных бозонов, умноженным на 3 [26, 27]. Из выражений (3) и (9) для равновесной плотности частиц в "возбужденных" состояниях в слабом поле можно получить, что

$$\rho = \frac{3m^2T}{2\pi^2} \sum_{k=1}^{\infty} \exp(k\beta\mu) \left[\frac{1}{k^2} K_2(km\beta) - \frac{2(eBoB^2)^2}{4m^2} k\beta K_0(km\beta) \right].$$

(10)

При низких температурах $T \ll m$ входят от точки расходимости $\mu = M_-$ плотности бозонов в основном состоянии (6) выражения для термодинамического потенциала (3) и полной плотности бозонов нетрудно привести к известному в литературе виду

$$\Omega \simeq -\frac{VT^{1/2}}{(2\pi)^{3/2}} \left[3\pi^2 Li_{3/2}(e^{\beta(\mu - m)}) + \frac{7(eBoB^2)^2}{8m^{1/2}} e^{\beta(\mu - m)} \right],$$

(11)

$$\rho \simeq 3 \left(\frac{Tm}{2\pi} \right)^{3/2} Li_{3/2}(1) \left[1 - \frac{7(eBoB^2)^2}{2^{1/2}96\pi m^2} \right].$$

(12)

где $Li_{n}(x) = \sum_{k=1}^{\infty} x^k / k^n$ полигаммафункция порядка n. Магнитный момент газа при тех же предположениях есть

$$M_z(B) = \frac{7e^2 BT^{1/2}}{4m^{1/2}(2\pi)^{3/2} e^{\beta(\mu - m)}}.$$

(13)

Видно, что магнитный момент положительная функция внешнего поля и температуры газа, так что парамагнитный (спиновый) вклад доминирует.
3. ПРЕДЕЛ СИЛЬНОГО ПОЛЯ, НАМАГНИЧЕННОСТЬ

Изучим теперь магнитные свойства газа векторных бозонов с заданной плотностью в присутствии сильного магнитного поля \(B \approx B_\text{кр} \) при температурах \(T < eB/m \). Однородное внешнее магнитное поле имеет особенность: собирать все квантовые состояния, лежащие в интервале энергии \(eB/m \). Переходы бозонов с уровня Ландау \(n = 0 \) на возбужденные уровни \(n \geq 1 \) не будут разрешены, если \(T < eB/m \) и все бозоны в квантованном состоянии с \(n = 0 \) могут быть рассмотрены как конденсат в двумерном "импульсном" пространстве плоскости, перпендикулярной направлению магнитного поля с "эффективной" энергией \(k < (eB)^{1/2} \). Реальный конденсат в трёхмерном импульсном пространстве не образуется, поскольку продольные импульсы бозонов могут иметь значения вне этого интервала.

Принимая температуры \(\beta M_- \gg 1 \) вклады в термодинамический потенциал (3) всех возбужденных состояний экспоненциально малы по сравнению с вкладом состояния с \(n = 0 \). Поэтому достаточно рассмотреть только первое слагаемое \(\Omega_1 \) в (3) в этом пределе, т.е.

\[
\Omega(\mu) = -\frac{V e B M_-}{2 \pi^2 \beta} \sum_{k=1}^{\infty} k^{-1} \exp(k \beta \mu) K_1(k \beta M_-). \tag{14}
\]

ФормULA для плотности частиц, которую можно получить с помощью (14), совпадает с (6). В сильном магнитном поле выражение (6) расходится в пределе \(\mu \to M_- \). Действительно, при \(M_- \gg T \), \(M_- - \mu < T \) из (6) следует, что

\[
\rho \approx \frac{eB(T M_-)^{1/2}}{(2\pi)^{3/2}} \left[\frac{\pi T}{M_- - \mu} \right]^{1/2} - 1, 46 \right]. \tag{15}
\]

Отметим, что первый (основной) член в (15) совпадает с полученным в работе [16]. Вдоль от точки конденсации свободного газа векторных бозонов, т.е. при относительно "высоких" температурах, в пределе \(M_- < T \), но \(m \gg T \) выражение для плотности газа векторных бозонов (6) приобретает вид

\[
\rho \approx \frac{eB(T + \beta \mu)}{2 \pi^2}. \tag{16}
\]

Из формул (15) или (16) следует, что значительное количество частиц может находиться в состояниях с превышением импульсов на направление магнитного поля, отличными от нуля. И так как теперь эти состояния следует рассматривать как возбуждённые, то, следовательно, плотность бозонов, которые будут находиться вне основного состояния (с \(p = 0 \)), будет отлична от нуля при любой ненулевой температуре; это означает, что БЭК (фактически в одномерном импульсном пространстве) невозможна в присутствии достаточно сильного однородного магнитного поля. Заметим, что на невозможность БЭК классического одномерного газа, по-видимому, впервые указал Фейнман [28].
Рассмотрим теперь намагниченность, производимую заряженными векторными бозонами в низшем энергетическом состоянии. Магнитная индукция B определяется как

$$B = H + 4\pi M(B),$$ \hspace{1cm} (17)

где H — напряженность внешнего магнитного поля, а $M(B)$ — магнитный момент газа. Из выражения (14) получим

$$M_z(B) = -\frac{1}{V} \frac{\partial \Omega}{\partial B} = \frac{e}{2\pi^2 B} \sum_{k=1}^{\infty} \left[\frac{M_k}{k} K_1(k\beta M_-) + \frac{eB\beta}{2} K_0(k\beta M_-) \right] \exp(k\beta\mu).$$ \hspace{1cm} (18)

Это точное выражение для магнитного момента газа векторных бозонов в низшем энергетическом состоянии в однородном магнитном поле. Видно, что магнитный момент (18) как функция индукции поля и температуры всегда положителен.

Если $\beta \gg 1$ и $\beta M_- > 1$, то в (18) достаточно учесть только слагаемое с K_0. Используя асимптотические разложения для K_0 в (18) и для K_1 в (6), находим (см. также [16])

$$M_z(B) = \frac{e}{2M_-} \rho,$$ \hspace{1cm} (19)

$$\rho = \frac{eBM^{1/2}T^{1/2}}{(2\pi)^{3/2}} \text{Li}_{1/2}(\exp[\beta(\mu - M_-)]).$$ \hspace{1cm} (20)

Отметим, что последние формулы мы можем также получить, используя первый член следующего выражения для Ω, справедливого при низких температурах:

$$\Omega = \frac{V eBM^{1/2}}{(2\pi)^{3/2} \beta^{3/2}} \left[\text{Li}_{3/2}(\exp[\beta(\mu - M_-)]) + \frac{3}{8\beta M_-} \text{Li}_{5/2}(\exp[\beta(\mu - M_-)]) + \cdots \right].$$ \hspace{1cm} (21)

Предель низких температур соответствует нерелятивистскому приближению. При относительно "высоких" температурах $T > M_-$ магнитный момент газа также, разумеется, положителен:

$$M_z(B) \simeq \frac{e}{2\pi^2} \left[eB \ln(M_-/2T) - T^2 \right].$$ \hspace{1cm} (22)

Обсудим теперь вопрос о возможности возникновения спиновой намагниченности в рассматриваемой нами системе. Для этого нужно показать, что существует решение уравнения (17) при $H = 0$: $H = 0 = B - 4\pi M(B)$. Из выражений (19) и (20) видно, что такое решение возможно только при низких температурах. Подставляя (19) в (17), при $H = 0$ находим, что решение существует при плотности

$$\rho = \frac{eBM_-}{2\pi e^2}, \quad eB \approx m^2.$$ \hspace{1cm} (23)
Следовательно, газ векторных бозонов в низшем энергетическом состоянии в магнитном поле при низкой температуре ферромагнетик [16]. Эта специфическая намагниченность указывает нам на новый возможный механизм возникновения сильных магнитных полей. Отметим, что уравнение (17) не имеет решений при $H = 0$ в пределе "высоких" температур.

Оценим плотность пар векторных бозонов, рожденных (в низшем энергетическом состоянии) за счет столкновений заряженных бозонов в магнитном поле с $B \approx B_{cr}$. В предположении, что плотность рожденных пар много больше плотности начальных частиц, для оценки можно использовать формулу (6) с $\mu = 0$ [5]. Тогда для низких ($BM_+ > 1$, но $T \ll m$) и "высоких" ($BM_+ < 1$, $T \ll m$) температур мы получим соответственно

$$
\rho_T \approx \frac{eB M_+ T^{1/2}}{(2\pi)^{3/2}} \exp(-BM_+),
$$

$$
\rho_T \approx \frac{eBT}{2\pi^2}.
$$

4. ЭНЕРГИЯ ВАКУУМА И ПОЛНАЯ ВЕРОЯТНОСТЬ РАСПАДА

Обсуждаем вопрос о связи термодинамического потенциала как физической величины, характеризующей газ реальных частиц, и эффективного потенциала, который представляет собой величину, рассматриваемую в квантовой теории поля [29]. В описываемом приближении эффективный потенциал должен содержать две части (не зависящую и зависящую от температуры). В присутствии внешнего однородного магнитного поля его можно представить в виде (см., например, [30])

$$
V = V_0 + \Omega(0, B, \beta),
$$

причем в Ω мы должны положить $\mu = 0$. Отметим, что формула (26) и все величины ниже относятся к единице объема.

Видно, что радиационные поправки определяются спектром энергии заряженной частицы во внешнем поле и зависят от температуры. Первый член формулы (26) описывает вклад в эффективный потенциал в единице объема, не зависящий от температуры, второй совпадает с термодинамическим потенциалом идеального газа бозонов, в котором химический потенциал положен равным нулю. Следовательно, вычисление зависимости от температуры части эффективного потенциала может быть сведено к вычислению термодинамического потенциала при $\mu = 0$. Эффективный потенциал (26) является основной величиной, которая изучается при исследовании свойств вакуума квантово-полярной модели во внешнем поле при конечной температуре. Нельзя упускать, что теперь нас интересуют эффекты, обусловленные внешним магнитным полем при конечной температуре, а не плотностью реальных бозонов.

Известно [19, 20, 24], что выражение для эффективного потенциала при $T = 0$ во внешнем однородном магнитном поле с $B > B_{cr}$ становится комплексным, что обусловлено вкладом нестабильной бозонной моли с эффективной массой M_-. Многую часть
эффективного потенциала появляется следствием того, что "спектр энергий" заряженного массивного векторного бозона становится миним и при \(B > B_\text{кр} \). Из формулы (14) следует, что часть эффективного потенциала, зависящая от температуры, также становится комплексной величиной в области \(B > B_\text{кр} \) по той же причине. Минимальная часть эффективного потенциала могла бы не появиться вообще, если бы при вычислениях мы учитывали только вклад "физической" части спектра энергий, которую можно определить лишь в области \(B < B_\text{кр} \). Однако, по-видимому, будет более правильным учесть весь "спектр энергий", но при этом нужно пытаться дать интерпретацию получавшихся комплексных выражений для квантных непрахов. В частности, возникает вопрос об интерпретации минимой части эффективного потенциала, а также других величин, которыми можно описать изучаемую квантовую статистическую систему.

Сформулированный вопрос можно пытаться проанализировать, как это делается в стандартной нерелятивистской квантовой механике при исследовании квазистационарных состояний. Действительно, известно [31], что временная зависимость волновой функции нестабильной нерелятивистской квантово-механической системы имеет вид

\[
\Psi = \exp(-iEt) = \exp(-t(i\Re E + \Im E)),
\]

где \(\Im E \) определяет "ширину" уровня энергии и полную вероятность распада квантовой системы

\[
w = -2\Im E.
\]

В рассматриваемом нами случае аналогом нестабильной квантовой системы является вакуум заряженных векторных бозонов во внешнем магнитном поле при конечной температуре.

Следуя этой аналогии, чтобы найти полную вероятность распада вакуума, мы должны вычислить энергию вакуума, используя формулы статистической физики, т. к. волновая функция вакуума с учетом рождения пар должна описывать мноючастичное состояние. Часть энергии, зависящая от температуры, найдем по формуле [5]

\[
E(T, B) = \Omega_0 - T \frac{\partial \Omega_0}{\partial T}.
\]

Минимальная \(\Omega_0 \) хорошо известна (см., например, [24]):

\[
\Im \Omega_0 = -\frac{eB(eB - m^2)}{8\pi}.
\]

Полная вероятность физического процесса, разумеется, должна быть положительной величиной. Это требование позволяет однозначно выполнить аналитическое продолжение в область \(B > B_\text{кр} \), в которой эффективный потенциал и "энергия вакуума" имеют комплексные значения.
Эффективный потенциал в области \(B > B_{cr} \) можно получить, выполняя аналитическое продолжение функции \(K_1(z) \), рассматриваемой как функция переменной \(z = k\beta M_- \), в комплексную плоскость. Для этого определим аргумент функции \(K_1(z) \) в области \(B > B_{cr} \) следующим образом:
\[
z = \pm ik\beta M_- \equiv \pm it. \tag{31}
\]
Тогда согласно принципу симметрии Шварца имеем
\[
K_1(\pm it) = K_1^*(\mp it) = -\frac{\pi}{2} [J_1(t) \mp i N_1(t)]. \tag{32}
\]
где \(J_1(t) \) и \(N_1(t) \) — цилиндрические функции первого и второго порядка, т. е. функции Бесселя и Неймана, соответственно. При выполнении аналитического продолжения в область \(B > B_{cr} \) следует выбрать такие знаки перед аргументом \(it \) в \(K_1(\pm it) \) и перед \(M_- \) в (14), чтобы полная вероятность была положительной и сводилась к случаю нулевой температуры. В результате для \(\Omega_0(t) \) получим выражение
\[
\Omega_0(t) = \frac{eBT \sqrt{eB - m^2}}{2\pi} \sum_{k=1}^{\infty} \frac{1}{k} [iJ_1(t) + N_1(t)]. \tag{33}
\]
Ряд, описывающий мнимую часть \(\Omega_0(t) \), удобно преобразовать в сумму с помощью следующей формулы:
\[
\sum_{k=1}^{\infty} \frac{J_1(k\epsilon)}{k} = 1 - \frac{t^2}{4} + \frac{2}{\pi} \sum_{n=1}^{l} \frac{\sqrt{t^2 - (2\pi n)^2}}{2\pi}, \quad 2\pi l < t < 2\pi(l + 1). \tag{34}
\]
Подставляя мнимую часть \(\Omega_0(t) \) в (29), найдем \(\Im(E(T)) \), зависящий от температуры. Затем, взяв сумму величины (30) и найденного члена, с учётом согласования знаков, мы получим выражение для полной вероятности распада вакуума в виде
\[
w = \frac{eB(eB - m^2)}{8\pi} \left[1 + \frac{8T^2}{eB - m^2} \sum_{n=1}^{l} \frac{2\pi n^2}{\sqrt{x^2 - m^2}} \right], \tag{35}
\]
где \(l \) целая часть функции \([x = \beta \sqrt{eB - m^2}/2\pi]\) (наибольшее целое число меньше \(x \)).

Выражение (35) можно также интерпретировать как полную вероятность рождения пар векторных бозонов (в низком квантовом состоянии) внешним магнитным полем из вакуума при конечной температуре, причем первый член этого выражения определяет полную вероятность указанного процесса при нулевой температуре. Видно, что полная вероятность, определяемая формулой (35), всегда положительна и сводится к соответствующему выражению того же процесса при \(T = 0 \). Процесс рождения пар векторных бозонов из вакуума внешним магнитным полем имеет порог по величине напряжённости магнитного поля \((B > B_{cr}) \).
ЗАРЯЖЕННЫЕ ВЕКТОРНЫЕ БОЗОНЫ В МАГНИТНОМ ПОЛЕ

Отметим также, что полная вероятность рождения пар векторных бозонов (35) при $T \neq 0$ больше, чем вероятность при $T = 0$, т. к. в присутствии термостата появляются новые вакуумные состояния, которые могут заполняться рожденными полями бозонами.

Полная вероятность рождения пар в зависимости от напряженности магнитного поля при низких температурах приведена на рис. 1. По оси ординат отложена функция $8\pi w(\beta m, x)(10/m)^4$ в зависимости от $x = (B/B_{cr}) - 1$ при $\beta m = 100$. Острые пики на рис. 1 в узких областях значений поля соответствуют случаям, когда пары векторных бозонов рождаются точно на дискретных "квантовых уровнях", зависящих от температуры", т.е. в новых квантовых состояниях, которые появляются в термостате [32].

При определении полной вероятности рождения пар векторных бозонов мы учли минимальную часть эффективного потенциала в однородном приближении при $T = 0$, которая появляется, если рассмотренный выше процесс разрешен. Реальную часть эффективного потенциала с учетом однородного вклада заряженных векторных бозонов при $T = 0$ можно получить в простом виде только в пределе сверхсильного магнитного поля $eH \gg m^2$ [24]:

$$RV_0 \approx \frac{7(eH)^2}{32\pi^2} \left[\ln \left(\frac{eH}{m^2} \right) - 0.9 \right],$$

где eH — произведение заряда на напряженность внешнего магнитного поля (референциальная величина), а m имеет смысл перенормированной массы бозона.

Если вакуумное состояние W-векторного сектора электрослабой модели Вайнберга Салама во внешнем магнитном поле при конечной температуре рассматривать как некоторую квантово-статистическую систему, то аналогом свободной энергии этой системы, по-видимому, является термодинамический потенциал (33).

При относительно низких температурах, когда $\beta\sqrt{eB - m^2} \gg 1$, реальная и минимальная части свободной энергии вакуума (33) как функции внешнего магнитного поля оциллируют с увеличивающейся амплитудой при увеличении напряженности поля и имеют

5 Теоретическая и математическая физика, т. 114, № 3, 1998 г.
минимумы и нули, причем минимумы реальной и нули минимой частей свободной энергии достигаются при двух и тех же значениях напряженности поля. Такое поведение свободной энергии следует из поведения функций $J_1(t)$ и $N_1(t)$ [25], которые ощущаются с одинаковыми амплитудами, но сдвинуты по фазе на $\pi/2$, по крайней мере, при больших значениях аргумента, т.е. при низких температурах. Строго говоря, свободная энергия (так же как и энергия) любой физической модели должна быть действительной величиной. Тем не менее иногда мы употребляем фразу "минимальная свободная энергия", чтобы просто подчеркнуть, что математическое выражение этой физической величины в некоторой области параметров содержится как действительную, так и минимую части.

Поведение свободной энергии модели Вайнберга Саллама изучалось численными методами в области значений внешнего магнитного поля $B < B < 2B_\mathrm{cr}$ и температуры $m \gg T$. Для примера мы приведем лишь график зависимости функции $4\pi R_0/m^2$ от $x = \sqrt{(B/B_\mathrm{cr})}$ при $\beta m = 100$ (рис. 2), который хорошо иллюстрирует обсуждаемую объемную зависимость реальной и минимой частей свободной энергии от напряженности магнитного поля при относительно низкой температуре.

Нули минимой части свободной энергии соответствуют значениям поля (при данной температуре), при которых изучаемая квантовая модель стабильна в смысле термодинамики. Глобальные экстремумы реальной части свободной энергии как функции B появляются, поскольку "квантовые уровни, зависящие от температуры", которые могут заполняться рожденными из вакуума возбуждениями, являются дискретными. Реальную часть свободной энергии можно также интерпретировать как функцию, зависящую от переменной температурного состояния (которая в нашем случае есть количество рожденных возбужденных пар) при заданных температуре и объеме. Отметим, что осциллирующее поведение термодинамического потенциала в однородном приближении для чистой SU(2)-калибровочной модели в присутствии однородного магнитного поля было получено в работе [33].
При \(B > B_{cr} \) изучаемая квантовая система, интерпретируемая с точки зрения термодинамики, является неустойчивой. При этом рожденные поле пары частиц будут находиться в состоянии термодинамического равновесия при заданных температуре и объеме только в том случае, если свободная энергия термодинамической системы (т.е. реальная часть (33)) имеет минимумы. Следует подчеркнуть, что неустойчивое равновесное состояние вообще не может существовать в термодинамике (34), поэтому физический смысл имеют только точки, в которых реальная и минима части (33) имеют минимумы и нули, соответственно. Статистическая система будет устойчивой только в том случае, если минима часть свободной энергии точно равна нулю. Поскольку миная часть функции распределения накала, минима реальной и нули минимой (зависящей от температуры) частей свободной энергии достигаются при одном и тех же значениях внешнего поля (при заданной температуре), можно сказать, что вакуум модели Вайнберга Салама стабилен только при этих значениях напряженности поля.

При относительной величине температуры \(\beta \sqrt{eB - m^2} \sim 1 \) полная вероятность рождения пар векторных бозонов определяется только первым членом правой части формулы (35), а значения температуры и величины внешнего поля теперь удовлетворяют неравенству

\[
0 < \sqrt{eB - m^2} < 2\pi T. \tag{37}
\]

Интересно, что минима (зависящая от температуры) часть свободной энергии обращается в ноль при \(\beta \sqrt{eB - m^2} = 4 \). Нетрудно видеть, что поведение всех рассматриваемых величин при “высокой” температуре совершенно отличается от случая низких температур: они не обнаруживают ни осцилляций, ни пиков.

5. ЗАКЛЮЧЕНИЕ

Выполненны вычисления, мы считали, что магнитное поле постоянным во времени. Однако, если пары спонтанно рождаются из вакуума исключительно за счет магнитного поля (аналогично механизму Швингера для рождения электрон-позитронных пар в присутствии электрического поля [35]), внешнее магнитное поле будет изменяться со временем. Можно, однако, считать, что оно будет оставаться постоянным в течение промежутка характерического времени, равного приблизительно \(1/|M_-| \), поэтому все полученные выше физические величины следует отнести к этому промежутку времени, т.е. умножить на \(1/|M_-| \). Так, плотность рожденных полем пар векторных бозонов \(\rho_e \) и их магнитный момент \(M \) можно определить как \(\rho_e = \frac{m}{|M_-|} \) и \(M = e\rho_e/m \). Отсюда видно, что плотность рожденных полем бозонов приблизительно в \(4\pi/e^2 \) раз меньше плотности, которая необходима, чтобы индукция магнитного поля, возникающая в результате спонтанной намагниченности бозонов, достигла значения \(B_{cr} \) (см. (23)).

Следует подчеркнуть, что плотность пар векторных бозонов, рожденных (в низком энергетическом состоянии) в результате столкновений бозонов в магнитном поле с \(B \approx B_{cr} \), определяется формулами (24), если \(\beta|M_-| > 1 \), \(T < m \), и (25), если \(\beta|M_-| < 1 \), \(T < m \).
Отметим, что изучение различных эффектов в сильных магнитных полях представляет не только академический интерес. Выше уже упоминалось о существовании сильных магнитных полей в нейтронных звездах. В работах [36, 37] указывается на возможность появления очень сильных (прядей, неоднородных) магнитных полей вблизи точки электрослабого фазового перехода. Если газ заряженных частиц имеет высокую плотность находящийся в сильном магнитном поле, становится актуальной задача определения термодинамических величин (например, свободной энергии и магнитного момента), которыми следует характеризовать такую систему. Дело в том, что в сильном магнитном поле вклад вакуума (т.е. виртуальных заряженных частиц) во всех физические величины, определяющие систему частиц, может превышать вклад частиц [38]. Несмотря на это, может быть свободная энергия вакуума функцией индукции или напряженности магнитного поля. Мы надеемся обсудить эти вопросы более подробно впоследствии.

В заключение мне приятно поблагодарить Чун Лин Хо, Ян Ши и В. Н. Рединова за стимулирующие и полезные дискуссии.

Список литературы

Поступила в редакцию 3.VII.1997 г.