П. Е. Рябов, Бифуркации первых интегралов в случае Соколова, \textit{ТМФ}, 2003, том 134, номер 2, 207–226

DOI: https://doi.org/10.4213/tmf154

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением
http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
30 декабря 2018 г., 11:32:28
ТЕОРЕТИЧЕСКАЯ
И МАТЕМАТИЧЕСКАЯ
ФИЗИКА
Том 134, № 2
февраль, 2003

© 2003 г.
П. Е. Рябов

БИФУРКАЦИИ ПЕРВЫХ
ИНТЕГРАЛОВ В СЛУЧАЕ СОКОЛОВА

Исследована фазовая топология новой интегрируемой Лиувилли гамильтоновой
системы с дополнительным интегралом четвертой степени (случай Соколова).

Ключевые слова: уравнения Кирхгофа, интегрируемые гамильтоновы системы, бифуркации
торов Лиувилли.

1. ВВЕДЕНИЕ

Рассмотрим систему уравнений Кирхгофа

\[\begin{align*}
\dot{s}_1 &= (-s_2 + \alpha r_3)(ar_2 + s_3) , \\
\dot{s}_2 &= s_3s_1 + \alpha s_1r_2 - \alpha^2 r_1^2 s_3 , \\
\dot{s}_3 &= -\alpha r_1 s_3 ,
\end{align*} \]

где \(\alpha \) — параметр. Систему (1) можно записать в гамильтоновом виде на пространстве
\(\mathbb{R}^6 \) следующим образом:

\[\dot{\mu}_i = (\mu_i , H) , \]

где \(\mu = (s, r) \in \mathbb{R}^6 \), а величина

\[H = \frac{1}{2}(s_2^2 + s_3^2 + 2s_3^2) + \alpha s_3r_2 - \frac{1}{2} \alpha^2 r_2^2 \]

представляет собой энергию (гамильтонов) системы "тело жидкость". Здесь векторы
\(s, r \) называются соответственно импульсом моментом и импульсивной силой. Для
дифференцируемых функций \(G, K \) на пространстве \(\mathbb{R}^6 \) скобка Пуассона определяется в
виде

\[\{ G, K \}(\mu) = \nabla G P(\mu) \nabla K . \]

Матрица

\[P(\mu) = \begin{pmatrix} S & R \\ R & 0 \end{pmatrix} , \]

*Финансовая академия при Правительстве Российской Федерации, Москва, Россия. E-mail:
orelryabov@mtu-net.ru

207
где
\[
S = \begin{pmatrix}
0 & s_3 & -s_2 \\
-s_3 & 0 & s_1 \\
s_2 & -s_1 & 0
\end{pmatrix},
\quad R = \begin{pmatrix}
0 & r_3 & -r_2 \\
-r_3 & 0 & r_1 \\
r_2 & -r_1 & 0
\end{pmatrix},
\]
определен пуассонову структуру на \(\mathbb{R}^6 \). Два геометрических первых интеграла системы (1),
\[
F_1 = r_1^2 + r_2^2 + r_3^2,
\quad F_2 = s_1 r_1 + s_2 r_2 + s_3 r_3,
\]
являются функциями Казимира относительно этой структуры.
Векторное поле (1), ограниченное на четырехмерное многообразие
\[
M^4 = \{(s, r) \in \mathbb{R}^6: F_1 = f_1, f_1 > 0, F_2 = f_2 \} \cong T^*S^2,
\]
порождает гамильтонову систему с двумя степенями свободы. Таким образом, для интегрируемости по Лиувиллю, кроме функций Казимира \(F_1, F_2 \) и гамильтониана \(H \), необходимо наличие одного дополнительного интеграла. В работах [1], [2] было показано, что функция
\[
F = s_3^2 (s_1^2 + s_2^2 + s_3^2 + 2 \alpha (r_2 s_3 - r_3 s_2) + \alpha^2 (r_2^2 + r_3^2)) +
+ 2 \alpha s_3 (s_2 - \alpha r_3) (s_1 r_1 + s_2 r_2 + s_3 r_3)
\]
является первым интегралом системы (1), т.е. \(\{ H, F \} = 0 \).

Не ограничивая общности, в дальнейшем полагаем \(f_1 = 1, \alpha = 1 \).

В данной работе изучена топология и изоэнергетических поверхностей \(Q^4_h = \{ H = h \} \)
и построено бифуркационное множество, а также описаны перестройки торов Лиувилля.
При доказательстве основных теорем использованы методы топологического анализа конкретных систем, предназначенные в работе [3] и развитые в статьях [4] [6], а также общая теория интегрируемых гамильтоновых систем [7], [8]. Полезными оказались методы компьютерного моделирования бифуркаций лиувиллевых торов. Советен этих подходов позволяет доказывать, какие сложные утверждения о количестве и перестройках лиувиллевых торов. Описанный автором топология лиувиллевая слоения на поверхностях постоянной энергии в случае Соколова оказалась новой, т.е. этот случай не является топологически эквивалентным ни одному из исследованных ранее. Новым элементом, в частности, является присутствие григорова критического тора при нулевой постоянной площади. С топологической точки зрения этот случай ближе всего к случаю интегрируемости Стечкина.

2. НЕКОТОРЫЕ ОПРЕДЕЛЕНИЯ

Отображение момента называется отображение \(\Phi: M^4 \to \mathbb{R}^2(f, h) \), сопоставляющее точке на многообразии \(\mathbb{R}^2 \) значения функций \(F \) и \(H \) в этой точке: \(x \to (f = F(x), h = H(x)) \). Очевидно, что лиувиллев тор изображается на плоскости одной точкой. Множеством особенностей отображения момента называется множество точек многообразия \(M^4 \), в которых функции \(F \) и \(H \) зависят: \(K = \{ x \in M^4: \text{rank} d\Phi(x) < 2 \} \).
Образ этого множества \(\Sigma = \Phi(K) \) называется бифуркационным множеством. Наряду с отображением момента рассмотрим отображение \(\Phi_1 : S^2 \times \mathbb{R}^3 \to \mathbb{R}^2(g, h) \), заданное формулой \(\Phi_1(x) = (g = F_2(x), h = H(x)) \), где точка \(x \) принадлежит пространству \(S^2 \times \mathbb{R}^3 \). Образом множества особенностей отображения \(\Phi_1 \) является бифуркационная диаграмма (биfurкационное множество) \(\Sigma_1 \) в плоскости \(\mathbb{R}^2(g, h) \). Полный преобразованный точка \((g, h) \notin \Sigma_1 \) является несходимым компактным трехмерным многообразием \(Q_h^3 = \{ x \in M^4 \mid H(x) = h \} \), которое называется изоэнергетической поверхностью. Для всех точек \((g, h) \), принадлежащих одной связанной компоненте \(\mathbb{R}^2(g, h) \setminus \Sigma_1 \), топологический тип \(Q_h^3 \) будет одним и тем же и может изменяться лишь при переходе через \(\Sigma_1 \). Слоение Лиувилля — это слоение изоэнергетической поверхности на уровне дополнительного интеграла. Сложное Лиувилля слоение — это связанная компонента преобразования точек при отображении момента, а бифуркационное множество \(\Sigma \) это образ этих слоений Лиувилля.

Для несходимых компактных поверхностей уровня энергии разработана теория классификации интегрируемых гамильтоновых систем [7]. В рамках этой теории глобальное поведение системы на изоэнергетической поверхности можно описать с помощью графа (называемого молекулярной системой), ребра которого соответствуют одноименным сечениям несходимых торов Лиувилля, а его вершины (атомы) описываются перестройкой этих торов на уровнях интеграла \(F \). Простейшие перестройки (атомы) обозначаются буквами \(A, B, A^* \), \(C_2 \) [7]: буква \(A \) характеризует выражение тора в окружности, буква \(B \) — распад одного тора на два или, наоборот, слияние двух торов в один, буква \(A^* \) — сложную перестройку тора в тор, буква \(C_2 \) описывает симметричную перестройку двух торов в два тора.

3. ТОПОЛОГИЯ ИЗОЭНЕРГЕТИЧЕСКИХ ПОВЕРХНОСТЕЙ

Топологический тип изоэнергетической поверхности \(Q_h^3 = \{ H = h \} \) можно изучить при помощи проекции \(\pi \) на сферу Пуассона \(S^2 = \{ r_1^2 + r_2^2 + r_3^2 = 1 \} \) [3]. В нашем случае при этой проекции поверхность \(Q_h^3 \) переходит в область на сфере Пуассона, выделяемую условием

\[\varphi_g(r) \leq h, \]

где

\[\varphi_g(r) = \frac{(2g + r_2r_3)^2}{4(2 - r_3^2)} - \frac{r_3^2}{2} - \frac{r_2^2}{4}. \]

Топология изоэнергетических поверхностей \(Q_h^3 = \{ H = h \} \) и их перестройки при изменении значения энергии \(h \) полностью определяются функцией \(\varphi_g(r) \), которая является функцией Морса на сфере. Критические точки и значения функции \(\varphi_g(r) \) в этих точках следующие:

1) \(r_2 = r_3 = 0, r_1^2 = 1, \quad \varphi_g(r) = g^2/2; \)

2) если \(1/2 < g \leq 1 \), то \(r_1^2 = 2g - 1, r_2^2 = 1 - g, r_3^2 = 1 - g \); \(\varphi_g(r) = g - 1/2; \)

3) если \(-1 \leq g \leq -1/2 \), то \(r_2^2 = 1 - 2g, r_2^2 = 1 + g, r_3^2 = 1 + g \); \(\varphi_g(r) = -g - 1/2; \)

4) \(r_1 = 0, r_2^2 = g^2/(1 + g^2), r_3^2 = 1/(1 + g^2), \) \(\varphi_g(r) = (g^2 - 1)/2; \)

БИФУРКАЦИИ ПЕРВЫХ ИНТЕГРАЛОВ В СЛУЧАЕ СОКОЛОВА 209
5) \(r_1 = 0, \quad r_2 = (1 + 4g^2), \quad r_3 = 4g^2 / (1 + 4g^2), \quad \varphi_g(r) = g^2 - 1/4. \)

Критические значения функции \(\varphi_g(r) \) на сфере Пуассона позволяют найти бифуркационную диаграмму \(\Sigma_1 \) отображения \(\Phi_1 : S^2 \times \mathbb{R}^3 \to \mathbb{R}^2(g, h) \), которая, таким образом, состоит из кривых

\[
\begin{align*}
\Delta_1 & : h = \frac{g^2}{2}, \\
\Delta_2 & : h = \frac{1}{2}(g^2 - 1), \\
\Delta_3 & : h = g^2 - \frac{1}{4}, \\
\Delta_4 & : h = g - \frac{1}{2}, \quad \frac{1}{2} \leq g \leq 1, \\
\Delta_5 & : h = -g - \frac{1}{2}, \quad -1 \leq g \leq -\frac{1}{2}.
\end{align*}
\]

Отметим, что бифуркационная диаграмма \(\Sigma_1 \) симметрична относительно прямой \(g = 0 \).

Зная индексы критических точек, можно установить вид областей (2) на сфере Пуассона: это пустое множество \(\varnothing \), два диска \(D^2 \), кольцо \(S^1 \times \mathbb{R}^1 \) (диск \(D^2 \) с одной дыркой), диск \(D^2 \) с тремя дырками, вся сфера \(S^2 \). Соответствующие им поверхности \(Q^3_h \) гомеоморфны 2\(S^3 \), \(S^1 \times S^2 \), \(N^3 = (S^1 \times S^2) \# (S^1 \times S^2) \# (S^1 \times S^2) \) и \(\mathbb{R}P^3 \), где символ \# обозначает связную сумму. Таким образом, мы доказали следующую теорему.

Теорема 1. *Изогеометрические поверхности в случае интегрируемости Соколова гомеоморфны либо 2\(S^3 \), либо \(S^1 \times S^2 \), либо \(N^3 = (S^1 \times S^2) \# (S^1 \times S^2) \# (S^1 \times S^2) \), либо \(\mathbb{R}P^3 \).*

На рис. 1 изображена бифуркационная диаграмма \(\Sigma_1(g \geq 0) \) отображения \(\Phi_1 \) для гамильтониана случая Соколова, которая разбивает полуплоскость \(\mathbb{R}^2(g, h) \) на пять областей. В каждой из этих областей на рис. 1 указан топологический тип 3-многообразия \(Q^3_h \).

![Рис. 1. Топологический тип изогеометрических поверхностей для случая Соколова.](image.png)
4. БИФУРКАЦИОННОЕ МНОЖЕСТВО, ПЕРЕСТРОЙКИ ТОРОВ ЛИУВИЛЯ И ИНТЕГРАЛЬНЫЕ МНОГООБРАЗИЯ

Для определения бифуркационного множества нам потребуется следующая лемма, доказательство которой проводится по той же схеме, что и в работе [5].

Лемма 1. Слои лиувилля слоения пересекают хотя бы одну из гиперплоскостей \(s_2 = r_3, \quad r_2 = -s_3, \quad r_1 = 0, \quad s_3 = 0 \).

Бифуркационное множество в случае Соколова описывается следующей теоремой.

Теорема 2. На плоскости \(\mathbb{R}^2(f, h) \) бифуркационное множество \(\Sigma \) представляет собой объединение кривых \(\Gamma_i \), \(i = 1, 5 \), где

\[
\begin{align*}
\Gamma_1: \quad & f = -g^2, \quad h \geq \frac{1}{2}(g^2 - 1); \\
\Gamma_2: \quad & f = 2g^2h - g^4, \quad \frac{1}{2}(g^2 - 1) \leq h \leq g^2; \\
\Gamma_3: \quad & f = \left(h + \frac{1}{2}\right)^2 - g^2, \quad g^2 - \frac{1}{2} \leq h \leq g^2 - \frac{1}{4}; \\
\Gamma_4: \quad & f = h^2, \quad g^2 - \frac{1}{4} \leq h \leq g^2 - \frac{1}{2}; \\
\Gamma_5: \quad & f = 0, \quad h \geq \begin{cases}
0, & 0 < g \leq \frac{1}{2}, \\
\frac{g - 1}{2}, & \frac{1}{2} \leq g \leq 1, \\
\frac{g^2}{2}, & g \geq 1.
\end{cases}
\end{align*}
\]

Приведем схему доказательства (подробное доказательство аналогичной теоремы см. в работах [4], [6]). Особенности отображения момента \(\Phi: M^4 \to \mathbb{R}^2(f, h) \) удобно определять из условия

\[
\text{rank}(H \times F \times P_2 \times F_1) < 4, \tag{4}
\]

которое выполняется тогда и только тогда, когда все \(\Delta_{ijkl} = 0 \). Здесь \(\Delta_{ijkl} \) обозначает определитель, составленный из стовычей матрицы Ляпунова отображения момента с номерами \(1 \leq i < j < k < l \leq 6 \). При выполнении хотя бы одного из условий \(s_2 = r_3, \quad r_2 = -s_3, \quad r_1 = 0, \quad s_3 = 0 \) система уравнений \(\Delta_{ijkl} = 0 \) имеет все критические значения отображения момента.

Замечание. В работе [9] была построена естественная пара Лакса и предложена алгебраическая кривая

\[
C: \quad g^2 = R_5(x), \quad R_5(x) = -x(x^2 - 2hx + f)[x^2 - (2h + 1)x + g^2 + f],
\]

на которой, по-видимому, линеаризуется поток векторного поля системы (1). В пользу этого обстоятельства говорит тот факт, что если исключить из системы уравнений
Рис. 2. Бифуркационные диаграммы отображения момента для следующих значений постоянной площади: а) $g = 0$; б) $0 < g < 1/2$; в) $1/2 < g < 1$; г) $g > 1$.

$R_5(x) = 0$, $R'_5(x) = 0$ переменную x, то получится поверхность критических точек в пространстве $\mathbb{R}^3(g, f, h)$. Эта поверхность содержит бифуркационное множество.

Качественно различные бифуркационные диаграммы приведены на рис. 2. Бифуркационные кривые $\Gamma_1, \ldots, \Gamma_5$ точками пересечения H, S_1, S_2, S_3, S_4, U и точками касания $e_1, e_2, e_3, h_1, h_2, h_3$ разбивают на участки $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3, \beta_4, \gamma_1, \gamma_2, \gamma_3, \delta_1, \delta_2, \sigma_1, \sigma_2, \sigma_3$. Эти кривые трансверсальны пересекаются в точках, прообразы которых соответствуют стационарным решениям системы (1),

\[
H = \left(-g^2, \frac{1}{2}g^2 - \frac{1}{2}\right) \in \mathbb{R}^2(f, h),
\]

\[
S_1, S_3 = \left(\frac{1}{16}(4g^2 - 1)^2, g^2 - \frac{1}{4}\right) \in \mathbb{R}^2(f, h).
\]
Бифуркации первых интегралов в случае Соколова

\[S_2 = \left(0, g - \frac{1}{2} \right) \in \mathbb{R}^2(f, h), \quad \frac{1}{2} < g < 1, \]

\[U, S_4 = \left(0, \frac{g^2}{2} \right) \in \mathbb{R}^2(f, h) \]

и касаются в точках

\[e_1 = \left(0, -\frac{1}{2} \right) \in \mathbb{R}^2(f, h), \]

\[e_2, e_3 = \left(g^4 - g^2, g^2 - \frac{1}{2} \right) \in \mathbb{R}^2(f, h), \]

\[h_1, h_2 = (0, 0) \in \mathbb{R}^2(f, h), \]

\[h_3 = (g^4, g^2) \in \mathbb{R}^2(f, h). \]

Точки возврата кривые \(\Gamma_1, \ldots, \Gamma_5 \) не имеют. Согласно работе [8] невырожденные особые точки бифуркационного множества имеют следующий топологический тип: \(H, S_3 \) — центр-центр, \(S_1, S_2, S_4 \) — центр-седло, \(U \) — седло-седло (каждое, см. ниже), а выраженные особые точки имеют следующий тип выражения: \(e_2, e_3 \) — эллиптическая вилка, \(h_2 \) — гиперболическая вилка, \(h_3 \) — гиперболическое уединение периода. Точки \(e_1, h_1 \) не входят в предложенную в [8] классификацию, поскольку их круговые молекулы, как следует из приведенных ниже рассуждений, содержат минимальные торы.

Для удобства изучения структуры интегрального многообразия \(J_{f, h} = \{ x \in M^4; F(x) = f, H(x) = h \} \) представим поверхность уровня первых интегралов в виде

\[\begin{align*}
 s_1^2 + s_2^2 + s_3^2 + (s_3 + r_2)^2 & = 2h + 1 - r_1^2, \\
 s_2s_1^2 + s_3(s_3 + r_2)^2 + |s_3(s_2 - r_3) + g|^2 & = g^2 + f, \\
 s_1r_1 + s_2r_2 + r_3s_3 & = g, \\
 r_1^2 + r_2^2 + r_3^2 & = 1.
\end{align*} \]

Поскольку поверхность уровня первых интегралов \(J_{f, h} \) компактна, то ее вид может измениться лишь при переходе через бифуркационное множество \(\Sigma \) отображения момента. В областях, которые содержат точки с \(f < -g^2 \), имеем \(J_{f, h} = \emptyset \). Кривые бифуркационного множества разбивают образ отображения момента на несколько областей, внутри которых торы не испытывают никаких бифуркаций. На рис. 2 одинаковые цифры обозначают все такие семейства торов; теми же цифрами обозначены их образы при отображении момента (будут называться областями). В треугольник, ограниченный кривыми \(\delta_1, \delta_3, \gamma_2 \), попадают торы из двух семейств второго и четвертого. Действительно, как будет показано ниже, при движении из этой области в область \(\overline{2} \) два тора "проходят" через кривую \(\gamma_2 \), не прерывая никаких перестроек, а два "исчезают" на кривой \(\gamma_2 \).

Отметим два важных свойства поверхностей уровня первых интегралов:

а) слои линиям слоения, соответствующие значениям \(f \neq 0 \), не пересекают гиперплоскость \(s_3 = 0 \) (действительно, из \(s_3 = 0 \) следует \(f = 0 \));
б) значения всех трех интегралов системы (5) инварианты относительно симметрии \(\tau : (s_1, s_2, s_3, r_1, r_2, r_3) \rightarrow (s_1, -s_2, -s_3, r_1, -r_2, -r_3) \), изменяющей знак \(s_3 \).

Следовательно, при \(f \neq 0 \) слои лиувилево слонения состоят из четного числа связных компонент, расположенных по разные стороны от гиперплоскости \(s_3 = 0 \).

Лемма 2. При нечётной постоянной площади в прообразе каждой неособой точки лука \(\sigma_3 \) лежат две минимальные окружности.

Доказательство. При условии \(f = -g^2 \) и \(g \neq 0 \) из системы (5) следует, что

\[
\begin{align*}
s_1 &= 0, \\
r_2 &= -s_3, \\
g(g - 2s_3r_3) &= 2hs_3^2, \\
r_1^2 + s_3^2 + r_3^2 &= 1.
\end{align*}
\]

Эти уравнения определяют две замкнутые кривые, гомеоморфные окружности. В точках, заданных системой (6), выполняется условие линейной зависимости \(\nabla F = -2g\nabla F_2 \). Следовательно, уравнения (6) дают особенности отображения момента. Для определения индексов критических окружностей найдем матрицу \(G = G_F + 2gG_{F_2} \), где \(G_F, G_{F_2} \) — гессианы функций \(F \) и \(F_2 \), соответственно. Рассмотрим ограничение формы, определяемой этой матрицей, на пространство, ортогональное векторам \(\nabla H, \nabla F_1, \nabla F_2 \). Поскольку достаточно проверить ненулевую окружность только в одной точке любой из траекторий, будем рассматривать точки, заданные системой

\[
\begin{align*}
r_1 &= 0, \\
s_1 &= 0, \\
r_2 &= -s_3, \\
s_3(r_3 - s_2) &= g, \\
s_3^2 + r_3^2 &= 1, \\
g(g - 2s_3r_3) &= 2hs_3^2.
\end{align*}
\]

Касательное пространство в точках указанной системы задается векторами

\[
e_1 = \{1, 0, 0, 0, 0, 0\}, \quad e_2 = \{0, 0, 0, 1, 0, 0\}, \quad e_3 = \left\{0, 1, \frac{g - s_3r_3}{s_3^2}, 0, \frac{r_3}{s_3}, 0\right\},
\]

которые ортогональны векторам \(\nabla H, \nabla F_1, \nabla F_2 \). Далее, вычисляем последовательно матрицу \(G \) и ее ограничение \(\tilde{G}(e_i, e_j) \) на пространство векторов \((e_1, e_2, e_3) \). Собственные значения выраженной матрицы \(\tilde{G}(e_i, e_j) \) имеют вид

\[
\begin{align*}
\lambda_1 &= 0, \\
\lambda_2 &= 2s_3^2, \\
\lambda_3 &= \frac{2g^2(g - s_3r_3)^2 + s_3^4}{s_3^6}.
\end{align*}
\]

В силу того что \(\lambda_2 > 0 \) и \(\lambda_3 > 0 \), критические окружности являются минимальными. Лемма доказана.

Следствие 1. На луке \(\sigma_3 \) имеем перестройку типа 2A.

Лемма 3. В прообразе каждой точки кривых \(\sigma_1 \) и \(\sigma_2 \) лежат соответственно четыре и две максимальные окружности.
Доказательство. Нетрудно показать (см. лемму 2), что при $g = 0$ в прообразе каждой точки кривой α_1 лежат четыре, а кривой α_2 две максимальные окружности. При переходе к случаю $g \neq 0$ бифуркационная диаграмма непрерывно меняется, но топология кривых α_1, α_2 сохраняется. Поэтому утверждение леммы верно и при $g \neq 0$, что и требовалось доказать.

Следствие 2. Кривым α_1 и α_2 отвечают перестройки типа $4A$ и $2A$, соответственно.

Лемма 4. В прообразе каждой точки кривых γ_1 и γ_3 лежат две седловые окружности, а в прообразе каждой точки кривой γ_2 две максимальные окружности.

Доказательство. В случае $g = 0$ критические окружности и значения отображения момента, которые соответствуют кривым γ_1 и γ_3, уравновешивают систему уравнений

\[s_1 = s_2 = r_3 = 0, \]
\[r_1^2 + r_2^2 = 1, \]
\[s_3(s_3 + r_2) = h, \]
\[s_3^2(s_3 + r_2)^2 = f, \]

(7)

поскольку в этих точках выполняется условие линейной зависимости $\nabla F = 2s_3(s_3 + r_2)\nabla H$. Рассмотрим матрицу $G = G_F - 2s_3(s_3 + r_2)G_H$, которая необходима для определения индексов критических окружностей. Здесь G_F, G_H — гессианы функций F и H, вычисленные в точках, заданных системой (7). Касательное пространство в указанных точках задается векторами

\[e_1 = \{r_2, -r_1, 0, 0, 0\}, \]
\[e_2 = \{0, 0, r_1 s_3, r_2(2s_3 + r_2), -r_1(2s_3 + r_2), 0\}, \]
\[e_3 = \{0, -s_3, 0, 0, r_2\}, \]

ортогональными векторам $\nabla H, \nabla F_1, \nabla F_2$. Характеристический многочлен вырожденной матрицы $G(e_1, e_j)$ имеет вид $f(\lambda) = \lambda f_1(\lambda)$, где

\[f_1(\lambda) = \lambda^2 + 2s_3r_2(1 - (s_3 + r_2 + 2)^2)\lambda - 4r_2^2s_3^2(s_3 + r_2)^2. \]

Кроме нулевого собственного значения, характеристический многочлен $f(\lambda)$ имеет два других собственных значения разных знаков, как и $f_1(0) < 0$. Это означает, что критические окружности являются седловыми.
Перейдем к случаю $g
eq 0$. Критические точки и значения отображения момента, соответствующие кривым γ_1, γ_2, γ_3, удовлетворяют соотношениям

$$
\begin{align*}
\eta_1 &= 0, \\
\eta_2 &= r_3, \\
(\eta_3 + r_2)r_3 &= g, \\
r_1^2 + r_2^2 + r_3^2 &= 1,
\end{align*}
$$

(8)

$$
\begin{align*}
\eta_3(\eta_3 + r_2) &= h, \\
\eta_3^2(\eta_3 + r_2)^2 &= f.
\end{align*}
$$

Нетрудно показать, что в указанных точках выполняется условие линейной зависимости

$$
\nabla F = \frac{2g(g - r_2r_3)}{r_3^3} \nabla H.
$$

Составим матрицу

$$
G = G_F - \frac{2g(g - r_2r_3)}{r_3^3} G_H,
$$

где, по-прежнему, G_F и G_H — гессеаны функций F и H, вычисленные в критических точках системы (8). Касательное пространство в указанных точках задается векторами

$$
\begin{align*}
e_1 &= \left\{ 1, -\frac{r_1r_3}{g}, 0, \frac{r_2^2}{g}, 0, -\frac{r_1r_3}{g} \right\}, \\
e_2 &= \left\{ 0, -\frac{2g^2 + r_2^2r_3^2 + r_3^4 - 3gr_2^2r_3}{gr_3}, 1, \frac{r_2r_3 - 2gr_2 + r_3^2}{gr_3}, 0, \frac{2gr_2 - r_2^2r_3 - r_3^2}{gr_3} \right\}, \\
e_3 &= \left\{ 0, -\frac{g^2 - 2gr_2r_3 + r_4^2 + r_3^2}{gr_3}, 0, \frac{r_2^2r_3 - 2gr_2 + r_3^2}{gr_3}, 1, \frac{gr_2 - r_3^3 - r_3^2}{gr_3} \right\},
\end{align*}
$$

ортогональными векторами ∇H, ∇F_1, ∇F_2. Вырожденная матрица $\tilde{G}(e_1, e_2)$ имеет собственные значения, одно из которых равно нулю, а два других удовлетворяют, как можно устанавливать после несложных преобразований, соотношению $\lambda_2\lambda_3 = -h(h - g^2)V$, где V некоторое положительное выражение. Поэтому при $0 < g < 1/2$ и $g^2 - 1/4 < h < 0$ или $h > g^2$ собственные значения λ_2 и λ_3 имеют разные знаки, а значит, критические окружности, которые отвечают кривым γ_1 и γ_3 для указанных значений, являются saddle-овыми. При $0 < g < 1/2$ и $0 < h < g^2$ оба собственных значения имеют одинаковые знаки. Следовательно, критические окружности в прообразе кривой γ_2 являются минимумами. Лемма доказана.

Следствие 3. На кривой γ_2 происходит перестройка типа 2A.

Лемма 5. В прообразе каждой точки кривой β_3 лежат две седловые окружности.
ДОКАЗАТЕЛЬСТВО. Условие линейной зависимости \(\nabla F = \alpha \nabla H + \beta \nabla F_2 + \gamma \nabla F_1 \) для точек отрезка \(f = 2g^2h - g^4 \) при \(0 < g < 1 \) и \(g^2/2 < h < g^2 \) выполняется при следующих значениях:

\[
\begin{align*}
\alpha &= 2g^2, \\
\beta &= -2g^3(1 - r_3^2), \\
\gamma &= g^4(1 - r_3^2), \\
r_2 &= 0, \\
s_1 &= gr_1, \\
s_2 &= r_3, \\
s_3 &= gr_3, \\
r_1^2 + r_3^2 &= 1.
\end{align*}
\] (9)

Соответствующие критические значения

\[
h = \frac{g^2}{2}(1 + r_3^2), \quad f = g^2r_3^2, \quad 0 < r_3^2 < 1
\]

задают параметризацию кривой \(\beta_3 \). В качестве базиса касательного пространства, ортогональных векторов \(\nabla H, \nabla F_1, \nabla F_2 \), можно взять, например, следующие векторы:

\[
e_1 = \{r_3, 0, 0, 0, -r_1, 0\}, \quad e_2 = \{0, r_1, 0, -r_3, 0, r_1\}, \quad e_3 = \{0, 0, r_1, -gr_3, -r_1, gr_1\}.
\]

Процедура гессиана

\[
G = G_F - 2g^2G_H + 2g^3(1 - r_3^2)G_{F_2} - g^4(1 - r_3^2)G_{F_1}
\]

на линейную оболочку векторов \(e_1, e_2, e_3 \), найдем вырожденную матрицу \(\tilde{G}(e_i, e_j) \). Эта матрица имеет собственные значения, одно из которых равно нулю, а два других удовлетворяют соотношению

\[
\lambda_2\lambda_3 = -4g^4(1 - r_3^2)(g^4 - g^2 + 1)(g^2r_3^2 + 1 - g^2),
\]

которое отрицательно при \(0 < g < 1/2 \). Следовательно, соответствующие критические окружности являются седловыми. Лемма доказана.

ЛЕММА 6. В прообразе каждой точки кривой \(\beta_2 \) лежит две седловые окружности, а в прообразе каждой точки кривой \(\beta_1 \) — две минимальные окружности, которые имеют на этом участке перестройки типа 2А.

ДОКАЗАТЕЛЬСТВО аналогично доказательству леммы 5.

ЛЕММА 7. В прообразе каждой точки кривой \(\beta_2 \) лежит две седловые окружности, а в прообразе каждой точки кривой \(\beta_1 \) — четыре седловые окружности.

ДОКАЗАТЕЛЬСТВО. Для указанных кривых \(\delta_1 \) и \(\delta_2 \) критические точки и соответствующие значения отображения имеют вид

\[
\begin{align*}
s_3 &= 0, \\
s_2 &= r_3, \\
n_1^2 &= 2h, \\
r_1s_1 + r_2s_3 &= g, \\
r_1^2 + r_2^2 + r_3^2 &= 1.
\end{align*}
\] (10)
поскольку в них выполняется условие $\nabla F = 0$. Проектируя гессиан G_F на линейную оболочку векторов e_1, e_2, e_3, находим выражение матрицы $\tilde{G}(e_1, e_j)$. Здесь векторы

$$e_1 = \{r_3(r_2^2 - r_3^2), r_3(r_3s_1 - r_2r_1), 0, 0, -r_3(r_2s_1 - r_3r_1), r_2(r_2s_1 - r_3r_1)\},$$

$$e_2 = \{0, 0, r_3, 0, -r_3, r_2\},$$

$$e_3 = \{r_3(r_2s_1 - r_3r_1), 0, 0, r_3(r_3s_1 - r_2r_1), -r_3(s_1^2 - r_1^2), s_1(s_1r_2 - r_3r_1)\}$$

составляют базис касательного пространства, ортогонального векторам ∇H, ∇F_1, ∇F_2. Матрица $\tilde{G}(e_1, e_j)$ имеет собственные значения, одно из которых равно нулю, а два других удовлетворяют соотношению $\lambda_2 \lambda_3 = -g^2 V$, где V — некоторое положительное выражение. Поэтому при $g \neq 0$ собственные значения λ_2 и λ_3 имеют разные знаки, а значит, критические окружности, которые удовлетворяют системе (10), являются седловыми. Лемма доказана.

Теорема 3. Пеобраз каждой точки области $\{1\}$ состоит из четырех торов, а пеобраз каждой точки областей $\{2\}$, $\{4\}$ и $\{5\}$ из двух торов.

Доказательство следует из доказанных лемм и того факта, что из каждой минимаксной окружности рождается один лиувилев тор.

Следствие 4. На кривых β_2 и γ_1 имеем перестройки типа $2B$.

Доказательство. Как было показано, слои лиувилевой слоения в окрестности кривых β_2 и γ_1 разделяются гиперплоскостью $s_3 = 0$. Следовательно, мы получаем две одинаковые, симметричные относительно $s_3 = 0$ перестройки тора в два тора. В каждой перестройке участвует по одной седловой окружности. Это может быть только перестройка типа B (см. таблицу слоений в работе [7]).

Теорема 4. При $f = 0$ имеем место следующие перестройки: 1) минимальный тор на кривой σ_2; 2) два минимальных тора на кривой σ_1; 3) атом C_2 на кривой δ_2; 4) два атома C_2 на кривой δ_1.

Доказательство. Пусть значение $f = 0$ в системе (5). Из второго уравнения получаем

$$s_3 = 0$$

или

$$s_3(s_1^2 + (s_3 + r_2)^2 + (s_2 - r_3)^2) + 2g(s_2 - r_3) = 0, \quad s_3 \neq 0.$$

В первом случае имеем систему уравнений

$$s_3 = 0,$$

$$s_1^2 + s_2^2 + r_2^2 = 2h + 1 - r_1^2,$$

$$s_1r_1 + s_2r_2 = g,$$

$$r_1^2 + r_2^2 + r_3^2 = 1.$$
Выясним, какое множество в пространстве $\mathbb{R}^6(s, r)$ задает эта система. Изучим сначала поверхность, задаваемую в $\mathbb{R}^4(s_1, s_2, r_1, r_2)$, вторым и третьим уравнениям системы (13). Повороты в плоскостях (s_1, r_1) и (s_2, r_2), определяемые заменой

$$s_1 = \frac{x_1 + y_1}{\sqrt{2}}, \quad r_1 = \frac{x_1 - y_1}{\sqrt{2}}, \quad s_2 = \frac{x_2 + y_2}{\sqrt{2}}, \quad r_2 = \frac{x_2 - y_2}{\sqrt{2}},$$

приводят эти уравнения к виду

$$x_1^2 + x_2^2 = \frac{1}{2} + h + g,$$
$$y_1^2 + y_2^2 = \frac{1}{2} + h - g.$$

Следовательно, при $h + 1/2 > g$ эта поверхность является несопряженным тором. Введем на этом торе угловые координаты (φ, ψ),

$$x_1 = \sqrt{\frac{1}{2} + h + g \cos \varphi}, \quad y_1 = \sqrt{\frac{1}{2} + h - g \cos \psi},$$
$$x_2 = \sqrt{\frac{1}{2} + h + g \sin \varphi}, \quad y_2 = \sqrt{\frac{1}{2} + h - g \sin \psi}.$$

Добавим теперь координату $r_3 = \pm \sqrt{1 - r_1^2 - r_2^2}$. Прежде всего рассмотрим множество $1 - r_1^2 - r_2^2 = 0$ на торе. Запищем его в угловых координатах,

$$\sqrt{\left(\frac{1}{2} + h\right)^2 - g^2 \cos(\varphi - \psi)} = h - \frac{1}{2}.$$

При $(h + 1/2)^2 - g^2 > (h - 1/2)^2$, т.e. при $h > g^2/2$, уравнение (15) имеет решение

$$\varphi = \psi \pm \arccos \left(\frac{h - 1/2}{\sqrt{(h + 1/2)^2 - g^2}}\right) + 2\pi k, \quad k \in \mathbb{Z}.$$

Очевидно, это две сопряженные окружности на торе. Они делят тор на две части: в одной части $r_1^2 + r_2^2 < 1$ (эту часть мы заложим), а в другой $r_1^2 + r_2^2 > 1$. На рис. 2 области 2 и 3 отвечают $r_1^2 + r_2^2 < 1$, а область 1 $r_1^2 + r_2^2 > 1$. Уравнение $r_3 = \pm \sqrt{1 - r_1^2 - r_2^2}$ задает двулистное накрытие над цилиндром $r_1^2 + r_2^2 < 1$, причем оба листа склеиваются над окружностью $r_1^2 + r_2^2 = 1$. Следовательно, система (13) задает в случае $h > g^2/2$ тор. Нетрудно показать, что этот тор является дифференцируемым многообразием.

При $(h + 1/2)^2 - g^2 < (h - 1/2)^2$, т.e. при $h < g^2/2$, уравнение (15) не имеет решения. Следовательно, на торе (14) имеем всюду $r_1^2 + r_2^2 < 1$. Тем самым мы получаем два тора в пространстве $\mathbb{R}^6(s, r)$, на одном из которых $r_3 = \sqrt{1 - r_1^2 - r_2^2}$, а на другом $r_3 = -\sqrt{1 - r_1^2 - r_2^2}$. Очевидно, эти торы являются дифференцируемыми многообразиями.

Если $g = 0$, то условие (12) принимает вид

$$s_1^2 + (s_2 - r_3)^2 + (s_3 + r_2)^2 = 0.$$
Рис. 3. Проекция критических окружностей и области $s_2 > 0$ (область 3), $s_2 < 0$ (область 2) для $h > g^2/2(a)$ и $h < g^2/2(b)$.

Отсюда следует, что $s_1 = 0$, $s_2 = r_3$, $s_3 = -r_2$. Подставив эти выражения в первое уравнение системы (5), получаем

$$r_1^2 + r_2^2 + r_3^2 = 2h + 1.$$

Следовательно, при $h > -1/2$, $h \neq 0$ система уравнений (5) и (12) несовместна. Итак, мы доказали первые два утверждения теоремы 4.

В случае $g \neq 0$ условие (12) задает неустойчивую поверхность. Исследовать ее, опираясь только на уравнение, достаточно сложно. Мы поступим иначе, а именно изучим торы (11), а затем попытаемся восстановить топологию особого слоя, пользуясь полученными данными и списком атомов сложности два [7].

Итак, исследуем, как располагаются на торах (11) критические окружности $S_2 = r_3$ (см. (10)). Подставим это условие во второе уравнение системы (13) и найдем $s_1 = \pm \sqrt{2h}$. В координатах (φ, ψ) это уравнение перепишется в виде

$$\sqrt{\frac{1}{2} + h + g \cos \varphi + \frac{1}{2} + h - g \cos \psi} = \pm \sqrt{h}.$$

Проекции критических окружностей для различных значений h и g изображены на рис. 3 сплошными линиями.

Рассмотрим сначала случай $h > g^2/2$. На рис. За области 2 и 3, которые отвечают $r_1^2 + r_2^2 \leq 1$, это проекция тора. Здесь же изображены две касающиеся его сторон окружности проекции критических окружностей. На том же рисунке пунктировом обозначена кривая $s_2 = 0$. В области 3 имеем $s_2 > 0$, а в области 2 $s_2 < 0$. Поскольку в уравнении критических окружностей $s_2 = r_3$ знаки s_2 и r_3 строго фиксированы (и совпадают), то при переходе к накрытию $r_3 = \pm \sqrt{1 - r_1^2 - r_2^2}$ окружности перемещаются в плоскости на торе: в “нижнюю” половину тора ($r_3 < 0$) попадают части кривых из области 2, а в “верхнюю” ($r_3 > 0$) из области 3.

Таким образом, часть прообраза каждой точки кривой δ_2 выглядит как дифференцируемый тор с двумя критическими окружностями на нем. Следовательно, мы имеем
атом сложности два, причем часть допустимого трансверсального сечения особого слоя выглядит как окружность с двумя точками. Кроме того, известно, что слева от кривой \(\delta_2 \) (в области [5]) расположены два тора. Оба они участвуют в данной перестройке, поскольку симметрия \(r: (s_1, s_2, s_3, r_1, r_2, r_3) \rightarrow (s_1, -s_2, -s_3, r_1, -r_2, -r_3) \), перестраивающая эти торы, переводит в себя особый слой. Используя таблицу атомов сложности два [7], заключаем, что это перестройка типа \(C_2 \).

Для завершения доказательства теоремы 4 нам понадобится две леммы.

Лемма 8. Прообраз каждой точки области [3] состоит из двух лиувиллевых торов. На кривой \(\delta_2 \) имеет место перестройка типа \(2B \), а на кривой \(\gamma_2 \) перестройка типа \(2A^* \).

Доказательство. Доказательство первого утверждения следует из того, что на кривой \(\delta_2 \) происходит перестройка типа \(C_2 \). Доказательство второго утверждения аналогично доказательству следствия 4. Рассмотрим кривую \(\gamma_2 \). Слои лиувиллева слоеня в окрестности этой кривой разделяются гиперболически \(s_2 = 0 \). Следовательно, мы получаем две одинаковые, симметричные относительно \(s_3 = 0 \) перестройки тора в тор. В каждой перестройке участвует по одной седловой окружности. Этому может быть только перестройка типа \(A^* \). Лемма доказана.

В случае \(h < \frac{\rho^2}{2} \) мы имеем четыре цикла \(s_1 = \pm \sqrt{2h} \). На рис. 36 пунктиром обозначена кривая \(s_2 = 0 \). На циклах из области \(3 \) \(s_2 > 0 \), а на циклах из области \(2 \) \(s_2 < 0 \). При добавлении координаты \(r_3 \) наш тор дупликуется, причем на торо, где \(r_3 > 0 \), появляются два цикла из области \(3 \), а на торо \(r_3 < 0 \) два цикла из области \(2 \).

Следовательно, часть прообраза точки кривой \(\delta_1 \) выглядит как два дифференцируемых тора с двумя критическими окружностями на каждом. Однако для доказательства того факта, что это перестройка типа \(2C_2 \), мы не можем применить соображения, используемые в случае кривой \(\delta_2 \), поскольку мы не знаем, связь поверхность \(f = 0 \), \(h = \text{const} \) или нет. Поэтому используем следующей леммой.

Лемма 9. Изолированная особая точка \(U \) бифуркационной диаграммы при \(0 < g < 1 \) отвечает особенности типа "седло-седло". Круговая молекула точки \(U \) имеет вид, изображенный на рис. 4.

![Diagram](image_url)
ДОКАЗАТЕЛЬСТВО. Рассмотрим окрестность точки \(U \). В прообразе точки \(U = (0, g^2/2) \in \mathbb{R}^2(f, h) \) лежат две особые точки \((s, r) = (\pm g, 0, 0, \pm 1, 0, 0) \). Рассмотрим линеаризацию системы (1) в этих точках. Выберем в окрестности указанных точек в качестве локальных координат переменные \((s_2, s_3, r_2, r_3)\). Тогда матрица линеаризованной системы будет иметь вид

\[
\begin{pmatrix}
0 & \pm g & \pm g & \mp 1 \\
0 & \mp 1 & 0 & 0 \\
0 & \pm 2 & \pm 1 & \mp g \\
\mp 1 & 0 & \pm g & 0
\end{pmatrix}.
\]

Собственные значения этой матрицы равны \(\pm \sqrt{1 - g^2} \pm 1 \). При условии \(0 < g < 1 \) все собственные числа действительны и различны, следовательно, точка \(U \) есть ненормальная особенность типа "седло-седло" сложности два. Все круговые молекулы такой особенности классифицированы в [7]. Список состоит из 39 молекул. Только молекула из этого списка, изображенная на рис. 4, содержит атом \(C_2 \) и на противоположных концах по два атома \(B \). Лемма доказана.

Следовательно, на кривой \(\delta_1 \) происходит перестройка типа \(2C_2 \). Таким образом, теорема 4 полностью доказана.

Для нахождения количества тороидальных интервалов в каждой связной компоненте области \(\mathbb{R}^3 \setminus \Sigma \) можно также вспользоваться методами компьютерного моделирования. При этом мы используем численные методы решения системы дифференциальных уравнений (1) для построения фазовых траекторий. Начальные данные для построения фазовых траекторий определяются из следующей системы по заданной тройке \((g, f, h)\):

\[
\begin{align*}
r_1 &= s_1 = 0, \\
R(t) &= 0, \\
Q(r_2) &= 0, \\
s_2^2 &= 2h + 1 - 2t^2 + 2tr_2 - r_2^2, \\
\tilde{r}_2^2 &= 1 - r_2^2, \\
(17)
\end{align*}
\]

где

\[
\begin{align*}
t &= s_3 + r_2, \\
R(t) &= t^4 - (2h + 1)t^2 + g^2 + f, \\
Q(r_2) &= a_4r_2^4 + a_3r_2^3 + a_2r_2^2 + a_1r_2 + a_0, \\
a_4 &= (t^2 - 2h)^2 + 4g^2, \\
a_3 &= -4t(2g^2 - 2h + t^2), \\
a_2 &= -4ht^2 + 2t^4 + 4t^2 + 6g^2t^2 - 4g^2 - 4g^2h, \\
a_1 &= -4t(t^2 - g^2), \\
a_0 &= (t^2 - g^2)^2.
\end{align*}
\]

Фактически мы используем то обстоятельство, что для многочлена \(R(t) \) некоторые бифуркационные кривые являются дискриминантными. Количество корней указанных
многочленов (т. е. количество связных компонент) может измениться лишь при переходе через дискриминантную кривую. Поэтому, выбрав точку \((g, f, h)\) в каждой связной компоненте области \(\mathbb{R}^3 \setminus \Sigma\) и выпуская интегральную траекторию с начальными данными \((17)\), мы можем определить количество торов в каждой связной компоненте области \(\mathbb{R}^3 \setminus \Sigma\). Для этого достаточно просмотреть, сколько областей "заняты" всюду плотно фазовые кривые.

Рис. 5. Перестройки торов Лиувилля в случае Соколова для \(g = 0 (a), 0 < g < 1/2 (b), 1/2 < g < 1 (b'), g > 1 (r)\).

Перестройки торов Лиувилля для всех точек бифуркационного множества представлены на рис. 5. Зная эти перестройки, можно найти молекулу \(W\) на соответствующих 3-поверхностях \(Q_2^3\) при любых фиксированных \(g\) и \(h\). Для этого нужно определить, как перестраиваются торы Лиувилля в преобразе точки, движущейся вдоль прямых \(h = \text{const}\). Будем менять значение \(h\), определяющее эту прямую. Изящного вида бифуркационных диаграмм можно пользоваться при каких значениях \(h\) будут меняться молекулы \(W\). Это происходит в следующих случаях.

1. Величина \(h\) является критическим значением функции \(H|_{\mathbb{M}^4}\). В этом случае из-
меняется также топологический тип Q^3_{ϵ}. Образы критических точек этой функции при отображении момента отвечают на рис. 5 точкам трансверсального пересечения бифуркационных кривых. Соответствующие разделяющие кривые (3) построены на рис. 1.

2. Пряма $h = \text{const}$ проходит через точку касания бифуркационных кривых. Зная координаты точек касания, получаем остальные уравнения разделяющих кривых на плоскости $R^2(g, h)$:

$$
\begin{align*}
 h &= 0, \quad 0 \leq g \leq \frac{1}{2}, \\
 h &= g^2, \\
 h &= g^2 - \frac{1}{2}.
\end{align*}
$$

(18)

Объединив кривые (3) с кривыми (18), получаем полный набор разделяющих кривых для случая Соколова. Все такие кривые разбивают плоскость на двенадцать областей. Таким образом, мы имеем двенадцать типов лиувиллеевых слоений поверхности постоянной энергии. Обозначим эти лиувиллеевые типы через $A, B, C, D, E, F, G, H, I, J, K, L$. Лиувиллео слоение представлено на рис. 6 и в таблице. Имеется естественное соответствие между интервалами энергии h, показанными на рис. 5, и разными зонами, показанными на рис. 6. Оно выглядит следующим образом:

- $a_1 \rightarrow J, \quad a_2 \rightarrow K, \quad a_3 \rightarrow L$,
- $b_1 \rightarrow A, \quad b_2 \rightarrow B, \quad b_3 \rightarrow C, \quad b_4 \rightarrow D, \quad b_5 \rightarrow E, \quad b_6 \rightarrow F$,
- $c_1 \rightarrow A, \quad c_2 \rightarrow B, \quad c_3 \rightarrow C, \quad c_4 \rightarrow D, \quad c_5 \rightarrow E, \quad c_6 \rightarrow F$,
- $d_1 \rightarrow A, \quad d_2 \rightarrow I, \quad d_3 \rightarrow H, \quad d_4 \rightarrow E, \quad d_5 \rightarrow F$.

Таким образом, для каждой бифуркационной диаграммы можно проследить, каким образом меняется молекула при увеличении уровня энергии.

Сравнение лиувиллеевых слоений в случае Соколова со слоениями в исследованных ранее задачах (см., например, [4] [8]), можно сделать следующие выводы.
<table>
<thead>
<tr>
<th>(g, h)</th>
<th>Q^3_h</th>
<th>Лиувиллево слоеение Q^3_h</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$2S^3$</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>$2S^3$</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>$S^1 \times S^2$</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>$S^1 \times S^2$</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>RP^3</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>RP^3</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>N^3</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>$S^1 \times S^2$</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>$S^1 \times S^2$</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>$2S^3$</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>$S^1 \times S^2$</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>RP^3</td>
<td></td>
</tr>
</tbody>
</table>

1. Случай Соколова является принципиально новым на $e(3)^*$, поскольку его топология отличается от описанных ранее топологий. В частности, при нулевой постоянной площадей в качестве перестройок выступают минимальные торы.

3 Теоретическая и математическая физика, т. 134, № 2, 2003 г.
2. С точки зрения случая Соколова ближе всего к случаю Стеклова. Для неустойчивых состояний площадь в случае Соколова встречается лишь один тип лиувиллева слояния, которого нет в задаче Стеклова. Эта молекула содержит атом \(A^* \).

Благодарности. Автор благодарен В. В. Соколову, А. В. Болтинскому, А. А. Ошемкову и О. Е. Орел за полезные обсуждения.

Список литературы

[2] V. V. Sokolov. A generalized Kowalewski Hamiltonian and new integrable cases on \(e(3) \) and \(so(4) \). nlin.SI/0110022.

Поступила в редакцию 20.II.2002 г.