
DOI: https://doi.org/10.4213/tvp4440
Список литературы

Поступила в редакцию 3.XI.2009
Исправленный вариант 17.V.2011

© 2012 г. CAMPOS V. S. M.*, PEREIRA A. G. C.*, ROJAS CRUZ J. A.*

MODELING THE GENETIC ALGORITHM BY A NONHOMOGENEOUS MARKOV CHAIN: WEAK AND STRONG ERGODICITY

Эволюционные алгоритмы используются для поиска экстремумов функции. В одном из таких алгоритмов, каноническом генетическом алгоритме, обычно фиксируются два параметра: вероятность мутации и вероятность перекреста. В данной работе мы допускаем возможность изменения этих параметров в процессе работы алгоритма и исследуем сходимость алгоритмов такого типа. Мы также предлагаем новый подход к доказательству слабой эргодичности неоднородных цепей Маркова, не опирающийся на явное использование коэффициента эргодичности Добриниа δ.

Ключевые слова и фразы: неоднородные марковские цепи, слабая и сильная эргодичность, генетические алгоритмы.

* Departamento de Matemática, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil; viviane@ccet.ufrn.br, andre@ccet.ufrn.br, juanrojascruz@123mail.cl

1) This paper was supported by CNPq, CAPES.
1. Introduction. Canonical Genetic Algorithms (CGA) as introduced in [6] are often used to search for optimal points of functions; that is, they are used to find
\[
\arg \max_{x \in B'} f(x) \text{ or equivalently } \max \{ f(b) \mid b \in B' \},
\]
where \(B' \) is the discretization of the domain of the function \(f \), and \(f \) is supposed to be a nonconstant function, limited over its domain. In optimization theory, an algorithm is said to converge to the global optimum if it generates a sequence of solutions or functions values in which the global optimum is a limit value.

Markov chains offers an appropriate model to analyze CGAs, and it has been used in [4] and [5] to prove probabilistic convergence of the best solution within a population to the global optimum under elitist selection (best individual survives with probability one). In [8], CGAs global convergence properties were analyzed and a modified version of the CGA was presented in which they kept the best element of the population in an extra place, but it is not used in the evolutionary process. This element just changes if throughout the evolution of the algorithm a better element appears in the population. In [2] some operations were used in order to obtain an expression for transition probabilities, and some conditions were given for the convergence of the algorithm. In the previously mentioned papers, the mutation and crossover probabilities were kept fixed through the evolution of the algorithm.

In this paper, we extend the ideas presented in [8] to the cases where mutation and crossover parameters are allowed to change through the evolution of the algorithm. In [1] and [2], Cerf modeled the mutation and crossover steps using Markovian operators instead of using crossover and mutation parameters obtaining what he called new genetic algorithm.

This paper is divided into 4 sections. In Section 2, we present the definitions and results we use in the rest of the paper. In Section 3, we introduce the model of CGA in which the crossover and mutation parameters are allowed to vary through time. In Theorem 3.2, we give conditions to guarantee the convergence of the algorithm when only the mutation parameter is allowed to change. In Theorem 3.3, we give conditions to guarantee the convergence of the algorithm when both the crossover and mutation parameters are allowed to change through time.

2. Preliminaries. Let \(\{X_n\} \) be a nonhomogeneous Markov chain with finite state space \(E = \{1, \ldots, N\} \) and with transitions matrices given by \(\{P_m\}_{m \geq 0} \), where

\[
P_m(i,j) = P(X_{m+1} = j \mid X_m = i) = P^{(m,m+1)}(i,j), \quad i,j \in E.
\]

By the properties of nonhomogeneous Markov chains, the \(k \) step transition is given by the product of the transitions matrices \(P_mP_{m+1} \cdots P_{m+k-1} \), for all \(m \geq 0 \). Thus,

\[
P^{(m,m+k)}(i,j) = \sum_{i_1 \in E, \ldots, i_{k-1} \in E} P_m(i,i_1)P_{m+1}(i_1,i_2) \cdots P_{m+k-1}(i_{k-1},j)
\]

and we can write the Chapman–Kolmogorov equation as

\[
P^{(m,m+k)} = P^{(m,m+r)}P^{(m+r,m+k)}, \quad 1 \leq r < k.
\]

Definition 2.1. A nonhomogeneous Markov chain \(\{P_n\}_{n \in \mathbb{N}} \) is said to be weakly ergodic if it satisfies

\[
\lim_{k \to \infty} \| \mu_0 P^{(m,k)} - \mu_1 P^{(m,k)} \| = 0, \quad \forall m \geq 0,
\]

where \(\mu_0 \) and \(\mu_1 \) are probability distributions, \(\| P \| = \sup_{i,j \in E} |P_{ij}| \) and \(\| \mu \| = \sum_{j \in E} |\mu_j| \). When the state space is finite (2.1) is equivalent to

\[
\lim_{k \to \infty} \| P^{(m,m+n)}_{ij} - P^{(m,m+n)}_{kj} \| = 0, \quad \forall i,j,k \in E, \quad \forall m \geq 0.
\]
In [7], it is proved that (2) is equivalent to
\[\lim_{k \to \infty} \alpha(P^{(m,k)}) = 1 \quad \text{or} \quad \lim_{k \to \infty} \delta(P^{(m,k)}) = 0, \quad \forall m \geq 0. \]
Here, for a stochastic matrix \(Q = (q_{ij})_{i,j \in E} \), Dobrushin’s ergodic coefficient is defined by
\[\alpha(Q) = 1 - \sup_{i,k \in E} \sum_{j \in E} [q_{ij} - q_{kj}]^+ \quad \text{with} \quad [q_{ij} - q_{kj}]^+ = \max\{0, q_{ij} - q_{kj}\} \]
and \(\delta(Q) = 1 - \alpha(Q) \) is called the delta coefficient. We see easily that \(\delta(P) \leq 1 \), for any stochastic matrix \(P \).

Definition 2.2. A constant transition matrix is a transition matrix which has all its lines equal to a vector.

Definition 2.3. A nonhomogeneous Markov chain \(\{P_n\}_{n \in \mathbb{N}} \) is said to be strongly ergodic if there exists a constant transition matrix \(P_\infty \) such that
\[\lim_{k \to \infty} \|P^{(m,k)} - P_\infty\| = 0, \quad \forall m \geq 0. \]
The following preliminaries results will be used to prove the strong ergodicity of the nonhomogeneous Markov chain in Section 3.

Theorem 2.1 (see [3]). If \(P_\infty \) is a weakly ergodic transition matrix and a discrete nonhomogeneous Markov chain \(\{P_n\}_{n \in \mathbb{N}} \) satisfies
\[\lim_{n \to \infty} \|P_n - P_\infty\| = 0, \]
then \(\{P_n\}_{n \in \mathbb{N}} \) is strongly ergodic.

The previous theorem will be used extensively in this paper and it is an extension of the Theorem V.4.5. presented in [7].

Lemma 2.1 (see [7]). Let \(P, Q, \) and \(R \) be transition matrices, then
\[\|PQ\| \leq \|P\| \|Q\|, \quad \delta(PQ) \leq \delta(P)\delta(Q), \quad (2.2) \]
\[\|P - Q\| \leq \|P - Q\|. \quad (2.3) \]

Theorem 2.2. Let \(\{P_n\}_{n \in \mathbb{N}} \) be a discrete weakly ergodic nonhomogeneous Markov chain and assume there exists a probability distribution \(\pi_n = (\pi_n(j))_{j \in E} \) such that \(\pi_n = \pi_n P_n \) and
\[\sum_{k \geq 1} \sum_{j \in S} |\pi_k(j) - \pi_{k+1}(j)| < \infty, \]
then \(\{P_n\}_{n \in \mathbb{N}} \) is strongly ergodic.

Theorem 2.2, which is presented in [7], as well as Theorem 2.1 have their hypotheses easily checked in practical problems, which make them very useful.

3. Nonhomogeneous genetic algorithm: results. In [8], it is explained that a genetic algorithm consists of an \(n \)-tuple of binary strings \(b_i \) of length \(l \), where the bits of each string are considered to be the genes of an individual chromosome and where the \(n \)-tuple of individual chromosomes is said to be a population. So, the algorithm evolves in following way: first, a random population is generated and it is called initial population. Afterwards, three operations are performed on the initial population, namely: mutation, crossover, and selection. Each of these operations is modeled by a stochastic matrix which describes such operation. Each individual \(b_i \) represents a feasible solution of the problem (1) and its objective function value \(f(b_i) \) is said to be its fitness which is to be maximized. The algorithm can be sketched as follows: an initial population is randomly generated.
repeat
 perform selection
 perform crossover
 perform mutation
until some stopping criterion applies

There are a lot of ways to perform each operation above. The transition matrix for the
selection step, when using so-called proportional selection, is built in the following way:
Suppose the initial population is given by $x = (x_1, x_2, \ldots, x_n)$, so the probability that
after the selection step we get the population $y = (y_1, y_2, \ldots, y_n)$ is

$$S(x, y) = \begin{cases} \prod_{k=1}^{n} f(y_k) & \text{if } \{y_1, y_2, \ldots, y_n\} \subset \{x_1, x_2, \ldots, x_n\}, \\ 0 & \text{otherwise.} \end{cases}$$

The parameter p_m, which is called crossover probability, is used to select population’s elements which will participate in the crossover process. Although many crossover operators have been proposed, there is not a closed expression to the inputs of the transition matrix
for crossover, except in very particular situations. Fortunately, even not having the
knowledge of the inputs of the transition matrix for crossover, we will be able to proceed
the convergence analysis of the Markov chain, which is generated in this process.

The parameter p_m, which is called mutation probability, is used to select which genes
will change in each individual chromosome of the population. In contrast to transition matrix for crossover, there is a closed expression to each input of the transition matrix
for mutation. For example, suppose the population before the mutation step is given by
$x = (x_1, x_2, \ldots, x_n)$, so the probability that after the mutation step we get the population
$y = (y_1, y_2, \ldots, y_n)$ is

$$M(x, y) = p_m^{H(x, y)} (1 - p_m)^{n - H(x, y)},$$

where $H(x, y)$ is the Hamming distance between x and y, x and y are considered as a string obtained by the concatenation of the strings x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_n, respectively.

The CGA is modeled by a Markov chain whose transition matrix P, which represents
the algorithm, is the product of three stochastic matrices (S), (C), and (M), which describe
the intermediate transitions caused by selection, crossover, and mutation, respectively.
Thus, the transition matrix is given by $P = SCM$, where C, M, and S are kept fixed
throughout the evolution of the algorithm.

In this section, we allow the mutation probabilities to change throughout time, p_m^n
will represent the mutation probability on the nth step of the algorithm, and we represent
this allowance by representing the mutation matrix as

$$M = M_n = (m_n(i, j))_{i,j \in E}, \quad n \in \mathbb{N},$$

and we consider the transition matrix P_n as the following product:

$$P_n = SCM_n,$$

(3.1)

where S and C are the selection and crossover matrices, respectively, as in [8]. This
product order is seemed to us more natural than the order used in [8]. Thus, we have a
nonhomogeneous Markov chain $\{P_n\}_{n \in \mathbb{N}}$.

Lemma 3.1. Let $\{P_n\}_{n \in \mathbb{N}}$ be the nonhomogeneous Markov chain given in (5). If the
mutation probabilities p_m^n are such that $p_m^n \in (0, 1)$ for any $n \in \mathbb{N}$, then there exists a
sequence (α_n), with $\alpha_n > 0$, for any n such that

$$\inf_{i \in E} P_n(i, j) \geq \alpha_n \quad \forall j \in E.$$
Using the Chapman–Kolmogorov equation we can write

\[\inf_{i \in E} P_n(i, j) \geq \alpha_n, \quad \forall j \in E. \]

Lemma 3.1 is proved.

Theorem 3.1. Suppose that for \(m = 0, 1, \ldots \) there exist an integer \(\nu_m \), a constant \(\delta_m > 0 \), and a subset \(E_m \subset E \), with \(\#E_m = N_m \geq 1 \) (where \(\#E \) is the cardinality of \(E \)) such that

\[\inf_{i, j \in E_m} P^{(m, m+\nu_m)}_{i,j} \geq \delta_m. \]

Then we have the following upper bound:

\[|P^{(m, m+n)}_{i,j} - P^{(m, m+n)}_{k,j}| \leq \prod_{u=0}^{k(m,n)} (1 - \delta_{r_u}), \]

where \(r_0 = m, r_u = r_{u-1} + \nu_{r_{u-1}}, \) and \(k(m, n) = \max \{ u : r_u < m + n \} \).

Moreover, if \(\sum_{u=1}^{\infty} \delta_{r_u} = \infty \) then \(\{ P_r \} \) is weakly ergodic.

Proof. First of all, note that if (3.3) and \(\lim_{m \to \infty} \prod_{u=0}^{k(m,n)} (1 - \delta_{r_u}) = 0 \) are true, then we have not only the weak ergodicity but also

\[\lim_{n \to \infty} \sup_{E \in E_n} |P^{(k, k+n)}_{i,j} - P^{(k, k+n)}_{k,j}| = 0. \]

Because \(\nu_m \geq 1 \), we have \(r_0 < r_1 < \cdots \). By the hypotheses, \(\sum_{u=0}^{\infty} \delta_{r_u} = \infty \), then it follows that \(\prod_{u=0}^{\infty} (1 - \delta_{r_u}) \to 0 \). So we have only to prove that \(k(m, n) \to \infty \). Observe that given \(m_0 \), there always exists \(u_0 > m_0 \) such that \(r_{u_0} < m + n \) for \(n \) sufficient large, so \(k(m, n) \to \infty \). In order to prove (3.3), we define

\[L^{(m, m+n)}_{i,j} = \sup_{i, k} P^{(m, m+n)}_{i,j} - P^{(m, m+n)}_{k,j}, \]

\[E^{+} = E^{+}(i, k, u, v) = \{ l : l \in E, P^{(u, v)}_{l,l} \geq P^{(u, v)}_{k,l} \}, \]

\[E^{-} = E^{-}(i, k, u, v) = \{ l : l \in E, P^{(u, v)}_{l,l} < P^{(u, v)}_{k,l} \}. \]

Using the Chapman–Kolmogorov equation we can write

\[L^{(m, m+n)}_{i,j} - l^{(m, m+n)}_{i,j} = \sup_{i, k} \left(P^{(m, m+n)}_{i,j} - P^{(m, m+n)}_{k,j} \right) = \sup_{i, k} \sum_{l \in E} \left(P^{(m, m+n)}_{l,l} - P^{(m, m+n)}_{k,l} \right) P^{(m, m+n)}_{l,j}. \]

Note that

\[\sum_{l \in E^{+}} \left(P^{(m, m+n)}_{l,l} - P^{(m, m+n)}_{k,l} \right) P^{(m, m+n)}_{l,j} \leq \sum_{l \in E^{+}} \left(P^{(m, m+n)}_{l,l} - P^{(m, m+n)}_{k,l} \right) L^{(m, m+n)}_{l,j}, \]

and

\[\sum_{l \in E^{-}} \left(P^{(m, m+n)}_{l,l} - P^{(m, m+n)}_{k,l} \right) P^{(m, m+n)}_{l,j} \leq \sum_{l \in E^{-}} \left(P^{(m, m+n)}_{l,l} - P^{(m, m+n)}_{k,l} \right) l^{(m, m+n)}_{l,j}. \]

Using that \(\sum_{l \in E}(P^{(m, m+n)}_{l,l} - P^{(m, m+n)}_{k,l}) = 0 \) and \(E = E^{+} \cup E^{-} \), we have

\[\sum_{l \in E^{+}} \left(P^{(m, m+n)}_{l,l} - P^{(m, m+n)}_{k,l} \right) = \sum_{l \in E^{-}} \left(P^{(m, m+n)}_{l,l} - P^{(m, m+n)}_{k,l} \right). \]
Thus,
\[L_j^{(m,m+n)} - l_j^{(m,m+n)} \leq \sup_{i,k} \sum_{l \in E^+} \left(P_{il}^{(m,m+v\nu_m)} - P_{kl}^{(m,m+v\nu_m)} \right) \left(L_j^{(m+v\nu_m,m+n)} - l_j^{(m+v\nu_m,m+n)} \right). \]

We will show later that
\[\sum_{l \in E^+} \left(P_{il}^{(m,m+v\nu_m)} - P_{kl}^{(m,m+v\nu_m)} \right) \leq 1 - \delta_m. \] (3.4)

After (3.4) proved, we can conclude that
\[L_j^{(m,m+n)} - l_j^{(m,m+n)} \leq \sup_{i,k} (1 - \delta_m) \left(L_j^{(m+v\nu_m,m+n)} - l_j^{(m+v\nu_m,m+n)} \right). \]

Using \(r_0 = m \) and \(r_1 = r_0 + \nu r_0 \) we can rewrite the previous equation as
\[L_j^{(r_0,m+n)} - l_j^{(r_0,m+n)} \leq \sup_{i,k} (1 - \delta_r) \left(L_j^{(r_1,m+n)} - l_j^{(r_1,m+n)} \right). \]

Repeating this procedure until \(k(m,n) = \max \{ u : r_u < m + n \} \), we have
\[L_j^{(r_k,m+n)} - l_j^{(r_k,m+n)} \leq \prod_{u = 0}^{k(m,n)} (1 - \delta_r) (L_j^{(r_k,m+n)} - l_j^{(r_k,m+n)}) \]
\[\leq \prod_{u = 0}^{k(m,n)} (1 - \delta_r). \] (3.5)

In the last inequality we used the fact that \(0 \leq L_j(\cdot, \cdot) - l_j(\cdot, \cdot) \leq 1 \). From (3.5) we have (3.3). Now we are going to prove (3.4). For \(r_0 = m \) and \(r_1 = m + \nu m \) we have
\[\sum_{l \in E^+} P_{il}^{(r_0,r_1)} = 1 - \sum_{l \in E^-} p_{il}^{(r_0,r_1)} \]
and
\[\sum_{l \in E^+} \left(P_{il}^{(r_0,r_1)} - P_{kl}^{(r_0,r_1)} \right) = 1 - \sum_{l \in E^-} P_{il}^{(r_0,r_1)} - \sum_{l \in E^+} P_{kl}^{(r_0,r_1)}. \]

Using (3.2) and the fact that \(\#E_m = \#(E^+ \cap E_m) + \#(E^- \cap E_m) \), we have
\[\sum_{l \in E^+} \left(P_{il}^{(r_0,r_1)} - P_{kl}^{(r_0,r_1)} \right) \leq 1 - \sum_{l \in E^- \cap E_m} p_{il}^{(r_0,r_1)} - \sum_{l \in E^+ \cap E_m} P_{kl}^{(r_0,r_1)} \]
\[\leq 1 - \delta_m \#(E^- \cap E_m) - \delta_m \#(E^+ \cap E_m) \]
\[\leq 1 - \delta_m \#E_m \leq 1 - \delta_m. \]

Theorem 3.1 is proved.

Note that Theorem 3.1 is an alternative approach to prove the weak ergodicity without using Dobrushin’s ergodic coefficient and it is easier to use.

Corollary 3.1. Let \(\{P_n\}_{n \in \mathbb{N}} \) be the nonhomogeneous Markov chain given in (5) and the mutation probabilities \(p_m^n \) be such that \(p_m^n \in (0,1) \) for any \(n \in \mathbb{N} \). If the sequence \(\{\alpha_n\}_{n \in \mathbb{N}} \) obtained in Lemma 3.1 satisfies
\[\sum_n \alpha_n = \infty, \]
then \(\{P_n\}_{n \in \mathbb{N}} \) is weakly ergodic.

Proof. Using Theorem 3.1 with \(\nu_m = 1, \delta_m = \alpha_m, \) and \(E_m = E \) we obtain \(k(m,n) = n \) and with the additional information that \(\sum_n \alpha_n = \infty \) we obtain that \(\{P_n\}_{n \in \mathbb{N}} \) is weakly ergodic.

Corollary 3.1 is proved.
Modeling the genetic algorithm

Corollary 3.2. Let \(\{P_n\}_{n \in \mathbb{N}} \) be the nonhomogeneous Markov chain given in (5). If the mutation probabilities \(p^m_n \) are such that \(p^m_n > \gamma > 0 \) for all \(n \in \mathbb{N} \), then \(\{P_n\}_{n \in \mathbb{N}} \) is weakly ergodic.

Since \(M_n \) is positive for all \(n \in \mathbb{N} \) this implies that \(P_n = SCM_n \) is positive, and we can conclude, from the homogeneous Markov chain theory, that for each \(n \) there exists a probability distribution \(\pi_n \) that satisfies \(\pi_n = \pi_n P_n \). Thus, using Theorem 2.2 and under the same hypothesis of Corollary 3.1, if the probability distributions \(\pi_n \) guaranteed above satisfies

\[
\sum_{k \geq 1} \sum_{j \in E} |\pi_k(j) - \pi_{k+1}(j)| < \infty,
\]

then \(\{P_n\}_{n \in \mathbb{N}} \) is strongly ergodic.

Example 3.1. The CGA introduced by [6] fits in all cases discussed above when we consider \(P_n = P \) since the transition matrix does not change through time.

Observation 1. If \(Q = \{q_{ij}\}_{i,j \in E} \) is a nonconstant positive stochastic matrix, then \(\delta(Q) < 1 \). In fact, since each element of \(Q \) is positive, we can write

\[
\sum_{j \in E} |q_{ij} - q_{kj}| = \sum_{A} (q_{ij} - q_{kj}) + \sum_{B} (q_{kj} - q_{ij}),
\]

where \(A = \{j: q_{ij} \geq q_{kj}\} \) and \(B = \{j: q_{ij} < q_{kj}\} \). \(Q \) is nonconstant, it follows that \(A, B \neq \emptyset \). Thus

\[
\sum_{j \in E} |q_{ij} - q_{kj}| \leq \sum_{A} q_{ij} + \sum_{B} q_{kj} < 2.
\]

As the last inequality holds for any \(i \) and \(k \), the observation follows.

Theorem 3.2. If there exist \(\gamma < 1 \) and \(k \in \mathbb{N} \) such that \(\delta(M_n) < \gamma \) for \(n \geq k \) and \(M_{\infty} \) such that

\[
\|M_n - M_{\infty}\| \to 0, \tag{3.6}
\]

then \(\{P_n\} \) is strongly ergodic and \(\{P_n\}_{n \in \mathbb{N}} \) converges in law to a unique stationary distribution of \(SCM_{\infty} \).

Proof. Let \(P_{\infty} = SCM_{\infty} \). By Lemma 2.1 (2.2) we have

\[
\|P_n - P_{\infty}\| = \|SCM_n - SCM_{\infty}\| \leq \|M_n - M_{\infty}\| \to 0.
\]

By (2.3) we have

\[
\|\delta(M_n) - \delta(M_{\infty})\| \leq \|M_n - M_{\infty}\| \to 0.
\]

By the hypotheses we have \(\delta(M_n) < \gamma \) for \(n \) large, so \(\delta(M_{\infty}) < \gamma \). Thus

\[
\delta(SCM_{\infty}) < \delta(SC)\delta(M_{\infty}) < \gamma < 1,
\]

hence \(SCM_{\infty} \) is weakly ergodic. By Theorem 2.1 we obtain that \(\{P_n\} \) is strongly ergodic. The convergence in law of \(\{P_n\} \) to a unique stationary distribution of \(SCM_{\infty} \) is guaranteed by Theorem 2 in [3].

Theorem 3.2 is proved.

In the prior theorem we proved the ergodicity of the Markov chain \(\{P_n\} = \{SCM_n\} \) keeping the crossover and selection matrices fixed through time. Now we allow the crossover matrix to change through time by allowing changes in crossover probabilities. We will call \(\rho^n_c \) the crossover probability at the \(n \)th step of the algorithm and we set conditions in order to guarantee the ergodicity of the Markov chain \(\{P_n\} = \{SC_n M_n\} \).

Theorem 3.3. If there exist \(\gamma < 1 \) and \(N \in \mathbb{N} \) such that \(\delta(M_n) < \gamma \) for \(n \geq N \) or \(\delta(C_n) < \gamma \) for \(n \geq N \) and

\[
\|M_n - M_{\infty}\| \to 0 \quad \text{and} \quad \|C_n - C_{\infty}\| \to 0,
\]

then \(\{P_n\} \) is strongly ergodic and \(\{P_n\}_{n \in \mathbb{N}} \) converges in law to a unique stationary distribution of \(SCM_{\infty} M_{\infty} \).
Proof. The proof is similar to that of Theorem 3.2.

Observation 2. In [8] Rudolph modeled the CGA by $\tilde{P}_n = CMS$. If we consider $\tilde{P}_n = CMS_n$ and suppose for S_n the same hypothesis we considered for M_n, we can guarantee the convergence of the nonhomogeneous Markov chain \tilde{P}_n.

Conclusions. These results give us an infinite number of possibilities to vary the parameters and study the convergence of the algorithm, for this reason we are still developing simulations and exploring these possibilities. We hope in the future be able to present a policy of changing parameters that improve the performance of the traditional genetic algorithm.

REFERENCES

Поступила в редакцию
13. V. 2010

© 2012 г.

LAGATTA T.*

CONTINUOUS DISINTEGRATIONS OF GAUSSIAN PROCESSES

Цель настоящей статьи — описать условное распределение случайного процесса по наблюдениям за ним на интервале. Вводится понятие непрерывного дезинтегрирования — регулярная условная вероятностная мера, непрерывно зависящая от параметра в условии. Обусловливание бесконечным по своему характеру, что приводит нас к рассмотрению общего случая вероятностных мер в банаховых пространствах. Наш основной результат состоит в том, что для некоторого числа M, зависящего от ковариационной структуры, условие $M < \infty$ является необходимым и достаточным для того, чтобы гауссовская мера допускала непрерывное дезинтегрирование. Условие $M < \infty$ довольно разумно: в случае стационарных процессов $M = 1$.

* Courant Institute of Mathematical Sciences, New York University, 927 Warren Weaver Hall, New York, USA; e-mail: lagatta@cims.nyu.edu

1) The author was supported by NSF VIGRE Grant № DMS-06-02173 at the University of Arizona, and by NSF PIRE Grant № OISE-07-30136 at the Courant Institute of Mathematical Sciences.