М. В. Балашов, О P-свойстве выпуклых компактов, Матем. заметки, 2002, том 71, выпуск 3, 323–333

DOI: https://doi.org/10.4213/mzm349
Математические заметки

Том 71 Выпуск 3 Март 2002

УДК 517.977.8

О P-СВОЙСТВЕ ВЫПУКЛЫХ КОМПАКТОВ
М. В. Балашов

В работе рассмотрены выпуклые компакты в конечномерном пространстве, удовлетворяющие специальному свойству (P-свойству). Данное свойство обеспечивает определенную регулярность границы таких множеств. Дано достаточно полное описание таких множеств и показано, что основные операции с множествами не выводят из данного класса. Рассмотрены примеры использования P-свойства; в частности, показано, что всякое порождающее множество обладает P-свойством.

Библиография: 7 названий.

1. Введение. Введем используемые обозначения. Суммой множеств A_1 и A_2 называется множество $A_1 + A_2 = \{a_1 + a_2 \mid a_1 \in A_1, a_2 \in A_2\}$. Геометрической разностью множеств A_1 и A_2 называется множество

$$A_1 - A_2 = \{x \in \mathbb{R}^n \mid x + A_2 \subseteq A_1\} = \bigcap_{a \in A_2} (A_1 - a).$$

Через int A будем обозначать внутренность множества A, через $\mathring{g} A$ — относительную внутренность (см. [1]), через ∂A — границу множества A, через $\partial_1 A$ — относительную границу множества A (см. [1]). Выпуклую оболочку множества A будем обозначать со A, аффинную — aff A, линейную — lin A. Символом $B_r(a)$ обозначим шар радиуса r с центром в точке a. Расстояние в метрике Хаусдорфа между множествами A_1 и A_2 называется число

$$h(A_1, A_2) = \inf\{r > 0 \mid A_1 \subset A_2 + B_r(0), A_2 \subset A_1 + B_r(0)\}.$$

Надграфиком функции $f : \mathbb{R}^n \supset A \to \mathbb{R}$ называется множество $\text{epi} f = \{(x, \mu) \in A \times \mathbb{R} \mid \mu \geq f(x)\}$.

Для выпуклого компакта A и вектора $p \neq 0$ опорное подмножество A в направлении p есть $A(p) = \{x \in A \mid \langle p, x \rangle = \max_{a \in A} \langle p, a \rangle\}$.

Пусть $\mathbb{R}^n = L \oplus l$, где L и l-ортогональные подпространства, dim $L = n - 1$, dim $l = 1$. Отожествим l с \mathbb{R}, а L с \mathbb{R}^{n-1}. Точку из \mathbb{R}^n будем представлять в виде (x, μ), где $x \in L = \mathbb{R}^{n-1}$, $\mu \in l = \mathbb{R}$.

Пусть P_LA — ортогональная проекция выпуклого компакта A на L. Введем функцию $f : P_LA \to \mathbb{R},$

$$\forall x \in P.LA \quad f(x) = \min\{\mu \mid (x, \mu) \in A\}.$$
ОПРЕДЕЛЕНИЕ 1.1. Пусть выпуклый компакт $A \subset \mathbb{R}^n$ таков, что для любого описанного выше разложения $\mathbb{R}^n = L \oplus l$ и для любого отождествления l с \mathbb{R}, а L с \mathbb{R}^{n-1} построенная выше функция f оказывается непрерывной на $P_L A$. Тогда будем говорить, что множество A обладает P-свойством, или является P-множеством.

Отметим, что в описанных выше обозначениях функция $g : P_L A \to \mathbb{R}$, $\forall x \in P_L A$ $g(x) = \max\{\mu \mid (x, \mu) \in A\}$, также непрерывна, если A -- P-множество.

Кроме того, f -- выпуклая функция (надграфик выпуклый), а g -- вогнутая.

Можно дать геометрическую трактовку P-свойства. Рассмотрим две прямые l_1 и l_2 (одномерные аффинные множества), которые параллельны. P-свойство для множества A означает, что близость l_1 и l_2 в метрике Хаусдорфа влечет близость отрезков $l_1 \cap A_1$ и $l_2 \cap A_2$ в той же метрике (предполагается непустота множеств $l_1 \cap A_1$ и $l_2 \cap A_2$).

В п. 2 будет дано описание множеств, обладающих P-свойством и исследованы операции, не выводимые из данного класса множеств.

В п. 3 рассмотрена связь P-множеств с порождающими множествами и приведены примеры использования свойств P-множеств.

В заключение п. 1 приведем пример множеств, не обладающего P-свойством.

Пример 1. Пусть в \mathbb{R}^3 задано множество A:

$$A = \operatorname{co}\{(x_1 - 1)^2 + x_2^2 = 1, \ x_3 = 1\} \cup \{(0, 0, 0)\}.$$

Пусть $L = Ox_1 x_2, l = Ox_3$. Проекция $P_L A = \{(x_1, x_2) \mid (x_1 - 1)^2 + x_2^2 \leq 1\},$

$$\forall (x_1, x_2) \in P_L A \quad f(x_1, x_2) = \min\{x_3 \mid (x_1, x_2, x_3) \in A\}.$$

Имеем $f(0, 0) = 0$, а при $\varphi \in (\pi/2, \pi)$ $f(1 + \cos \varphi, \sin \varphi) = 1$. Таким образом, f не полунепрерывна сверху в точке $(0, 0)$.

2. Описание множеств, обладающих P-свойством. Оказывается, что P-свойством обладают многие важные классы выпуклых компактов и, кроме того, основные алгебраические операции с множествами не выводят из данного класса.

Лемма 2.1. Пусть $A \subset \mathbb{R}^n$ -- выпуклый компакт, $\mathbb{R}^n = L \oplus l$, $\dim L = n - 1$, $\dim l = 1$, $l = \mathbb{R}$, $\forall x \in P_L A$ $f(x) = \min\{\mu \mid (x, \mu) \in A\}$. Тогда f полунепрерывна сверху.

Доказательство. Известно, что полунепрерывность сверху функции f эквивалентна замкнутости лебеговых множеств f вида $\{x \in P_L A \mid f(x) \leq c\}$, см. теорему 7.1 из [1, § 7]. Поскольку

$$\{x \in P_L A \mid f(x) \leq c\} = P_L (A \cap \{(x, \mu) \mid \mu \leq c\}),$$

а последнее множество замкнуто, то f полунепрерывна сверху на $P_L A$.

Таким образом, P-свойство выпуклого компакта A зависит от того, будет ли (для всякого разложения $\mathbb{R}^n = L \oplus l$) функция f полунепрерывна сверху на $\partial_+ P_L A$?

Лемма 2.2. Пусть A -- выпуклый многогранник в \mathbb{R}^n или выпуклый компакт в \mathbb{R}^2. Тогда множество A обладает P-свойством.
ДОКАЗАТЕЛЬСТВО. Пусть $\mathbb{R}^n = L \oplus l$, $\dim L = n - 1$, $\dim l = 1$, $l = \mathbb{R}$, $\forall x \in P_L A$ $f(x) = \min\{\mu \mid (x, \mu) \in A\}$.

Если A — многогранник, то и $P_L A$ — многогранник, т.е. локально симплициальным множество. Напомним (см. [1, § 10]), что множество S называется локально симплициальным, если для любой точки $x \in S$ найдется число $\varepsilon > 0$ и конечное множество симплексов S_1, \ldots, S_m из S с вершиной в x таких, что

$$B_\varepsilon(x) \cap S = B_\varepsilon(x) \cap \left(\bigcup_{i=1}^m S_i \right).$$

Если $A \subset \mathbb{R}^2$, то $P_L A$ — отрезок, т.е. также локально симплициальным множество.

По теореме 10.2 из [1, § 10] выпуклая функция полунепрерывна сверху на локально симплициальным множестве, т.е. f полунепрерывна сверху на $P_L A$.

Полунепрерывность снизу f следует из леммы 2.1.

ЛЕММА 2.3. Пусть A — строго выпуклый компакт в \mathbb{R}^n. Тогда множество A обладает P-свойством.

ДОКАЗАТЕЛЬСТВО. Пусть $\mathbb{R}^n = L \oplus l$, $\dim L = n - 1$, $\dim l = 1$, $l = \mathbb{R}$, $\forall x \in P_L A$ $f(x) = \min\{\mu \mid (x, \mu) \in A\}$.

Напомним, что множество строго выпукло, если его граница не содержит отрезков.

Поскольку выпуклая функция f непрерывна на ребрах $P_L A$ (см. теорему 10.1 из [1, § 10]), то с учетом леммы 2.1 достаточно проверить полунепрерывность сверху функции f на $\partial_1 P_L A$.

Фиксируем $x_0 \in \partial_1 P_L A$. Допустим, f не полунепрерывна сверху, т.е. найдется $x_k \in P_L A$, для которой $x_k \to x_0$ и $\mu_0 = \lim f(x_k) > f(x_0)$. Тогда отрезок $[(x_0, f(x_0)), (x_0, \mu_0)]$ лежит в A. Если допустить, что какая-то точка этого отрезка внутренняя в A, то приходим к противоречию с включением $x_0 \in \partial_1 P_L A$. Таким образом, отрезок $[(x_0, f(x_0)), (x_0, \mu_0)]$ лежит на ∂A, что противоречит строгой выпуклости A.

ЛЕММА 2.4. Пусть выпуклые компакты A_1 и A_2 из \mathbb{R}^n обладают P-свойством. Тогда множество $A = A_1 \cap A_2$ обладает P-свойством.

ДОКАЗАТЕЛЬСТВО. Пусть $\mathbb{R}^n = L \oplus l$, $\dim L = n - 1$, $\dim l = 1$, $l = \mathbb{R}$, $\forall x \in P_L A$ $f(x) = \min\{\mu \mid (x, \mu) \in A\}$; $\forall x \in P_L A_1 f_1(x) = \min\{\mu \mid (x, \mu) \in A_1\}$; $\forall x \in P_L A_2 f_2(x) = \min\{\mu \mid (x, \mu) \in A_2\}$.

Так как $f(x) = \max\{f_1(x), f_2(x)\}$, $x \in P_L A$, то из непрерывности функций f_1 и f_2 на $P_L A \subset P_L A_1 \cap P_L A_2$ получаем непрерывность f.

ЛЕММА 2.5. Пусть $A \subset \mathbb{R}^n$ обладает P-свойством, $H \subset \mathbb{R}^n$ — аффинное множество размерности $k < n$. Тогда для любого $x \in A \cap H$ множество $A \cap H - x$ обладает P-свойством в несущем подпространстве H.

Доказательство леммы 2.5 очевидно.

ЛЕММА 2.6. Пусть $A \subset \mathbb{R}^n$ обладает P-свойством. Если погрузить A в \mathbb{R}^m, $m > n$, то A также будет обладать P-свойством.
Доказательство. Пусть $\mathbb{R}^m = L \oplus l$, $N = \text{aff } A$. Если l не параллельна N, то $f: P_L A \to l$ есть сужение аффинной функции (с графиком N) на $P_L A$, которое, очевидно, непрерывно.

Если l параллельна N, то, переходя в несущее подпространство $N - y$, $y \in N$, со множеством $A - y$, получаем, по условию, непрерывность функции f.

Лемма 2.7. Пусть $A_1 \subset \mathbb{R}^n$ обладает P-свойством, $A_2 \subset \mathbb{R}^n$ таково, что $A = A_1 \cup A_2 \neq \varnothing$. Тогда A также обладает P-свойством.

Доказательство. $A = \bigcap_{a \in A_2} (A_1 - a)$. Пусть $\mathbb{R}^n = L \oplus l$, $f_A(x): P_L A \to l$, $\forall x \in P_L A \ f_A(x) = \min \{\mu \mid (x, \mu) \in A\}$.

Легко видеть, что $f_A(x) = \sup_{a \in A_2} f_{A_1 - a}(x)$, где $\forall x \in P_L (A_1 - a) \ f_{A_1 - a}(x) = \min \{\mu \mid (x, \mu) \in A_1\}$.

Непрерывные функции $f_{A_1 - a}$ равномерно по $a \in A_2$ равномерно непрерывны на компакте $P_L A \subset P_L (A_1 - a)$, а именно

$$
\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \forall x_1, x_2 \in P_L A: |x_1 - x_2| \leq \delta(\varepsilon) \ \forall a \in A_2 \ \ |f_{A_1 - a}(x_1) - f_{A_1 - a}(x_2)| \leq \varepsilon. \tag{2.1}
$$

Условие (2.1) следует из того, что функции $f_{A_1 - a}(x) - $ сдвиги одной и той же функции $f_{A_1}(x): P_L A_1 \to l$, $\forall x \in P_L A_1 \ f_{A_1}(x) = \min \{\mu \mid (x, \mu) \in A_1\}$.

Фиксируем $\varepsilon > 0$ и $x_1, x_2 \in P_L A: |x_1 - x_2| \leq \delta(\varepsilon)$, где $\delta(\varepsilon)$ взято из (2.1). Пусть $a_k \in A_2$ — минимизирующая последовательность для $\sup_{a \in A_2} f_{A_1 - a}(x_1)$. Из условия (2.1) для любого k верно

$$
f_{A_1 - a_k}(x_1) - f_{A_1 - a_k}(x_2) \leq \varepsilon.
$$

Переходя к пределу по k, имеем

$$
\sup_{a \in A_2} f_{A_1 - a}(x_1) - \lim_{k \to \infty} f_{A_1 - a_k}(x_2) \leq \varepsilon.
$$

Так как $\lim_{k \to \infty} f_{A_1 - a_k}(x_2) \leq \sup_{a \in A_2} f_{A_1 - a}(x_2)$, то

$$
\sup_{a \in A_2} f_{A_1 - a}(x_1) - \sup_{a \in A_2} f_{A_1 - a}(x_2) \leq \varepsilon.
$$

Аналогичное неравенство верно с заменой x_1 на x_2, т.е., используя $\delta(\varepsilon)$ из (2.1), получаем

$$
\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \forall x_1, x_2 \in P_L A: |x_1 - x_2| \leq \delta(\varepsilon) \\
\left| \sup_{a \in A_2} f_{A_1 - a}(x_1) - \sup_{a \in A_2} f_{A_1 - a}(x_2) \right| \leq \varepsilon;
$$

что означает равномерную непрерывность $f_A(x) = \sup_{a \in A_2} f_{A_1 - a}(x)$ на $P_L A$.

Перейдем к менее тривиальным свойствам.
ТЕОРЕМА 2.1. Пусть выпуклые компакты $A_1, A_2 \subseteq \mathbb{R}^n$ обладают P-свойством. Тогда $A = A_1 + A_2$ также обладает P-свойством.

ДОКАЗАТЕЛЬСТВО. Пусть $\mathbb{R}^n = L \oplus l$, P_L — проектор на L. Легко проверить, что $P_LA = P_LA_1 + P_LA_2$.

Договоримся под i подразумевать число 1 или 2.

Для любого $x \in P.LA_i$ $f_i(x) = \min\{\mu \mid (x, \mu) \in A_i\}$; по условию функции f_i непрерывны на $P.LA_i$.

Функция $f(x) = \inf\{f_1(x_1) + f_2(x_2) \mid x_1 + x_2 = x, \ x_i \in P.LA_i\}$. (2.2)

Напомним, что операция в (2.2) называется инфимальной конволюцией функций f_1 и f_2 (см. [1], [2]), ее геометрический смысл — сумма надграфиков f_1 и f_2, т.е.

$$ep\ f = ep\ f_1 + ep\ f_2.$$ Покажем, что инфинум в (2.2) достигается для любого $x \in P_LA$. Пусть x_i^1 — точки из $P.LA_i$ такие, что $x_i^1 + x_i^2 = x$ и $f_1(x_i^1) + f_2(x_i^2) \rightarrow f(x)$. Так как x_i^1 лежат в компактах, то $x_i^1 \rightarrow x_i \in P.LA_i, x_1 + x_2 = x$. Из непрерывности f_i получаем, что $f_1(x_i^1) + f_2(x_i^2) \rightarrow f_1(x_1) + f_2(x_2) = f(x)$.

По лемме 2.1 f полунепрерывна сверху на $P.LA$, т.е. существует $t_k \in P.LA: t_k \rightarrow t$ и

$$\lim t_k \leq f(t) = f_1(t_1) + f_2(t_2).$$ (2.3)

Заменим, если нужно, A_1 на $A_1 - (t_1, f_1(t_1))$, а A_2 — на $A_2 - (t_2, f_2(t_2))$, можно без ограничений общности считать, что $t_1 = t_2 = t = 0$ (в L) и $f_1(0) = f_2(0) = f(0) = 0$.

Найдутся точки $x_i^k \in P.LA_i: x_i^1 + x_i^2 = t_k$. Выделяя сходящуюся подпоследовательность, получаем, что $x_i^k \rightarrow x_i \in P.LA_i, x_1 + x_2 = 0$.

Рассмотрим ситуацию, когда $x_1 \neq 0$.

Покажем, что в $P.LA_i$ найдутся точки $d_i^k: d_i^1 \rightarrow 0$ и $d_i^1 + d_i^2 = t_k$.

Рассмотрим A_1. Пусть $a = (x_1, f_1(x_1)), a_k = (x_i^1, f_1(x_i^1))$;

$$\forall \varepsilon > 0 \ \exists k_1(\varepsilon) \ \forall k \geq k_1(\varepsilon) \ |x_1 - x_i^1| \leq \varepsilon.$$ (2.4)

Функция f_1 непрерывна, поэтому

$$\forall \varepsilon > 0 \ \exists k_2(\varepsilon) \ \forall k \geq k_2(\varepsilon) \ |f_1(x_1) - f_1(x_i^1)| \leq \varepsilon.$$ (2.5)

Пусть $l_1 = \ln\{a\} = \mathbb{R}$, причем направление возрастания скалярного аргумента l_1 выбираем по вектору $a, L_1 = \mathbb{R}^n \ominus l_1$. Введем новую функцию $g: P.LA_1 \rightarrow l_1, \forall z \in P.LA_1 g(z) = \min\{\lambda \mid (z, \lambda) \in A_1\}$. Функция g непрерывна на $P.LA_1$ по P-свойству A_1.

Пусть $z_k = P.LA_1 a_k$.

Используя (2.4) и (2.5), получаем для любого $k \geq k_3(\varepsilon) = \max\{k_1(\varepsilon/2), k_2(\varepsilon/2)\}$

$$|z_k| = h(\ln\{a\}, \{a_k + \lambda a \mid \lambda \in \mathbb{R}\}) \leq |a - a_k| \\ \leq |x_1 - x_i^1| + |f_1(x_1) - f_1(x_i^1)| \leq \varepsilon.$$ (2.6)
Из непрерывности g имеем

$$
\forall \varepsilon \in \left(0, \frac{|x_1|}{4}\right) \ \exists k_4(\varepsilon) \ \forall k \geq k_4(\varepsilon) \quad |g(0) - g(z_k)| \leq \varepsilon. \quad (2.7)
$$

Введем $b_k = (z_k, g(z_k) - g(0))$. Так как $g(0) \leq 0$, то b_k лежит выше (в смысле направления оси l_1), чем точка $(z_k, g(z_k))$. Точки b_k и a_k лежат на одном луче $\{(z_k, g(z_k)) + \lambda a \mid \lambda \geq 0\}$, $|b_k - (z_k, g(z_k))| = |g(0)|$.

При $\varepsilon \in (0, |x_1|/4)$ с учетом (2.6), (2.7) для всех $k \geq \max\{k_1(\varepsilon), k_2(\varepsilon), k_3(\varepsilon), k_4(\varepsilon)\}$ имеет

$$
|a_k - (z_k, g(z_k))| \geq -|a_k - a| + |a - (0, g(0))| - |(0, g(0)) - (z_k, g(z_k))|
\geq -\varepsilon + |a - (0, g(0))| - |z_k| - |g(0) - g(z_k)|
\geq -3\varepsilon + |a| + |g(0)| \geq -3\varepsilon + |x_1| + |g(0)| > |g(0)|,
$$

t.e. $b_k \in [a_k, (z_k, g(z_k))] \subset A_1$. Кроме того, $|b_k| \leq |z_k| + |g(0) - g(z_k)| \leq 2\varepsilon$.

Таким образом, мы построили последовательность $b_k \in A_1$ такую, что $b_k \to 0$ и $b_k \in \{a_k + \lambda a \mid \lambda \in \mathbb{R}\}$.

Пусть $c_k^1 = P_L b_k$. Ясно, что $c_k^1 \in P_L A_1, c_k^1 \to 0$ ($|c_k^1| \leq |b_k|$). Кроме того, $c_k^1 \in \{x_k^1 - \lambda x_1/|x_1| \mid \lambda \geq 0\}$, так как параллельные прямые $\text{lin}\{a\}$ и $\{a_k + \lambda a \mid \lambda \in \mathbb{R}\}$ проектируются на L в параллельные прямые $\text{lin}\{x_1\}$ и $\{x_k + \lambda x_1/|x_1| \mid \lambda \in \mathbb{R}\}$.

Проведя аналогичные рассуждения для множества A_2, получаем, что найдется $c_k^2 \in P_L A_2: c_k^2 \to 0$ и $c_k^2 \in \{x_k^2 - \lambda x_2/|x_2| \mid \lambda \geq 0\}$.

Пусть $p = x_1/|x_1| = -x_2/|x_2|$.

Если для данного $k |x_1 - c_k^1| \geq |x_2 - c_k^2|$, то берем $d_k^1 = c_k^1, d_k^2 = c_k^2, x_k^2 = x_k^2 + \lambda_k p$ для некоторого $\lambda_k \geq 0$; выбираем $d_k^1 = x_k^1 - \lambda_k p \in [c_k^1, c_k^1] \subset P_L A_1$.

Если для данного $k |x_1 - c_k^1| < |x_2 - c_k^2|$, то выбираем $d_k^1 = c_k^1, d_k^2 = x_k^2 - \lambda_k p \in [c_k^2, c_k^2] \subset P_L A_2$.

По построению последовательности d_k^1 бесконечно малые,

$$
d_k^1 \in P_L A_i \quad \text{и} \quad d_k^1 + d_k^2 = x_k^1 - \lambda_k p + x_k^2 + \lambda_k p = t_k.
$$

В силу формулы (2.2) имеем $f(t_k) \leq f_1(d_k^1) + f_2(d_k^2)$; переходя к пределу и учитывая непрерывность f_i, получаем

$$
\lim f(t_k) \leq \lim (f_1(d_k^1) + f_2(d_k^2)) = f_1(0) + f_2(0) = f(0),
$$
что противоречит (2.3) (напомним, что $t_1 = t_2 = t = 0$).

В заключение докажем, что линейное отображение переводит P-множество в P-множество. При этом как вспомогательный результат докажем одну теорему об открытом отображении.

Теорема 2.2. Пусть $T : \mathbb{R}^n \to \mathbb{R}^m$ — линейный оператор, выпуклый компакт $A \subset \mathbb{R}^n$ обладает P-свойством, $B = TA$. Тогда отображение $T : A \to B$ открытое в индуцированных в A и B топологиях.
Замечание 2.1. Топология в A понимается как $\tau_A = A \cap \tau_{\mathbb{R}^n}$, т.е. окрестностью точки $a \in A$ является всякое множество вида $(a + U) \cap A$, где U — окрестность нуля в \mathbb{R}^n. Топология в B понимается так же: $\tau_B = B \cap \tau_{\mathbb{R}^n}$.

Доказательство. Пусть без ограничения общности $0 \in A$ и $0 \in B$. Достаточно доказать открытость $T: A \to B$ в нуле.

Докажем, что если $y_k \in B$ и $y_k \to 0$, то найдется подпоследовательность последовательности y_k (снова y_k) и последовательность $a_k \in A: a_k \to 0$, $Ta_k = y_k$ для всех k.

Фиксируем $y_k \in B$, $y_k \to 0$. Найдется $x_k \in A: Tx_k = y_k$. В силу компактности A $x_k \to x$ и $Tx = 0$. Рассмотрим случай, когда $x \neq 0$.

Пусть $l = \text{lin}\{x\}$, $L = \mathbb{R}^n \oplus l$. Отождествим l с \mathbb{R}; пусть направление возрастания скалярного аргумента l совпадает с x.

Всякий вектор из \mathbb{R}^n будем представлять в виде (z, μ), $z \in L$, $\mu \in l = \mathbb{R}$.

Введем $f: P_L A \to l$, $\forall z \in P_LA \ f(z) = \min\{\mu \mid (z, \mu) \in A\}$. Так как A обладает P-свойством, то функция f непрерывна.

Пусть $z_k = P_L x_k$:

$$\forall \varepsilon > 0 \ \exists k_1(\varepsilon) \ \forall k \geq k_1(\varepsilon) \ |z_k| \leq |x - x_k| \leq \varepsilon.$$

В силу непрерывности f

$$\forall \varepsilon > 0 \ \exists k_2(\varepsilon) \ \forall k \geq k_2(\varepsilon) \ |f(0) - f(z_k)| \leq \varepsilon.$$

Пусть $a_k = (z_k, f(z_k) - f(0))$;

$$|a_k| \leq |z_k| + |f(z_k) - f(0)| \leq 2\varepsilon \ \forall k \geq \max\{k_1(\varepsilon), k_2(\varepsilon)\};$$

т.е. $a_k \to 0$.

Так как $f(0) \leq 0$, то a_k лежит выше (относительно l с направлением), чем $(z_k, f(z_k))$, $|a_k - (z_k, f(z_k))| = |f(0)|$.

Выберем $\varepsilon \in (0, |x|/4)$. При любом $k \geq \max\{k_1(\varepsilon), k_2(\varepsilon)\}$ имеем

$$|x_k - (z_k, f(z_k))| \geq |x_k - x| + |x - (0, f(0))| - |(0, f(0)) - (z_k, f(z_k))|$$

$$\geq -\varepsilon + |x - (0, f(0))| - |z_k| - |f(0) - f(z_k)|$$

$$\geq -3\varepsilon + |x + f(0)| > |f(0)|,$$

т.е. $a_k \in [(z_k, f(z_k)), x_k] \subset A$. Так как $a_k \in x_k + \text{lin}\{x\}$, то найдется $\lambda_k \in \mathbb{R}$: $a_k = x_k + \lambda_k x$;

$$Ta_k = Tx_k + \lambda_k Tx = y_k,$$

т.е. a_k — искомая последовательность.

Допустим, $T: A \to B$ не открыто в нуле. Это значит, что существует $\delta > 0$ такое, что для любого k

$$B_{1/k}(0) \cap B \not\subset T(B_\delta(0) \cap A);$$

иными словами, найдутся $y_k \in B_{1/k}(0) \cap B$:

$$y_k \not\in T(B_\delta(0) \cap A). \quad (2.8)$$

Выберем последовательность $a_k \in A: a_k \to 0$ и $Ta_k = y_k$. При больших k $a_k \in B_\delta(0) \cap A$, что противоречит (2.8).
ПРИМЕР 2.1. Теорема 2.2 неверна без предположения о P-свойстве A. Рассмотрим множество A из примера 1.1. Пусть T — оператор ортогонального проектирования на Ox_1x_2. Легко видеть, что

$$TA = \{(x_1 - 1)^2 + x_2^2 \leq 1, \ x_3 = 0\}.$$

Взяв $\delta \in (0, 1/2)$, имеем

$$T(B_{\delta}(0) \cap A) \subset T\left(\cap \left\{ \left(x_1 - \frac{1}{2} \right)^2 + x_2^2 = \frac{1}{4}, \ x_3 = \frac{1}{2} \right\} \cup \{(0, 0, 0)\} \right)$$

$$= \left\{ (x_1 - \frac{1}{2})^2 + x_2^2 \leq \frac{1}{4}, \ x_3 = 0 \right\}.$$

Последнее множество не является окрестностью нуля в TA.

ТЕОРЕМА 2.3. Пусть $T: \mathbb{R}^n \to \mathbb{R}^m$ — линейный оператор, выпуклый компакт $A \subset \mathbb{R}^n$ обладает P-свойством, $B = TA$. Тогда B обладает P-свойством.

ДОКАЗАТЕЛЬСТВО. Пусть $\mathbb{R}^m = L \oplus l, l = \mathbb{R}$. Для всех $x \in P_LB$ $f(x) = \min \{ \mu \mid (x, \mu) \in B \}$. Допустим, что существует $x_0 \in P_LB$ и последовательность $x_k \in P_LB : x_k \to x_0$ и

$$(x_k, f(x_k)) \to b \neq (x_0, f(x_0)).$$

Введем $b_k = (x_k, f(x_k)), b_0 = (x_0, f(x_0))$. По лемме 2.1 можно, не ограничивая общности, считать, что $\lim f(x_k) > f(x_0)$, поэтому вектор $b - b_0$ сонаправлен с l.

Пусть a_0, a — точки из A, для которых $b_0 = Ta_0, b = Ta$.

Далее, без ограничения общности считаем, что $a_0 = 0$ (и $b_0 = 0$); отсюда следует, что вектор b сонаправлен с l.

В силу теоремы 2.2 об открытом отображении для $T: A \to B$ получаем, что существует $a_k \in A : a_k \to a$ и $Ta_k = b_k$.

Пусть в $\mathbb{R}^n \ h = \{a\}, H = \mathbb{R}^n \cap h$. Отождествим h с \mathbb{R}; пусть направление возрастания скалярного аргумента h совпадает с a. Определям функцию $g: P_HA \to h = \mathbb{R}$, $\forall z \in P_HA \ g(z) = \min \{ \mu \mid (z, \mu) \in A \}$. Пусть $z_k = P_Ha_k$.

Пусть $\tilde{a}_k = (z_k, g(z_k) - g(0))$. Имеем $|z_k| \leq |a_k| \to 0$. В силу непрерывности g по P-свойству $A g(z_k) \to g(0)$, откуда

$$|\tilde{a}_k| \leq |z_k| + |g(z_k) - g(0)| \to 0.$$

Так как $g(0) \leq 0$, то \tilde{a}_k лежит выше (в смысле направления h), чем $(z_k, g(z_k))$.

Точки \tilde{a}_k и a_k лежат на одном луче $\{(z_k, g(z_k)) + \lambda a \mid \lambda \geq 0\}$ и $|\tilde{a}_k - (z_k, g(z_k))| = |g(0)|$;

$$|a_k - (z_k, g(z_k))| \geq |a_k - \tilde{a}_k| + |\tilde{a}_k - (0, g(0)) - (z_k, g(z_k))|$$

$$\geq |a_k - a| + |a| + |g(0)| - |z_k| - |g(0) - g(z_k)|;$$

при больших k последнее выражение больше $|g(0)|$, т. е. $\tilde{a}_k \in [(z_k, g(z_k)), a_k] \subset A$.

Итак, $\tilde{a}_k \in A, \tilde{a}_k \to 0$ и $\tilde{a}_k \in a_k + \text{lin}\{a\}$.

М. В. БАЛАШОВ
Поскольку $|a_k - \tilde{a}_k| \rightarrow |a| > 0$, то, начиная с некоторого номера k_0, $\forall k \geq k_0 \ a_k = a_k - \lambda_k a/|a|$, где $\lambda_k \geq |a|/2$.
Для $k > k_0$ имеем

$$T\tilde{a}_k = Ta_k - \lambda_k \frac{Ta}{|a|} = b_k - \lambda_k \frac{b}{|a|},$$

а поскольку вектор b соправлен с l, точка $T\tilde{a}_k$ лежит ниже (в смысле l), чем точка $b_k = (x_k, f(x_k))$, что невозможно по определению f.

3. Примеры использования свойств P-множеств. Одно из свойств, представляющих интерес, приведено в теореме 2 п. 2.

В данном пункте мы рассмотрим еще два приложения P-свойства.

Напомним (см. [3]), что выпуклый компакт $M \subset \mathbb{R}^n$ называется порождающим, если для любого пересечения сдвигов M вида $A = \bigcap_{x \in x} (M + x) \neq \emptyset$ найдется выпуклый компакт B такой, что $A + B = M$.

Порождающие множества и их свойства описаны в [3], они представляют интерес в некоторых задачах выпуклого и многозначного анализа, оптимального управления, аппроксимации множеств (см. [3]–[5]).

Теорема 3.1. Если выпуклый компакт $M \subset \mathbb{R}^n$ — порождающее множество, то M обладает P-свойством.

Доказательство. Применим индукцию по размерности.

В \mathbb{R}^2 утверждение верно: на плоскости все выпуклые компакты — порождающие множества (см. следствие 2.6 § 2 из [3]), а по лемме 2.2 все выпуклые компакты на плоскости обладают P-свойством. Это база индукции.

Пусть утверждение доказано в пространствах размерности 2, ..., $n - 1$. Покажем его справедливость в \mathbb{R}^n.

Будем считать, что $\text{int} M \neq \emptyset$ (если это не так, можно перейти в несущее подпространство).

Пусть $\mathbb{R}^n = L \oplus l, l = \mathbb{R}, \forall x \in P_L M \ f(x) = \min\{\mu \mid (x, \mu) \in M\}$.

По лемме 2.1 f полунепрерывна снизу.

Допустим, f не полунепрерывна сверху в некоторой точке относительной границы $P_L M$ (без ограничения общности — в нуле), это можно записать так: найдется $x_k \in P_L M : x_k \rightarrow 0 \in \partial P_L M, f(x_k) \rightarrow 0, a f(0) < 0$.

Можно считать, что $x_k \in \operatorname{ri} P_L M$, так как f непрерывна на отрезках, соединяющих любую точку $z \in P_L M$ с точкой $z_0 \in \operatorname{ri} P_L M \neq \emptyset$ и выполнено включение $(z, z_0) \subset \operatorname{ri} P_L M$ (см. [1]).

Если $x_k \in \operatorname{ri} P_L M$, то f субдифференцируема в точках x_k (см. теорему 23.4 из [1, § 23]); пусть $p_k \in \partial f(x_k), q_k = (p_k, -1)$.

Отрезок $[0, f(0)), (0, 0)]$ лежит на грани M (иначе он не проектировался бы проектором P_L в точку $0 \in \partial P_L M$). Пусть q_0 — вектор, отдаляющий отрезок $[0, f(0)), (0, 0)]$ от M. Ясно, что q_0 имеет вид $(p_0, 0)$.

Пусть $e_k = (x_k, f(x_k))$.

Пусть

$$A_m = M \overset{\#}{\cup} \left\{0 \cup \bigcup_{k=m}^{\infty} \{e_k\}\right\} = M \bigcap_{k=m}^{\infty} (M - e_k).$$
Отметим, что $0 \in A_m$, поэтому $A_m \neq \varnothing$. Так как множество M порождающее, то для каждого m найдется выпуклый компакт B_m такой, что

$$A_m + B_m = M.$$ \hspace{1cm} (3.1)

Поскольку $e_k \to 0$, то $\{0\} \cup \bigcup_{k=m}^{\infty} \{e_k\} \to \{0\}$ в метрике Хаусдорфа.

Из непрерывности геометрической разности при условии непустоты внутренности (следствие 3 из [6, § 4]) получаем, что $A_m \to M$, $B_m \to \{0\}$ в метрике Хаусдорфа.

Легко видеть, что для всех $m \ 0 \in \partial A_m$ и

$$\{(0, 0) + \lambda(0, -1) \mid \lambda > 0\} \cap A_m = \varnothing.$$ \hspace{1cm} (3.2)

Поясним (3.2): так как q_k, $k \geq m$, — “негоризонтальные” нормальные векторы ко множествам $M - e_k$ в точке нуль; то каждый из них нормальный вектор и к A_m в нуле, откуда следует (3.2).

Пусть $H_0 = \{(x, \mu) \in \mathbb{R}^n \mid \langle q_0, (x, \mu) \rangle = \langle p_0, x \rangle = 0\}$ — опорная гиперплоскость, отделяющая отрезок $[(0, f(0)), (0, 0)]$ от M.

Так как $0 \in A_m$, то $B_m \subseteq M$ для всех m. Так как $0 \in M$, то $0 \in B_m$ для всех m. Так как q_0 — опорный вектор к M в точке нуль, то (в силу $0 \in B_m$) имеет следующее включение для опорных подмножеств $B_m(q_0)$ и $M(q_0)$:

$$B_m(q_0) \subset M(q_0) \quad \forall m.$$ \hspace{1cm} (3.3)

Из (3.1) имеем

$$A_m(q_0) + B_m(q_0) = M(q_0).$$

В силу теоремы 2.2 § 2 из [3] множество $M(q_0)$ также является порождающим в подпространстве H_0.

Перейдем к рассмотрению в H_0. Пусть $B_m(q_0) = \{b_{m,j}\}_{j=1}^{\infty}$. Отметим, что

$$A_m(q_0) = M(q_0) \ast B_m(q_0) = M(q_0) \ast \{b_{m,j}\}_{j=1}^{\infty} = \bigcap_{j=1}^{\infty} \left(M(q_0) - b_{m,j} \right),$$ \hspace{1cm} (3.4)

$$B_m(q_0) \to \{0\}.$$

Пусть $L_0 = L \cap H_0$, $f_0: L_0 \to \ell = \mathbb{R}$ ($l \subset H_0$), $\forall x \in P_{L_0} M(q_0), \ f_0(x) = \min \{\mu \mid (x, \mu) \in M(q_0)\}$. Введем $x_{m,j} = P_{L_0} b_{m,j}$; так как $b_{m,j} \in B_m(q_0) \subseteq M(q_0)$ (по (3.3)), то $x_{m,j} \in P_{L_0} M(q_0)$.

Рассмотрим два случая.

Случай 1. Пусть выполнено условие

$$\exists m, \ \exists c > 0 \ \forall j \quad |b_{m,j} - (x_{m,j}, f_0(x_{m,j}))| \geq c.$$

Тогда для этого m по верхнему равенству в свойстве (3.4) получаем

$$[c(0, -1), (0, 0)] \subset A_m(q_0) \subset A_m,$$

что противоречит (3.2).
Случай 2. Пусть выполнено условие
\[\forall m, \forall \epsilon > 0 \ \exists j \ |b_{mj} - (x_{mj}, f_0(x_{mj}))| < \epsilon. \]
Выбрав \(c = 1/m \), определим \(j_m \), для которого
\[|b_{mj_m} - (x_{mj_m}, f_0(x_{mj_m}))| < \frac{1}{m}. \]
В силу включения \(b_{mj_m} \in B_m(q_0) \) и нижнего предельного соотношения в (3.4) получаем, что \(b_{mj_m} \to 0 \), откуда \(x_{mj_m} \to 0 \) и \(f_0(x_{mj_m}) \to 0 \), и в силу предположения индукции имеет место непрерывность \(f_0 \) на \(P_0 M(q_0) \), т.е.
\[0 = \lim f_0(x_{mj_m}) = f_0(0_{n-2}). \]
но \(f_0 \) есть сужение на \(L_0 \) функции \(f \), откуда \(f_0(0_{n-2}) = f(0_{n-1}) < 0 \). Противоречие.

ЗАМЕЧАНИЕ 3.1. Отметим, что в пространстве размерности больше 2 класс порождающих множеств уже гораздо беднее, чем класс П-множеств. Так, многие многогранники и строго выпуклые компакты в \(\mathbb{R}^n, n > 2 \), не являются порождающими (см. [3]). Тем не менее тот факт, что порождающие множества обладают P-свойством, оказывается полезным при изучении их свойств.

Другое применение P-свойства показано в следующем утверждении о непрерывности геометрической разности двух многозначных отображений. В отличие от известных теорем (см. [6]) здесь не требуется непустота внутренности у геометрической разности.

ТЕОРЕМА 3.2. Пусть \(T \) - метрическое пространство, \(F \subset \mathbb{R}^n \) - выпуклый компакт, обладающий P-свойством. Пусть \(T(t), t \in T \), - непрерывная и неорожденная для всех \(t \) матрица размера \(n \times n \), а \(G(t) \) - непрерывное (в метрике Хаусдорфа) многозначное отображение такое, что
\[H(t) = (T(t)F) \star G(t) \neq \emptyset \quad \forall t \in T. \]
Тогда многозначное отображение \(H(t) \) непрерывно.

Доказательство теоремы 3.2 получается дословным повторением доказательства теорем 3.1 и 3.2 из [7] с учетом того, что функция \(f \), описанная в теореме 3.1 из [7], непрерывна в силу P-свойства \(F \).

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

Московский физико-технический институт
E-mail: balashov@math.mipt.ru

Поступило 22.11.2000
Исправленный вариант 04.10.2001