Ю. Ю. Кочетков, Гомологии нильпотентных подалгебр супералгебры Ли $K(1,1)$. 3, Матем. заметки, 2003, том 73, выпуск 2, 234–243

DOI: https://doi.org/10.4213/mzm182
ГОМОЛОГИИ НИЛЬПОТЕНТНЫХ ПОДАЛГЕБР
СУПЕРАЛГЕБРЫ ЛИ K(1,1). 3
Ю. Ю. Кочетков

В работе вычислены размерности групп гомологий второго порядка с тривиальными коэффициентами нильпотентных подалгебр супералгебры Ли K(1,1), которая является естественным супераналогом алгебры Витта. Доказательство использует не-посредственное вычисление ранга дифференциала. В качестве приложения найдены деформации максимальной нильпотентной подалгебры в K(1,1).

Библиография: 7 названий.

Введение. Рассмотрим бесконечномерное линейное пространство L с базисом \{e_i\} \in Z. Градуируем L, положив \text{deg} e_i = i. Обозначим через L_n, n \geq 1, линейную оболочку векторов e_i, i \geq n: L_n = \{e_i\}_{i \geq n}. На L можно задать Ли-структуры: структуру алгебры Ли и структуру супералгебры Ли.

1. Положим \[[e_i, e_j] = (j - i)e_{i+j} \]. Тогда L становится алгеброй Ли, которая называется алгеброй V\textit{it}та и обозначается W.

2. Положим

\[
\begin{align*}
[e_{2i+1}, e_{2j+1}] &= e_{2i+2j+2}, \\
[e_{2i}, e_{2j+1}] &= (2j - i + 1)e_{2i+2j+1}, \\
[e_{2i}, e_{2j}] &= (2j - 2i)e_{2i+2j}.
\end{align*}
\]

Тогда L становится супералгеброй Ли, где элемент e_i чётен, если i чётно, и не-чётен, в противном случае. Эта супералгебра обозначается \(K(1,1) \).

Обе Ли-структуры сохраняют введенную выше градуировку, а подпространства L_n в обоих случаях являются нильпотентными под(супер)алгебрами Ли. Обозначение L_n мы сохраним для нильпотентных подалгебр супералгебры K(1,1), а соответствующие нильпотентные подалгебры W будут обозначаться \(L_n(W) \).

Гомологии L_n(W) были предметом интенсивного изучения в 70–80-х годах. В трудной работе Гончаровой [1] была доказана теорема о размерностях групп гомологии \(H_p(L_n(W)) \) с тривиальными коэффициентами. Достаточно прозрачное доказательство теоремы Гончаровой было дано Вайнштейном в [2].

Сходство между W и K(1,1) побудило предпринять исследование гомологии алгебр L_n. В работе [3] был дан набросок доказательства утверждения, что \(\text{dim} H_p(L_1) = 2 \)

Работа выполнена при поддержке Российского фонда фундаментальных исследований, грант № 98-01-00329.
(аналогично тому, что \(\dim H_p(L_1(W)) = 2 \)). Полное доказательство так и не было опубликовано. В работе [4] был вычислен производящий ряд эйлеровой характеристики нильпотентной супералгебры \(L_1 \),

\[
P(t) = 1 + \sum_{i=1}^{\infty} (-1)^i t^{2i^2 + i},
\]

структура которого подкрепляет утверждение из [3]. Вайнштейн предложил изящную гипотетическую формулу для нетривиальных циклов из \(c'_p, c''_p \in Z_p(L_1) \):

\[
c'_p = \begin{vmatrix}
 e_1 & e_3 & \ldots & e_{2p-1} \\
 e_3 & e_5 & \ldots & e_{2p+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 e_{2p-1} & e_{2p+1} & \ldots & e_{4p-3}
\end{vmatrix},

c''_p = \begin{vmatrix}
 e_3 & e_5 & \ldots & e_{2p+1} \\
 e_5 & e_7 & \ldots & e_{2p+3} \\
 \vdots & \vdots & \ddots & \vdots \\
 e_{2p+1} & e_{2p+3} & \ldots & e_{4p-1}
\end{vmatrix}.
\]

Эту формулу следует понимать таким образом: цепь вычисляется как определитель, где умножение заменено внешним произведением. Так как все элементы определителя четны, то внешнее произведение коммутативно (см. ниже) и цепь определена корректно. Так

\[
c'_3 = \begin{vmatrix}
 e_1 & e_3 & e_5 \\
 e_3 & e_5 & e_7 \\
 e_5 & e_7 & e_9
\end{vmatrix} = e_1 \wedge e_5 \wedge e_9 + 2e_3 \wedge e_5 \wedge e_7 - e_5 \wedge e_5 \wedge e_9 - e_3 \wedge e_3 \wedge e_9 - e_1 \wedge e_7 \wedge e_7.
\]

Доказать, что \(c'_p \) и \(c''_p \) являются циклами, несложно. Их нетривиальность проверена при \(p \leq 5 \).

Попытка доказать аналог теоремы Гончаровой о размерностях групп \(H_p(L_n) \) методом фильтрующих базисов [2] не привела к успеху: тождества в коцефах \(L_p(W) \), введенные в [2] и играющие важную роль при построении фильтрующих базисов, не имеют аналога в случае \(K(1,1) \). Вместе с тем вычисления показывают, что есть регулярность в поведении размерностей групп гомологиях \(H_2(L_n) \) и \(H_3(L_n) \).

Прежде чем формулировать утверждения, мы введем необходимые определения и обозначения. Четность одночлена элемента \(a \in K(1,1) \) будет обозначаться \(p(a) \), где \(p(a) = 0 \), если \(a \) четно, и \(p(a) = 1 \), если \(a \) нечетно. В суперслучае понятия цепи и дифференциал нуждаются в корректировке [5]. В цепи \(e_{i_1} \wedge \cdots \wedge e_{i_p} \) соседние элементы антикоммутируют, если оба нечетны. Поэтому, например, цепь \(e_2 \wedge e_3 \wedge e_3 \) задана корректно. Дифференциал \(d \colon C_p(K(1,1)) \to C_{p-1}(K(1,1)) \) определяется следующим образом:

\[
d(e_{i_1} \wedge \cdots \wedge e_{i_p}) = \sum_{1 \leq k < l \leq p} (-1)^{\alpha(k,l)} [e_{i_k}, e_{i_l}] \wedge e_{i_1} \wedge \cdots \wedge \hat{e}_{i_k} \wedge \cdots \wedge \hat{e}_{i_l} \wedge \cdots \wedge e_{i_p},
\]

где

\[
\alpha(k, l) = \sum_{t=1}^{k-1} (p(e_{i_t})p(e_{i_k}) + 1) + \sum_{t=1}^{l-1} (p(e_{i_t})p(e_{i_l}) + 1) - (p(e_{i_k})p(e_{i_l}) + 1).
\]

Другими словами, мы перемешаем элемент \(e_{i_k} \) на первое место в цепи, вычисляя знак каждой перестановки по правилу, описанному выше, затем перемещаем элемент \(e_{i_l} \) на второе место, также вычисляя знак по тому же правилу, а потом берем скобку от этих двух элементов.
Пример. Вычислим

\[d(e_1 \land e_4 \land e_5 \land e_5) = [e_1, e_4] \land e_5 \land e_5 - [e_1, e_5] \land e_4 \land e_5 - [e_1, e_4] \land e_5 \land e_5 - [e_4, e_5] \land e_1 \land e_5 - [e_4, e_5] \land e_1 \land e_5 + [e_8, e_5] \land e_1 \land e_4 \]

\[= e_5 \land e_5 \land e_5 - e_6 \land e_4 \land e_5 - e_6 \land e_4 \land e_5 - 3e_9 \land e_1 \land e_5 - 3e_9 \land e_1 \land e_5 + e_{10} \land e_1 \land e_4 \]

\[= e_5 \land e_5 \land e_5 - 2e_4 \land e_5 \land e_5 - 6e_1 \land e_5 \land e_9 + e_1 \land e_4 \land e_{10}. \]

Весом цепи \(e_{i_1} \land \cdots \land e_{i_p} \) называется число \(m = i_1 + \cdots + i_p \). Пространство цепей \(C_p(\cdot) \) является прямой суммой

\[C_p(\cdot) = \bigoplus_{i=1}^{\infty} C_p^{(m)}(\cdot) \]

конечномерных пространств цепей веса \(m \). Дифференциал \(d \) сохраняет вес; следовательно, пространство циклов (гомологии) является суммой пространств циклов (гомологий) веса \(m \): \(Z_p(\cdot) = \bigoplus_{m} Z_p^{(m)}(\cdot) \), \((H_p(\cdot) = \bigoplus_{m} H_p^{(m)}(\cdot)) \). Далее мы будем изучать размерности пространств \(H_2^{(m)}(L_n) \).

В работе [6] было доказано, что \(\dim H_2^{(m)}(L_n) = 0 \) при \(m > 8n \). Следовательно, пространство \(H_2(L_n) \) конечномерно. Прежде чем формулировать теорему о размерностях, обратим внимание на следующий факт. Так как пространство \(C_1^{(m)}(L_n) \) одномерно (при \(m \geq n \)), то \(\dim Z_2^{(m)}(L_n) = \dim C_2^{(m)}(L_n) - 1 \). Поэтому для вычисления \(\dim H_2^{(m)}(L_n) \) достаточно знать размерность пространства 2-цепей \(C_2^{(m)}(L_n) \) и ранг дифференциала \(d: C_3^{(m)}(L_n) \rightarrow C_2^{(m)}(L_n) \).

Лемма. Пусть \(2n \leq m \). Тогда

\[\dim C_2^{(m)}(L_n) = \begin{cases}
2l - n, & \text{если } m = 4l, \\
2l - n + 1, & \text{если } m = 4l + 1, \\
2l - n + 2, & \text{если } m = 4l + 2, \\
2l - n + 2, & \text{если } m = 4l + 3.
\end{cases} \]

Доказательство. Так как

\[C_2^{(m)}(L_n) = \langle e_0 \land e_{m-n}, e_{n+1} \land e_{m-n-1}, \ldots, e_s \land e_{m-s} \rangle, \]

то последней в этом списке будет цепь

\[e_{2l-1} \land e_{2l+1}, \text{ если } m = 4l, \]

\[e_{2l} \land e_{2l+1}, \text{ если } m = 4l + 1, \]

\[e_{2l+1} \land e_{2l+1}, \text{ если } m = 4l + 2, \]

\[e_{2l+1} \land e_{2l+2}, \text{ если } m = 4l + 3. \]

Теперь сформулируем теорему о размерностях групп \(H_2^{(m)}(L_n) \).
Теорема A [4]. Имеется место равенство

\[\dim H_2^{(m)}(L_n) = \dim Z_2^{(m)}(L_n) - s(m), \]

где

\[s(m) = \begin{cases} 0 & \text{пу \(m < 6k + 3 \)}, \\ 1 & \text{пу \(m = 6k + 3,6k + 4,6k + 5 \)}, \\ m - 6k - 4 & \text{пу \(6k + 5 < m \leq 6k + 10 \)}, \\ m - 6k - 3 & \text{пу \(m > 6k + 10 \)}, \end{cases} \]

если \(n = 2k + 1, \ n > 7, \ u \)

\[\dim H_2^{(m)}(L_n) = \dim Z_2^{(m)}(L_n) - t(m), \]

где

\[t(m) = \begin{cases} 0 & \text{пу \(m < 6k + 2 \)}, \\ m - 6k - 1 & \text{пу \(m \geq 6k + 2, \ m \neq 6k + 4,6k + 5 \)}, \\ m - 6k - 2 & \text{пу \(m = 6k + 4,6k + 5 \)}, \end{cases} \]

если \(n = 2k \).

При нечетном \(n \leq 7 \) размерности групп гомологий легко вычисляются непосредственно. Имеем следующие результаты.

Случай \(n = 1 \): \(\dim H_2^{(m)}(L_1) = 1 \) при \(m = 2,6 \). При остальных \(m \) соответствующая группа тривиальна.

Случай \(n = 3 \): \(\dim H_2^{(m)}(L_3) = 1 \) при \(m = 10,11,12,13,14 \). При остальных \(m \) соответствующая группа тривиальна.

Случай \(n = 5 \): размерность \(H_2^{(m)}(L_5) \) задается таблицей 1. При остальных \(m \) соответствующая группа тривиальна.

Таблица 1

<table>
<thead>
<tr>
<th>(m)</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\dim H_2^{(m)}(L_5))</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Случай \(n = 7 \): размерность \(H_2^{(m)}(L_7) \) задается таблицей 2. При остальных \(m \) соответствующая группа тривиальна.

Таблица 2

<table>
<thead>
<tr>
<th>(m)</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\dim H_2^{(m)}(L_7))</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Поясним смысл формул теоремы A. Если \(n = 2k + 1 \), то \(\dim C_3^{(m)}(L_n) = 0 \) при \(m < 6k + 3 \). Аналогично, \(\dim C_3^{(m)}(L_{2k}) = 0 \) при \(m < 6k + 2 \). Теорема утверждает, что при \(n = 2k + 1 \) ранг дифференциала \(d \) ведет себя так, как показано в таблице 3 (при \(m > 6k + 10 \) ранг дифференциала равен \(m - 6k - 3 \)), а при \(n = 2k \) – так, как показано в таблице 4 (при \(m > 6k + 5 \) ранг равен \(m - 6k - 1 \)).
Таблица 3

<table>
<thead>
<tr>
<th>m</th>
<th>$6k + 3$</th>
<th>$6k + 4$</th>
<th>$6k + 5$</th>
<th>$6k + 6$</th>
<th>$6k + 7$</th>
<th>$6k + 8$</th>
<th>$6k + 9$</th>
<th>$6k + 10$</th>
<th>$6k + 11$</th>
<th>$6k + 12$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ранг</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Таблица 4

<table>
<thead>
<tr>
<th>m</th>
<th>$6k + 2$</th>
<th>$6k + 3$</th>
<th>$6k + 4$</th>
<th>$6k + 5$</th>
<th>$6k + 6$</th>
<th>$6k + 7$</th>
<th>$6k + 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ранг</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Мы подробно рассмотрим случай нечетного n и объясним, как проводится доказательство теоремы A для четного n.

Случай нечетного n. Пусть $n = 2k + 1$. Редуцированной степенью цепи $c = e_{i_1} \land \cdots \land e_{i_i}$ мы будем называть число $\deg c = 2kl$. Так, например, редуцированная степень 1-цепи e_{2k+1} равна 1, а редуцированная степень цепи $e_{2k+1} \land e_{2k+2} \land e_{2k+3}$ равна 6. Редуцированную степень цепи $c \in C^{(m)}_3(L_n)$ будем обозначать \overline{m}.

Наш основной объект — это матрица A дифференциала $d: C^{(m)}_3(L_n) \to C^{(m)}_2(L_n)$. Ее строки нумеруются тройками чисел (i_1, i_2, i_3), $i_1 + i_2 + i_3 = \overline{m}$, $i_1 \leq i_2 \leq i_3$, отвечающими ненулевым 3-цепям $e_{2k+i_1} \land e_{2k+i_2} \land e_{2k+i_3}$. Ее столбцы отвечают базисным элементам пространства $C^{(m)}_2(L_n)$, которые мы будем обозначать $b_1 = e_{2k+1} \land e_{m-2k-1}, b_2 = e_{2k+2} \land e_{m-2k-2}, \ldots$. Столбец, отвечающий i-му базисному вектору, мы будем называть i-м столбцом и обозначать s_i.

Столбцы A линейно зависятся: линейная комбинация $\sum \alpha_i s_i$ равна нулевому столбцу, где коэффициенты α_i определяются из условия $d(b_i) = (e_{2k+i_1} \land e_{m-2k-i}) = \alpha_i e_m$. Равенство нулю этой линейной комбинации следует из того, что $d^2 = 0$.

При работе с матрицей A удобно выделить два случая.

1) Пусть $\overline{m} < 2k + 4$. При этом в цепи $e_i \land e_j \land e_{m-i-j} \in C^{(m)}_3(L_n)$ всегда $i + j > m - i - j, m - j > j$ и $m - i > i$. Тогда в столбцах с номерами $\overline{m} - 1, \overline{m}, \ldots$ стоят нули. Пусть, например, $n = 11, m = 37$, т.е. $k = 5$ и $\overline{m} = 7$. Тогда $\dim C^{(37)}_2(L_{11}) = 8$ и базис состоит из элементов $b_1 = e_{11} \land e_{26}, b_8 = e_{18} \land e_{19}$. В то же время, $\dim C^{(37)}_3(L_{11}) = 3$ и базис состоит из цепей $e_{11} \land e_{15} \land e_{12} \land e_{14} \land e_{11} \land e_{13} \land e_{13}$. Имеем

\[
\begin{align*}
 d(e_{11} \land e_{11} \land e_{15}) &= -b_5 - 2b_1, \\
 d(e_{11} \land e_{12} \land e_{14}) &= 5b_4 - 4b_2 - 2b_1, \\
 d(e_{11} \land e_{13} \land e_{13}) &= 2b_3 - b_1.
\end{align*}
\]

То есть в столбцах 6, 7 и 8 матрицы A стоят нули. В этом случае через A мы будем обозначать подматрицу исходной матрицы, образованную теми же строками и столбцами от первого до ($\overline{m} - 2$)-го включительно. При $\overline{m} < 12$ ранг A легко вычисляется.

Теорема 1. Пусть $\overline{m} \geq 12$ и $\overline{m} < 2k + 4$. Тогда ранг матрицы A на единицу меньше числа ее столбцов.

Доказательство. Так как столбцы матрицы A линейно зависят, то ее ранг не превышает числа столбцов минус 1. Стробы $(1, 1, \overline{m} - 2), (1, 2, \overline{m} - 3)$ и $(1, 3, \overline{m} - 4)$ вносят вклад 3 в ранг A, потому что столбцы $\overline{m} - 2, \overline{m} - 3$ и $\overline{m} - 4$ содержат ровно по одному ненулевому элементу как раз в этих строках. Рассмотрим подматрицу B матрицы A,
полученную из A удалением первого и трех последних столбцов, первых трех строк и всех строк $(i, j, \tilde{m} - i - j)$, где $i > 3$.

Мы докажем, что ранг матрицы B равен числу ее столбцов, т.е. $\tilde{m} - 6$. Вот как выглядит матрица B для $\tilde{m} = 17$:

$$
\begin{pmatrix}
0 & 0 & 5 - k & 0 & 0 & 0 & 0 & 0 & 0 & 0 & k - 1 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 4 - k & 0 & 0 & 0 & k - 2 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 & 0 \\
k - 3 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -k - 2 \\
-k - 9 & 0 & k + 10 & 0 & 0 & 0 & 0 & 0 & 0 & -2 \\
k & 0 & 0 & 8 & 0 & 0 & 0 & -k - 4 & 0 & 0 \\
-k - 6 & 0 & 0 & 0 & k & 8 & 0 & 0 & -4 & 0 & 0 \\
k + 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & -6 & 2 - k & 0 & 0 & 0 & 0 & k + 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & -2 & 0 & 0 & 1 - k & 0 & k & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2
\end{pmatrix}
$$

Столбцы матрицы B имеют номера $2, \ldots, 12$, а ее строки нумеруются тройками $(1, 4, 12), (1, 5, 11), (1, 6, 10), (1, 7, 9), (2, 3, 12), (2, 4, 11), (2, 5, 10), (2, 6, 9), (2, 7, 8), (3, 3, 11), (3, 4, 10), (3, 5, 9), (3, 6, 8), (3, 7, 7)$.

Преобразуем B в ступенчатую матрицу: в строке $(2, 4, \tilde{m} - 6)$ (а также в строках $(2, 5, \tilde{m} - 7), (2, 6, \tilde{m} - 8), \ldots$) мы обнимаем элемент в $(\tilde{m} - 6)$-м столбце (в столбцах $\tilde{m} - 7, \tilde{m} - 8, \ldots$ соответственно), используя для этого строку $(3, 3, \tilde{m} - 6)$ (строки $(3, 4, \tilde{m} - 7), (3, 5, \tilde{m} - 8), \ldots$ соответственно). Теперь строки $(1, 4, \tilde{m} - 5), (3, 3, \tilde{m} - 6), (3, 4, \tilde{m} - 7), \ldots$ и преобразованные строки $(2, 4, \tilde{m} - 6), (2, 5, \tilde{m} - 7), \ldots$ образуют ступенчатую матрицу ранга $\tilde{m} - 8$. Чтобы достроить B до ступенчатой матрицы полного ранга, т.е. построить еще две недостающие строки, рассмотрим в исходной матрице B строки $(1, 4, \tilde{m} - 5), (1, 5, \tilde{m} - 6), (2, 3, \tilde{m} - 5), (2, 4, \tilde{m} - 6), (2, 5, \tilde{m} - 7), (3, 3, \tilde{m} - 6)$ и $(3, 4, \tilde{m} - 7)$. Ненулевые элементы этих строк располагаются в столбцах с номерами $2, 3, 4, 5, \tilde{m} - 7, \tilde{m} - 6$ и $\tilde{m} - 5$. Теперь рассмотрим (7×7)-подматрицу C матрицы B, образованную этими строками и столбцами. В случае нечетного \tilde{m} матрица C имеет вид

$$
C = \begin{pmatrix}
0 & 0 & \frac{1}{2}(\tilde{m} - 7) - 2 & 0 & 0 & 0 & k - 1 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 \\
k - \frac{1}{2}(\tilde{m} - 11) & \tilde{m} - 7 & 0 & 0 & 0 & 0 & -k - 2 \\
8 - k - \tilde{m} & 0 & k + \tilde{m} - 7 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & \tilde{m} - 9 & -k - 4 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 & -1 & 0 \\
0 & 11 - \tilde{m} & \frac{1}{2}(\tilde{m} - 13) - k & 0 & 0 & 0 & -1
\end{pmatrix}
$$

Определитель C равен $3(\tilde{m} - 3)(\tilde{m} - 9)(\tilde{m} - 4k - 15)/2$, если \tilde{m} нечетно, и $3(\tilde{m} - 8)(\tilde{m} - 10)(\tilde{m} + 6k)/2$, если \tilde{m} четно. Так как в рассматриваемом случае $(\tilde{m} < 2k + 4)$ определитель не равен нулю, то ранг матрицы B равен $\tilde{m} - 6$.

2) Пусть теперь $\tilde{m} \geq 2k + 4$. Мы рассматриваем полную матрицу A, т.е. учитываем все столбцы b_i, которые, по-прежнему, линейно зависимы. Поэтому ранг матрицы A не превышает числа ее столбцов минус 1.
Теорема 2. Пусть $m \geq 2k + 4$. Тогда ранг матрицы A равен числу ее столбцов минус 1.

Доказательство. Рассмотрим подматрицу B матрицы A, полученную удалением из A первого столбца и строк $(i, j, m - i - j), i > 3$. Мы докажем, что ранг матрицы B равен числу ее столбцов. Вот как выглядит фрагмент B при $n = 11, m = 59$, содержащий строки $(2, 3, 24), (2, 4, 23), \ldots, (2, 13, 14)$ (номера столбцов B меняются от 2 до 19):

$$
\begin{pmatrix}
-4 & 22 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 0 & 0 & 0 & 0 \\
-26 & 0 & 27 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 20 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-23 & 0 & 0 & 0 & 25 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 \\
2 & 0 & 0 & 0 & 0 & 18 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 11 \\
-20 & 0 & 0 & 0 & 0 & 23 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -6 \\
5 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -13 & 0 \\
-17 & 0 & 0 & 0 & 0 & 0 & 0 & 21 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -8 & 0 & 0 & 0 & 0 & 0 \\
8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 14 & 0 & 0 & 0 & 0 & -15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 19 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
11 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 12 & -17 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
$$

Следует отметить, что элементы матрицы B, находящиеся в строке $(2, i, m - i - 2)$ и столбцах i и $m - i - 2$ (или $2 + i + 2k$), не равны нулю (так как $[c_{2k+2}, e_{2k+i}] \neq 0$ при $i > 2$). Мы будем приводить матрицу B к ступенчатому виду следующим образом: в строке $(2, i, m - i - 2), i > 3$, мы будем обнулять самый правый ненулевой элемент с помощью строки $(3, i - 1, m - i - 2)$. После этих преобразований строки $(2, 4, m - 6), (2, 5, m - 7), \ldots, (2, (m - 3)/2, (m - 1)/2), (3, (m + 1)/2 + k - 3, (m - 1)/2 + k), \ldots, (3, s, m - s - 3)$ образуют ступенчатую матрицу, ранг которой равен числу столбцов B минус 2 (здесь $s = (m - 3)/2$, если $m \equiv 1 \mod 4$, и $s = (m - 5)/2$, если $m \equiv 3 \mod 4$). Другими словами, мы отбрасываем строки $(3, i, m - i - 3)$, начиная с той, где самый правый ненулевой элемент находится в последнем столбце.

Чтобы достроить B до ступенчатой матрицы требуемого ранга, мы поступаем, как в теореме 1, т.е. рассматриваем строки $(1, 4, m - 5), (1, 5, m - 6), (2, 3, m - 5), (2, 4, m - 6), (2, 5, m - 7), (3, 3, m - 6), (3, 4, m - 7)$ и столбцы $2, 3, 4, 5, 2k + 5, 2k + 6, 2k + 7$ матрицы A. Матрица C, образованная этими строками и столбцами, отличается от аналогичной матрицы, построенной в теореме 1, лишь знаками элементов в тех последних столбцах. Поэтому ее определитель равен $-3(m - 3)(m - 9)(m - 4k - 15)/2$, если m четно, и $-3(m - 8)(m - 10)(m + 6k)$, если m четно. Если $m \neq 4k + 15$, то матрица C дает возможность достроить матрицу B до ступенчатой матрицы требуемого ранга.

Если же $m = 4k + 15$, то вместо C рассматривается (8×8)-матрица, образованная строками $(1, 5, 4k + 9), (1, 6, 4k + 8), (2, 4, 4k + 9), (2, 5, 4k + 8), (2, 6, 4k + 7), (3, 3, 4k + 9), (3, 4, 4k + 8), (3, 5, 4k + 7)$ и столбцами $2, 3, 4, 5, 6, 4k + 6, 4k + 7, 4k + 8$. Определитель этой матрицы равен $240(k + 1)(k + 3)(2k + 3) \neq 0$.

Существует, однако, еще одна неприятность: в строке $(3, 2k + 6, m - 2k - 9)$ и $(4k + 9)$-м (или в $(m - 2k - 9)$-м столбце стоит 0 (так как $e_{2k+3}, e_{4k+6} = 0$). Следовательно, мы не можем обнулить соответствующий элемент того же столбца, стоящий в строке $(2, 2k + 7, m - 2k - 9)$. В этом случае обнуление происходит с помощью строки $(4, 2k + 5, m - 2k - 9)$, и ее же мы используем для построения ступенчатой матрицы.
Следствие. Если \(\bar{m} \geq 2k + 4 \) и \(n > 10 \), то \(\dim H_2^{(m)}(L_n) = 0 \).

Доказательство. В этом случае количество столбцов матрицы \(A \) равно

\[
\dim C_2^{(m)}(L_n),
\]

а ранг \(A \) (т.е. ранг \(d \)) равен числу столбцов \(A \) минус 1, т.е. размерности группы циклов \(Z_2^{(m)}(L_n) \).

Случай четного \(n \). Пусть \(n = 2k \). Величина \(m - 2kl \) называется редуцированной степенью цепи \(c \in C_1^{(m)}(L_n) \). При этом элемент \(e_{2k} \) (т.е. 1-цепь) имеет редуцированную степень 0. Матрица \(A \) определяется также, как и в случае четного \(n \) (ее первый столбец имеет номер 0). Столбцы \(A \) линейно зависимости.

Как и для четного \(n \), мы различаем два случая: \(\bar{m} < 2k + 2 \) и \(\bar{m} \geq 2k + 2 \). В первом случае столбцы матрицы \(A \) с номерами большими, чем \(\bar{m} - 1 \), являются нулевыми и удаляются. Доказательство того, что ранг матрицы \(A \) равен числу ее столбцов минус 1, почти такое же, как и в случае четного \(n \). Единственное отличие состоит в том, что \(C \) строится, как \((8 \times 8)\)-матрица, образованная строками \((0,2,\bar{m} - 2),(0,3,\bar{m} - 3),(0,4,\bar{m} - 4),(1,1,\bar{m} - 2),(1,2,\bar{m} - 3),(1,3\bar{m} - 4),(1,4,\bar{m} - 5),(2,3,\bar{m} - 4)\) и столбцами \(1,2,3,4,\bar{m} - 5,\bar{m} - 4,\bar{m} - 3,\bar{m} - 2\). В случае равенства нулю определителя матрицы \(C \) следует перейти к большей матрице, как это делается в доказательстве теоремы 2.

Дополнение. Деформации. Зная размерностей групп \(H_2^{(m)}(L_n) \) позволяет найти деформации супералгебры \(L_n \). При этом достаточно иметь лишь частичную информацию о группах \(H_3^{(m)}(L_n) \). В этом пункте мы найдем деформации супералгебры \(L_1 \) (см. также [7]).

Так как мы будем работать не с гомологиями, а с когомологиями, то введем соответствующие обозначения: через \(C_1^{(m)} \) (соответственно \(Z_1^{(m)}, H_1^{(m)} \)) мы будем обозначать группу коциклов (соответственно цепей, когомологий) степени \(m \). Обозначим через \(f_i \) линейный функционал на \(L_1 \) (т.е. элемент из \(C_1(L_1) \)) такой, что \(f_i(e_j) = \delta_{ij} \). Рассмотрим коцию \(c = f_{i_1} \wedge \cdots \wedge f_{i_n} \otimes e_s \in C^n(L_1,L_1) \). Положим \(\deg c = s - i_1 - \cdots - i_n \).

Введем фильтрацию на пространство коцепей

\[
C_*(L_1,L_1) = \Phi_0 \subset \Phi_1 \subset \Phi_2 \subset \cdots ,
\]

положив, что \(\Phi_p = \text{это линейная оболочка цепей} c = f_{i_1} \wedge \cdots \wedge f_{i_n} \otimes e_s \) таких, что \(i_1 + \cdots + i_n \geq p \). Тогда первый член \(E_1^{p,q} \) соответствующей спектральной последовательности \(\delta \) есть \(E_0^{p,q} = H_0^{p+q}(L_1) \) [2]. Таким образом, для решения нашей задачи мы должны знать \(H^1(L_1), H^2(L_1) \) и иметь достаточную информацию об \(H^3(L_1) \).

Легко видеть, что \(\dim H_1(L_1) = 2 \). Нетривиальными коциклами здесь являются \(f_1 \in H_1(L_1) \) и \(f_3 \in H_1(L_1) \). Нам достаточно знать, что

\[
\dim H^3(L_1) \geq 2, \quad \dim H_3^{(15)}(L_1) = \dim H_3^{(21)}(L_1) = 1, \quad \dim H_3^{(m)}(L_1) = 0
\]

при \(m < 21, m \neq 15 \). Этот факт проверяется прямым вычислением.

Используя оценки работы [1], нетрудно показать, что \(\dim H_2(L_1) = 2 \), причем

\[
\dim H_2^{(6)}(L_1) = \dim H_2^{(10)}(L_1) = 1.
\]
Вычисления позволяют найти следующие формулы для нетривиальных коциклов:

\[c_6 = f_3 \land f_3 \in Z^2_{(6)}(L_1), \]

\[c_{10} = f_3 \land f_7 + 2f_4 \land f_6 - 2f_5 \land f_5 \in Z^2_{(10)}(L_1). \]

Займемся вычислением группы \(H^2_{(m)}(L_1, L_1) \). Рассмотрим следующие дифференциалы в спектральной последовательности \(\delta' \):

\[\begin{array}{cccc}
1 & 3 & 6 & 10 \\
15 & 21 & & \\
\end{array} \]

Здесь число \(i (i = 1, 3, 6, 10, 15, 21) \) обозначает коцикл \(c_i \otimes e_{i+m} \), где \(c_i \) — нетривиальный цикл из \(Z^1_{(1)}(L_1), Z^1_{(3)}(L_1), Z^2_{(6)}(L_1), Z^2_{(10)}(L_1), Z^3_{(15)}(L_1), Z^3_{(21)}(L_1) \) соответственно.

Дифференциал \(3 \to 6 \) равен нулю только при \(m = 2 \) и при \(m \leq -3 \) (в этом случае коцикл \(f_3 \otimes e_{3+m} \) не существует). Однако, при \(m = 2 \) дифференциал \(1 \to 6 \) не равен нулю. Следовательно, коцикл \(c_6 \otimes e_{6+m} = f_3 \land f_3 \otimes e_{6+m} \) может порождать нетривиальный элемент из \(H^2_{(m)}(L_1, L_1) \) только при \(m = -3, -4, -5 \) (при \(m < -5 \) коцикл \(c_6 \otimes e_{6+m} \) не существует).

Дифференциал \(10 \to 15 \) равен нулю только при \(m = 2 \). Но при \(m = 2 \) дифференциал \(10 \to 21 \) не равен нулю.

Таким образом, \(\dim H^2(L_1, L_1) \leq 3 \), и ненулевыми (причем одномерными) могут быть только группы \(H^2_{(-3)}(L_1, L_1), H^2_{(-4)}(L_1, L_1) \) и \(H^2_{(-5)}(L_1, L_1) \). Эти группы в самом деле ненулевые. Соответствующие нетривиальные коциклы имеют вид

\[c_{-3} = \delta(f_1 \otimes e_{-2} + 4f_2 \otimes e_{-1})|_{L_1}, \]

\[c_{-4} = \delta(f_1 \otimes e_{-3} + 2f_2 \otimes e_{-2} - f_3 \otimes e_{-1})|_{L_1}, \]

\[c_{-5} = \delta(2f_1 \otimes e_{-4} + 12f_2 \otimes e_{-3} + 3f_3 \otimes e_{-2} + 16f_4 \otimes e_{-1})|_{L_1}. \]

Здесь имеется в виду, что рассматривается только значения \(c_{-3}, c_{-4} \) и \(c_{-5} \) на \(L_1 \land L_1 \). Например,

\[c_{-3}(e_1, e_1) = 4e_{-1} + 2[e_1, e_{-2}] = 0. \]

Легко проверить нетривиальность указанных коциклов (на \(L_1 \), так как на \(K(1, 1) \) они, конечно, тривиальны).

Коциклы \(c_{-3} \) и \(c_{-5} \) нечетны, и поэтому не могут быть продолжены до глобальных деформаций. Глобальная деформация, если она существует, может быть только продолжением коцикла \(c_{-4} \). Пусть такая глобальная деформация есть и имеет вид

\[h(e_i, e_j) = [e_i, e_j] + tc_{-4}(e_i, e_j) + t^2d_{-8}(e_i, e_j) + t^3d_{-12}(e_i, e_j) + t^4d_{-16}(e_i, e_j) + \cdots, \]

где \(d_{-8}, d_{-12}, d_{-16} \) — коцепи степеней \(-8, -12, -16\) соответственно. Рассмотрим равенства

\[h(h(e_i, e_j), e_k) - h(e_i, h(e_j, e_k)) + (-1)^{ij}h(e_j, h(e_i, e_k)) = 0 \]

при \(i + j + k \leq 17 \) и приравнив к нулю коэффициенты в этих равенствах при \(t \) в степени 2, 3 и 4. Полученная система не имеет решений. Следовательно, коцикл \(c_{-4} \) не продолжаем до глобальной деформации. Сформулируем наш результат в виде теоремы.
Теорема 3. Имеют место равенства

\[\dim H^2(L_1, L_1) = 3, \]
\[\dim H^2_{(-3)}(L_1, L_1) = \dim H^2_{(-4)}(L_1, L_1) = \dim H^2_{(-5)}(L_1, L_1) = 1. \]

Нетривиальный четный коцикл \(c_{-4} \in H^2_{(-4)}(L_1, L_1) \) не продолжаем до глобальной деформации, и, следовательно, супералгебра \(L_1 \) жесткая.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

Московский государственный институт электроники и математики

E-mail: yuyuk@kochetkov.mccme.ru

Поступило 14.03.2000
Исправленный вариант 07.02.2002