А. А. Арсеньев, Резонансное рассеяние в квантовых волноводах, *Матем. сб.*, 2003, том 194, номер 1, 3–22

DOI: https://doi.org/10.4213/sm703

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
18 декабря 2018 г., 19:01:45
Резонансное рассеяние в квантовых волноводах

В рамках теории рассеяния Бирмана–Като исследовано взаимодействие квантового волновода с резонатором. Доказано существование полосов матрицы рассеяния и вычислен скачок амплитуды рассеянных волны вблизи резонанса.

Библиография: 49 названий.

§ 1. Введение

Мы изучаем задачу рассеяния для пары эллиптических дифференциальных операторов второго порядка в области, которая вне шара есть цилиндр. В математической теории распространения колебаний область подобного типа называется волноводом. Мы предполагаем, что на границе области заданы условия Дирихле и рассматриваем уравнение первого порядка во времени. Эта математическая модель описывает объект, который в современной математической физике называется квантовым волноводом. Теория квантовых волноводов возникла в связи с математическим описанием некоторых приборов квантовой электроники. Мы предполагаем, что часть области есть резонатор, и изучаем поведение матрицы рассеяния (т.е. матрицы коэффициентов прохождения и отражения) вблизи собственных частот резонатора.

Поясним на примере. Рассмотрим цилиндр, которого извне касается шар. Предположим, что точка касания цилиндра и шара расширена до небольшого отверстия и через отверстие внутренность шара соединяется с внутренностью цилиндра. Мы интересуемся тем, что происходит с распространяющейся по волноводу волной, когда ее частота изменяется в окрестности частот собственных колебаний шара. Аналогичная задача решается для того случая, когда резонатор расположен внутри волновода, например, когда резонатор есть часть цилиндра между двумя сечениями, в которых цилиндр сжат так, что его диаметр в этих сечениях мал. Мы доказываем, что если взаимодействие резонатора с волноводом превышает собственное колебание резонатора в захваченную моду (т.е. собственное колебание системы резонатор и волновод), то в окрестности резонанса матрица рассеяния имеет гладкую функцию спектрального параметра. Если же взаимодействие резонатора с волноводом превышает собственное колебание резонатора в квазистационарное состояние системы резонатор и волновод, то матрица рассеяния вблизи резонанса

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 02-01-00271).
испытывает скачок, величина которого не зависит от деталей взаимодействия резонатора с волновым, свойств резонатора и свойств волновода. В случае внешнего резонатора (типичный пример: касающийся цилиндр изнутри шар) скачок матрицы рассеяния может привести к "запиранию" волнова на резонансной частоте волны будет полностью отражаться. В случае внутреннего резонатора (типичный пример: сжатый в двух сечениях цилиндр) скачок матрицы рассеяния может привести к туннелированию волны: она будет пронизывать без отражения. Эти утверждения суть следствия основного результата нашей работы — теоремы 2.

Опишем используемые обозначения. Точки d-мерного евклидова пространства \mathbb{R}^d мы обозначаем символами x, y, \ldots. Точка декартова произведения $\mathbb{R}^d \times \mathbb{R}^1$ обозначается символом $x \times z$, $x \in \mathbb{R}^d$, $z \in \mathbb{R}^1$. Пространство $\mathbb{R}^d \times \mathbb{R}^1$ отождествляется с \mathbb{R}^{d+1}. Скалярное произведение в комплексном гильбертовом пространстве мы обозначаем символом (\cdot, \cdot). Скалярное произведение линейно по второму аргументу. Символ $\| \cdot \|_B$ обозначает норму в бана в пространстве B, если указание на пространство не обязательно. Символ $f(x)$ в зависимости от контекста обозначает функцию, оператор умножения на функцию или значение функции в точке. Символ $L(A \to B)$ обозначает бана в пространство линейных непрерывных операторов из бана в пространство B. Символ id обозначает единичный оператор. Символами δ, csp мы будем обозначать положительные константы, точное значение которых для нас несущественно и которые могут принимать разные значения при каждом вложении в формулу. Остальные обозначения будут пояснены ниже. Мы без специальных ссылок будем использовать факты математической теории рассеяния, которые изложены в [1].

§ 2. Постановка задачи

Пусть S — связная открыта ограниченная область в \mathbb{R}^d. При $d > 1$ мы предполагаем, что граница ∂S гладкая (класс C^∞). Положим $D_0 = S \times \mathbb{R}^1$ и пусть D — область в \mathbb{R}^{d+1}, которая удовлетворяет следующим условиям:

1) $D \subset D_0$;
2) $\exists R_0: D \cap \{x \times z; x \times z \in \mathbb{R}^{d+1}, |z| > R_0\} = D_0 \cap \{x \times z; x \times z \in \mathbb{R}^{d+1}, |z| > R_0\}$;
3) $\partial D \subset C^\infty(\mathbb{R}^{d+1})$.

Пусть L — оператор в $C^2(D)$

$$L = -\sum \frac{\partial}{\partial x_i} a_{ij}(x \times z) \frac{\partial}{\partial x_j} + c(x \times z), \quad 1 \leq i, j \leq d + 1, \quad x_{d+1} = z. \quad (1)$$

Мы предполагаем, что входящие в (1) функции заданы во всем пространстве и бесконечно дифференцируемы, оператор (1) эллиптичен и вне некоторого компакта выполнены равенства

$$c(x \times z) = 0, \quad a_{ij}(x \times z) = \delta_{ij}.$$

Тем же символом L мы обозначим определяемое граничными условиями Дирихле на ∂D самособряженное расширение оператора (1) в $L^2(D, dx \, dz)$. Символом L_0
мы обозначим отвечающее граничным условиям Дирихле самосопряженное расширение оператора

\[L_0 = -\Delta_x - \frac{\partial^2}{\partial z^2} \]

в \(L^2(D_0, dx dz) \).

Обозначим символом \(I \) оператор сужения

\[I: L^2(D_0, dx dz) \to L^2(D, dx dz), \quad I f(x \times z) = f(x \times z), \quad x \times z \in D. \]

Оператор вложения

\[I^* : L^2(D, dx dz) \to L^2(D_0, dx dz) \]

определяется соотношением

\[(f, Ig) = (I^* f, g). \quad (2) \]

В левой части равенства (2) стоит скалярное произведение в \(L^2(D, dx dz) \), в правой – в \(L^2(D_0, dx dz) \). Оператор \(I^* \) действует следующим образом:

\[I^* f(x \times z) = f(x \times z), \quad x \times z \in D, \quad I^* f(x \times z) = 0, \quad x \times z \in D_0 \setminus D. \]

Положим

\[W_\pm(L, L_0, I) = \lim_{t \to \pm \infty} \exp(itL)I \exp(-itL_0), \quad (3) \]

\[S(L, L_0, I) = W_+^\dagger(L, L_0, I)W_-(L, L_0, I). \quad (4) \]

В равенстве (3) и во всех аналогичных соотношениях берутся либо верхние знаки, либо нижние. Сопряжение в (4) понимается в смысле (2). Оператор \(S(L, L_0, I) \) называется оператором рассеяния для пары \(L, L_0 \) при отождествлении \(I \). Он будет предметом нашего изучения.

Определим решения стационарной задачи рассеяния.

Пусть \(\{\phi_m, \nu_m\} \) - собственные функции и собственные значения задачи

\[-\Delta_x \phi_m(x) = \nu_m \phi_m(x), \quad x \in S, \quad \phi_m(x) = 0, \quad x \in \partial S, \quad \nu_m \leq \nu_{m+1}. \quad (5) \]

Положим

\[e(\pm, m, \lambda, x \times z) = \exp\left(\pm iz \sqrt{\lambda - \nu_m}\right) \phi_m(x) \theta(\lambda - \nu_m), \quad (6) \]

где

\[\theta(\lambda) = 1, \quad \lambda > 0, \quad \theta(\lambda) = 0, \quad \lambda \leq 0. \]

Решением стационарной задачи рассеяния для оператора \(L \) называется функция \(u(\pm, m, \lambda, x \times z) \), которая удовлетворяет уравнению и граничным условиям

\[L_x u(\cdot, x \times z) = \lambda u(\cdot, x \times z), \quad x \times z \in D, \quad u(\cdot, x \times z) = 0, \quad x \times z \in \partial D, \quad (7) \]

и представляется в виде

\[u(\pm, m, \lambda, x \times z) = e(\pm, m, \lambda, x \times z) + w(\pm, m, \lambda, x \times z), \quad (8) \]
где функция \(w \) удовлетворяет асимптотическим соотношениям

\[
w(\pm, m, \lambda, x \times z) = \sum_p (t(\pm, p, m, \lambda) - \delta_{pm})e(\pm, p, \lambda, x \times z) + O(\ldots), \quad z > 0, \quad (9a)
\]

\[
w(\pm, m, \lambda, x \times z) = \sum_p r(\pm, p, m, \lambda)e(-\pm, p, \lambda, x \times z) + O(\ldots), \quad z < 0,
\]

\[
w(-\pm, m, \lambda, x \times z) = \sum_p r(-\pm, p, m, \lambda)e(\pm, p, \lambda, x \times z) + O(\ldots), \quad z > 0,
\]

\[
w(-\pm, m, \lambda, x \times z) = \sum_p (t(-\pm, p, m, \lambda) - \delta_{pm})e(-\pm, p, \lambda, x \times z) + O(\ldots), \quad z < 0, \quad (9d)
\]

и

\[
O(\ldots) = O(\exp(-\delta|z|)), \quad |z| \to \infty.
\]

Суммирование в (9) ведется по тем значениям индекса \(p \), которые удовлетворяют условию \(\nu_p < \lambda \). Коэффициенты \(t(\pm, p, m, \lambda), r(\pm, p, m, \lambda) \) называются коэффициентами прохождения и отражения. Напомним интерпретацию этих величин в рассматриваемой задаче. Оператор импульса квантово-механической частицы, которая движется по оси \(z \), есть \(-i\hbar \partial/\partial z\). Поэтому среднее значение проекции импульса на ось \(z \) частицы, которая находится в состоянии \(e(\pm, \ldots) \), будет положительным или отрицательным в соответствии со знаками \(\pm \). В соответствии с этим коэффициенты \(t(\pm, p, m, \lambda) \) описывают вероятность частицы, которая находится в состоянии \(e(\pm, \ldots) \), пройти из точки \(z = \mp \infty \) в точку \(z = \pm \infty \), а коэффициенты \(r(\pm, p, m, \lambda) \) – отразиться. В дальнейшем мы будем говорить, что функция \(w \) удовлетворяет условиям излучения, если для нее справедлива асимптотика вида (9).

Пусть преобразование

\[
\mathbb{R}^{d+1} \to \mathbb{R}^{d+1}; \quad x \times z \to \varphi(x \times z)
\]

бесконечно дифференцируемо, взаимно однозначно и удовлетворяет условию

\[
\varphi(x \times z) \equiv x \times z, \quad |x \times z| > R_0, \quad \det(\varphi(x_1, \ldots, z)/(x_1, \ldots, z)) > \text{const} > 0.
\]

Пусть \(D_\varphi \) – образ области \(D \) при отображении (10). Ограничение

\[
U_\varphi: L^2(D_\varphi, dx \, dz) \to L^2(D, dx \, dz), \quad U_\varphi f(x \times z) = f(\varphi(x \times z))(\det((\varphi(x_1, \ldots, z)/(x_1, \ldots, z))))^{1/2}
\]

unitariano и обратное отображение дается формулой

\[
U_\varphi^{-1}: L^2(D, dx \, dz) \to L^2(D_\varphi, dx \, dz), \quad U_\varphi^{-1} f(x \times z) = f(\varphi^{-1}(x \times z))(\det((\varphi^{-1}(x_1, \ldots, z)/(x_1, \ldots, z))))^{1/2},
\]

где

\[
\varphi(\varphi^{-1}(x \times z)) \equiv x \times z.
\]
Положим

\[L_\varphi = U_\varphi^{-1}LU_\varphi. \]

Если функция \(u \) есть решение задачи рассеяния для оператора \(L \) в области \(D \), то функция \(U_\varphi^{-1}u \) есть решение задачи рассеяния для оператора \(L_\varphi \) в области \(D_\varphi \), причем коэффициенты прохождения и отражения для решений \(u \) и \(U_\varphi^{-1}u \) совпадают. Ясно, что глажкой заменой переменных задача рассеяния для оператора \(L \) в области \(D \) может быть сведена к задаче рассеяния для оператора \(L_\varphi \) в области \(D_\varphi \), но в дальнейшем нам будет нужно проследить, как изменяются коэффициенты прохождения и отражения при сингулярном возмущении области (например, при стягивании сечения цилиндра в точку). Мы не будем сводить такое возмущение области к возмущению коэффициентов.

Нам предстоит доказать существование и единственность решения задачи рассеяния, существование и полноту волновых операторов и выразить оператор рассеяния через коэффициенты прохождения и отражения. Традиционный путь решения этих задач опирается на изучение резольвент операторов \(L \) и \(L_0 \). Особенность нашей задачи состоит в том, что, во-первых, операторы \(L \) и \(L_0 \) определены в разных областях и, во-вторых, в пересечении областей определения оператор возмущения \(L - L_0 \) есть дифференциальный оператор второго порядка. По-видимому, в этой ситуации для доказательства теорем существования можно было бы с небольшими изменениями использовать методы работ [2]–[4]. Однако наша основная задача состоит в изучении поведения коэффициентов прохождения и отражения при сингулярном возмущении области, и мы воспользуемся вытекающим из принципа инвариантности волновых операторов равенством

\[S(L, L_0, I) = S(J(L), J(L_0), I), \quad J(\lambda) = -\exp(-t\lambda). \] (11)

Равенство (11) сводит изучение возмущения оператора \(L \) к изучению возмущения порожденной этим оператором полугруппы \(\exp(-tL) \). Начиная с 60-х годов, подобный прием есть часть так называемого “марковского подхода” к квантовой теории поля и хорошо известен в теории потенциального рассеяния. В нашей задаче этот прием дает следующее.

1) Оператор \(\exp(-tL) \) — это интегральный оператор, ядро которого — функция Грина уравнения теплопроводности, поэтому мы можем воспользоваться хорошо известными оценками, вывод которых подробно описан в доступной литературе [5], [6]. То обстоятельство, что в нашем случае граница \(\partial D \) не компактна, никак не влияет на построения работ [5], [6], так как ядра тепловых потенциалов — это гауссовы экспоненты и все интегралы по \(\partial D \) сходятся. Для рассматриваемого нами случая функция Грина можно построить и как предел функций Грина в области \(D \cap \{ x \times z; |z| < R \}, R \to \infty \).

2) Для функции Грина исследование сингулярного возмущения области становится абсолютно тривиальным: достаточно применить принцип максимума для уравнения теплопроводности и доопределить нулем ядра интегральных операторов.

3) На основе полугруппового свойства легко доказывается, что оператор

\[V = J(L) - J(L_0) = \exp(-tL_0) - \exp(-tL) \]
− это ядерный оператор, поэтому можно применять стандартную схему теории рассеяния при ядерных возмущениях.

4) Производ в выборе параметра \(t \) позволяет свести задачу к ситуации "общего положения" и без дополнительных условий доказать равенство нулю нильпотентов возмущенного оператора.

Появление гауссовых экспонент в оценках ядер интегральных операторов делает тривиальным обоснование всех выкладок, но за это приходится платить тем, что сопровождающие рассуждения формулы становятся очень громоздкими. По возможности мы не будем их выписывать.

\section*{§ 3. Вспомогательные построения}

Пусть \(\Omega \) – декартово произведение двухточечного множества \(\{+, -\} \) на множество целых чисел \(\mathbb{Z} \), \(\Omega = \{\pm, \mathbb{Z}\} \). Преобразуем множество \(\Omega \) в пространство с мерой \(d\omega \), приписав точке \(\{\pm, j\} \) меру 1. В пространстве \(L^2(\Omega, d\omega) \) введем скалярное произведение, положив

\[
 \langle f, g \rangle_{\Omega} = \sum_{j} (f(-, j)g(-, j) + f(+, j)g(+, j)) = \int_{\Omega} f(\omega)g(\omega) \, d\omega.
\]

Пространство

\[
 h = L^2([\nu_1, \infty) \to L^2(\Omega, d\omega), d\lambda)
\]

есть гармоническое пространство всех квадратично интегрируемых функций на \([\nu_1, \infty) \) со значениями в \(L^2(\Omega, d\omega) \). Норма в \(h \) задается формулой

\[
 \|f|_h^2 = \int_{\nu_1} \|f(\cdot, \lambda)|L^2(\Omega, d\omega)||^2 \, d\lambda.
\]

Пространство \(h \) может быть отождествлено с \(L^2(\Omega \times [\nu_1, \infty), d\omega \times d\lambda) \). Положим

\[
 \hat{f}(\pm, j, \lambda) = \int_{D_0} e(\pm, j, \lambda, x \times z) f(x \times z) \, dx \, dz. \tag{12}
\]

Обратим внимание на знаки в (12).

Рассмотрим отображение

\[
 U: L^2(D_0, dx dz) \to L^2([\nu_1, \infty) \to L^2(\Omega, d\lambda)),
\]

\[
 U f(\pm, j, \lambda) = (4\pi \sqrt{\lambda - \nu_j})^{-1/2} \hat{f}(\pm, j, \lambda). \tag{13}
\]

Отметим, что

\[
 \forall f \in L^2(D_0, dx dz): \quad Uf(\lambda, \pm, j) = 0, \quad \lambda \leq \nu_j. \tag{14}
\]

Отображение \(U \) унитарно и диагонализует оператор \(L_0 \)

\[
 \langle f, U g \rangle = \int_{\nu_1} \langle U f(\cdot, \lambda), U g(\cdot, \lambda) \rangle_{\Omega} \, d\lambda.
\]
Обратное отображение U^{-1} есть интегральный оператор в $L^2(\Omega \times [\nu_1, \infty), d\omega \times d\lambda)$ с ядром
$$U^{-1}(x \times z, \pm, j, \lambda) = (4\pi \sqrt{\lambda - \nu_j})^{-1/2} e(\pm, j, \lambda, x \times z). \quad (15)$$

Лемма 1. Оператор

$$G_0(t) = \exp(-tL_0)$$

- это интегральный оператор в $L^2(D_0, dx \times dz)$ с ядром

$$G_0(x \times z, x' \times z', t) = \frac{1}{\sqrt{4\pi t}} \exp\left(-\frac{(z - z')^2}{4t}\right) \sum_j \exp(-\nu_j t) \phi_j(x) \phi_j(x'). \quad (16)$$

В дальнейшем мы предполагаем, что числа λ_∞, λ, ε выбраны так, что

$$\nu_1 < \lambda_\infty, \quad |\lambda - \lambda_\infty| < \varepsilon, \quad \{\lambda: |\lambda - \lambda_\infty| < \varepsilon\} \cap \{\nu_j\} = \emptyset$$

и число ε достаточно мало.

Лемма 2. При $0 < \Im \lambda < \pi/t$ оператор

$$R_0(\lambda) \overset{\text{def}}{=} R(J(\lambda), J(L_0)) = (\exp(-tL_0) - \exp(-t\lambda))^{-1}$$

представим в виде

$$R_0(\lambda) = -\exp(t\lambda) \left(\id + \sum_{\nu_j < \lambda_\infty} K(\lambda - \nu_j)P_j \right) + A(\lambda),$$

где P_j - интегральный оператор в $L^2(S, dx)$ с ядром $\phi_j(x)\phi_j(x')$, $K(\lambda)$ - интегральный оператор в $L^2(R^3, dz)$ с ядром

$$K(z - z', \lambda) = \frac{i}{2\lambda\sqrt{\lambda}} \exp(i|z - z'|\sqrt{\lambda}), \quad 0 < \arg \sqrt{\lambda} < \pi,$$

$A(\lambda)$ - интегральный оператор в $L^2(D_0, dx dz)$, ядро котороего аналитично по λ в криве $|\lambda - \lambda_\infty| < \varepsilon$ и имеет оценку

$$||A(\lambda)||_{L^2(S, dx)} < \text{const} \cdot \exp(-\delta|z - z'|).$$

Доказательство стандартно: разлагаем в ряд Фурье по ϕ_j, берем преобразование Фурье по z, в формуле обращения для преобразования Фурье сдвигаем контур интегрирования в комплексную плоскость, учитывая вычеты и определяем интеграл по контуру. Сходимость ряда по ϕ_j контролируется на основе оценок

$$|\phi_j(x)| < \text{const} \cdot (\nu_j)^{d/2}, \quad \nu_j \approx \text{const} \cdot j^{2d}, \quad j \to \infty.$$

Оператор

$$G(t) = \exp(-tL) \quad (17)$$
- это интегральный оператор в $L^2(D, dx dz)$, ядро которого $G(x \times z, x' \times z', t)$ есть функция Грина задачи

$$
\partial_t G(x \times z, x' \times z', t) = -L_{x \times z} G(x \times z, x' \times z', t),
$$
$$
G(x \times z, x' \times z', +0) = \delta(x \times z - x' \times z'),
$$
$$
G(x \times z, x' \times z', t) = 0, \quad x \times z \in \partial D.
$$

По переменным $x \times z, x' \times z'$ доопределим функцию $G(x \times z, x' \times z', t)$ нулем на область D_0 и будем в дальнейшем обозначать символом $G(t)$ интегральный оператор в $L^2(D_0, dx dz)$ с ядром, доопределенным таким образом. Ясно, что равенство (17) сократится лишь на функциях с носителем в D. В силу принципа максимума выполнено неравенство

$$
0 \leq G(x \times z, x' \times z', t) \leq \tilde{G}(x \times z, x' \times z', t),
$$

где \tilde{G} – фундаментальное решение уравнения (18) во всем пространстве.

Положим

$$
V = G_0 - G.
$$

Лемма 3. Справедливы оценки

$$
0 \leq G(x \times z, x' \times z', t) \leq \text{const} \cdot \exp(-\delta|z - z'|^2),
$$
$$
|V(x \times z, x' \times z', t)| \leq \text{const} \cdot \exp(-\delta(z^2 + (z')^2)).
$$

Доказательство. Оценка (20) есть следствие оценки (19) и оценки (6.12) из [6]. Оценку (21) получаем так. В сечениях $z = \pm R_0$ используем оценку (20), а в области $|z| > R_0$ используем тот факт, что по переменным $x \times z$ функция V есть решение уравнения теплопроводности с нулевыми начальными данными и нулевым значением на ∂D.

Пусть H_{\pm} – гильбертовы пространства с нормой

$$
\|f|H_{\pm}\|^2 = \int_{D_0} |f(x \times z)|^2 \exp(\mp |z|) dx dz.
$$

Установим двойственность между H_+ и H_- с помощью билинейной формы

$$
H_+ \times H_- \ni f \times g \to \langle f | g \rangle = \int_{D_0} f(x \times z)g(x \times z) dx dz.
$$

Лемма 4. 1) В $L^2(D_0, dx)$ оператор V самосопряженный и ядерный.
2) В $L(H_+ \to H_-)$ оператор V вполне непрерывный.
ДОКАЗАТЕЛЬСТВО. Используем равенство

\[V(2t) = G_0(t)^2 - G(t)^2 = [G_0(t)Z(a)] [Z(a)^{-1} (G_0(t) - G(t))] \]
\[+ [G_0(t) - G(t)] Z(a)^{-1} [Z(a)G(t)], \quad (22) \]

где \(Z(a) \) - оператор умножения на \(\exp(-a |z|) \). При соответствующем выборе параметра \(a \) каждый из операторов \(\cdots \) в (22) есть оператор Гильберта-Шмидта в \(L^2(D_0, dx dz) \), что и доказывает ядерность оператора \(V \). Аналогично доказывается вполне непрерывность.

Положим

\[\Gamma(\lambda) = R_0(\lambda)V, \quad 0 < \text{Im} \lambda < \frac{\pi}{t}. \quad (23) \]

ЛЕММА 5. 1) Функция

\[\lambda \mapsto \Gamma(\lambda) \in L(H_+ \rightarrow H_+) \]

имеет аналитическое продолжение из области \(\{ \lambda : |\lambda - \lambda_\infty| < \varepsilon, \text{Im} \lambda > 0 \} \)
в крите \(|\lambda - \lambda_\infty| < \varepsilon \), и его значения в этом крине - вполне непрерывные операторы.

2) В крине \(|\lambda - \lambda_\infty| < \varepsilon \) справедливо равенство

\[(G_0(t) - \exp(-t\lambda)) \Gamma(\lambda) = G_0(t) - G(t). \quad (24) \]

ДОКАЗАТЕЛЬСТВО. Из леммы 2 следует, что в крине \(|\lambda - \lambda_\infty| < \varepsilon \) оператор \(R_0(\lambda) \) аналитичен по \(\lambda \) как функция со значениями в \(L(H_+ \rightarrow H_+) \). Далее воспользуемся леммой 4.

Пусть \(\{D_n\} \) - последовательность областей, каждая из которых удовлетворяет условием 1)~3) для области \(D \) (с фиксированным \(R_0 \)) (см. § 2) и такая, что

1) \(D_{n+1} \subset D_n \);
2) область

\[D_\infty = \text{Int} \bigcap_n D_n \]

имеет гладкую границу \(\partial D_\infty \) и есть объединение двух непустых областей

\[D_\infty = D_{\text{out}} \cup D_{\text{int}}, \quad \text{dist}(D_{\text{out}}, D_{\text{int}}) > 0, \]

где область \(D_{\text{int}} \) связна и ограничена, а область \(D_{\text{out}} \) либо связна, либо состоит из двух связных компонент;

3) \(d(D_n, D_\infty) \) опред. как \(\text{mes}_{d+1}(D_n \setminus D_\infty) + \text{mes}_d(\partial D_\infty \setminus \partial D_n) \rightarrow 0, n \rightarrow \infty. \)

Мы будем помечать индексом \(n \) величины, которые соответствуют области \(D_n \).

ЛЕММА 6. Справедлива оценка

\[\int_{D_0} |G_n(x \times z, x' \times z', t) - G_\infty(x \times z, x' \times z', t)| dx dz dz' < \text{const} \cdot d(D_n, D_\infty). \]
ДОКАЗАТЕЛЬСТВО. Заметим, что в силу приписа максимума

$$0 \leq G_\infty \leq G_n \leq \tilde{G}.$$ \hspace{1cm} (25)

Положим

$$\alpha(x \times z, t) = \int_{D_0} \left(G_n(x \times z, x' \times z', t) - G_\infty(x \times z, x' \times z', t) \right) dx' dz'.$$

Справедливо равенство

$$\int_{D_0} \alpha(x \times z, t) dx dz = \int_{D_n \setminus D_\infty} \alpha(x \times z, t) dx dz + \int_{D_\infty} \alpha(x \times z, t) dx dz.$$

Для оценки первого интеграла используем оценку (25) и получим

$$\int_{D_n \setminus D_\infty} \alpha(x \times z, t) dx dz \leq \text{const} \cdot \text{mes}_{d+1}(D_n \setminus D_\infty).$$

Далее заметим, что в области D_∞ функция $\alpha(x \times z, t)$ есть решение задачи

$$\partial_t \alpha(x \times z, t) = -L_n \alpha(x \times z, t), \hspace{0.5cm} x \times z \in D_\infty, \hspace{0.5cm} t > 0,$$

$$\alpha(x \times z, 0) = 0, \hspace{0.5cm} x \times z \in D_\infty, \hspace{0.5cm} \alpha(x \times z, t) = 0, \hspace{0.5cm} x \times z \in \partial D_\infty \cap \partial D_n,$$

$$\alpha(x \times z, t) = \int_{D_\infty} \left(G_n(x \times z, x' \times z', t) - G_\infty(x \times z, x' \times z', t) \right) dx' dz'$$

$$\equiv \beta(x \times z, t), \hspace{0.5cm} x \times z \in \partial D_\infty \setminus \partial D_n.$$

Применим формулу Грина к функции $\alpha(x, t)$ и функции $G_\infty(x, x', t)$. Получим

$$\alpha(x, t) = \int_0^t \int_{\partial D_\infty \setminus \partial D_n} l_{x \times z} \nabla_{x \times z} G_{\infty}(x \times z, x' \times z', t - \tau) \beta(x' \times z', \tau) dx' dz' d\tau,$$

$$x \times z \in D_\infty,$$

где $l_{x \times z}$ — нормаль к ∂D_∞. Интегрируем это равенство по D_∞, при оценке градиента $G_{\infty}(x \times z, x' \times z', t - \tau)$ на границе учитываем гладкость ∂D_∞. Получим оценку

$$\int_{D_\infty} \alpha(x \times z, t) dx dz \leq \text{const} \cdot \text{mes}(\partial D_\infty \setminus \partial D_n).$$

Следствием леммы 6 является

Лемма 7. Справедлива оценка

$$\|G_n(\lambda) - G_\infty(\lambda)\|_{L(H_+ \rightarrow H_+)} \leq \text{const} \cdot d(D_n, D_\infty)^{1/2}. \hspace{1cm} (26)$$
§4. Стационарная задача рассеяния

Лемма 8. Интегральные операторы $G(t) \in L^2(D, \exp(-|z|) \, dx \, dz)$ порождают полугруппу класса C_0.

Доказательство. В нем нуждается только ограниченность операторов $G(t)$, а она есть следствие леммы 3.

В дальнейшем на функциях с носителем в D мы будем рассматривать оператор (1) как инфиминимумальный оператор полугруппы $G(t) \in L^2(D, \exp(-|z|) \, dx \, dz)$.

Лемма 9. Если функция и при некотором $t > 0$ есть решение уравнения

$$G(t)u = \exp(-t\lambda)u, \quad u \in L^2(D, \exp(-|z|) \, dx \, dz),$$

то она удовлетворяет уравнению (27) при всех $t > 0$.

Доказательство. Это утверждение есть следствие теоремы 16.7.2 из [8].

Очевидным следствием леммы 9 является

Лемма 10. Функция и есть решение уравнения

$$Lu = \lambda u, \quad u \in L^2(D, \exp(-|z|) \, dx \, dz),$$

в том и только том случае, если она есть решение уравнения (27) при каком-либо $t > 0$.

В дальнейшем мы доопределим решение задачи рассеяния кулем на область $D_0 \setminus D$. С учетом доопределения оператора $G(t)$ ясно, что эквивалентность уравнений (28) и (27) в пространстве H_+ при этом сохраняется.

Лемма 11. Функция и в (8) есть решение уравнения (28) в том и только том случае, если функция w удовлетворяет уравнению

$$(G_0(t) - \exp(-t\lambda))w(\cdot, \lambda) = V(e(\cdot, \lambda) + w(\cdot, \lambda)).$$

Лемма 12. Функция w в (29) удовлетворяет условиям излучения (9) в том и только том случае, если функция w есть решение уравнения

$$w(\cdot, \lambda) = \Gamma(\lambda)(e(\cdot, \lambda) + w(\cdot, \lambda)), \quad \lambda \in (\nu_1, \infty) \setminus \{\nu_j\}.$$

Доказательство. Если функция w в (29) удовлетворяет условиям (9), то умножим обе части (29) на $(G_0(t) - \exp(-t(\lambda + i\varepsilon)))^{-1}$ и перейдем к пределу при $\varepsilon \to 0$. Условия излучения и леммы 2 позволят нам вычислить этот предел и получить (30). Если выполнено уравнение (30), то выполнение условия (29) следует из леммы 5, а выполнение условий излучения следует из леммы 2.

Итак, справедливо
Лемма 13. Функция w в (8) есть решение задачи рассеяния в том и только том случае, если функция w есть решение уравнения (30).

Заметим, что уравнение (30) — это уравнение Линькона-Швингера для пар $-G(t), -G_0(t)$.

Лемма 14. Если при $\text{Im} \lambda \geq 0$ функция $w(\cdot, \lambda)$ есть решение уравнения

$$w(\cdot, \lambda) = \Gamma(\lambda)w(\cdot, \lambda), \quad w(\cdot, \lambda) \in H_+,$$

то

$$Lw(\cdot, \lambda) = \lambda w(\cdot, \lambda), \quad w(x \times z, \lambda) = O(\exp(-\delta|z|)), \quad z \to \infty. \quad (32)$$

Доказательство. Умножим слева (31) на $(G_0(t) - \exp(-t\lambda))$. Получим, что решение уравнения (31) удовлетворяет уравнению (27) и поэтому удовлетворяет уравнению (28). Если $\text{Im} \lambda > 0$, то оценка (32) следует из леммы 2. При $\text{Im} \lambda = 0$ справедливо равенство

$$\mathbb{W}Lw - wL\mathbb{W} = 0.$$

Интегрируем это равенство по области $D \cap \{x \times z : |\lambda| < R\}$, применяя формулу Грина, на ∂D используем граничные условия, на поверхности $z = \pm R$ используем условия излучения. Переход к пределу при $R \to \infty$, получаем, что множители перед функциями w в асимптотике функции w равны нулю и поэтому справедлива оценка (32).

Итак, мы получаем, что оператор $\Gamma_n(\lambda)$ вполне непрерывен, аналитичен по λ и равномерно по λ сходится при $n \to \infty$. Ядро оператора $\text{id} - \Gamma_n(\lambda)$ описано в лемме 14. Следовательно, справедлива

Теорема 1. 1) При $\text{Im} \lambda = 0$ либо уравнение (32) имеет принадлежащее $L^2(D, dx \, dz)$ непривильное решение, либо решение задачи рассеяния существует, единственно и в некоторой окрестности точки λ есть аналитическая функция параметра λ со значениями в пространстве H_+.

2) Если $\text{Re} \lambda = \lambda_\infty, L = L_\infty$ уравнение (32) не имеет непривильных решений, то существует такое $n_0 < \infty, \varepsilon > 0$, что при $n > n_0, \lambda_\infty - \varepsilon < \lambda < \lambda_\infty + \varepsilon$ решение задачи рассеяния для оператора L_n существует, единствено и в кольце $|\lambda - \lambda_\infty| < \varepsilon$ есть аналитическая функция параметра λ со значениями в пространстве H_+ и непривильная функция параметра λ в окрестности $n = \infty$. Коэффициенты прохождения и отражения для оператора L_n аналитичны по λ в кольце $|\lambda - \lambda_\infty| < \varepsilon$ и непривильны по n в окрестности $n = \infty$.

Доказательство. Повидимому, как получаются утверждения о коэффициентах прохождения и отражения. Для этого мы начали из уравнения (30) получаем явные выражения коэффициентов через решение задачи рассеяния, а затем используем свойства решения задачи рассеяния.
§ 5. Вычисление матрицы рассеяния

Так как оператор V ядерный, волновые операторы для пары $-G(t), -G_0(t)$ существуют, полны и существует оператор рассеяния $S(-G(t), -G_0(t), i\mathbb{I})$. Оператор $(i\mathbb{I} - I^* I)$ есть оператор умножения на характеристическую функцию компактного множества $D_0 \setminus D$, а для любого компакта K и любой $f \in C^\infty(D_0)$ справедливо равенство

$$\lim_{\tau \to \infty} \| \exp(\pm i\tau G_0) f \mid L^2(K, dx \, dz) \| = 0,$$

поэтому

$$S(-G(t), -G_0(t), i\mathbb{I}) = S(-G(t), -G_0(t), I) = S(J(L), J(L_0), I) = S(L, L_0, I).$$

Итак, нам достаточно вычислить оператор рассеяния $S(-G(t), -G_0(t), I)$.

Положим

$$R(\lambda) \overset{\text{def}}{=} (G(t) - \exp(-t\lambda))^{-1}.$$

Пусть функции w и связаны с решением задачи рассеяния соотношением (8). Тогда функция w есть решение уравнения (30).

Лемма 15. Справедливо равенство

$$w(\cdot, \lambda) = R(\lambda)Ve(\cdot, \lambda). \quad (33)$$

Доказательство. Обозначим правую часть (33) через \bar{w}. В области $\text{Im} \lambda \geq 0$ мы имеем

$$\Gamma(\lambda) = e(\cdot, \lambda) + \bar{w}) = R_0(\lambda)(G_0 - G)e(\cdot, \lambda) + R_0(\lambda)(G_0 - G)R(\lambda)(G_0 - G)e(\cdot, \lambda)$$

$$= (R_0(\lambda) + R_0(\lambda)(G_0 - G)R(\lambda))(G_0 - G)e(\cdot, \lambda) = R(\lambda)Ve(\cdot, \lambda) = \bar{w}.$$

Так как решение уравнения (30) единственно, $\bar{w} = w$.

Так как оператор $G_0(t)$ коммутирует с оператором $S(-G(t), -G_0(t), i\mathbb{I})$, оператор $US(-G(t), -G_0(t), i\mathbb{I})U^{-1}$ в пространстве \mathbb{H} задается операторной функцией

$$\lambda \mapsto S(-G(t), -G_0(t) \mid \lambda) \in L(L^2(\Omega, \omega) \to L^2(\Omega, \omega)).$$

Из общей теории [1] следует, что

$$S(-G(t), -G_0(t) \mid \exp(-t\lambda)) = i\mathbb{I} - 2\pi i T(\lambda)(G(t), -G_0(t) \mid -\exp(-t\lambda)),$$

где $T(\lambda)$ – интегральный оператор в $L^2(\Omega, \omega)$ с ядром

$$T(\lambda)(-G(t), -G_0(t) \mid -\exp(-t\lambda), \omega_1, \omega_2) = U(T(\lambda)U^{-1}(\lambda, \omega_1))(\lambda, \omega_2) \quad (34)$$

и

$$T(\lambda) = V + VR(\lambda)V. \quad (35)$$
Лемма 16. Справедливо равенство

\[T(\lambda)e(\omega, \lambda) = (G_0(t) - \exp(-t\lambda))w(\omega, \lambda), \quad \text{Im} \lambda \geq 0. \] (36)

Доказательство. Из равенства (33) следует, что

\[Ve(\omega, \lambda) = (G_0(t) - \exp(-t\lambda) - V)w(\omega, \lambda). \]

Поэтому, учитывая равенство (33), мы получаем

\[T(\lambda)e(\omega, \lambda) = (G_0(t) - \exp(-t\lambda) - V)w(\omega, \lambda) + V R(\lambda)Ve(\omega, \lambda) \]

\[= (G_0(t) - \exp(-t\lambda))w(\omega, \lambda). \]

Учитывая определения (12), (13), мы видим, что справедливо

Лемма 17. Справедливо равенство

\[T_\Omega(-G(t), -G_0(t) \mid -\exp(-t\lambda), \omega_1, \omega_2) \]

\[= \frac{1}{4\pi \sqrt{(\lambda - \nu_1)(\lambda - \nu_2)}} \langle e(\omega_1, \lambda) \mid (G_0(t) - \exp(-t\lambda))w(\omega_2, \lambda) \rangle, \]

\[\omega_1 = \{ \pm, j_1 \}, \quad \omega_2 = \{ \pm, j_2 \}. \] (37)

Итак, наша задача свелась к вычислению правой части (37). Заметим, что в равенстве (37) нельзя перебросить оператор \((G_0(t) - \exp(-t\lambda))\) на \(e(\omega_1, \lambda)\).

Пусть \(Z(\varepsilon)\) - оператор умножения на \(\exp(-\varepsilon|z|)\) в \(L^2(D_0, dx dz)\). Справедливо равенство

\[\langle e(\omega_1, \lambda) \mid (G_0(t) - \exp(-t\lambda))w(\omega_2, \lambda) \rangle \]

\[= \lim_{\varepsilon \to 0} \langle Z(\varepsilon)e(\omega_1, \lambda) \mid (G_0(t) - \exp(-t\lambda))w(\omega_2, \lambda) \rangle \]

\[= \lim_{\varepsilon \to 0} \langle (G_0(t) - \exp(-t\lambda))Z(\varepsilon)e(\omega_1, \lambda) \mid w(\omega_2, \lambda) \rangle. \] (38)

Определим функцию

\[\beta(\varepsilon, y, b) = (4\pi t)^{-1/2} \int_{-\infty}^{\infty} \exp \left(- \frac{(x - y)^2}{4t} + ixb - \varepsilon|x| \right) dx \]

\[- \exp(-b^2t + iby - \varepsilon|y|), \quad x, y \in \mathbb{R}^1. \]

Справедливо

Лемма 18. 1) Если \(\phi(y)\) абсолютно интегрируемо, то

\[\lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \beta(\varepsilon, y, b)\phi(y)dy = 0. \]

2) Для любых \(R > 0, a \in \mathbb{R}^1\) справедливы равенства

\[\lim_{\varepsilon \to 0} \int_{R}^{\infty} \beta(\varepsilon, y, b)\exp(-iay)dy = -2ibt\exp(-b^2t)\delta_{ab}, \]

\[\lim_{\varepsilon \to 0} \int_{-\infty}^{R} \beta(\varepsilon, y, b)\exp(-iay)dy = 2ibt\exp(-b^2t)\delta_{ab}. \]
Доказательство сводится к прямому вычислению.
Из (38) с учетом леммы 18 и формул (7.2.4) из [1] следует утверждение.

Лемма 19. Справедливы равенства

\[
-2\pi i T_\Omega(L, L_0 | \lambda, (+, p), (+, m)) = t(+, p, m, \lambda) - \delta_{pn},
\]

(39a)

\[
-2\pi i T_\Omega(L, L_0 | \lambda, (+, p), (-, m)) = r(+, p, m, \lambda),
\]

(39b)

\[
-2\pi i T_\Omega(L, L_0 | \lambda, (-, p), (+, m)) = r(-, p, m, \lambda),
\]

(39c)

\[
-2\pi i T_\Omega(L, L_0 | \lambda, (-, p), (-, m)) = t(-, p, m, \lambda) - \delta_{pn}.
\]

(39d)

Заметим, что при вычислении матрицы рассеяния следует учесть равенство (14).

§ 6. Поведение матрицы рассеяния вблизи резонанса

Рассмотрим случай, когда уравнение

\[
\psi_\infty = \Gamma_\infty(\lambda_\infty)\psi_\infty, \quad \psi_\infty \in H_+,
\]

имеет нетривиальное решение. Оно является решением уравнения

\[
\lambda_\infty\psi_\infty = L_\infty\psi_\infty, \quad \psi_\infty \in L^2(D, \text{d}x \text{d}z),
\]

(40)

t.e. точка \(\lambda_\infty\) есть погруженное в непрерывный спектр собственное значение оператора \(L_\infty\). Нас интересует поведение матрицы рассеяния для пары \(L_\infty, L_0\) при больших в окрестности точки \(\lambda_\infty\). Как правило, в подобной ситуации при возмущении собственное значение может остаться собственным значением (т.e. останься на действительной оси) или превратиться в резонанс (т.e. приобрести отличную от нуля минимум частей). Мы будем использовать предложенную в [7] модель образования резонансов. При сопоставлении данной работы с работой [7] следует величины, которые в данной работе обозначены символами \(-G_n(t), -\exp(-t\lambda)\), сопоставить с величинами, которые в [7] обозначены символами \(A_n, \lambda\) соответственно.

Предположим, что размерность собственного пространства (40) равна единице, т.e. точка \(\lambda_\infty\) есть простое собственное значение. Докажем, что в этом случае при соответствующем выборе параметра \(t\) точка \(\lambda_\infty\) есть полюс первого порядка для операторной функции

\[
\lambda \mapsto (\id - \Gamma_\infty(\lambda))^{-1} \in L(H_+ \to H_+).
\]

(41)

В наших обозначениях квадратичная форма (7) из [7] принимает вид

\[
\langle \psi_\infty | V_\psi \psi_\infty \rangle = \langle \psi_\infty | G_0(t)\psi_\infty \rangle - \exp(-t\lambda_\infty).
\]

(42)

Ясно, что за счет выбора параметра \(t\) правую часть (42) можно сделать не равной нулю. Из лемм 1 и 3 работы [7] следует, что в этом случае точка \(\lambda_\infty\) есть полюс первого порядка для (41) и что в круге \(\{\lambda : |\lambda - \lambda_\infty| < \varepsilon\}\) при достаточно большом есть одна и только одна особая точка операторной функции

\[
\lambda \mapsto (\id - \Gamma_n(\lambda))^{-1} \in L(H_+ \to H_+)
\]

(43)
и эта особая точка есть полюс первого порядка, который мы обозначим через λ_n. Известно, что $\text{Im} \lambda_n \leq 0$. Рассмотрим два случая:

\[
\forall n: \quad \text{Im} \lambda_n = 0, \quad \forall n: \quad \text{Im} \lambda_n < 0.
\]

В первом случае из леммы 4 и 5 работы [7] и формулы (31) работы [7] следует, что в крите $\{\lambda : |\lambda - \lambda_\infty| < \varepsilon\}$ существуют равномерно по λ пределы

\[
\lim_{n \to \infty} r_n(\pm, p, m, \lambda) = r_\infty(\pm, p, m, \lambda), \quad (44a)
\]

\[
\lim_{n \to \infty} t_n(\pm, p, m, \lambda) = t_\infty(\pm, p, m, \lambda). \quad (44b)
\]

Очевидно, что t_∞, r_∞ суть коэффициенты пропускания и отражения решения задачи рассеяния для сужения оператора L_∞ на $L^2(D_{out}, dx dz)$. Действительно, правые части (44) аналитичны по λ, а для $\lambda \neq \lambda_\infty$ при вычислении пределов (44) мы можем воспользоваться теоремой 1.

Теперь рассмотрим второй случай. Определем отображения

\[
l_k : H_+ \to H_+, \quad l_1 \psi(x) = \overline{\psi}(x), \quad l_2 \psi(x) = \overline{\psi}(-x),
\]

\[
p_k : \Omega \to \Omega, \quad p_1(\pm, j) = (\mp, j), \quad p_2(\pm, j) = (\mp, j).
\]

Лемма 20. 1) Отображения l_1, p_1 удовлетворяют условиям S1, S2 работы [7].

2) Если при всех n оператор $G_n(t)$ коммутирует с операцией отражения относительно плоскости $z = 0$, т.е.

\[
\forall n: \quad \text{Re}l G_n = G_n \text{Re}l, \quad \text{Re}l u(x \times z) = u(x \times (-z)),
\]

то отображения l_2, p_2 удовлетворяют условиям S1, S2 работы [7].

Во всех случаях параметр β в формуле (12) работы [7] удовлетворяет равенству $|\beta| = 1$.

Доказательство сводится к прямому вычислению.

Пусть

\[
\forall p, r_\infty(\pm, m, m, \lambda_\infty) = \lim_{|\lambda - \lambda_\infty| \to 0} \left(\lim_{n \to \infty} r_n(\pm, m, m, \lambda) \right),
\]

а если оператор $G_n(t)$ коммутирует с операцией отражения относительно плоскости $z = 0$, то

\[
\forall p, t_\infty(\pm, m, m, \lambda_\infty) = \lim_{|\lambda - \lambda_\infty| \to 0} \left(\lim_{n \to \infty} t_n(\pm, m, m, \lambda) \right). \quad (46)
\]

Существование пределов в (45), (46), следует из леммы 7 работы [7].

Пусть последовательность действительных чисел $\{\gamma_n\}$ такова, что

\[
|\text{Re} \lambda_n - \gamma_n| = O(|\text{Im} \lambda_n|^{1+\delta}), \quad \delta > 0.
\]

Теорема 1 работы [7] в нашем случае принимает следующий вид.
Теорема 2. 1) Если \(\forall n: \text{Im} \lambda_n < 0 \), то справедливо равенство

\[
\lim_{n \to \infty} \left(\sum_m \left(|v. p. r_\infty(\pm, m, m, \lambda_\infty) - r_n(\pm, m, m, \gamma_n)| + |v. p. r_\infty(-, m, m, \lambda_\infty) - r_n(-, m, m, \gamma_n)| \right) \right) = 2. \quad (47)
\]

2) Если \(\forall n: \text{Im} \lambda_n < 0 \) и при всех \(n \) оператор \(G_n(t) \) коммутирует с операторами отражения относительно плоскости \(z = 0 \), то

\[
\lim_{n \to \infty} \left(\sum_m \left(|v. p. t_\infty(\pm, m, m, \lambda_\infty) - t_n(\pm, m, m, \gamma_n)| + |v. p. t_\infty(-, m, m, \lambda_\infty) - t_n(-, m, m, \gamma_n)| \right) \right) = 2. \quad (48)
\]

Посмотрим, какие следствия можно извлечь из теоремы 2. Предположим, что область \(D \) есть цилиндр \(D_0 \), к которому через тонкую трубку пришвяна сфера. Гладким отображением \(\varphi \) переводим эту область в \(D_0 \), а потом будем сжимать трубку и будем следить за образом получающейся области (при фиксированном отображении \(\varphi \)). Образ сферы перейдет в область \(D_{\text{int}} \), а образ цилиндра – в область \(D_{\text{ext}} \). Очевидно, что

\[
\text{v. p. } r_\infty(\pm, m, m, \lambda_\infty) = 0.
\]

Если \(\lambda_\infty \) выбрано так, что в сумме (47) есть только одно слагаемое, то из (47) следует, что либо в окрестности \(\lambda_\infty \) должны быть частоты, на которых волна почти полностью отражается, либо должно быть выполнено равенство \(\text{Im} \lambda_n = 0 \). Аналогичные рассуждения показывают, что в случае симметричного относительно плоскости \(z = 0 \) внутреннего резонатора (типичный пример – сжатый вдвух сечениях цилиндр) либо должно быть выполнено равенство \(\text{Im} \lambda_n = 0 \), либо волна будет туннелировать, т.е. проходить без отражения.

§ 7. Заключительные замечания

С точки зрения математической теории рассеяния обсуждаемые нами вопросы относятся к теории резонансов и туннелирования. Представление об этой теме можно составить по работам [9]–[26]. С точки зрения теории эллиптических уравнений рассматриваемые нами задачи связаны с исследованиям поведения решений эллиптических краевых задач в окрестности особых точек границы. Оценка леммы 6, конечно, очень грубая. Из нее следует, что

\[
|\lambda_n - \lambda_\infty| \leq \text{const} \cdot d(D_n, D_\infty)^{1/2}.
\]

В работе [24] в аналогичной ситуации доказана более точная оценка

\[
|\text{Im} (\lambda_n - \lambda_\infty)| \leq \text{const} \cdot \exp \left(-\frac{\delta}{d(D_n, D_\infty)} \right).
\]
С нашей точки зрения эта оценка не дает надежды решить методами традиционной теории возмущений вопрос о том, какой из двух случаев реализуется: Im λ_n < 0 или Im λ_n = 0.

Мы изучали только случай граничных условий Дирихле. Аналогичные задачи решались и для случаи граничных условий второго рода [26].

С математической точки зрения теория квантовых волноводов, квантовых проволок и квантовых точек связана с изучением спектральных свойств эллиптических дифференциальных операторов второго порядка в неограниченных областях специального вида. Изучались области, форма которых напоминает форму математических символов +, ∞, Z.

Иногда квантовые волноводы моделируются операторами вида

\[L = -\Delta_{x,z} + V_0(x) + V_{\text{inter}}(x \times z), \]

где \(V_0(x) \to +\infty, x \to \infty, \) а потенциал \(V_{\text{inter}}(x \times z) \) можно рассматривать как возмущение. Ясно, что с математической точки зрения такая модель существенно проще рассматриваемой нами, а с точки зрения физики обе модели часто оказываются эквивалентны.

Нам кажется, что в связи с рассмотренными нами вопросами будут интересны работы [27]–[49]. В них либо решаются задачи, близкие к рассмотренной нами, либо они могут служить источником интересных постановок математических задач.

Список литературы