Г. Н. Берестовский, Письмо в редакцию, Матем. заметки, 2005, том 78, выпуск 5, 799–800

DOI: https://doi.org/10.4213/mzm2641

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement
Параметры загрузки:
IP: 54.70.40.11
9 февраля 2019 г., 00:10:58
\[W + i p W = -2C \delta \mu^2 W - C \delta \omega^2 (Y - 2Z) - \delta \mu^3 C + E_4, \]
\[\hat{\mu} + \frac{\omega_1^2 + 2 \beta \Re V}{4} \mu - \mu - 3 \left(\frac{1}{4} - r \right) = -2 \mu^{-1} \delta r, \]
\[\hat{r} + \frac{1}{\mu^2 C} \Im \left((Z + \bar{Y})W + 3Y \bar{Z} \right) = k \theta_0 r + 2 p \delta \mu^2 \tau, \]
\[\hat{C} = -\gamma C, \quad \omega_0 - \beta \Im V = 0, \]
\[\delta_0 + k \theta_0 = 0, \quad \hat{r} + k r = 0, \quad \hat{\xi} - 2 i p \xi + k \xi = 0. \]

Здесь неизвестными являются комплексные функции \(X(t), V(t), Y(t), Z(t), W(t), U(t) \) и вещественные функции \(\omega_0(t), C(t), \tau(t), \theta(t), \mu(t) \);

\[E_1 = \frac{2i}{\mu^2} \left((Y + W - 2Z) \tau - (\bar{Y} + \bar{W} - 2Z) \bar{\xi} \right), \quad E_2 = -\frac{2i}{\mu^2} \left(\bar{Y} + \bar{W} - 2Z \right) \tau, \]
\[E_3 = \frac{2i}{\mu^2} (Y + W - 2Z) \xi, \quad E_4 = \frac{2i}{\mu^2} \left((Y + W - 2Z) \tau + (\bar{Y} + \bar{W} - 2Z) \bar{\xi} \right), \]
\[\gamma = \frac{\delta_2 p}{\rho_1} + k \theta_0, \quad \rho = \frac{\omega_0 - \rho_0 C}{2}, \quad \rho_1 = \frac{1}{\mu^2 C}; \]

\[f_1, f_2, f_3 \] зависят от коэффициентов Тейлора функций \(u, \rho \) третьего порядка.

Для моделирования движения тропических циклонов мы обрываем цепочку (11)–(20), предполагая \(f_1 = f_2 = f_3 = 0 \).

Оборванная цепочка Гюгонио–Маслова для уравнений мелкой воды без учета энергетического обмена получается из уравнений (11)–(19) после приравнивания к нулю их правых частей.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

(С.Ю. Доброхотов, Е.С. Семёнов) Институт проблем механики РАН
(Б. Тиорзи) Department of Physics, University “La Sapienza”, Rome
E-mail: dobr@ipmnet.ru, semenov@ipmnet.ru, b.tirozzi@libero.it

ПИСЬМО В РЕДАКЦИЮ

Г. Н. Берестовский

После опубликования моей заметки [1] я получил из редакции два письма, из которых следует, что полученная мной формула давно известна. Из краткого письма К.Б. Сабитова следует, что приведённое мной соотношение есть частный случай формулы, полученной в начале 20-го века, и указана ссылка [2, с. 70–73]. Обстоятельное письмо М.К. Керимова посвящено более широкому вопросу – теории функции Рэлея. Оно содержит интереснейшие исторические сведения и указания на ряд математических работ, выполненных в 19-м и 20-м веках. Автор, в частности, утверждает, что многие формулы, касающиеся узлов функций Бесселя, многократно переоткрывались. Не повторяя приведённые в этом письме литературные указания, отмечу лишь обзорную статью самого Керимова [3], с которой я был рад познакомиться. Я благодарен профессорам К.Б. Сабитову и М.К. Керимову за интересные послания и должен констатировать, что написание моей утомительного краткого сообщения есть результат независимого с нужным математическими источниками.
СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

Институт биофизики клетки РАН
E-mail: gberest@mail.ru
Поступило 17.05.2005

ПИСЬМО В РЕДАКЦИЮ

А. В. Розанова

После набора статьи “Управляемость для нелинейного абстрактного эволюционного уравнения” были обнаружены неточности, которые не удалось исправить до ее публикации в [1] и приводятся в данном письме.

Оценка корректности решения линейной задачи Коши на с. 554 имеет вид

$$||u||_{C^1([0,T],E)} \leq K(||\psi_0|| + ||\Phi(t)f||_{C^1([0,T],E)}),$$

которая следует из [2, с. 107] и [3, с. 169]. Поэтому везде, начиная с п. 1, кроме первых трех строчек в доказательстве теоремы 3, следует читать $C^1([0,T],E)$ вместо $C([0,T],E)$; на с. 557 в третьем и четвертом абзацах сверху слева на с. 557 и конец четвертого абзаца вместо “... в силу априорной оценки [4, с. 192] H непрерывно вкладывается в $C^1([0,T],E)$ и, следовательно, в X должны заменять слова “... в силу априорной оценки H непрерывно вкладывается в $C^1([0,T],E)$”; на с. 558 в первой строчке вслед за H непрерывно вкладывается в X следует читать “H — это подпространство X”. Результаты из источника [5] в списке литературы в полном объеме могут быть найдены в статье [6].

На с. 562 вторая снизу оценка может быть получена более простым способом:

$$z = \eta(F + \Delta F) - \eta(F),$$

откуда

$$||z||_H = ||\eta(F + \Delta F) - \eta(F)||_H = ||\xi^{-1}(F + \Delta F) - \xi^{-1}(F)||_H \leq \frac{1}{1 - \nu(r)}||\Delta F||_{LH}$$

(в последнем неравенстве используется теорема Адамара).

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

Российский университет Дружбы народов
E-mail: rozanovaf@mail.ru
Поступило 31.01.2005

© А. В. Розанова 2005