
Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
16 июня 2021 г., 09:38:29
Д. Талаляев, А. Чернов

УРАВНЕНИЕ КЗ, G-ОПЕРЫ, КВАНТОВАЯ РЕДУКЦИЯ ДРИНФЕЛЬДА–СОКОЛОВА И КВАНТОВОЕ ТОЖДЕСТВО ГАМИЛЬТОНА–КЭЛИ

1. Введение

1.1. Простой факт из линейной алгебры. Пусть L – некоторая матрица над некоторым полем. Она может быть приведена ко второй нормальной форме", т.е. существует матрица C, такая, что

$$
C L C^{-1} = \begin{pmatrix}
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
H_n & H_{n-1} & H_{n-2} & \ldots & H_2 & H_1 \\
\end{pmatrix}, \quad (1)
$$

где H_i – коэффициенты характеристического полинома:

$$
\det(L(z) - \lambda) = (-1)^n(\lambda^n - \sum_i H_{n-i}\lambda^i),
$$

t.е. $H_1 = \text{Tr}(L), H_n = (-1)^{n-1}\det(L)$.

Для доказательства этого утверждения достаточно рассмотреть матрицу C замены координат, переводившую стандартный базис в базис, образованный ковекторами v, vL, \ldots, vL^{n-1}, где v – ковектор общего положения:

$$
C = \begin{pmatrix}
v \\
vL \\
vL^2 \\
\ldots \\
vL^{n-1}
\end{pmatrix}. \quad (2)
$$

Пример 1. Пусть L – числовая матрица размера 2×2:

$$
L = \begin{pmatrix}
a & b \\
c & d
\end{pmatrix},
$$

246
где $c \neq 0$. Эта матрица может быть приведена ко второй нормальной форме с помощью матрицы

$$C = \begin{pmatrix} 0 & 1 \\ c & d \end{pmatrix};$$

таким образом,

$$C LC^{-1} = \begin{pmatrix} 0 & 1 \\ -\det(L) & \text{tr}(L) \end{pmatrix}.$$

Представим данное свойство в более общем виде:

$$C (L - \lambda) = \left(\begin{pmatrix} 0 & 1 \\ -\det(L) & \text{tr}(L) \end{pmatrix} - \lambda \right) C.$$ \hspace{1cm} (3)

1.2. Схема квантования. Напомним схему квантования, эффективную для целого класса интегрируемых систем с рациональным оператором Лакса, на примере системы Годена, построенной в [3, 13.2.2].

Оператор Лакса. Оператор Лакса данной модели является рациональной функцией с простыми полюсами:

$$L(z) = \sum_{i=1}^{N} \frac{\Phi_i}{z - z_i},$$

$\Phi_i \in \text{Mat}_n \otimes \mathfrak{gl}_n \subset \text{Mat}_n \otimes U(\mathfrak{gl}_n)^{\otimes N}$ определены формулой

$$\Phi_i = \sum_{kl} E_{kl} \otimes e^{(i)}_{kl},$$ \hspace{1cm} (4)

где E_{kl} образуют стандартный базис в Mat_n и $e^{(i)}_{kl}$ являются стандартными генераторами i-й копии \mathfrak{gl}_n.

Замечание 1. Все предлагаемые рассмотрения автоматически переносятся на любую систему, оператор Лакса которой удовлетворяет линейным N-матричным коммутационным соотношениям (25), в частности, на случай, когда рассматривается стандартный оператор Лакса для $\mathfrak{gl}_n[t]$, заданный формулой (23).
Квантовый характеристический полином. Квантовое коммутативное семейство строится с помощью квантового характеристического полинома

\[
\text{"det"}(L(z) - \partial_z) = \text{Tr} A_n (L_1(z) - \partial_z) \ldots (L_n(z) - \partial_z)
\]

\[
= \sum_{k=0}^{n} C_n^k (-1)^{n-k} QI_k(z) \partial_z^{n-k}.
\]

(5)

Теорема [1]. Коэффициенты \(QI_k(z) \) коммутируют,

\[
[QI_k(z), QI_m(u)] = 0,
\]

и определяют квантование классических гамильтонианов Годена.

В формулах, предложенных выше, \(L_i(z) \) – это элемент из \(\text{Mat}_n \otimes \otimes U(\mathfrak{gl}_n) \otimes \otimes U^n, \) полученный с помощью вложения \(\text{Mat}_n \rightarrow \text{Mat}_n \otimes \otimes \) как \(i \)-й компоненты. Элемент \(A_n \) – нормализованный оператор антисимметризации в \(\mathbb{C}^n \otimes \otimes \).

Замечание 2. Аналогичная конструкция была использована в [2] для построения коммутативной подалгебры в \(U(\mathfrak{gl}_n)[t]/t^N, U(\mathfrak{gl}_n)[t] \) и центра универсальной обёрнутой аффинной алгебры на критическом уровне.

1.3. Уравнение КЗ, G-оперы и уравнение Бакстра.

Скалярный дифференциальный оператор, заданный формулой

\[
\chi(\text{"det"}(L(z) - \partial_z)) = \sum_{k=0}^{n} C_n^k (-1)^{n-k} \chi(QI_k(z)) \partial_z^{n-k},
\]

(6)

в теории геометрического соответствия Леньшнеда называется G-опером, он определяет связность на проколотом диске (так называемая Галуа-составляющая соответствия). Здесь \(\chi \) – характер коммутативной подалгебры, порожденной \(QI_k(z) \), он связан с характером на центре \(U_{\text{crit}}(\mathfrak{gl}_n) \) с помощью отображения Адлера-Костанта-Сима [4] и, таким образом, с представлением алгебры \(U_{\text{crit}}(\mathfrak{gl}_n) \) (так называемая автоморфная сторона соответствия).

- Уравнение Бакстра. Q-оператор Бакстра.
Уравнение Бакстера и его решение (Q-оператор Бакстера) задаются формулой

\[\pi(\det''(L(z) - \partial_z))Q(z) = 0. \] \hfill (7)

Здесь \((\pi, H)\) – представление алгебры \(U(gl_n) \otimes N\) в гильбертовом пространстве \(H\), \(U(gl_n) \otimes N\) – алгебра квантовых наблюдаемых модели Годена, \(H = V_1 \otimes \ldots \otimes V_N\) – гильбертово пространство, \(Q(z)\) – функция со значениями в \(\text{End}(H)\).

- Уравнение Кижинского–Замолодчикова.

Стандартное уравнение КЗ [5] при специальном выборе уровня задается формулой

\[\pi(L(z) - \partial_z)\Psi(z) = 0, \] \hfill (8)

gде \((\pi, V_1 \otimes \ldots \otimes V_N)\) – представление алгебры \(U(gl_n) \otimes N\) а \(\Psi(z)\) – функция со значениями в \(C^n \otimes V_1 \otimes \ldots \otimes V_N\). В [6] было показано, что по решению универсального уравнения КЗ \((L(z) - \partial_z)\Psi(z) = 0\) можно получить решение универсального G-оператора, рассматривая векторные компоненты \(\Psi(z)\) решения \(\Psi(z)\), которое является функцией со значениями в \(V_1 \otimes \ldots \otimes V_N\). Детали данных наблюдений могут быть найдены в работе [2].

1.4. Основные результаты.

Приведение квадратного оператора Лакса к форме Дрифельда–Соколова. Пусть \(L(z) \in \text{Mat}_n \otimes U(gl_n) \otimes N \otimes \text{Fun}(z)\) – квадратный оператор Лакса модели Годена, \(\text{Fun}(z)\) означает подходящее пространство функций от формального параметра \(z\). Обозначим через \(L^{[i]}(z)\) квадратные степени оператора Лакса, определяемые следующим образом:

\[L^{[0]} = \text{Id}, \]
\[L^{[i]} = L^{[i-1]}L + \partial_z L^{[i-1]} \]

Теорема 1. Выражение \(C(z)\), принимающее значения в \(\text{Mat}_n \otimes U(gl_n) \otimes N \otimes \text{Fun}(z)\) и определяемое формулой

\[C(z) = \begin{pmatrix} vL \\ vL^2 \\ \vdots \\ vL^{n-1} \end{pmatrix}, \] \hfill (9)
где v — вектор общего положения в \mathbb{C}^n, дает следующее калибровочное преобразование:

$$C(z)(L(z) - \partial_z) = \begin{pmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 & 1 \\ QH_n & QH_{n-1} & \ldots & QH_2 & QH_1 \end{pmatrix} - \partial_z \right) C(z),$$

(10)

где

$$\det(L(z) - \partial_z) = \text{Tr} A_n(L_1(z) - \partial_z) \ldots (L_n(z) - \partial_z)$$

$$= (-1)^n (\partial_z^n - \sum_i QH_i - \partial_z^i).$$

(11)

Здесь используются обозначения $QH_k = C_n^k (-1)^k QI_k$.

Связь в правой части равенства обычно обозначается связностью типа Дринфельда—Соколова.

Следствие 1. Квадратные степени оператора Лакса удовлетворяют квадратному тождеству Гамильтона–Кэли

$$L^{[n]}(z) = \sum_{i=1}^{n} QH_i(z) L^{[n-i]}(z).$$

(12)

Доказательство. Рассматривая последнюю строку уравнения (10), получим

$$v L^{[n-1]}(z)(L(z) - \partial_z) = \sum_{i=1}^{n} v QH_i(z) L^{[n-i]}(z) - \partial_z v L^{[n-1]}(z).$$

Из этого равенства выводится искомое утверждение. В качестве еще одного следствия мы получаем простой способ производить решения уравнения КЗ линейной заменой координат. Этот метод полностью согласован с методом, рассмотренным в [6]. □

Историческое замечание. Тождеству Гамильтона–Кэли, представленное выше, является единственным соотношением такого типа (в
меру осведомленности авторов) для квантовых операторов Лакса со спектральным параметром. Появление квантовых поправок в степенях $L(z)$ отличает его от традиционного. Подобного рода тождества для операторов Лакса без спектрального параметра обсуждались в [9], а также в разделе 4.2 работы [10]. В работе [11] (раздел 2.4) было предложено тождество Гамильтона—Калли для gl_n (эта работа существенно поступала и нас). Заметим также, что в [12] (раздел 8.6, стр. 96) было предложено обобщение тождества Гамильтона—Калли для матриц с коэффициентами в произвольной некоммутативной алгебре несколько иной природы.

Благодарности. Работа обоих авторов выполнялась при частичной поддержке гранта РФФИ 04-01-00702 и гранта поддержки научных школ 8004.2006.2. Общая идея теоремы 1 была сформулирована во время пребывания одного из авторов (Т.Д.) в LPTHE осенью 2005 г. Т.Д. хотел бы поблагодарить Французское правительство, а также FRIP (Федерацию исследований фундаментальных взаимодействий) за организацию данного визита и особо О. Бабелова за важный вклад в понимание проблемы. Работа одного из авторов (*И.А.*) была выполнена также при частичной поддержке гранта INTAS YSF-04-83-33996, часть работы была выполнена во время визита в SISSA в рамках проекта INTAS; автор глубоко признателен Г. Фальке за исключительные условия работы и стимулирующие дискуссии.

2. Основной раздел

$$(L(z) - \partial_z) S(z) = 0,$$

gде $S(z)$ — функция со значениями в $\mathbb{C}^n \otimes V$, где в свою очередь V есть представление алгебры $U(gl_n) \otimes \mathbb{C}$, и решением уравнения, получаемого из квантового характеристического полинома

$${\text{det}}(L(z) - \partial_z) \Psi(z) = 0,$$ \hspace{1cm} (13)

на $\Psi(z)$ — функцию со значениями в V. Достаточно в качестве $\Psi(z)$ взять проекцию на антисимметричную часть выражения $U(z) = v_1 \otimes \ldots \otimes v_{n-1} \otimes S(z)$, где v_i — произвольный вектор в \mathbb{C}^n. Для специального
выбора вектора v_i можно показать, что все векторные компоненты функции $S(z)$ над \mathbb{C}^n решают уравнение (13).

Замечание 3. Роль уравнения (13) оказывается исключительной в задаче решения квантовой модели, а также в геометрическом соответствии Ленглеца. А именно, ограничивая данное уравнение на общий собственный вектор гамильтонианов Годена, мы получаем так называемый G-оператор, условие, что данное дифференциальное уравнение имеет тривиальную монодромию, эквивалентно уравнениям Беты на собственные значения квантовых гамильтонианов.

Формула (10) основной теоремы также предоставляет такое отношение, а именно: если $S(z)$ решает уравнение КЭ

$$(L(z) - \partial_z) S(z) = 0,$$

то первая векторная компонента функции $C(z) S(z)$ решает уравнение типа Бакстера (или G-оператора) (13). Рассматривая $C(z)$ в виде (9) с вектором $v = \langle 0, \ldots, 1, \ldots, 0 \rangle$, получаем, что первая компонента функции $C(z) S(z)$ совпадает с $S(z)$.1.

Следствие 2. Все решения уравнения КЭ

$$(\pi(\partial_z - L(z))) S(z) = 0$$

являются рациональными функциями (здесь π – конечномерное представление алгебры $U(g_n)^{\otimes N}$).

Доказательство. В работе [6] было сделано предположение (основанное на [7]), а также на ипях Бакстера, Годена и Сказа, что уравнение типа Бакстера $\pi(\text{"det"}(\partial_z - L(z))) \Psi(z) = 0$ имеет только рациональные решения. Эта гипотеза была доказана в работе [8] (теорема 4.1 на стр. 12). С другой стороны, из утверждения работы [6], обсуждаемого выше, следует, что любая компонента $S(z)$ вектора $S(z)$ решает уравнение Бакстера, являясь таким образом векторно-значой рациональной функцией.

2.2. Сопряжение. Рассмотрим сначала несколько примеров квантовых степеней оператора Лакса (9):

$L^{[1]}(z) = L(z),$

$L^{[2]}(z) = L^2(z) + L'(z).$
Таким образом, для случая \(n = 2 \) матрица \(C \) может быть выбрана в традиционном виде

\[
C(z) = \begin{pmatrix}
0 & 1 \\
\varepsilon(z) & d(z)
\end{pmatrix}, \tag{15}
\]

где квазиопператор Лакса определяется выражением

\[
L(z) = \begin{pmatrix}
a(z) & b(z) \\
\varepsilon(z) & d(z)
\end{pmatrix}. \tag{16}
\]

Доказательство теоремы 1. В общем случае рассмотрим решение \(\Psi(z) \) уравнения КЗ

\[
L(z)\Psi(z) = \partial_z \Psi(z).
\]

Пусть \(\Phi(z) = C(z)\Psi(z) \), где \(C(z) \) задано формулой (9). Тогда

\[
\Phi_1(z) = < v, \Psi(z) >,
\]

\[
\Phi_2(z) = < vL(z), \Psi(z) > = < v, \partial_z \Psi(z) >,
\]

\[\ldots\]

\[
\Phi_k(z) = < vL^{[k-1]}L(z) + \partial_z L^{[k-1]}, \Psi(z) > = < vL^{[k-1]}, \partial_z \Psi(z) > + < v\partial_z L^{[k-1]}, \Psi(z) > = \partial_z \Phi_{k-1}(z).
\]

Таким образом, \(C(z) \) преобразует уравнение КЗ к виду Дринфельд-Соколова

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
\partial_n(z) & \partial_{n-1}(z) & \partial_{n-2}(z) & \ldots & \partial_2(z) & \partial_1(z)
\end{pmatrix}\partial_z - \partial_z,
\]

Для доказательства того, что данная связность совпадает со связностью в правой части равенства (10), необходимо применить результат из [6], состоящий в том, что любая компонента решения уравнения КЗ \(\Psi \) удовлетворяет уравнению Бакстера. С другой стороны, по построению мы видим, что \(< v, \Psi(z) > \) удовлетворяет дифференциальному уравнению

\[
(\partial^n - \sum_{i=1}^n \partial_i(z)\partial_z^{n-i}) < v, \Psi(z) > = 0. \tag{17}
\]

В силу общности выбора решения уравнения КЗ \(\Psi(z) \) и вектора \(v \in \mathbb{C}^n \), а также в силу униодномодарности обоих дифференциальных операторов, мы заключаем, что дифференциальный оператор (17) и \(G\)-опер совпадают. \(\square \)
3. ФАКТОРИЗАЦИЯ КВАНТОВОГО ХАРАКТЕРИСТИЧЕСКОГО ПОЛИНОМА

3.1. Форма Миуры.

Следствие 3. Предположим, что существует разложение квантового характеристического полинома в форме

\[\text{detr } (\partial_z - L(z)) = \text{Tr}_n (\partial_z - L_1(z)) \ldots (\partial_z - L_n(z)) \]

\[= (\partial_z - \chi_n(z)) \ldots (\partial_z - \chi_1(z)). \quad (18) \]

Тогда существует матрица \(C^d(z) \) со значениями в некотором алгебраическом расширении квантовой алгебры, такая, что

\[C^d(z)(\partial_z - L(z)) = \begin{pmatrix} \chi_1(z) & 1 & \ldots & 0 \\ 0 & \chi_2(z) & \ldots & \ldots \\ \ldots & \ldots & \ldots & 1 \\ 0 & 0 & \ldots & \chi_n(z) \end{pmatrix} C^d(z). \quad (19) \]

Обозначим связность в правой части равенства через \(\partial_z - L_M \).

В приложении приводится доказательство этого следствия.

Замечание 4. Схожее разложение уравнения типа Бакстера часто встречается в физико-математической литературе. Для общих систем Годена или цепочки XXX явное разложение для скалярных G-операторов, имеющих отношение к нашей конструкции, было недавно предложено А. Варченко, Е. Мухиним, В. Таразовым и Э. Френкелем.

Замечание 5. В частности, дифференциальный оператор \(D = \sum_i H_i(z) \partial_z^i \) может быть представлён в виде произведения \(D = (\partial_z - \chi_n(z)) \ldots (\partial_z - \chi_1(z)) \) не единственным образом. Пусть \(\Psi_1, \ldots, \Psi_n \) — базис в пространстве решений уравнения \(D \Psi = 0 \); выберем \(\chi_1, \ldots, \chi_n \) последовательно, исходя из условия

\[(\partial_z - \chi_i) \ldots (\partial_z - \chi_1) \Psi_i = 0. \]

Например, \(\chi_1 = \Psi_1 / \Psi_1 \). Таким образом, разные разложения параметризуются n-мерным пространством флагов.

Замечание 6. Матрица \(C(z) \) обратима только в поле частных \(U(gl_n)^{\otimes N} \). Это означает, что \(\pi(\partial_z - L(z)) \) и \(\pi(\partial_z - L_D(z)) \) не вполне калибровочно эквивалентны, где \(\pi = \) представление алгебры \(U(gl_n)^{\otimes N} \).

Действительно, по решению \(\pi(\partial_z - L(z)) \) может быть построено решение \(\pi(\det(\partial_z - L(z))) \), однако это соответствствие не обязательно является биективным.

Замечание 7. Все результаты данной работы могут обобщаться на случай полупростых алгебр и квантовых групп, следуя концепции, изложенной в [2]. Например, те же теоремы должны выполняться для оператора Лакса для \(g_l [t] \) (кроме того, оператор Лакса может рассматриваться, вообще говоря, в любом представлении, не только фундаментальном), для ядра \(e^{\delta z} - T(z) \) может быть сопряжено к форме Дринкфельда–Соколова с коэффициентами, заданными \(\det(e^{\delta z} - T(z)) \), для алгебры \(U_q(\mathfrak{g}) \) то же должно выполняться для выражения \(q^{\delta z} - L^+(q^z) \).

3.2. Отображение Хариш-Чандры. Формула разложения (18) для частного случая квантового характеристического полинома задает явную реализацию отображения Хариш-Чандры.

Рассмотрим представление \((\pi, V_\lambda)\) алгебры \(g_l \) со старшим весом \(\lambda = (\lambda_1, \ldots, \lambda_n) \) (существует вектор \(|0> \in V_\lambda \), так что \(\pi(e_H)|0> = \lambda_0 |0> \) и \(\pi(e_H)|0> = 0 \) для \(i < j \)).

Гипотеза 1. Рассмотрим 1-спиновый оператор Лакса \(L(z) = \Phi/z \) где \(\Phi \in \text{Mat}_n \otimes U(g_l) \), \(\Phi = \sum E_{kl} \otimes e_{kl} \). Тогда выполняются следующие равенства:

\[
\pi(\det(\partial_z - L(z))|0> = (\partial_z - \lambda_1/z) \ldots (\partial_z - \lambda_n/z)|0>, \quad (20)
\]

\[
\pi(\det(\partial_z + L(z))|0> = (\partial_z + \lambda_1/z) \ldots (\partial_z + \lambda_n/z)|0>. \quad (21)
\]

Замечание 8. Можно доказать, что коэффициенты 1-спинового квантового характеристического полинома принадлежат центру универсальной обертывающей алгебры \(U(g_l) \), а следовательно, имеет место равенство

\[
\pi(\det(\partial_z - L(z))) = (\partial_z - \lambda_1/z)(\partial_z - \lambda_2/z) \ldots (\partial_z - \lambda_n/z) \text{Id}
\]

и аналогичное разложение для \(\pi(\det(\partial_z + L(z))) \). Эти формулы позволяют явно строить отображение Хариш-Чандры.

Замечание 9. Эта гипотеза связана с более общими результатами А. Варченко, Е. Мухина, В. Тарасова и Э. Френкеля.

Непосредственным вычислением получаем следующее утверждение.
Предложение 1. Гипотеза верна для \mathfrak{g}_2.

Обратим внимание на то, как описывается действие группы Вейля, хорошо известное в теории отображения Хариш-Чандры, в терминах различных факторизаций квантового характеристического колычка. Образы элементов Казимира при отображении Хариш-Чандры являются симметрическими функциями по отношению к действию группы Вейля. Действие задается не ванной формулой $(\lambda_1) \rightarrow (\lambda_{\sigma(i)})$.

В случае \mathfrak{g}_2 группа Вейля состоит из двух элементов, $S_2 = \langle 1, p \rangle$, которые действуют следующим образом: $p(\lambda_1, \lambda_2) = (\lambda_2 - 1, \lambda_1 + 1)$.

Наблюдение. Такое же действие группы перестановок S_2 возникает при рассмотрении различных факторизаций:

$$(\partial_2 - \frac{\lambda_1}{z})(\partial_2 - \frac{\lambda_2 - 1}{z}) = (\partial_2 - \frac{\lambda_0}{z})(\partial_2 - \frac{\lambda_1 + 1}{z}).$$

(22)

4. Приложения

4.1. Стандартный оператор Лакса для $\mathfrak{g}_n[t]$. Напомним некоторые определения.

Определение 1. Стандартный оператор Лакса для $U(\mathfrak{g}_n[t])/(t^N = 0)$ (N может быть конечным или бесконечным), а также стандартный оператор Лакса для $U(\mathfrak{g}_n[t])/(t^N = 0)$ со свободным членом K задаются формулой

$$L(z) = \sum_{i=0}^{N-1} \Phi_i z^{-(i+1)}, \quad L_K(z) = K + \sum_{i=0}^{N-1} \Phi_i z^{-(i+1)}.$$ (23)

Здесь K - произвольная постоянная матрица, z - формальный параметр (не то же самое, что t !),

$$\Phi_i \in \left(\text{Mat}_n \otimes U(\mathfrak{g}_n[t])/(t^N = 0) \right) \cong \left(\text{Mat}_n[U(\mathfrak{g}_n[t])/(t^N = 0)] \right)$$

заданы следующим образом:

$$\Phi_i = \sum_{kl} E_{kl} \otimes e_{kl^i} \iff (\Phi_i)_{kl} = e_{kl^i},$$ (24)

где $E_{kl} \in \text{Mat}_n$, $e_{kl^i} \in U(\mathfrak{g}_n[t])$. Здесь E_{kl} и e_{kl^i} - матрицы с единственным ненулевым элементом равным 1 на (k, l)-м месте. Мы
рассматриваем их как элементы разных алгебр: ассоциативной алгебры размера Mat_n в первом случае и универсальной обертывающей алгебры $U(\mathfrak{gl}_n[t])$ во втором.

Хорошо известно, что оператор Лакса системы Годена, заданный формулой (4), также как $L(z), L_K(z)$, удовлетворяет коммутационному соотношению

$$\frac{1}{[L(z), L(u)]} = \left[\frac{P}{z-u}, \frac{2}{L(z) + L(u)} \right].$$

Замечание 10. Оператор Лакса $L(z) = K + \Phi/z$ определяет интегрируемую систему на конечных орбитах алгебры \mathfrak{gl}_n. Эта система называется системой Мищенко–Фоменко, а метод её получения – методом сдвига аргумента.

4.2. Приведение к форме Миуры.

Предложение 2. Рассмотрим дифференциальный оператор

$$\partial^n_z = \sum_{i=1}^{n} H_i(z) \partial_z^{n-i} = (\partial_z - \chi_n(z)) \ldots (\partial_z - \chi_1(z)).$$

Тогда связность Дриффилда–Соколова

$$\partial_z - L_{DS} = \partial_z - \begin{pmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 & 1 \\ H_n(z) & H_{n-1}(z) & \ldots & H_2(z) & H_1(z) \end{pmatrix}$$

калибровочно эквивалентна связности Миуры

$$\partial_z - L_M(z) = \partial_z - \begin{pmatrix} \chi_1(z) & 1 & 0 & \ldots & 0 \\ 0 & \chi_2(z) & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \chi_{n-1}(z) & 1 \\ 0 & 0 & \ldots & 0 & \chi_n(z) \end{pmatrix}.$$

Более того, если вектор $\Phi(z)$ удовлетворяет уравнению

$$(\partial_z - L_M(z)) \Phi(z) = 0,$$

то его первая компонента является решением уравнения

$$\left(\partial_z - \chi_n(z) \right) \ldots \left(\partial_z - \chi_1(z) \right) \Phi_1(z) = 0.$$
Доказательство. Покажем, что существует элемент B, преобразующий связность $\partial_z - L_{DS}$ в связность типа Миуры $\partial_z - L_M$. Пусть S — решение уравнения

$$
\partial_z S = \begin{pmatrix}
\chi_1 & 1 & 0 & 0 & \ldots & 0 \\
0 & \chi_2 & 1 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & \chi_{n-1} & 1 \\
0 & 0 & 0 & \ldots & 0 & \chi_n
\end{pmatrix} S
$$

(мы опускаем зависимость от параметра z, чтобы не загромождать формулы). Получим

$$
\partial_z S_1 = \chi_1 S_1 + S_2,
$$

$$
\partial_z^2 S_1 = (\partial_z \chi_1 + \chi_1^2) S_1 + (\chi_1 + \chi_2) S_2 + S_3
$$

и т.д.

Таким образом, линейной заменой базиса с нижнетреугольной матрицей B вида

$$
B = \begin{pmatrix}
1 & 0 & 0 & 0 & \ldots & 0 \\
\chi_1 & 1 & 0 & 0 & \ldots & 0 \\
\partial_z \chi_1 + \chi_1^2 & \chi_1 + \chi_2 & 1 & \ldots & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & 1
\end{pmatrix}
$$

связность типа Миуры $\partial_z - L_M$ преобразуется к некоторой связности типа Дринфельда—Соколова. Единственное, что осталось доказать, что эта связность совпадает с $\partial_z - L_{DS}$. Для этого достаточно удостовериться в эквивалентности условий $(\partial_z - L_{DS}) S = 0$ и “det”$(\partial_z - L) S_1 = 0$. Покажем, что S_1 решает уравнение “det”$(\partial_z - L) S_1 = 0$.

Действительно,

$$
S_2 = (\partial_z - \chi_1) S_1,
$$

$$
S_3 = (\partial_z - \chi_2)(\partial_z - \chi_1) S_1,
$$

$$
\ldots
$$

$$
0 = (\partial_z - \chi_n) \ldots (\partial_z - \chi_1) S_1. \quad \square
$$

Литература

Talalaev D., Chervov A. KZ equation, G-opers, quantum Drinfeld–Sokolov reduction, and quantum Cayley–Hamilton identity.

The Lax operator of the Gaudin-type models is a 1-form at the classical level. In virtue of the quantization scheme proposed by D. Talalaev, it is natural to treat the quantum Lax operator as a connection; this connection is a particular case of the Knizhnik–Zamolodchikov connection. In this paper we find a gauge transformation that produces the “second normal form” or the “Drinfeld–Sokolov” form. Moreover, the differential operator naturally corresponding to this form is given precisely by the quantum characteristic polynomial of the Lax operator (this operator is called the G-opers or Baxter operator). This observation allows us to relate solutions of the KZ and Baxter equations in an obvious way and to prove that the immanent KZ-equation has only meromorphic solutions. As a corollary, we obtain the quantum Cayley–Hamilton identity for the Gaudin-type Lax operators (including the general $\mathfrak{gl}_n[t]$ case). The presented construction sheds a new light on the geometric Langlands correspondence. We also discuss the relation with the Harish-Chandra homomorphism.