В. А. Гейлер, И. Ю. Попов, Баллистический транспорт в наноструктурах: явно-норешаемые модели, "ТМФ", 1996, том 107, номер 1, 12–20

DOI: https://doi.org/10.4213/tmf1134
В. А. Гейлер, И. Ю. Попов

БАЛЛИСТИЧЕСКИЙ ТРАНСПОРТ В НАНОСТРУКТУРАХ: ЯВНОРЕШЕМАЕМЫЕ МОДЕЛИ

С помощью теории самосогласованных расширений строится достаточно широкий класс явнорешемаемых моделей баллистического транспорта в наноструктурах. В полученных моделях коэффициент прохождения \(T(E) \) имеет простую зависимость как от параметров моделируемого устройства, так и от параметров внешнего магнитного поля. Приведены примеры моделей квантовых точек, в которых поведение \(T(E) \), а следовательно, и проводимости носят орбитальный характер.

1. ВВЕДЕНИЕ

Успехи в технологии изготовления двумерных систем носителей заряда (гетеропереходов и МОП-структур), а также структур с дополнительным латеральным конфайнментом в таких системах (квантовых каналов и квантовых точек) вызвали появление нового раздела физики конденсированного состояния: физики полупроводниковых наноструктур, называемой также нанофизикой [1]. Сочетание чрезвычайно высокой числоты изготовления и совершенства кристаллической структуры наноэлектронных устройств с низкой плотностью свободных носителей заряда (которой в тоже время можно управлять, изменяя напряжение затвора) привело к двум принципиально важным свойствам электронного газа в обсуждаемых системах: во-первых, это большая длина свободного пробега электронов (~10^-3 см); во-вторых, относительно большая длина волны Ферми (~4·10^-6 см). Обе эти величины сравнимы с размерами наноэлектронных устройств, и тем самым в наноэлектронных устройствах реализуется режим электронного баллистического транспорта, при котором рассеяние на примесях играет пренебрежимо малую роль. В силу этого стандартный подход к теории электропроводности, основанный на решении уравнения Больцмана с учетом столкновений с примесными центрами, становится неприменимым. В этом случае проводимость \(\sigma \) хорошо описывается формулой Ландауэра Бюттексера, в рамках которого \(\sigma \) непосредственно выражается через коэффициенты прохождения \(T(E) = e^{-E_F} \) каналов наноструктуры [2] (здесь \(E_F \) энергия Ферми). В простейшем случае одного канала (и одной моды) известна формула Ландауэра принимает вид [2]

\[
\sigma = \frac{e^2}{h} T(1 - T)^{-1}. \tag{1}
\]

Коэффициент прохождения \(T \) существенно зависит не только от размера, но и от геометрии наноструктуры. Кроме того, в суженных квантовых каналах сильное влияние на значение \(T \) может оказывать эффект туннелирования через одномерную промежуточную наноструктуру.
нахождении E_D вблизи резонанса Брейта-Вигнера (экспериментально это явление обнаружено в [7, 8] и теоретически исследовалось в [9-12] и др.). Схождение известных выше обстоятельств приводит к тому, что адекватным математическим аппаратом построения моделей баллистического транспорта в наноэлектронных устройствах становится теория потенциала нулевого радиуса с внутренней структурой [13, 14], поскольку в рамках этой теории могут быть введены параметры, учитывающие существенные черты явления переноса заряда в наноразмерных системах. Некоторые таких моделей было предложено авторами ранее [15-17]. Здесь мы предлагаем некоторую достаточно общую схему конструирования виртуальных моделей наноэлектронного устройства с двумя контактами, коэффициент прохождения которого оказывается элементарно зависящим как от параметров самого устройства, так и от параметров внешней среды. По-прежнему, нам схема довольно просто может быть найдена, например, коэффициент прохождения изолированной кванттовой точки, цепи и периодического массива квантовых точек, мезоэлектронных колец и тому подобных микронаноэлектронных устройств (в том числе, и при наличии внешнего магнитного поля). Эту схему нетрудно обобщить на случай многоконечных наноэлектронных устройств, на чем мы здесь подробно останавливаться не будем.

2. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Условное изображение моделируемого устройства представлено на рисунке. Гильбертово пространство "внутренних состояний" устройства обозначим H_d (например, в случае квантовой точки можно взять $H_d = L^2(D_0)$, где D_0 диск в плоскости \mathbb{R}^2 достаточно малого радиуса ε). Пространство состояний каналов $H_\pm = L^2(R_\pm)$, $H_- = L^2(R_-)$. Таким образом, пространство H состояний системы представляет собой прямую сумму

$$H = H_- \oplus H_d \oplus H_+.$$

Если каналы заперты (т.е. если контакты C_{\pm} разомкнуты), то гамильтониан системы H^0 представляет собой прямую сумму

$$H^0 = H_- \oplus H_d \oplus H_+.$$

Здесь, H_\pm есть оператор $-d^2/dx^2$ в пространстве $L^2(R_\pm)$ с условием Неймана в точке 0 (что соответствует отсутствию тока через соответствующие контакты C_{\pm}); H_d гамильтониан замкнутой частицы в наноэлектронном устройстве D. Выбор конкретного вида оператора H_d зависит, разумеется, от свойств устройства D и каждый раз является предметом специального анализа; примеры такого выбора будут приведены в разделе 3 статьи. Резольвенты операторов H^0, H_-, H_d, H_+ обозначим через $R^0(\zeta)$, $R_-(\zeta)$, $R_d(\zeta)$, $R_+(\zeta)$, соответственно.

Включение контактов будем моделировать с помощью процедуры "сужения расширения" [13, 14]. Пусть S_{\pm} симметричный оператор, полученный сужением оператора H_\pm на область $D(S_{\pm}) = \{ \varphi \in D(H_{\pm}) : \varphi(0) = 0 \}$. Рассмотрим также симметричный
спеcатор S_d в пространстве \mathcal{H}_d с индексами дефекта $(2, 2)$, являющийся сужением спе-ратора H_d. Дефектные элементы оператора S_d будем отождествлять с контактами C_{\pm} в наноустройстве, их выбор обусловлен физической интерпретацией пространства \mathcal{H}_d и гамильтонианом H_d и в каждом конкретном случае также является предметом специаально-го анализа. Важно отметить, что оператор S_d не обязательно плотно определен; в частности, так будет, если \mathcal{H}_d ненепрерывное пространство (содержательные приме-ры такой ситуации разобраны в [13, 14]). Наконец, обозначим

$$S = S_- \oplus S_d \oplus S_+.$$

Гамильтоний устройств с включенными контактами следует искать среди самоосво-преженных расширений оператора S [13]. С этой целью воспользуемся формулой Крейна,писывающей резолюненты всех самооспреженных расширений заданного симете-трического оператора S с помощью резолюненты некоторого его фиксированного самооспреженного расширения [14, 18, 19]. Введем для этого "стандартные" дефектные про-странства [19]

$$G_- = G_+ = C, \quad G_d = C.$$

Контакт проводника R_- с устройством осуществляется через базисные элементы $1 \in G_-$ и $(1, 0) \in G_d$, соответственно. Аналогично контакт проводника R_+ с устройством осуществляется через базисные элементы $1 \in G_+$ и $(0, 1) \in G_d$. Обозначим через $G_{\pm}(x, y; \zeta)$ функцию Грина оператора H_{\pm}. Тогда отображение

$$\Gamma_\pm(\zeta): G_\pm \to L^2(\mathbb{R}_\pm),$$

определяемое путем

$$C \ni \xi \mapsto G_\pm(x, 0; \zeta)\xi \in L^2(\mathbb{R}_\pm),$$

представляет собой Γ-функцию Крейна пары операторов (S_\pm, H_\pm). Оценивающая этой паре Q-функция Крейна $Q_\pm(\zeta)$ имеет вид $Q_\pm(\zeta) = G_{\pm}(0, 0; \zeta)$. Обозначим через $\Gamma_d(\zeta)$ и $Q_d(\zeta)$ соответственно Γ-функцию и Q-функцию пары операторов (S_d, H_d):

$$\Gamma_d(\zeta): C^2 \to \mathcal{H}_d,$$

$$Q_d(\zeta): C^2 \to C.$$

Оператор $Q_d(\zeta)$ задается матрицей

$$\begin{bmatrix} Q_{d11}(\zeta) & Q_{d12}(\zeta) \\ Q_{d21}(\zeta) & Q_{d22}(\zeta) \end{bmatrix},$$

в которой $Q_{d12}(\zeta) = Q_{d21}(\zeta)$ при вещественных ζ. Введем также следующие обозначения для дефектных элементов оператора S_d:

$$\Gamma_d^-(\zeta) = \Gamma_d(\zeta)(1, 0); \quad \Gamma_d^+(\zeta) = \Gamma_d(\zeta)(0, 1).$$

Для пары операторов (S, H^0) Γ-функция и Q-функция задаются прямыми суммами

$$\Gamma(\zeta) = \Gamma_-(\zeta) \oplus \Gamma_d(\zeta) \oplus \Gamma_+(\zeta),$$

$$Q(\zeta) = Q_-(\zeta) \oplus Q_d(\zeta) \oplus Q_+(\zeta).$$
Как упоминалось выше, гамильтониан системы с включенными контактами мы рассматриваем как самосоприженное расширение оператора S. Обозначим это расширение через H, а его реконъюнту через $R(\zeta)$. Согласно формуле Крейна

$$R(\zeta) = R_0(\zeta) - \Gamma(\zeta)[\mathcal{Q}(\zeta) + A]^{-1}\Gamma^*(\zeta),$$

где A – аэрорита 4×4-матрица (оператор в пространстве $\mathcal{Q} = \mathcal{G}_- \oplus \mathcal{G}_d \oplus \mathcal{G}_+)$, параметризующих самосоприженные расширения оператора S. В соответствии с изложенной выше интерпретацией дефектных элементов включение контактов означает включение "взаимодействий" между элементами $\Gamma_-(\zeta) \cdot 1$ и $\Gamma_+(\zeta)$, а также между элементами $\Gamma_+(\zeta) \cdot 1$ и $\Gamma_+(\zeta)$, соответственно. Поэтому матрицу A в формуле Крейна надо выбрать в виде

$$\begin{bmatrix}
 \mu_+ & \alpha_- & 0 & 0 \\
 \alpha_- & Q_d(\zeta) & Q_{12}(\zeta) & 0 \\
 0 & Q_{21}(\zeta) & Q_d(\zeta) & \alpha_+ \\
 0 & 0 & \alpha_+ & \hat{Q}_+(\zeta)
\end{bmatrix},$$

где α_- и α_+ вещественные величины, характеризующие "идеальные" контакты C_{\pm}; а вещественные же величины μ_- и μ_+ характеризуют степени отклонения контакта C_{\pm} (соответственно C_+) от идеального. Например, при $\mu_+ > 0$ движущаяся в проводнике R_{\pm} заряженная частица испытывает отталкивание от контакта C_{\pm}, а при $\mu_+ < 0$ притяжение. Таким образом, матрица $\mathcal{Q}(\zeta) + A$ имеет следующую структуру:

$$\begin{bmatrix}
 \hat{Q}_-(\zeta) & \alpha_- & 0 & 0 \\
 \alpha_- & Q_d(\zeta) & Q_{12}(\zeta) & 0 \\
 0 & Q_{21}(\zeta) & Q_d(\zeta) & \alpha_+ \\
 0 & 0 & \alpha_+ & \hat{Q}_+(\zeta)
\end{bmatrix},$$

где $\hat{Q}_\pm(\zeta) = Q_{\pm}(\zeta) + \mu_\pm$. Явный вид матрицы $[\mathcal{Q}(\zeta) + A]^{-1}$ находит элементарно:

$$[\mathcal{Q}(\zeta) + A]^{-1} = \det[\mathcal{Q}(\zeta) + A]^{-1}B,$$

где B представляет собой 4×4-матрицу, присоединённую к матрице $\mathcal{Q}(\zeta) + A$. Простые вычисления дают

$$\det((Q + A) = \hat{Q}_- \hat{Q}_+ (\det Q_d) - \alpha^2 \hat{Q}_+ Q_{d}^{22} - \alpha^2 \hat{Q}_- Q_{d}^{11} + \alpha^2 \alpha_1^2.$$
Воспользуемся "параметрическим" описанием оператора H (см., например, [18]). Тогда из формулы (2) получаем, что при $\text{Im} \zeta > 0$ вектор ψ, определенный равенством

$$\psi = \varphi - \Gamma(\zeta)[Q(\zeta) + A]^{-1}\Gamma^*(\zeta)(H^0 - \zeta)\varphi,$$

удовлетворяет соотношению

$$(H^0 - \zeta)\varphi = (H - \zeta)\psi.$$

Переходя в (3), (4) к пределу $\zeta \to E$, найдем решение ψ уравнения $H\psi = E\psi$, являющееся суперпозицией приходящих и уходящих волн в каналах \mathbb{R}_\pm. Для этого нам потребуется оператор $\Gamma^*(\zeta)$. Тривиальные вычисления показывают, что он имеет вид

$$\Gamma^*(\zeta)\varphi = \int_{\mathbb{R}_-} G_-(0, x; \zeta)\varphi(x) \, dx,$$

где $\varphi \in L^2(\mathbb{R}_-)$. Следовательно, при $\text{Im} \zeta > 0$

$$\Gamma^*(\zeta)(H_0 - \zeta)\tilde{\varphi} = \tilde{\varphi}(0) = 1,$$

поэтому

$$\lim_{\zeta \to E} \Gamma^*(\zeta)(H^0 - \zeta)\varphi = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

и тем самым

$$\lim_{\zeta \to E} [Q(\zeta) + A]^{-1}\Gamma^*(\zeta)(H^0 - \zeta)\varphi = \det [Q(\zeta) + A]^{-1} \begin{pmatrix} B_{11} \\ B_{21} \\ B_{31} \end{pmatrix},$$

$$\lim_{\zeta \to E} \Gamma(\zeta) \det [Q(\zeta) + A]^{-1}\Gamma^*(\zeta)(H^0 - \zeta)\varphi =$$

$$= \det [Q(\zeta) + A]^{-1} \begin{pmatrix} B_{11} G_-(x, 0; E) \\ B_{21} \Gamma_\zeta^+(E) + B_{31} \Gamma_\zeta^+(E) \\ B_{41} G_+(x, 0; E) \end{pmatrix}.$$

Окончательно ψ имеет вид

$$\psi = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} \varphi_0 \\ 0 \\ 0 \end{pmatrix} - \det [Q(\zeta) + A]^{-1} \begin{pmatrix} B_{11} G_-(x, 0; E) \\ B_{21} \Gamma_\zeta^+(E) + B_{31} \Gamma_\zeta^+(E) \\ B_{41} G_+(x, 0; E) \end{pmatrix}. \quad (5)$$

По поводу формулы (5) заметим следующее. Формально Q-функция $Q(\zeta)$ не определена на спектре оператора H^0, поэтому символом $Q(E)$ мы обозначаем $\lim_{\zeta \to E} Q(\zeta)$, который, как будет видно из дальнейшего, существует во всех практически важных случаях.

Явный вид функции Грина $G_\pm(x, y; \zeta)$ хорошо известен:

$$G_\pm(x, y; \zeta) = i(2k)^{-1} \left[\exp(ik|x - y|) + \exp(\pm ik(x + y)) \right],$$
где $\zeta = k^2$, в $k \geq 0$. Таким образом,

$$G_{\pm}(x, 0; E) = i k^{-1} \exp(\pm i k x) \quad \text{при} \quad \pm x > 0. \quad (6)$$

Обозначим проекцию решения ψ на пространство каналов $L^2(\mathbb{R}_- \oplus L^2(\mathbb{R}_+)$ через $\tilde{\psi}$. Из (5) и (6) получаем асимптотику

$$\tilde{\psi}(x) \sim \exp(i k x) + C \exp(-i k x) \quad \text{при} \quad x \rightarrow -\infty,$$

$$\tilde{\psi}(x) \sim -i k^{-1} \det(Q(\zeta) + A)^{-1} B_4 \exp(i k x) \quad \text{при} \quad x \rightarrow +\infty.$$

Тем самым для коэффициента проникновения $T(E)$ получаем следующую формулу, которую можно рассматривать как основной результат настоящей статьи:

$$T(E) = \frac{|B_4|^2}{E\det(Q(E) + A)^2}. \quad (7)$$

В большинстве практически важных случаев оператор H_d имеет чисто точечный спектр, состоящий из собственных значений λ_n вещественной или бесконечной кратности. В этом случае элементы матрицы $Q_d(E)$ определены при всех E, $E \neq \lambda_n$, причем диагональные элементы вещественны при вещественных значениях E. Поэтому формула (7) принимает вид

$$T(E) = \frac{E \alpha_2 \alpha_2^* |Q_d^2(E)|^2}{EF_1^2(E) + F_2^2(E)}, \quad (8)$$

где

$$F_1(E) = \alpha_2^2 Q_d^{22}(E) + \alpha_2^4 Q_d^{11}(E) + (\mu_- + \mu_+) \det Q_d,$$

$$F_2(E) = \det Q_d + E (\alpha_2^4 \mu_+ Q_d^{22} + \alpha_2^4 \mu_- Q_d^{11} - \mu_+ \mu_- \det Q_d - \alpha_2^2 \alpha_2^2).$$

Отметим частный случай формулы (8), соответствующий значениям $\mu_\pm = 0$ (идеальные контакты):

$$T(E) = \frac{E \alpha_2 \alpha_2^* |Q_d^2(E)|^2}{E (\alpha_2^4 Q_d^{22}(E) + \alpha_2^4 Q_d^{11}(E)) + (\det Q_d(E) - E \alpha_2^2 \alpha_2^2)^2}. \quad (9)$$

Формула (9) мы ограничиваемся при разборе примеров в разделе 3.

3. ПРИМЕРЫ

В этом разделе мы приведём примеры применения формулы (1) и (9). Пример 1 представляет собой весьма грубую модель двухмерной электронной системы, находящейся в вращающемся магнитном поле. Несмотря на некоторую примитивность в этой модели на элементарном уровне можно выявить следующее важное свойство систем, приводящих к релятивистскому квантованию [20, 21]: в то время, когда холловская проводимость σ_{xx} остается на протяжении в плоскости, проводимость σ_{xx} обращается в нуль. Это происходит при переходе уровня Ферми между уровнями Ландау (т.е. при целом числе заполнения релейвных уровней Ландау). Это свойство имеет место и в нашей модели, а именно, в ней $T(E) = 0$, когда E совпадает с одним из уровней Ландау. В соответствии с формулой Ландауэра (1) это означает обращение в нуль проводимости σ_{xx} рассматриваемой системы, когда E_F проходит уровень Ландау. Примеры 2 и 3 на
модельном уровне демонстрируют оцифрированный характер проводимости квантовых точек (см. обзоры [1] и [22]). Эти оцифрации связаны с изменением уровня Ферми E_F, являющимся результатом изменения числа электронов в системе или изменения напряженности внешнего магнитного поля.

1. Рассмотрим двумерную электронную систему, находящуюся в однородном квантовом магнитном поле напряженности \vec{B}, перпендикулярном ее плоскости. Пренебрегая изменением размеров системы, отождествим ее с плоскостью \mathbb{R}^2. Контакты расположены симметрично относительно точки $(0, 0)$ в точках $r_1 = (-a, 0)$ и $r_2 = (a, 0)$. В рассматриваемом случае оператор H_d представляет собой оператор Ландау, т.е. самосопряженный оператор в $L^2(\mathbb{R}^2)$, определяемый следующим дифференциальным выражением:

$$(-\hbar^2/2m)[(\partial/\partial x_1 + i\pi x_2)^2 + (\partial/\partial x_2 - i\pi x_1)^2],$$

где ξ число квантов полого магнитного поля через единичную площадку плоскости \mathbb{R}^2 (см., например, [23]). Спектр этого оператора точно совпадает с бесконечным рядом выражений уравнений Ландау собственных чисел

$$\varepsilon_l = (l + 1/2)\hbar\omega_c, \quad l = 0, 1, \ldots,$$

где $\omega_c = |eB|/cm$ — циклотронная частота. В этом случае элементы матрицы $Q_d(E)$ известны [23, 24], а именно,

$$Q_d^{11}(E) = Q_d^{22}(E) = -(m/2\pi\hbar^2)[\psi(1/2 - E/\hbar\omega_c) + \log(\pi|\xi|\alpha^2) + 2C_E].$$

В формуле (11) $\psi(x)$ — логарифма произведения Г-функции Эйлера, C_E — постоянная Эйлера. Для ведущих слагаемых элементов матрицы Q_d имеем $Q_d^{ij}(E) = G_d(r_j, r_i; E)$, где G_d функция Грина оператора H_d, которая имеет вид

$$G_d(r, r'; E) = (m/2\pi\hbar^2)[\Gamma(1/2 - E/\hbar\omega_c)] \exp\left[-\pi(i\xi_\parallel^t \wedge r' - \pi|\xi|(|r - r'|^2/2)\right]$$

$$\times \Psi(1/2 - E/\hbar\omega_c, 1; |\xi|(|r - r'|^2)/2),$$

где $\Psi(a, c; x)$ — выраженная гипергеометрическая функция. Тогда согласно формуле (11) (13) показывают, что при $E = \varepsilon_l$ функции $Q_d^{11}(E)$ и $Q_d^{12}(E)$ имеют полюсы с разными вычетами (за исключением специально подобранной значений a, которые мы по-прежнему пренебрегаем). Тем самым числитель в (9) имеет полюс второго порядка, а знаменатель четвертого. Отсюда вытекает, что $T(E) = 0$, как только $E = \varepsilon_l$.

2. Рассмотрим теперь коэффициент прохождения через квантовую точку произвольной формы. В этом случае $H_d = L^2(\Omega)$, где Ω ограниченная область на плоскости \mathbb{R}^2 с кусочно-гладкой границей, а оператор H_d представляет собой замкнутый $-\Delta$ с условием Неймана на границе $\partial\Omega$. Обозначим через $(\lambda_n)_{n \geq 1}$ последовательность всех собственных чисел задачи Неймана для области Ω, занумерованных с точностью, а через (φ_n) соответствующую ортонормальную последовательность собственных функций. Зафиксируем число ε_0, $\varepsilon_0 < 0$, и пусть a_1 (соответственно a_2) — положение квазича $C_→
(соответственно C_+) в области Ω. Следуя [15, 16, 25], мы приходим к таким значениям элементов матрицы $Q_d(E)$ при $E \geq 0$, $E \neq \lambda_n$:

$$Q_d^{j\ell}(E) = (E - \varepsilon_0) \sum_{n=1}^{\infty} |\varphi_n(a_j)|^2 (\lambda_n - E)^{-1}(\lambda_n - \varepsilon_0)^{-1}, \quad j = 1, 2,$$

(14)

$$Q_d^{k\ell}(E) = \sum_{n=1}^{\infty} \varphi_n(a_j)\varphi(a_k)(\lambda_n - E)^{-1}, \quad j \neq k.$$

(15)

Как и в примере 1, формулы (14), (15) приводят к осцилляциям величины $T(E)$, которая обращается в ноль при прохождении уровня Ферми E_F через значения энергии λ_n.

3. Кратко обсудим особенности коэффициента прохождения через квантовую точку, находящуюся в магнитном поле. В этом случае можно взять $\mathcal{H}_d = L^2(\Omega)$, где Ω как в примере 2, а в качестве H_d взять оператор (11) с условиями Неймана на $\partial \Omega$. Затем можно использовать формулы (14), (15). В этом случае основной интерес представляет зависимость $T(E)$ от направленности магнитного поля B. Для этого достаточно знать зависимость от B собственных чисел λ_n. Поскольку в общем случае задача нахождения аналитического решения этой зависимости не решима, в теоретических исследованиях транспортных свойствах квантовых точек в магнитном поле применяют модель, в которой потенциал конфинации квантовой точки служит параболическим потенциалом $V(x_1, x_2) = (m\omega^2)(x_1^2 + x_2^2)/2$. Здесь $\omega = h/mL^2$, где L — характерный размер квантовой точки. В этом случае $H_d = H_L + V$, где H_L — базовый шлем. Ландз. т.е. самосогласованный оператор в $L^2(\mathbb{R}^2)$, определенный дифференциальным уравнением (10). Собственные числа λ_n оператора H_d представляют собой уровень Ферми Дарвина

$$\varepsilon_{mn}(B) = (m + 1/2)\omega_+ + (n + 1/2)\omega_-, \quad m, n = 0, 1, \ldots,$$

где $\omega_\pm = (\sqrt{\omega_0^2 + 4\omega_C^2} \pm \omega_C)/2$ [22]. Расположение точек $\varepsilon_{mn}(B)$ на оси \mathbb{R}_+ регулярно, если отношение ω_+/ω_C рационально, и иррегулярно в противном случае. В соответствии с этим зависимость T от направленности поля B носит “хаотический” характер (см. [1, 22] и др.).

По поводу разобранных примеров необходимо сделать одно замечание. Уровень Ферми E_F в нашей модели определяется полным гамильтонианом H, поэтому он, вообще говоря, не совпадает с собственными числами оператора H_d. Тем самым в рассмотренных нами примерах проводимость не обращается тождественно в нуль.

В заключение авторы благодарят В.А. Маргулиса за обсуждение результатов настоящей статьи. За финансовую поддержку мы признательны РФФИ (гранты № 95-01-00439 и 95-02-04871) и ГК РФ по высшему образованию (грант № 94-2.7-1067).

Список литературы

BALLISTIC TRANSPORT IN NANOSTRUCTURES: EXPLICITLY SOLVABLE MODELS

A relatively wide class of explicitly solvable models of the ballistic transport in nanostuctures is constructed by means of operator extension theory. In the obtained models the transmission coefficient $T(E)$ has a simple dependence on the modeled device parameters as well as on the parameters of an external magnetic field. Some examples of quantum point models are given, in which $T(E)$, and hence the conductance, exhibits an oscillatory behaviour.