
DOI: https://doi.org/10.4213/sm413

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением
http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
7 декабря 2018 г., 02:27:47
Смягчения аффинных сферических многообразий

В работе описана класс G-многообразий, которые могут быть получены как топологические пространства относительно известной в теории инвариантных конфигураций смягчения, приведенной к аффинному сферическому G-многообразию. Такие многообразия являются локальными моделями для произвольных аффинных G-многообразий сложности один с одномерным категориальным фактором. В качестве примеров рассмотрены редуктивные алгебраические подгруппы, а также случай $G = SL_2$.

Библиография: 11 названий.

1) слои над выделенными точками G-эквивариантно изоморфны Y;
2) прообраз $A^1 \setminus \{0\}$ есть прямое произведение $(A^1 \setminus \{0\}) \times Y$;
3) прообраз точки нуль есть Z.

В настоящей работе $(G \times K^*)$-многообразие X со свойствами 1) и 2) мы будем называть (G, Y, A^1)-многообразием. В п. 2 показано, что каждое (G, Y, A^1)-многообразие реализуется как топологическое пространство смягчения по некоторой G-инвариантной фильтрации на алгебре $K[Y]$. Тем самым (G, Y, A^1)-многообразия могут быть охарактеризованы во внутренних для многообразия Y терминах. Для дальнейшего хотелось бы иметь какой-либо явный способ задания G-инвариантных фильтраций на алгебре $K[Y]$. В п. 3 показано, что отображение $\varphi : \Xi(Y) \to Z$, где $\Xi(Y)$ — спектр G-многообразия Y, удовлетворяющее определенным условиям, задает G-инвариантную фильтрацию. Этим способом получается не каждая фильтрация (соответствующий пример рассмотрен в п. 10). Однако если предположить, что действие $G : Y$ есть действие с простым спектром, то этот способ описания G-инвариантных фильтраций оказывается универсальным. Если дополнительно...
проверить, чтобы \((G, Y, A^1) \)-многообразие \(X \) было нормальным, то указанное отображение \(\varphi \) может быть весьма конструтивно задано с помощью определенного выпуклого конуса (в работе названного конусом стягивания) в пространстве, затянутом на полугруппу весов \(\Xi(Y) \oplus \mathbb{Z} \).

Напомним, что действие \(G : Y \) (а также \(G \)-многообразие \(Y \)) называется сферическим, если \(Y \) нормально и индуцированное действие борелевской подгруппы \(B \subseteq G \) имеет плоскую орбиту. Для аффинных \(G \)-многообразий сферичность эквивалентна простоте спектра алгебры регулярных функций \(K[Y] \) как \(G \)-модуля.

Описание \((G, Y, A^1) \)-многообразий для сферического \(Y \) полезно, в частности, потому, что они являются локальными моделями для произвольных нормальных аффинных \(G \)-многообразий с однопараметрическим семейством сферических орбит максимальной размерности и одномерным категориальным фактором. Пусть \(X \) есть нормальное \(G \)-многообразие такое, что если \(\pi : X \to X/G \) - морфизм факторизации, то \(X/G \cong C \) - кривая и имеется непустое открытое подмножество \(C_0 \subseteq C \) такое, что \(\pi^{-1}(c) \cong G \) для всякой точки \(c \in C_0 \). Многообразие \(X \) в работе [2] названо \(qsl \)-многообразием с типичным слоем \(Y \). Будем говорить, что \(X \) является бирационально тривиальным, если \(\pi^{-1}(C_0) \cong G \times C_0 \). В работе [2] показано, что каждое \(qsl \)-многообразие может быть получено из бирационально тривиального \(qsl \)-многообразия факторизацией по конечной группе \(G \)-эквивариантных автоморфизмов.

Бирационально тривиальное \(qsl \)-многообразие является \((G, Y, A^1) \)-многообразием, если \(C \cong A^1, C_0 \cong A^1 \setminus \{0\} \) и естественное действие одномерного тора на прямой \(A^1 \) продолжается до сферического действия группы \(G \times K^* \) на этом многообразии.

В [2] показано, что всякое бирационально тривиальное \(qsl \)-многообразие может быть получено из \((G, Y, A^1) \)-многообразий взятием обратных преобразов относительно эталонных морфизмов факторов и последующей их склейкой по изоморфным открытым подмножествам. Поэтому изучение \(qsl \)-многообразий во многих случаях может быть сведено к изучению \((G, Y, A^1) \)-многообразий. Последние являются сферическими относительно действия группы \(G \times K^* \) и допускают описание в терминах теории сферических вложений Луны-Вуста [3]. Использованный в настоящей работе способ описания является в известном смысле двойственным по отношению к теории Луны-Вуста. Этот способ ранее применялся в работах [4]–[6] и др. и представляется более естественным в аффинной ситуации.

Пусть \(\Xi(G) \) - полугруппа доминантных весов группы \(G \). В работе [1] рассматривалось стягивание по фильтрации, определенной гомоморфизмом \(h : \Xi(G) \to \mathbb{Z}_+ \). Такую фильтрацию мы будем называть линейной. Стягивание по линейным фильтрациям интересно тем, что выполнение ряда свойств для типичного слоя \(Y \) релевантно их выполнению для особого слоя \(Z \). К таким свойствам, например, относятся целоопределимость, отсутствие нильпютентов, целостность и рациональность особенностей. Как показывают примеры, для \((G, Y, A^1) \)-многообразий на отсутствие нильпютентов и на неприводимость особого слоя \(Z \) рассчитывать не приходится. Поэтому класс линейных фильтраций слишком узок для построения произвольных \((G, Y, A^1) \)-многообразий.

Мы рассматриваем более широкий класс \(G \)-инвариантных фильтраций, которые называем нормальными. Эти фильтрации описываются при помощи конусов
Стягивания аффинных сферических многообразий

стягивания, см. п. 6. Основной результат статьи (теорема 1) утверждает, что нормальные \((G, Y, A^1)\)-многообразия для сферического \(G\)-многообразия \(Y\) с точностью до \((G \times K^*)\)-эквидиморфизма находятся в естественном биективном соответствии с нормальными фильтрациями на алгебре \(K[Y]\). Вопрос об \(G\)-эквидиморфизме \((G, Y, A^1)\)-многообразий представляется более тонким, см. п. 12.

В терминах конус стягивания дан критерий приведенности особого слоя (следствие 1). Соответствующие фильтрации на \(K[Y]\) естественно называть "кусочно-линейными". В этих же терминах охарактеризованы неприводимые компоненты особого слоя.

В следующем пункте кратко описано, как полученные результаты переносятся на стягивания над многомерной базой \(A^n\).

В п. 11 в качестве \(Y\) мы рассматриваем связную полупростую группу \(G_0\), которая в сферическом многообразии относительно двухстороннего \((G_0 \times G_0)\)-действия. Можно показать, что \((G_0 \times G_0, G_0, A^1)\)-многообразие имеет структуру редуктивной алгебраической полугруппы. Обратно, редуктивная алгебраическая полугруппа с группой отображений элементов \(G_0 \times K^*\) (кроме самой группы \(G_0 \times K^*\)) является \((G_0 \times G_0, G_0, A^1)\)-многообразием. Таким образом, этот класс редуктивных полугрупп биективно соответствует нормальным \((G_0 \times G_0)\)-инвариантным фильтрациям на алгебре \(K[G_0]\).

В последнем пункте мы описываем все возможные нормальные \((SL_2, Y, A^1)\)-многообразия для сферического \(SL_2\)-многообразия \(Y\).

Когда первоначальный вариант статьи был уже написан, Э. Б. Винберг обратил внимание автора на работу [6], где использовались аналогичные методы. После этого текст был несколько переработан с учетом результатов из [6].

Я благодарен профессору Э.Б. Винбергу за внимание к работе и помощь в оформлении текста.

2. Зафиксируем используемые обозначения.

Основное поле \(K\) предполагается алгебраически замкнутым и \(char K = 0\);
\(\mathbb{Q}\) — поле рациональных чисел;
\(\mathbb{Z}_n\) — циклическая группа порядка \(n\);
\(A^n\) — \(n\)-мерное аффинное пространство над \(K\);
\(K^*\) — мультипликативная группа поля \(K\) или, другими словами, одномерный тор;
\(K[X]\) — алгебра регулярных функций на многообразии \(X\);
\(Spec A\) — аффинная схема, отвечающая алгебре \(A\);
\(A^R\) — подалгебра инвариантных функций алгебры \(A\) с заданным действием алгебраической группы \(R\);
\(G\) — связная редуктивная группа над \(K\);
\(T \subset B\) — максимальный тор и борелевская подгруппа в \(G\);
\(U\) — максимальная унитарная подгруппа в \(G\);
\(\Xi(G)\) — решетка весов группы \(G\) относительно тора \(T\);
\(\Xi(G)_+\) — полугруппа доминантных весов;
\(C_W(G)\) — положительная камера Вейля для группы \(G\) относительно фиксированной системы простых корней;
\(V_{\lambda}\) — конечномерный неприводимый \(G\)-модуль со старшим весом \(\lambda \in \Xi(G)_+\).
Для аффинного многообразия X с регулярным действием группы G (далее просто G-многообразие) рассмотрим разложение алгебры $K[X]$ в прямую сумму G-подмодулей

$$K[X] = \bigoplus_{\lambda \in \Xi(X)} W_{\lambda},$$

где W_{λ} — сумма всех неприводимых подмодулей из $K[X]$, изоморфных V_{λ}. Это разложение называется амплитудным. Будем включать в $\Xi(X)$ только те веса λ, для которых $W_{\lambda} \neq \{0\}$. Множество весов $\Xi(X)$ есть конечно порожденная подгруппа в полугруппе $\Xi(G)$.

Для подполугруппы Γ в свободной абелевой группе обозначим через $\Xi(\Gamma)$ минимальную подгруппу, содержащую Γ.

3. Пусть Y есть аффинное G-многообразие.

ОПРЕДЕЛЕНИЕ 1. Аффинное $(G \times K^*)$-многообразие X будем называть (G, Y, A^1)-многообразием, если имеется сюръективный K^*-эквивariantный морфизм $\pi: X \to A^1$ для эффективного действия $K^*: A^1$ такой, что для каждого $a \neq 0$ имеем $\pi^{-1}(a) \cong_G Y$ и $\pi^{-1}(A^1 \setminus \{0\}) \cong (G \times K^*) (Y \times (A^1 \setminus \{0\}))$.

Напомним конструкцию статификации действия из работы [1]. Пусть A есть конечно порожденная G-алгебра. Предположим, что на A задана какая-либо G-инвариантная фильтрация Φ типа N:

$$1 \in A_0 \subset A_1 \subset \cdots \subset A_n \subset \cdots; \quad A = \bigcup_{n=0}^{\infty} A_n, \quad A_n A_m \subset A_{n+m}.$$

Удобно положить также $A_{-1} = 0$. Обозначим через $gr_{\Phi} A$ асоциализированную с Φ градуированную алгебру, $gr_{\Phi} A = \bigoplus_{n=0}^{\infty} A_n / A_{n-1}$. Она является рациональной G-алгеброй относительно естественного действия группы G.

Рассмотрим теперь алгебру $A[t]$ многочленов от переменной t и в ней подмножество

$$D(\Phi) = \sum_{n=0}^{\infty} A_n t^n.$$

ПРИМЕР 1 (см. рис. 1). Пусть $G = K^*$, $A = K[x]$ и G действует на A гомотетией. Положим $A_0 = K, A_1 = A_2 = A_3 = \cdots = xK[x]$. В этом случае алгебра $D(\Phi)$ не конечно порождена.

Пусть теперь фильтрация Φ такова, что алгебра $D(\Phi)$ конечно порождена. Тогда имеется G-многообразие $Spec D(\Phi)$. Морфизм $\pi: Spec D(\Phi) \to Spec K[t]$ является плоским, все слои этого морфизма, кроме слоя $\pi^{-1}(0)$, G-эквивариантно изоморфны $Spec A$, и говорят, что действие $G : Spec A$ ставится к действию
Стягивания аффинных сферических многообразий

Рис. 1

$G : \pi^{-1}(0)$, а многообразие $\text{Spec} D(\Phi)$ называют топальным пространством стягивания.

Из предложения 9 работы [1] следует, что $\text{Spec} D(\Phi)$ является (G, Y, A^1)-многообразием, где $Y = \text{Spec} A$. Для особого слоя $Z = \pi^{-1}(0)$ имеем $K[Z] \cong \text{gr}_\Phi A$. Заметим, что указанная конструкция переносится на фильтрацию типа Z с заменной алгебры $A[t]$ на алгебру $A[t, t^{-1}]$.

Предложение 1. Пусть X есть (G, Y, A^1)-многообразие. Тогда на алгебре $K[Y]$ имеется G-инвариантная фильтрация Φ такая, что многообразие X $(G \times K^*)$-изоморфно топальному пространству стягивания действия $G : Y$ по фильтрации Φ.

Доказательство. Рассмотрим изотипное разложение

$$K[Y] = \bigoplus_{\lambda \in \Xi(Y)} W_\lambda.$$

Имеет место изоморфизм $K[\pi^{-1}(A^1 \setminus \{0\})] \cong K[Y] \otimes_K K[t, t^{-1}]$, где t — координата на прямой A^1. Здесь изотипными компонентами относительно действия группы $G \times K^*$ являются подпространства $W_\lambda \otimes_K K t^i, i \in \mathbb{Z}$. Включение $K[X] \subset K[\pi^{-1}(A^1 \setminus \{0\})]$ показывает, что если

$$K[X] = \bigoplus_{(\lambda, i) \in \Xi(Y) \oplus \mathbb{Z}} U_{(\lambda, i)}$$

есть $(G \times K^*)$-изотипное разложение алгебры $K[X]$, то $U_{(\lambda, i)} \subset W_\lambda \otimes_K K t^i$ и потому $U_{(\lambda, i)}$ может быть отождествлено с подпространством в W_λ. Обозначим это подпространство через $U'_{(\lambda, i)}$. Тогда $U'_{(\lambda, i)} \subset U'_{(\lambda, i+1)}$ и W_λ совпадает с объединением подпространств $U'_{(\lambda, i)}$.

Определим G-инвариантную фильтрацию на $K[Y]$

$$\cdots \subset K[Y]_{-i} \subset \cdots \subset K[Y]_0 \subset K[Y]_1 \subset \cdots \subset K[Y]_i \subset \cdots$$

по формуле $K[Y]_i = \bigoplus_{\lambda} U'_{(\lambda, i)}$.

Очевидно, что свойство $K[Y] = \bigcup_{i=-\infty}^{\infty} K[Y]_i$, здесь выполнено. Остается проверить, что $K[Y]_i K[Y]_j \subset K[Y]_{i+j}$. Это следует из того, что $U_{i} \subseteq U_{i+j}$.

4. Следуя В. Л. Пономарю, можно задать G-инвариантную фильтрацию $\Phi(\varphi)$ на алгебре $K[Y]$ отображением $\varphi : \Xi(Y) \to \mathbb{Z}$, положив $K[Y]_i \equiv \bigoplus_{\lambda \in \Xi(Y), \varphi(\lambda) < i} W_\lambda$.

При этом на отображение φ нужно накладывать определенные ограничения. Умножение в алгебре $K[Y]$ позволяет рассматривать произведение $W_\lambda W_\mu$ как подмодуль в $K[Y]$ для любых $\lambda, \mu \in \Xi(Y)$. Определим набор $T_k(\lambda, \mu)$ как множество тех веc $\varepsilon \in \Xi(Y)$, для которых $W_\lambda W_\mu$ пересекается с W_ε не пустым подмножеством. Известно, что множество $T_k(\lambda, \mu)$ конечно, содержит все $\lambda + \mu$ и все прочие веса этого множества получаются из $\lambda + \mu$ вычитанием некоторой линейной комбинации простых корней с целыми неотрицательными коэффициентами.

Условие $K[Y]_i K[Y]_j \subset K[Y]_{i+j}$ из определения фильтрации равносильно условию

$$(A) \quad \varphi(\varepsilon) \leq \varphi(\lambda) + \varphi(\mu) \quad \text{для всех} \quad \lambda, \mu \in \Xi(Y) \quad \text{и всех} \quad \varepsilon \in T_k(\lambda, \mu).$$

Остальные требования из определения фильтрации выполнены автоматически.

В работе [1] в качестве отображения φ рассматривалось ограничение на $\Xi(Y)$ аддитивного гомоморфизма $h : \Xi(Y) \to \mathbb{Z}$, такого, что после продолжения его до линейной формы на $\Xi(Y)$ значение этой формы на простых корнях положительные (существование такого гомоморфизма несложно установить). Для этого отображения условие (A) выполнено. Фильтрацию, определенную таким гомоморфизмом, будем называть линейной.

Если каждый из G-модулей W_λ является неприводимым (алгебра $K[Y]$ имеет простой спектр), то для любого λ и для любой G-инвариантной фильтрации Φ найдется такой номер i, что $W_\lambda \cap K[Y]_{i-1} = \{0\}$ и $W_\lambda \subset K[Y]_i$. Поэтому здесь любая G-инвариантная фильтрация на $K[Y]$ задается некоторым отображением $\varphi : \Xi(Y) \to \mathbb{Z}$, а именно

$$\varphi(\lambda) = \min_{W_\lambda \subset K[Y]_i} i. \quad (*)$$

Для произвольной G-алгебры это не так, соответствующий пример рассмотрен в п. 10.

5. Напомним в этом разделе некоторые известные факты из теории инвариантов. Пусть X есть неприводимое аффинное G-многообразие. Нормальная многообразия X по определению означает, что алгебра $K[X]$ целозамкнута в своем поле частных.

Критерий Луны—Вуста (см., например, [7; гл. 3]). Аффинное G-многообразие X нормально тогда и только тогда, когда алгебра $K[X]^G$ целозамкнута.

Говорят, что действие $G : X$ есть действует с простым спектром, если каждая неприводимая компонента W_λ алгебры $K[X]$ является неприводимым G-модулем. Если G-многообразие X к тому же нормально, оно называется сферическим. Для действий с простым спектром алгебра $K[X]^G$ имеет простой спектр относительно действия максимального тора, и потому $X_U = \text{Spec} K[X]^G$ есть торическое многообразие. Из теории торических многообразий известно, что нормальность X_U
Стягивания аффинных сферических многообразий

эквивалентна условию насыщенности полугрупп весов $\Xi(X_U)$ тора T, т.е. если $\varepsilon \in \mathbb{Z}(\Xi(X_U))$ и $n \varepsilon \in \Xi(X_U)$ для некоторого $n > 0$, то $\varepsilon \in \Xi(X_U)$. Насыщенные полугруппы – это в точности полугруппы, совпадающие с пересечением решетки $\mathbb{Z}(\Xi(X_U))$ и некоторого выпуклого конуса в пространстве $\mathbb{Z}(\Xi(X_U)) \oplus \mathbb{Q}$. Полугруппа $\Xi(X_U)$ естественно отождествляется с полугруппой $\Xi(X)$. Окончательно получаем

Предложение 2. Аффинное G-многообразие X с простым спектром нормально тогда и только тогда, когда полугруппа $\Xi(X)$ совпадает с пересечением решетки $\mathbb{Z}(\Xi(X))$ и некоторого выпуклого конуса в пространстве $\mathbb{Z}(\Xi(X)) \oplus \mathbb{Q}$.

Этим предложением мы будем неоднократно пользоваться. Заметим также, что полугруппа из предложения 2 конечно порождена по лемме Гордона, см., например, [8].

6. Пусть Y есть сферическое G-многообразие, а X есть (G, Y, A^3)-многообразие, которое в свою очередь является нормальным. Альгебра регулярных функций $K[X]$ естественно входит в алгебру $K[Y] \otimes K[A^3 \setminus \{0\}]$. Последняя алгебра имеет простейшую спектральную структуру, конечна, и потому $\Xi(X) \subset \Xi(Y) \oplus \mathbb{Z}$.

Определим $N = \mathbb{Z}(\Xi(Y)) \oplus \mathbb{Q}$ и $W = \mathbb{Z}(\Xi(Y)) \oplus \mathbb{Q}$ – гиперпоскость в N.

Лемма 1. а) Пусть $\Xi(X)$ совпадает с пересечением некоторого выпуклого конуса $C(X)$ максимальной размерности в пространстве N и полугруппы $\Xi(Y) \oplus \mathbb{Z}$. б) Конус $C(X)$ содержит луч $V = (0, a) \in N$, $a \geq 0$, и не содержит луч $-V$. в) При проекции на W параллельно лучу V образ конуса $C(X)$ совпадает с выпуклой оболочкой $\Xi(Y)$.

Доказательство. а) Следует из предложения 2.

б) Из сферичности действия $G : Y$ вытекает наличие в Y плотной G-орбиты. Согласно определению (G, Y, A^3)-многообразия алгебра $K[X]^G$ есть алгебра многочленов от одной переменной и ее образующая имеет вес $(0, 1)$.

для морфизма $\pi : X \rightarrow A^3$ прообраз нулевой точки прямой A^3 G-изоморфен многообразию Y. Отсюда следует утверждение в).

Рассмотрим функцию $\varphi_X : \Xi(Y) \rightarrow \mathbb{Z}$, заданную формулой

$$\varphi_X(\lambda) = \min_{(\lambda, a) \in \Xi(X)} a.$$

Если $\varepsilon \in T_Y(\lambda, \mu)$ и $(\lambda, a) \in \Xi(X)$, $(\mu, b) \in \Xi(X)$, то $(\varepsilon, a + b) \in \Xi(X)$. Отсюда

$$\varphi_X(\varepsilon) \leq \varphi_X(\lambda) + \varphi_X(\mu)$$

для каждого $\varepsilon \in T_Y(\lambda, \mu)$.

Для выпуклого конуса C в пространстве N, удовлетворяющего условиям b) и c) предыдущей леммы, определяем функцию $\varphi_C : \Xi(Y) \rightarrow \mathbb{Z}$:

$$\varphi_C(\lambda) = \min_{(\lambda, a) \in C, a \in \mathbb{Z}} a.$$

Ясно, что функции φ_X и $\varphi_C(X)$ совпадают.
ОПРЕДЕЛЕНИЕ 2. Назовем выпуклый конус C в пространстве N конусом сти-гивания, если выполнены следующие условия:

1) конус C содержит луч V и не содержит луч $-V$;

2) при проекции на гиперплоскость W параллельно лучу V образ конуса C совпадает с выпуклой оболочкой $\Xi(Y)$;

3) $\varphi_C(\varepsilon) \leq \varphi_C(\lambda) + \varphi_C(\mu)$ для каждого $\varepsilon \in T_Y(\lambda, \mu)$.

ПРЕДЛОЖЕНИЕ 3. Нормальные (G, Y, A^1)-многообразия с точностью до $(G \times K^*)$-изоморфизма биективно соответствуют конусам сти-гивания в пространстве N.

ДОКАЗАТЕЛЬСТВО. (G, Y, A^1)-многообразие X сопоставляется конус сти-гивания $C(X)$. Обратно, для конуса сти-гивания C рассмотрим подпространство $L(C)$ в алгебре $K[Y] \otimes_K K[A^1 \setminus \{0\}]$, состоящее из тех неприводимых $(G \times K^*)$-модулей, старшие веса которых принадлежат конусу C. Умножение в алгебре $K[Y] \otimes_K K[A^1 \setminus \{0\}]$ индуцирует на этом подпространстве структуру пучка алгебра, что обеспечивается условием 3).

Известно, что для произвольной рациональной G-ал-гебры A конечная порожденность A эквивалента конечной порожденности A^Y, см. [1]. Для алгебры $L(C)$ конечная порожденность $L(C)^G$ следует из леммы Гор-дана. Поэтому алгебра $L(C)$ конечно порождена. Из условий 1) и 2) следует, что $L(C)^G$ есть алгебра многочленов от одной переменной, и для морфизма факториза-ции π: $\text{Spec} L(C) \to A^3$ мы имеем $\pi^{-1}(A^1 \setminus \{0\}) \cong Y \times (A^1 \setminus \{0\})$. Следовательно, $\text{Spec} L(C)$ есть (G, Y, A^1)-многообразие. В силу различия $(G \times K^*)$-модульной структуры в алгебрах регулярных функций различным конусам отвечают различные (G, Y, A^1)-многообразия.

Хотелось бы выяснить, для каких конусов C в пространстве N с условиями 1) и 2) из определения 2 выполнено также условие 3). Это условие есть условие “отрицательности” на простых корнях группы G. Заметим, что пространство N можно рассматривать как подпространство в $N(G) = \mathbb{Z}(\Xi(G) \oplus \mathbb{Z}) \otimes \mathbb{Q}$. Поэтому несложно проверить, что для выполнения условия 3) достаточно выполнения следующего условия:

(B) найдется выпуклый конус \tilde{C} в пространстве $N(G)$ такой, что $N \cap \tilde{C} \cap C_W(G \times K^*) = C$ и отрицательные корни группы G принадлежат \tilde{C}.

Если ранг решетки $\Xi(X)$ совпадает с рангом решетки $\Xi(G)$, то в качестве \tilde{C} можно рассматривать максимальный конус в $N(G)$, пересечение которого с $C_W(G \times K^*)$ совпадает с C (см. [6; теорема 2]).

Будем говорить, что сферическое G-многообразие Y есть многообразие типа I, если для каждого конуса сти-гивания условие (B) выполнено. В противном случае G-многообразие соответствует типу II. Для выяснения типа G-многообразия необходимо иметь некоторую информацию о множествах $T_Y(\lambda, \mu)$. К типу I относят-ся группа G как однородное $(G \times G)$-пространство относительно двухстороннего действия, см. [6] или п. 11, и однородные пространства SL_2/N и SL_2/T, см. п. 12. К типу II относятся все торические и, более общо, все S-многообразия в терми-нологии работы [4], т.е. G-многообразия, стабилизатор каждой точки на которых содержит некоторую максимальную унитопентную подгруппу U группы G. В этой
Стягивания аффинных сферических многообразий

ситуации, условие 3) выполнено для любого конуса, так как S-многообразие характеризуется условием

$$ T_Y(\lambda, \mu) = \{\lambda + \mu\} \text{ для всех } \lambda, \mu \in \Xi(Y). $$

7. Вернемся к описанию G-инвариантных фильтраций на алгебре $K[Y]$ в случае, когда Y есть сферическое G-многообразие. Потребуем, чтобы соответствующая фильтрация Φ алгебра $D(\Phi)$ была конечно порождена и цеплюскнута. Оказывается, что при этих ограничениях все такие фильтрации могут быть эффективно описаны при помощи конусов стягивания. Действительно, мы имеем нормальное (G, Y, Λ^1)-многообразие $X = \text{Spec} D(\Phi)$, и соответствующая ему функция φ_X определяет некоторую G-инвариантную фильтрацию на $K[Y]$ (ср. условие (A) и свойство (**)). Из равенства $\varphi_X = \varphi_{C(X)}$ следует, что получаемые так фильтрации характеризуются следующим определением.

ОПРЕДЕЛЕНИЕ 3. G-инвариантная фильтрация Φ на алгебре $K[Y]$ называется нормальной, если найдется конечный набор линейных функций $f_i : \Xi(\Xi(Y)) \otimes \mathbb{Q} \to \mathbb{Q}$ такой, что $\varphi(\lambda) = \min a_i \in \mathbb{Z}$, где $a \in \mathbb{Z}$ и $a \geq f_i(\lambda)$ для всех значений i.

Из формулы (*) и определения функции φ_X следует, что функция φ_X задает именно исходную фильтрацию Φ. Обратно, каждому нормальному (G, Y, Λ^1)-многообразию соответствует G-инвариантная фильтрация Φ (предложение 1), эта фильтрация определяется функцией $\varphi_{C(X)}$ и потому является нормальной. Используя предложение 3, окончательно получаем следующую теорему.

ТЕОРЕМА 1. Пусть Y есть аффинное сферическое G-многообразие. Тогда нормальные (G, Y, Λ^1)-многообразия биективно соответствуют нормальным фильтрациям на алгебре $K[Y]$.

8. Далее мы изучим некоторые свойства особого слоя (G, Y, Λ^1)-многообразия X в терминах конуса стягивания $C = C(X)$. Для этого нам понадобится следующие обозначения. Пусть ∂C есть граница конуса C, т.е. объединение всех его собственных граней. Положим $\Xi(Y)_{\partial C} = \{\lambda \in \Xi(Y) : (\lambda, \varphi_C(\lambda)) \in \partial C\}$. Для каждой алгебры A пусть A_{red} есть факторалгебра A по максимальному нуллотентному идеалу и $(\text{Spec } A)_{\text{red}} = \text{Spec } A_{\text{red}}$. Согласно [9; предложение 3.26] G-модульная структура $K[\pi^{-1}(0)]$ совпадает с G-модульной структурой $K[Y]$.

ЛЕММА 2. Имеем G-модульное разложение

$$ K[\pi^{-1}(0)]_{\text{red}} = \bigoplus_{\lambda \in \Xi(Y)_{\partial C}} V_\lambda. $$
ДОКАЗАТЕЛЬСТВО. Несложно понять, что следующие условия эквивалентны:
1) старший вектор неприводимого G-модуля V_λ является нильпотентом при сужении на особый слой;
2) некоторая степень старшего вектора модуля $V_\lambda \subset K[\pi^{-1}(0)]$ делится в алгебре $D(\Phi)$ на переменную t (см. определение суживания);
3) существует $n > 0$ такое, что $\varphi_C(n\lambda) < n\varphi_C(\lambda)$;
4) $\lambda \notin \Xi(Y)_{dc}$.

Назовем конус суживания C целиком сложным, если $\Xi(Y) = \Xi(Y)_{dc}$. Это условие равносильно тому, что линейные функции f_i из определения 3 принимают целые значения на элементах полугруппы $\Xi(Y)$.

СЛЕДСТВИЕ 1. Особый слой топологического пространства суживания приведен тогда и только тогда, когда конус суживания целиком сложен.

Перейдем к рассмотрению неприводимых компонент особого слоя.

Собственную границу максимальной размерности конуса суживания назовем m-гранью, если она не содержит луч V. Будем говорить, что вес $\lambda \in \Xi(Y)$ принадлежит m-грани F конуса суживания C и условно записывать $\lambda \in F$, если $(\lambda, \varphi_C(\lambda)) \in F$.

ПРЕДЛОЖЕНИЕ 4. Имеется естественное биективное соответствие между неприводимыми компонентами особого слоя (G, Y, λ^2)-многобрая X и m-граниями конуса суживания $C(X)$. В частности, особый слой неприводим тогда и только тогда, когда m-грани единственна.

ДОКАЗАТЕЛЬСТВО. Пусть C_1, C_2, \ldots, C_k – неприводимые компоненты особого слоя и $I(C_1), I(C_2), \ldots, I(C_k)$ – соответствующие простые идеалы в алгебре $K[\pi^{-1}(0)]_{red}$. Тогда для любого i имеется однозначно определенное G-модулое разложение $K[\pi^{-1}(0)] = I(C_i) \oplus P(C_i)$. Пространство $P(C_i)$ G-изоморфно $K[C_i]_{red}$. Пусть

$$P(C_i) = \bigoplus_{\lambda \in \Xi(C_i)} V_\lambda.$$

Если веса $\lambda', \lambda'' \in \partial C$ не принадлежат одной собственной границы максимальной размерности конуса C, то $\lambda' + \lambda'' \notin \partial C$ и для соответствующих старших векторов имеем $f_{\lambda'} f_{\lambda''} = 0$ в алгебре $K[\pi^{-1}(0)]_{red}$. Это показывает, что все веса полугруппы $\Xi(C_i)$ лежат на одной m-грани.

Предположим, что m-грани F соответствуют несколько компонент C_{i_1}, \ldots, C_{i_k}. Тогда для каждого i_p найдется такой вес $\lambda(i_p)$, что $\lambda(i_p) \in F \setminus \Xi(C_{i_p})$ и потому старший вектор $f_{\lambda(i_p)}$ принадлежит $I(C_{i_p})$. Произведение старших векторов $f_{\lambda(i_1)} f_{\lambda(i_2)} \cdots f_{\lambda(i_k)}$ равно нулю на каждой компоненте особого слоя, тогда как $\lambda(i_1) + \lambda(i_2) + \cdots + \lambda(i_k) \in F$. Полученное противоречие завершает доказательство.

ЗАМЕЧАНИЕ 1. У конуса суживания, отвечающего линейной фильтрации, есть только одна m-грани – это график гомоморфизма.
Следствие 2. Если \(\lambda_1 \in \partial C \setminus F \) и \(\lambda_2 \in \partial C \), то \(\mu \notin F \) для каждого \(\mu \in T_Y (\lambda_1, \lambda_2) \).

Доказательство следует из того факта, что для компоненты \(C_F \), отвечающей \(m \)-грани \(F \),

\[
I(C_F) = \bigoplus_{\lambda \in \partial C \setminus F} V_{\lambda}
\]

является идеалом.

Следствие 3. Имеет место равенство

\[
TC_F (\lambda_1, \lambda_2) = T_Y (\lambda_1, \lambda_2) \cap F.
\]

Из \([10, 11]\) следует, что каждая компонента особого слоя является нормальным сферическим \(G \)-многообразием. Из условия (C) вытекает

Следствие 4. Компонента \(C_F \) особого слоя на \((G, Y, A^1) \)-многообразии является \(S \)-многообразием тогда и только тогда, когда \(T_Y (\lambda_1, \lambda_2) \cap F = \{ \lambda_1 + \lambda_2 \} \) для всех \(\lambda_1, \lambda_2 \in F \).

Для выполнения этого условия достаточно, чтобы существовала линейная форма на \(\Xi (G) \otimes \mathbb{Q} \), отрицательная на простых корнях, график которой над \(W \) содержал бы \(F \). Так для линейных стягиваний особый слой является нормальным \(S \)-многообразием.

Теорему 7 из работы \([1]\) можно дополнить следующим образом.

Предложение 5. Пусть \(A \) – рациональная конечно порожденная \(G \)-алгебра с простым спектром. Для линейных фильтраций следующие условия эквивалентны:

1) алгебра \(A \) целомагнитна;
2) алгебра \(\text{gr}_A A \) целомагнитна;
3) алгебра \(D(\Phi) \) целомагнитна.

В этой ситуации многообразия \(\text{Spec} A, \text{Spec} \text{gr}_A A \) и \(\text{Spec} D(\Phi) \) имеют рациональные особенности.

Доказательство. Эквивалентность 1) и 2) доказана в \([1]\).

Если \(A \) конечно порождена и целомагнитна, то из предложении 2 и леммы Гордана следует конечная порождённость и целомагнитность \(D(\Phi) \).

Пусть верно 3). Тогда в силу линейности фильтрации \(\text{Spec} \text{gr}_A A \) неприводимо и нормально, см. \([11]\).

Наконец, особенности сферических многообразий рациональны \([1]\), а \((G, Y, A^1) \)-многообразие сферично относительно действия группы \(G \times K^* \).

9. Можно рассматривать многообразия, аналогичные многообразиям из определения 1, над многомерной базой. Большинство полученных выше результатов распространяется и на эту ситуацию.
ОПРЕДЕЛЕНИЕ 4. Аффинное \((G \times (K^*)^n)\)-многообразие \(X\) будем называть \((G, Y, A^n)\)-многообразием, если имеется сюръективный \((K^*)^n\)-эквивариантный модификация \(\pi : X \to A^n\) для естественного эффективного действия \((K^*)^n : A^n\) такой, что для каждого \(a \in (A^n \setminus \{0\})^n\) имеем

\[
\pi^{-1}(a) \cong_G Y \quad \text{и} \quad \pi^{-1}((A^n \setminus \{0\})^n) \cong (G \times (K^*)^n) (Y \times ((A^n \setminus \{0\}))^n).
\]

Если \(Y - \) сфере, естественное \(G\)-многообразие, то \(\Xi(X) \subset \Xi(Y) \oplus \mathbb{Z}^n\) и полугруппа \(\Xi(X)\) получается пересечением в пространстве \(W \oplus \mathbb{Q}^n\) некоторого выпуклого конуса \(C(X)\), содержащего координатные лучи \(V_1, \ldots, V_n\) и не содержащего \(-V_1, \ldots, -V_n\), и полугруппы \(\Xi(Y) \oplus \mathbb{Z}^n\).

Конус \(C(X)\) можно считать конусом многомерного стягивания. Условие 3) из определения 2 будет иметь вид: если \((\lambda, u) \in \Xi(Y) \oplus \mathbb{Z}^n\) и \((\mu, w) \in \Xi(Y) \oplus \mathbb{Z}^n\) лежат в конусе \(C(X)\), то и \((\varepsilon, u + w) \in C(X)\) для каждого \(\varepsilon \in T_Y(\lambda, \mu)\).

В алгебре \(K[Y][t_1, t_1^{-1}, \ldots, t_n, t_n^{-1}]\) можно задать подалгебру \(D\), порожденную элементами

\[
ft_1^{i_1}t_1^{-i_1} \cdots t_n^{i_n}, \quad f \in K[Y], \quad (\lambda, i_1, \ldots, i_n) \in C(X),
\]

и тогда \(X = \text{Spec } D\).

Определим понятие фильтрации типа \(\mathbb{Z}^n\) на алгебре \(K[Y]\). Зафиксируем следующие обозначения. Для двух элементов \(s = (i_1, \ldots, i_n) \in \mathbb{Z}^n\) и \(s' = (i_1', \ldots, i_n') \in \mathbb{Z}^n\) будем говорить, что \(s \leq s'\), если \(i_k \leq i'_k\) для любого \(k\), и что \(s < s'\), если хотя бы одно из этих неравенств является строгим. Назовем \(G\)-инвариантной фильтрацией на \(G\)-алгебре \(A\) такой набор \(G\)-инвариантных подпространств \(A_s, s \in \mathbb{Z}^n\), что

1. \(A_s \subset A_{s'}\) для любых \(s \leq s'\);
2. \(A = \bigcup_{s \in \mathbb{Z}^n} A_s\);
3. \(A_{s}A_{s'} \subset A_{s+s'}\) для любых \(s, s' \in \mathbb{Z}^n\).

В случае произвольного аффинного \(G\)-многообразия \(Y\) для каждого \((G, Y, A^n)\)-многообразия \(X\) можно определить \(G\)-инвариантную \(\mathbb{Z}^n\)-фильтрацию на алгебре \(K[Y]\) и доказать аналогичные предложения 1. В случае, когда многообразие \(Y\) сферично, определенные конусами многомерного стягивания \(\mathbb{Z}^n\)-фильтрации будем, как и выше, называть нормальными, и также получаем взаимно однозначное соответствие между \((G, Y, A^n)\)-многообразиями \(Z^n\)-фильтрациями на алгебре \(K[Y]\).

Например, для \(G = SL_2, n = 2\) будем откладывать точки из \(\Xi(Y)\) по оси \(Ox\) и рассмотрим конус многомерного стягивания в \(Q^3\), лежащий на лучи \(Oy, Oz, \{z = 0, x = y\}\) и \(\{y = 0, x = z\}\). Сечение этого конуса плоскостью \(\{x = 1\}\) изображено на рис. 2.

Пусть \(\varepsilon - \) фундаментальный вес группы \(SL_2\). Рис. 2 показывает, что изотопная компонента \(W_e\) алгебры \(K[Y]\) принадлежит \(K[Y][1, 0]\) и \(K[Y][0, 1]\).

Для \((G, Y, A^n)\)-многообразия \(X\) алгебра регулярных функций на слое \(Z\) над точкой \(0 \in A^n\) описывается формулой

\[
K[Z] = \text{gr } K[Y] = \bigoplus_{s \in \mathbb{Z}^n} K[Y]_s/K[Y]_{s'},
\]

где \(K[Y]_s = \bigoplus_{s' < s} K[Y]_{s'}\).
10. Если не предполагать, что \(Y \) является сферическим \(G \)-многообразием, то не каждая \(G \)-инвариантная \(\mathbb{Z} \)-фильтрация на алгебре \(K[Y] \) задается некоторым отображением \(\varphi : \Xi(Y) \to \mathbb{Z} \).

Приемлем конкретный пример. Предположим, что многообразие \(Y \) и \((G, Y, \mathbb{A}^1)\)-многообразие \(X \) нормальная и соответствующая \(X \) фильтрация определяется отображением \(\varphi : E(Y) \to \mathbb{Z} \). Тогда из критерия Луны–Буста следует, что подгруппа \(E(X) = \{(\lambda, i) : \varphi(\lambda) \leq i\} \) в пространстве \(N = E(\Xi(Y) \oplus \mathbb{Z}) \otimes \mathbb{Q} \) сопоставлена с пересечением некоторого выпуклого конуса \(C \) и решетки \(E(\Xi(Y)) \). При этом конус \(C \) удовлетворяет условиям 1)–3) определения 2.

Пусть \(G = \mathrm{SL}_2 \). Тогда \(\text{rk} G = 1 \) и у конуса \(C \) имеется всего одна \(m \)-грани. Алгебра \(U \)-инвариантов на особом слое получается факторизацией алгебры \(U \)-инвариантов на \(Y \) по конечной циклической группе и потому сохраняет целостность.

Таким образом, особый слой нормализован.

Пусть \(Y = \mathrm{SL}_2 / \mathbb{Z}_3 \), где \(\mathbb{Z}_3 = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix} : \alpha \in K, \alpha^3 = 1 \right\} \). Рассмотрим естественное действие группы \(\mathrm{SL}_2 \) в пространстве бинарных форм степени три \(V_3 = \langle ax^3 + bx^2y + cxy^2 + dy^3 \rangle \). Образующая \(F \) алгебры инвариантов для такого действия — дискриминант формы — есть многочлен степени четыре (его явный вид указан в [4; p. 012]). Рассмотрим \(\mathrm{SL}_2 \)-модуль \(V_3 \otimes \mathbb{A}^1 \) с тривиальным \(\mathrm{SL}_2 \)-действием на втором множителе и в нем подмногообразие

\[X = \{ (\psi, z) : \psi \in V_3, \ z \in \mathbb{A}^1, \ z^4 = F(\psi) \} \].

Лемма 3. Многообразие \(X \) есть \((\mathrm{SL}_2, \mathrm{SL}_2 / \mathbb{Z}_3, \mathbb{A}^1)\)-многообразие.

Доказательство. Орбита бинарной формы третьей степени с ненулевым дискриминантом пересекает прямую \(\langle x^3 + y^3 \rangle \). Поэтому орбита общего положения на \(V_3 \) и на \(X \) замкнута и изоморфна \(\mathrm{SL}_2 / \mathbb{Z}_3 \). Многообразие \(X \) есть гиперповерхность в \(\mathbb{A}^5 \), заданная уравнением \(z^4 = F(\psi) \). Множество особенностей этой гиперповерхности есть собственное подмногообразие в множестве \(\{ z = 0 \} \). Следовательно, \(X \) неособо в коразмерности один, а для гиперповерхности это эквивалентно нормальности. Алгебра инвариантов \(K[X]^{\mathrm{SL}_2} \) есть \(K[z] \). Остаётся проверить условие \(X \setminus \{ z = 0 \} \cong \mathrm{SL}_2 / \mathbb{Z}_3 \times K^* \) или \(K[X]_{(z)} \cong K[\mathrm{SL}_2 / \mathbb{Z}_3] \otimes K K[z, z^{-1}] \).
а это следует из

\[K[X](z) \cong K \left[\frac{a}{z}, \frac{b}{z}, \frac{c}{z}, \frac{d}{z} \right] \otimes_K K[z, z^{-1}]. \]

Особый слой многообразия \(X \) изоморфен нуль-конусу в \(V_3 \). Этот нуль-конус непригоден, содержит целовую орбиту \(\text{SL}_2(x^2y) \) и двумерную орбиту \(\text{SL}_2(x^3) \).

Несложно проверить, что точки последней орбиты особы в нуль-конусе, и потому нуль-конус не нормальным. Это доказывает, что многообразие \(X \) не может быть получено как толальное пространство стягивания относительно некоторой фильтрации на алгебре \(K[\text{SL}_2/Z_3] \), определенной отображением \(\varphi : \Xi(Y) \to \mathbb{Z} \).

11. В этом разделе будут рассмотрены редуктивные алгебраические полугруппы. Мы кратко описали, как теорема 1 согласуется с результатами работы [6].

Напомним, что аффинная алгебраическая полугруппа — это аффинное алгебраическое многообразие с ассоциативным умножением

\[\sigma : S \times S \to S, \]

которое есть морфизм алгебраических многообразий.

Пусть \(\text{End} V \) — множество эндоморфизмов конечномерного векторного пространства \(V \). Можно показать, что каждая алгебраическая полугруппа изоморфна замкнутой подполугруппе в \(\text{End} V \) при подходящем выборе \(V \). Более того, если полугруппа \(S \) обладает единицей, то можно считать, что она (единица) переходит в единицу \(\text{End} V \). В этой ситуации элемент из \(S \) обратим тогда и только тогда, когда он принадлежит \(\text{GL}(V) \). Поэтому группа обратимых элементов \(G(S) \) открыта в \(S \) и является алгебраической группой. Полугруппа \(S \) называется редукционной, если группа \(G(S) \) редуктивна. Известно, что если группа \(G(S) \) полупроста, то \(S = G(S) \). Полугруппа \(S \) называется нормальной, если \(S \) нормально как алгебраическое многообразие.

В работе [6] Э. Б. Винберг классифицировал нормальные редуктивные алгебраические полугруппы в терминах выпуклых конусов в пространстве \(\Xi(G(S)) \otimes_\mathbb{Z} \mathbb{Q} \). Заметим, что редуктивная группа \(G \) есть однородное сферическое пространство относительно двустворочного действия группы \(G \times G \). Алгебра регулярных функций \(K[G] \) как \(G \times G \)-модуль разлагается в прямую сумму подмодулей \(V_\lambda \otimes V_\lambda^\vee \), где первый сомножитель является неприводимым \(G \)-модулем со старшим весом \(\lambda \) относительно левого действия, а второй множитель — сопряженный неприводимый модуль относительно правого \(G \)-действия. Вес \(\lambda \) пробегает всю полугруппу \(\Xi_+(G) \).

Это позволяет строить соответствующие конусы в пространстве \(\Xi(G(S)) \otimes_\mathbb{Z} \mathbb{Q} \), а не в пространстве \(\Xi(G(S) \times G(S)) \otimes_\mathbb{Z} \mathbb{Q} \).

Тот факт, что \(G \) как однородное \(G \times G \)-пространство относится к типу I (см. п. 6), вытекает из следующей леммы

Лемма 4 [6; п. 1]. Пусть \(\lambda \in \Xi_+(G) \) и \(\alpha \) — простой корень такой, что \((\lambda, \alpha) > 0 \). Тогда \(2\lambda - \alpha \in T_G(\lambda, \lambda) \).

Тем самым задача построения конусов стягивания здесь решается вполне механически.
Стягивания аффинных сферических многообразий

Известно, что изотипичную компоненту W_λ в алгебре $K[G]$, в алгебре $K[G]$ можно реализовать как векторное пространство, порожденное матричными элементами неприводимого представления группы G со старшим весом λ. Умножение в G соответствует конусообразное в $K[G]$:

$$K[G] \rightarrow K[G] \otimes K[G], \quad f_{i,j}^\lambda \rightarrow \sum_k f_{i,k}^\lambda \otimes f_{k,j}^\lambda.$$

Для каждого $(G \times G)$-многообразия с открытым орбитой, изоморфной G, алгебра регулярных функций есть $(G \times G)$-инвариантная подалгебра в $K[G]$. Поэтому каждое такое многообразие имеет естественную структуру редуктивной алгебраической полугруппы с группой обратимых элементов G. В частности, $(G \times G, G, \mathbb{A}^1)$-многообразие есть редуктивная алгебраическая полугруппа с группой обратимых элементов $G \times K^*$.

Обратно, если G_0 есть связная полупростая группа, то каждая нормальная полугруппа S с $G(S) = G_0 \times K^*$ есть $(G_0 \times G_0, G_0, \mathbb{A}^1)$-многообразие (см. [6; теорема 3]).

Итак, в однопараметрическом случае имеет место

ПРЕДЛОЖЕНИЕ 6. Пусть G_0 - связная полупростая группа. Тогда нормальные редуктивные алгебраические полугруппы с группой обратимых элементов $G_0 \times K^*$ (кроме самой группы $G_0 \times K^*$) находятся в биекционном соответствии с нормальными $(G_0 \times G_0)$-инвариантными фильтрациями на алгебре $K[G_0]$.

12. Проявляя рисуем понятие конуса стягивания на примере аффинных трехмерных SL_2-многообразий.

Зафиксируем следующие обозначения. Пусть T есть максимальный тор в группе SL_2, N обозначает нормализатор максимального тора T и

$$U_d = \left\{ \left(\begin{array}{c} \xi \\ a \\ \xi^{-1} \end{array} \right) : a, \xi \in K, \xi^d = 1 \right\}, \quad d = 1, 2, 3 \ldots,$$

есть конечное расширение максимальной унитарной подгруппы U. Пусть ε есть фундаментальный вес группы SL_2 и $V_d = SL_2$-модуль бинарных форм степени d.

Аффинное сферическое многообразие группы SL_2 изоморфно либо замкнутому орбите старшего вектора в неприводимом представлении SL_2 в пространстве V_d (открытая орбита в таком замкнении есть SL_2/ U_d), либо одному из однородных пространств SL_2/ N или SL_2/ T. Соответствующие этим сферическим многообразиям (SL_2, Y, \mathbb{A}^1)-многообразия будем называть простыми (S, U)-, (S, N)- и (S, T)-многообразиями соответственно, см. [10].
Простые \((S, U)\)-многообразия. Если \(Y\) есть вложение однородного пространства \(SL_2 / U_d\), то \(\Xi(Y) = \{0, de, 2de, \ldots\}\). Здесь \(Y\) является \(S\)-многообразием, поэтому выполнено условие (C). В качестве конуса сжатия \(C\) подходит любой конус того же вида, что и на рис. 3, где \(k\) и \(n\) — взаимно простые целые числа и \(k > 0\) (координаты \(k\) на горизонтальной оси отвечают вес \(kdz\)).

Задача о построении простого \((S, U)\)-многообразия \(X^k_n(U)\) сводится к задаче о построении двумерного аффинного торического многообразия \(P^k_n\), веса которого лежат в том же конусе, поскольку

\[
X^k_n(U) = (\mathbb{A}^2 \times P^k_n) / K^*,
\]

где группа \(SL_2\) действует только на первом множителе, а тор \(K^*\) действует на \(\mathbb{A}^2\) скалярно и на алгебре \(K[P^k_n]\) с весами, соответствующими горизонтальной оси.

Рассмотрим два примера.

1) Целочисленные сжатия отвечают \(k = 1\). При \(d = 1\) мы получаем единственное с точностью до \(SL_2\)-изоморфизма гладкое простое \((S, U)\)-многообразие — это аффинное пространство \(\mathbb{A}^3 = V_0 \oplus V_1\) (н можно выбирать произвольно). При \(d > 1\) соответствующее многообразие изоморфно \(\mathbb{A}^3 / \mathbb{Z}_d\).

2) Пусть \(d = 1, k = 2, n = -1\). Тогда образующие алгебры \(K[P^2_{-1}]\) обозначим через \(x(0, 1)\), \(y(1, 0)\) и \(z(2, -1)\). Они связаны соотношением \(y^2 = xz\). Данное торическое многообразие есть конус в \(\mathbb{A}^3\). Обозначим через \(u\) и \(v\) стандартные координаты на \(\mathbb{A}^2\). Для простого \((S, U)\)-многообразия получаем\n
\[
K[X^2_{-1}(U)] = K[x, y, z, u, v]^K = K[x_1, x_2, x_3, x_4, x_5, x_6],
\]

где \(x_1 = x, x_2 = yu, x_3 = yv, x_4 = zu, x_5 = zv, x_6 = zv^2\) и выполнены соотношения \(x_2^2 = x_1x_4, x_3^3 = x_1x_6, x_2x_3 = x_1x_5, x_4x_6 = x_5^2\). Это многообразие естественно вложено в пространство \(\mathbb{A}^6 = V_0 \oplus V_1 \oplus V_2\), не является там полным пересечением и имеет единственную особенность в нуле.

Предложение 7. При фиксированном \(d\) простые \((S, U)\)-многообразия \(X^k_n(U)\) и \(X^k_n(U)\) \(SL_2\)-инвариантны изоморфны тогда и только тогда, когда \(k = k'\) и \(n \equiv n' (mod k)\).
Доказательство. Заметим, что наличие SL_2-эquivariantного изоморфизма между $X_n^k(U)$ и $X_n^{k'}(U)$ эквивалентно наличию K^*-эquivariantного изоморфизма между P_n^k и $P_n^{k'}$, где K^* — одномерный тор, вектор которого мы откладываем по горизонтальной оси. Это вытекает из формул (+++). И того факта, что $\text{Spec } K[X_n^k(U)]^U \cong P_n^k$. Поэтому доказательство сводится к рассмотрению двумерных торических многообразий.

Достаточность. Реализуем алгебру $K[P_n^k]$ как подалгебру в алгебре многочленов $K[X,Y]$ с действием тора K^* по формуле $X \to tX, Y \to tY$:

$$K[P_n^k] = \langle X^iY^j : (i,j) \in C \rangle.$$

Пусть $n - n' = mk$. Тогда требуемый изоморфизм задается формулой $X^iY^j \to X^{i+m}Y^j$.

Необходимость. Равенство $k = k'$ следует из того, что плотная орбита в особом слое изоморфна SL_2 / U_{dl}. Предположим теперь, что $n, n' \in [0, k - 1]$. Соединим ломаной точки с целыми координатами в конусе C, отвечающие таким регулярным функциям, которые при сужении на особый слой становятся ненулевыми нильпотентами весов 1, 2, ..., $k - 1$, см. рис. 4.

![Image](image.png)

Рис. 4

Горизонтальная ломаная такой ломаной $(l, m) \to (l + 1, m)$ соответствует тому, что произведение нильпотентов веса 1 и l равно нулю, а ломаная $(l, m) \to (l + 1, m + 1)$ означает, что это произведение есть ненулевой нильпотент. Поэтому если ломанные различные, то многообразия неизоморфны. Но при $n \neq n'$ ломанные не могут совпадать, так как их высоты равны n и n' соответственно.

(2) Простые (S, N)-многообразия. Здесь $Y = \text{SL}_2 / N, \Xi(Y) = \{0, 4\varepsilon, 8\varepsilon, \ldots \}$ и

$$T_Y(4a\varepsilon, 4b\varepsilon) = \{4(a + b)\varepsilon, 4(a + b - 1)\varepsilon, \ldots, 4(a - b)\varepsilon \text{ при } a \geq b\}.$$

Условие 3) из определения конуса стягивания означает, что в качестве конуса стягивания здесь подходит любой конус того же вида, что и на рис. 5, где k и n — взаимно простые целые числа и $k > 0, n \geq 0$.

Diagram

![Diagram](image.png)
Приведем с некоторыми усовершенствованиями конструкцию из работы [10], реализующую простые \((S, N)\)-многообразия для всех значений \(k\) и \(n\). Пусть \(a, b, c\) — стандартные координаты в пространстве квадратичных бинарных форм \(V_2 = \langle ax^2 + bxy + cy^2 \rangle\). Рассмотрим фактормногообразие \(X^k = V_2 / \mathbb{Z}_{2k}\), где циклическая группа \(\mathbb{Z}_{2k}\) действует в векторном пространстве \(V_2\) скалярно унитарными на корни степени \(2k\) из единиц, и пусть \(X^k_\mathbb{H}(N)\) есть \(\text{SL}_2\)-многообразие, заданное в многообразии \(X^k \times \mathbb{A}^1\) уравнением \(z^n = (b^2 - 4ac)^k\) (предполагается, что координата \(z\) инвариантна при действии группы \(\text{SL}_2\)). При действии тора \(K^*\) переменная \(z\) имеет вес 1, а каждый моном от переменных \(a, b, c\) степени \(2k\) имеет вес \(n\).

Многообразие \(X^k_\mathbb{H}(N)\) нормально только при \(n = 1\) или \(k = 1\), см. [10]. В любом случае его нормализация \(\text{Norm} X^k_\mathbb{H}(N)\) является простым \((S, N)\)-многообразием, соответствующим паре \((k, n)\). Опишем явно эту нормализацию. Будем обозначать через \(M_d\) множество всех мономов степени \(d\) от переменных \(a, b, c\). Пусть \(u\) и \(v\) — такие натуральные числа, что \(uv - ku = 1\). Обозначим через \(\Pi(k, n)\) параллелограмм в \(\mathbb{A}^2\) с вершиной в нуле, натянутый на векторы \((k, n)\) и \((0, 1)\). Множество целых точек этого параллелограмма есть множество образующих полугруппы целых точек конуса стягивания. Отсюда следует, что

\[
K[\text{Norm} X^k_\mathbb{H}(N)] = K[X^k_\mathbb{H}(N)] \left[\frac{M_{2k_1}(b^2 - 4ac)^{(k_1 n_1 - n_1 k_1)u}}{u^{(k_1 n_1 - n_1 k_1)u}} \right],
\]

где пары \((k_1, n_1)\) пробегают координаты целых точек внутренности параллелограмма \(\Pi(k, n)\).

В работе [10] доказано, что морфизм нормализации \(\text{Norm} X^k_\mathbb{H}(N) \to X^k_\mathbb{H}(N)\) биективен и простые \((S, N)\)-многообразия, соответствующие различным парам \((k, n)\), не являются \(\text{SL}_2\)-изоморфными.

(3) Простые \((S, T)\)-многообразия. Здесь \(Y = \text{SL}_2 / T, \Xi(Y) = \{0, 2\epsilon, 4\epsilon, \ldots\}\) и \(T_Y(2a\epsilon, 2b\epsilon) = \{2(a + b)\epsilon, 2(a + b - 1)\epsilon, \ldots, 2(a - b)\epsilon\} \) при \(a \geq b\).

Условие 3) из определения конуса стягивания означает, что в качестве конуса стягивания здесь подходит любой конус того же вида, что и на рис. 5.
Однородное пространство SL_2 / T допускает единственный нетривиальный эквивалентный автоморфизм (порядка два), фактор по которому есть SL_2 / N. Несложно показать, что действие этого автоморфизма продолжается до действия на всем простом (S, T)-многообразии, соответствующем паре (k, n), и в качестве фактора получается простое (S, N)-многообразие, отвечающее паре $(k/2, n)$ для четного k и паре $(k, 2n)$ для нечетного k. Отображение факторизации есть двулистное накрытие, разветвленное над особым слоем в первом случае и над одной точкой во втором. Отсюда следует, что простые (S, T)-многообразия, отвечающие различным параметрам (k, n), не являются SL_2-изоморфными.

В случае нечетного k можно построить простое (S, T)-многообразие такое же, как и простое (S, N)-многообразие. Рассмотрим факторное многообразие $X^k = V_2 / Z_k$ и пусть $X^k_n(T)$ есть SL_2-многообразие, заданное в многообразии $X^k \times \mathbb{A}^1$ уравнением $z^2 = (b^2 - 4ac)^k$. При действии тора K^* переменная z имеет вес 1, а каждый моном от переменных a, b, c степени k имеет вес n.

Пусть a и v - такие натуральные числа, что $2nu - ku = 1$. Тогда

$$K[\text{Norm} X^k_n(T)] = K[X^k_n(T)] \left[\frac{M_k(b^2 - 4ac)(k_n - nk_1)v}{z^{(k_n - nk_1)}u} \right],$$

где пары (k_1, n_1) пробегают координаты целых точек внутренности параллелограмма $P(k, n)$.

Целочисленным стягиванием здесь отвечают гиперповерхности в четырехмерном пространстве.

Для четных значений k такую реализацию получить нельзя. В этом случае (и в случае нечетного k) простое (S, T)-многообразие можно реализовать либо как двулистное накрытие соответствующего простого (S, N)-многообразия, либо следующим образом. Рассмотрим многообразие $X^k_n(T)$ с координатами (z, a, b, c) и многообразие X^k, соответствующее координатам (z', a', b', c'). Тогда исключение $\text{Norm} X^k_n(T)$ получилось нормализацией подмногообразия в $X^k_n(T) \times X^k$, заданного уравнением $z = z'$, $w(a, b, c) = z^{n(k-1)}w(a', b', c')$ для каждого монома $w \in M_k$.

Список литературы

Московский государственный университет им. М. В. Ломоносова
Поступила в редакцию 06.08.1998
E-mail: arjantse@mccme.ru