Ю. А. Кашлев, Н. М. Садыков, Статистическая теория канализирования быстрых частиц, основанная на локальном уравнении Больцмана. Корреляционная матрица воздействий и диффузионная функция частиц, *TMФ*, 1997, том 111, номер 3, 483–496

DOI: https://doi.org/10.4213/tmf1024
ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА
Том 111, № 3
июнь, 1997

Ю. А. Кашлев*, Н. М. Садыков†

СТАТИСТИЧЕСКАЯ ТЕОРия КАНАЛИРОВАНИЯ БЫстрьХ ЧАСТИЦ, ОСНОВАНная НА ЛОКАЛьНОМ УРАВнЕНИИ БолЬЦМАНаЗА.
КОРРеляционная Матрица ВОздействий И ДИФФУЗИОНАЯ ФУнкция ЧАСТИЦ

На основе цепочки уравнений Болльцмана развита кинетическая теория движения быстрых частиц в кристалле. Для однородной функции распределения в условиях взаимодействия частиц с тепловыми колебаниями решетки и валентными электронами получено локальное кинетическое уравнение. С учетом ясного вида и зона столкновений кинетического уравнения найдена характеристика подсистемы частиц в проблеме канализирования - диффузионная функция $B(\varepsilon_\perp)$ в пространстве переносных энергий. Показано, что функциональна способность, которую дает $B(\varepsilon_\perp)$, различна в трех областях ε_\perp, соответствующих канализированию, быстрому канализированию и хаотическому движению частиц. Более того, показано, что диффузионная функция имеет элемент при поперечной энергии, равной вершине потенциального барьера канала.

В теоретических исследованиях неравновесных процессов, сопровождающих прохождение быстрых частиц через кристалл, выделяется самостоятельно направление локальной теории канализирования. В работах этого направления [1, 7] основное внимание уделяется построению локальных кинетических уравнений и вычислению на их основе кинетических характеристик системы, т.е. диффузионных функций и энергетических потерь частиц. Однако эти исследования, как показывает анализ, в большинстве случаев представляют весьма ограниченный интерес, с одной стороны, из-за крайне упрощенных моделей, в которых фиксируются два случаяных независимых пучка частиц (канализированный и хаотический), с другой, из-за непродуманной аппроксимации, используемой в ходе вывода. Новый и, по-видимому, более последовательный подход к решению задач локальной теории орентационных эффектов предложится в настоящей статье. В основу его положены идеи кинетической теории Болльцмана [8]. Этот подход позволяет получить локальное кинетическое уравнение для разрешенного газа быстрых частиц, взаимодействующих с тепловыми колебаниями решетки и валентными электронами, на основе цепочки уравнений Болльцмана Борна-Гриня Кирккруда Ивсона (БГКИ). А это, как будет показано, позволяет дать анализ кинетических эффектов с учетом всех возможных режимов движения частиц. При этом мы ограничиваемся рассмотрением плоскостного канализирования.

* Институт металлургии им. А. А. Байкова Российской академии наук, Москва, Россия
† Академический университет им. И. Е. Евсева, Актау, Республика Казахстан
1. Согласно основной идее Богословова [8] функция распределения \(F_{1r} \) для комплекса из одной частицы и \(r \) атомов решетки (или \(r \) электронов) функционально зависит от распределений \(F_{10}, F_{01}, \ldots, F_{0r} \) и в этих функциях распределения полностью включается временная зависимость \(F_{1r} \). Поэтому можно записать

\[
F_{1r}(x_1^c, x_1^e, \ldots, x_r^c, t) \to F_{1r}(x_1^c, x_1^e, \ldots, x_r^c; F_{10}(t), F_{01}(t), \ldots, F_{0r}(t)),
\]

gде \(x_r^c = \{q_r^c, p_r^c\}, \quad x_1^q = \{q_1^q, p_1^q\}; \quad q^c \) и \(p^c \) (\(q^e \) и \(p^e \)) координата и импульс частицы (атома решетки или электрона). Временная эволюция функций распределения описывается уравнением БУГКИ

\[
\frac{\partial F_{1r}}{\partial t} = [H_{1r}; F_{1r}] + n_c \int dx_{r+1}^c \left[\Phi_{1, r+1}; F_{1, r+1} \right] + n_c \sum_{1 \leq m \leq r} dx_{m+1}^c \left[\Phi_{m, r+1}; F_{1, r+1} \right],
\]

\[
\frac{\partial F_{0r}}{\partial t} = [H_{0r}; F_{0r}] + n_c \sum_{1 \leq m \leq r} dx_{m+1}^c \left[\Phi_{m, r+1}; F_{0, r+1} \right],
\]

где

\[
H_{1r} = \sum_{1 \leq n \leq r} \left(p_n^c r^2 / 2M + U_n^c \right), \quad U_n^c = \sum_{1 \leq m \leq n} \Phi_{m, n},
\]

\[
H_{0r} = \sum_{1 \leq n \leq r} \left(p_n^q r^2 / 2m + \sum_{1 \leq m \leq n} (p_n^c r^2 / 2M + \sum_{1 \leq l \leq n} \Phi_{l, n} + U_n^c \right).
\]

Ограничиваясь случаём, когда потенциал \(\Phi_{1r} \), является короткодействующим с эффективным радиусом \(r_0 \), можно ввести безразмерный параметр \(\beta = n_c r_0^2 (\varepsilon_0 / 2E_0) \ll 1 \), где \(E_0 \) энергия частицы, \(\varepsilon_0 \) характерная энергия взаимодействия. Если в (1), (2) перейти к безразмерным переменным

\[
\tilde{q}_r^c = q_r^c / r_o, \quad \tilde{q}_1^e = q_1^e / r_o, \quad \tilde{p}_r^c = p_r^c / \mu_0^2 m, \quad \tilde{p}_1^e = p_1^e / e^2 M, \quad (\nu_0^c = \tilde{q}_r^c, \quad \nu_0^e = \tilde{q}_1^e),
\]

а затем преобразовать правую часть (1), (2) так, чтобы область интегрирования порядка единицы вносил основной вклад, то в уравнениях появляются члены, включающие малый параметр \(\beta \). Однако можно поступить проще, избежав лишних преобразований переменных, а именно, считать \(\beta \) формальным параметром и ввести его в уравнения, для того чтобы дать представление о порядке величины каждого члена. Тогда

\[
\frac{\partial F_{1r}}{\partial t} = [H_{1r}'; F_{1r}] + \beta n_c \int dx_{r+1}^c \left[\Phi_{1, r+1}; F_{1, r+1} \right],
\]

\[
H_{1r}' = H_{1r} - U_n^c.
\]
Воспользуемся разложением функции F_{1r} по степеням параметра β

$$F_{1r} = F_{1r}^{(0)} + \beta F_{1r}^{(1)} + \beta^2 F_{1r}^{(2)} + \ldots.$$

(4)

Подставляя (4) в уравнение (3), для $r = 0$ получим исходное уравнение

$$\frac{\partial F_{10}}{\partial t} = [H_{10}; F_{10}] + \beta n_c \int dx_1 [\Phi_{11}; F_{11}^{(0)}] +$$

$$+ \beta^2 n_c \int dx_1 [\Phi_{11}; F_{11}^{(1)}] + \ldots.$$

(5)

Чтобы начальное условие соответствовало реальным физическим условиям, учитывая [8], свойство ослабления корреляции между динамическими состояниями частиц и центров рассеяния. Известно [9], что частица захватывается в режим каналирования только в том случае, если она не подходится к плоскости ближе чем на расстояние $r_0 + \sigma_0$. Здесь σ_0 - среднее тепловое отклонение атома кристалла в направлении, перпендикулярном кристаллографической плоскости. Основываясь на результатах [8], можно утверждать, что в первом приближении комплекс из одной частицы и центров рассеяния движется как если бы он был изолирован. Предположим, что в начальный момент рассматриваемый комплекс находится в состоянии

$$S_{-\tau}^1 = S_{-\tau}^{10}, \quad S_{-\tau}^{11}, \quad S_{-\tau}^{12}, \ldots, S_{-\tau}^{1r}.$$

(6)

где $(n, m, \varphi)^3 - \tau_g \gg \tau_g$, $\tau_g = r_0/v_0$ - время прохождения частицей области взаимодействия, $S_{-\tau}^{10}, S_{-\tau}^{11}, \ldots, S_{-\tau}^{1r}$ операнды двигают состояний на интервал τ. В частности,

$$S_{-\tau}^{10} = \exp \left\{ -\tau \left(\frac{1}{m} \frac{p_i}{M q_i} - \frac{p_i}{M q_i} \frac{\partial \Phi_{11}}{\partial p_i} \frac{\partial \Phi_{11}}{\partial q_i} \frac{\partial \Phi_{11}}{\partial \partial q_i} \right) \right\},$$

$$S_{-\tau}^{11} = \exp \left\{ -\tau \left(\frac{1}{m} \frac{p_i}{M q_i} \right) \right\}, \quad S_{-\tau}^{10} = \exp \left\{ -\tau \left(\frac{1}{m} \frac{p_i}{M q_i} \right) \right\}.$$

Поскольку в начальный момент частица находилась от центра рассеяния на расстоянии, большем r_0, то корреляция между их динамическими состояниями можно пренебречь. Тогда корреляционное отклонение

$$F_{1r}(S_{-\tau}^{10}, S_{-\tau}^{11}, S_{-\tau}^{12}, \ldots, S_{-\tau}^{1r}, 0) =$$

$$- F_{10}(S_{-\tau}^{10}, 0) F_{1r}(S_{-\tau}^{11}, S_{-\tau}^{12}, \ldots, S_{-\tau}^{1r}, 0)$$

пренебрежимо мало. С учетом этого обстоятельства и разложения (4) запишем начальное условие для рассматриваемой системы в виде

$$\lim_{\tau \to \infty} S_{-\tau}^{1r} \left\{ F_{1r}^{(0)}(x_1, \ldots, x_{1r}; F_{10}) - S_{-\tau}^{10} F_{10} S_{-\tau}^{1r} F_{10} \right\} = 0,$$

$$\lim_{\tau \to \infty} S_{-\tau}^{1r} F_{1r}^{(1)}(x_1, \ldots, x_{1r}; S_{-\tau}^{10} F_{10}, S_{-\tau}^{11} F_{10}, \ldots, S_{-\tau}^{1r} F_{10}) = 0.$$

(6)

1) Имеется в виду не только плоскость, но и локальные электронные. Приведенное здесь разделение электронов на группы аналогично используемому в [10].
Запишем производную \(\partial F_{10}/\partial t \) в (6) через вариационные производные \(\delta F_1, \delta F_2, \delta F_1, \delta F_0, \delta F_2, \ldots \), а затем подставим в это уравнение разложение (4) и приравняем члены при одинаковых степенях параметра \(\beta \). В результате получим систему уравнений для функций \(F^{(0)}_1, F^{(1)}_1, F^{(2)}_1, \ldots \), определенных как функционалы от \(F_0, F_0, F_0, \ldots \). Для i = 0, 1 имеем

\[
\begin{align*}
\frac{\delta F^{(i)}_1}{\delta F_0} [H_0; F^{(0)}_0] + \frac{\delta F^{(i)}_1}{\delta F_0} [H_0; F^{(0)}_0] + \cdots + \frac{\delta F^{(i)}_1}{\delta F_0} [H_0; F^{(0)}_0] + \delta_1 \frac{\delta F^{(0)}_1}{\delta F_0} [H_0; F^{(i)}_0] = \\
\left[H^{(i)}_1; F^{(i)}_1\right] - \delta_{ii} n \left\{ \frac{\delta F^{(0)}_1}{\delta F_0} \int dx_1^{(i)} \left[\Phi_{11}; F^{(0)}_1 \right] - \int dx_{i+1} \left[\Phi_{1}, F^{(i)}_1 \right] \right\}. \quad (7)
\end{align*}
\]

Метод решения уравнений (7) с начальными условиями (6) предложен в [8]. Опускаем промежуточные выкладки, представим решение (7) при i = 0 в виде

\[
F^{(0)}_1(x_0, x_1, t) = F_0(X_0(x_0, x_1), t) F_0(X_1(x_0, x_1), t). \quad (8a)
\]

Аргументами функции \(F_0 \) являются динамические переменные выделенного атома рентгеновского волноводника (электрона), взаимодействующего с частицей:

\[
X_0(x_0, x_1, \ldots, x_r) = \left\{ P_k(x_0, x_1, \ldots, x_r), Q_k(x_0, x_1, \ldots, x_r) \right\}, \quad \left(x_0, x_1, \ldots, x_r \right) = \lim_{\tau \to \infty} S_{\tau r}^{-1} p_k.
\]

Аналогично определяются переменные \(X^0 \). Решение уравнения (7) в случае i = 1 имеет более сложный вид, в частности,

\[
F^{(1)}_1(x_0, x_1, t) = \int_0^\infty dr \int S^{11}_{
\tau r} \Psi(x_0, x_1; x_0^{10} F_0, S^{01}_r F_0, S^{02}_r F_0, S^{02}_r F_0), \Psi(x_0, x_1; x_0^{10} F_0, S^{01}_r F_0, S^{02}_r F_0, S^{02}_r F_0) = n \left\{ \Phi_{12}; S^{10}_r F_0(X_0(x_0, x_1, x_2), t) \right\} \times \int \int S^{02}_r F_0 X_0(x_0, x_1, x_2), X_2(x_0, x_1, x_2), t) \right\} - n \left\{ S^{01}_r F_0 X_0(x_0, x_1, x_2), t) \right\} \times \int \int \left[\Phi_{12}; S^{10}_r F_0(X_0(x_0, x_1, x_2), t) \right] \right\}. \quad (8a)
\]

Используя (5) и полученные решения (8), находим локальное уравнение Больцмана, линейное относительно функции распределения \(F_{10} \),

\[
\begin{align*}
\frac{\partial}{\partial t} F_{10}(x_0, t) = [H_{10}; F_{10}] + \left(\frac{\partial F_{10}}{\partial t} \right)_{st},
\end{align*}
\]

\[
\begin{align*}
\left(\frac{\partial F_{10}}{\partial t} \right)_{st} = \beta n \left\{ \Phi_{11}; F_0(X_0(x_0, x_1), t) F_0(X_0(x_0, x_1), t) \right\} + \beta^2 n \left\{ \Phi_{11}; \int_0^\infty \int S^{11}_{
\tau r} \Psi(x_0, x_1; x_0^{10} F_0, S^{01}_r F_0, S^{02}_r F_0, S^{02}_r F_0) \right\}. \quad (9)
\end{align*}
\]
2. Движение частиц вдоль кристаллографической плоскости (точнее, под малыми углами к ней) сопровождается большим числом коррелированных столкновений, при которых частица в каждом акте столкновения лишь незначительно отклоняется от первоначального направления. Чтобы получить кинематическое уравнение в условиях скольжения, вычислим на основе уравнений динамики нерегулярной (86), аппроксимируя траектории частиц между двумя последовательными столкновениями

\[X_i^q = \{ \mathbf{Q}_i^q, \mathbf{P}_i^q \}, \quad X_i^c = \{ \mathbf{Q}_i^c, \mathbf{P}_i^c \}, \quad \mathbf{Q}_i^q = \mathbf{p}_i^q + \xi^q, \quad \mathbf{P}_i^q = p_i^q + \zeta^q, \]

\[\mathbf{Q}_i^c = \mathbf{q}_i^c + \xi^c, \quad \mathbf{P}_i^c = \mathbf{p}_i^c + \zeta^c, \quad \zeta^q = \int_0^\infty dt \nabla q \Phi(\mathbf{q}^q - \mathbf{q}^q - (\mathbf{v}^q - \mathbf{v}^q) \tau), \]

\[\xi^q = \frac{1}{m} \int_0^\infty dt \tau \nabla q \Phi(\mathbf{q}^q - \mathbf{q}^q - (\mathbf{v}^q - \mathbf{v}^q) \tau). \]

Теперь, вычислим члены при \(\beta^2 \) в правой части (9) с точностью до второго порядка по потенциалу взаимодействия. В этом приближении переменные \(X^q \) и \(X^c \) в аргументе функции \(\Phi \) достаточно заменить на \(x^q \) и \(x^c \). Раскроем после этого обобщён Пуассона (9). Поскольку скорости теплового движения атомов решётки малы, можно считать, что быстрые частицы движутся в замороженной решётке с фиксированным тепловым разбросом атомов \(\sigma \). С учетом этого обстоятельства уравнение Больцмана может быть записано следующим образом:

\[
\frac{\partial}{\partial t} F_{10}(x^q, t) + \sum_i \frac{1}{m} p_i^q \frac{\partial}{\partial p_i^q} F_{10}(x^q, t) = \left(\frac{\partial F_{10}}{\partial t} \right)_{nt}, \tag{10a}
\]

\[
\left(\frac{\partial F_{10}}{\partial t} \right)_{nt} = n_c \beta \sum_i \int dx_1^q \frac{\partial}{\partial q_1^q} \Phi(\mathbf{q}^q - \mathbf{q}_1^q) \frac{\partial}{\partial p_i^q} \{ F_{10}(\mathbf{Q}_1^q, \mathbf{P}_1^q, t) F_{01}(\mathbf{Q}_i^q, \mathbf{P}_i^q) \} +

+ n_c^2 \beta^2 \sum_{ij} \int dx_1^q \frac{\partial}{\partial q_1^q} \Phi(\mathbf{q}^q - \mathbf{q}_1^q) \int dx_2^q \frac{\partial}{\partial p_i^q} \left\{ \frac{\partial}{\partial p_j^q} F_{10}(x_1^q, x_2^q) - F_{01}(x_1^q) F_{02}(x_2^q) \right\} \int_0^\infty dt \frac{\partial}{\partial q_1^q} \Phi(\mathbf{q}^q - \mathbf{q}_2^q - (\mathbf{v}^q - \mathbf{v}_2^q) \tau). \tag{106}
\]

где \(i, j = 1, 2, 3; q = \{ q, q_1^q, q_2^q \}, q_2^q \equiv q_1^q, q_2^q \equiv q_2^q, q_2^q \equiv q_3^q. \)

Принимая во внимание близость кристалла к термодинамическому равновесию при температуре \(T \), стационарные функции кристалла заменяем в виде

\[n_c F_{01}(x^q) = \tilde{F}_{01}(x^q) \varphi(p^c), \quad n_c^2 F_{02}(x_1^q, x_2^q) = \tilde{F}_{02}(x_1^q, x_2^q) \varphi(p_1^c) \varphi(p_2^c), \]

где \(\varphi(p) = (2\pi M_c T)^{-3/2} \exp\left\{ -(p^2 / 2M_c T) \right\}. \) Здесь и далее используется система единиц, в которой постоянная Больцмана и постоянная Планка равны единице. Учитывая, что в случае скольжения ударов \(\zeta^q \) и \(\zeta^c \), а также \(\zeta^c \) и \(\zeta^c \) малы, разложим (106) по степеням \(\zeta \) и \(\zeta \) в полученных разложениях сохраняя только старшие члены. Теперь выберем систему координат таким образом, что бы ось \(x \) была направлена перпендикулярно кристаллографическим плоскостям, образуя ось системы плоскости канала, а ось \(z \)
направим вдоль траектории влета частиц в канал. Будем считать распределение частиц однородным по \(y \), поскольку это соответствует условиям плоскостного канализования [11]. Кроме того, исключая исследование распыления пучка частиц вдоль оси \(y \), усредним (106) по \(p_y \). В результате получаем

\[
\left(\frac{\partial F_{10}}{\partial t} \right)_{\text{ext}} = \nabla_{p_y}^2 LF_{10}(x^g, t),
\]

\[
L = K_{xx} \nabla_{p_y}^2 + R_{xx}^{(1)} + R_{xx}^{(2)}. \tag{11}
\]

Коэффициенты из (11) по-разному зависят от скорости частицы:

\[
K_{xx} \sim (v^g)^{-1}, \quad R_{xx}^{(1)} \sim (v^g)^{-2}, \quad R_{xx}^{(2)} \sim (v^g)^{-2}.
\]

Поэтому в случае высоких скоростей достаточно сохранить первый член в (11). Коэффициент, вспомнив в первый член, запишем в виде:

\[
K_{xx} = K^{(1)}(q^g_x) - \Delta K^{(1)}(q^g_x),
\]

\[
K^{(1)}(q^g_x) = \int d\mathbf{q}^c \tilde{F}_0(q^c) \nabla_{q^g_x}^2 \Phi(|\mathbf{q}^g - \mathbf{q}^c|) \times \int_0^\infty d\tau \nabla_{q^g_x}^2 \Phi(|\mathbf{q}^g - \mathbf{q}^c - (\mathbf{v}^g - \mathbf{v}^c)\tau|), \tag{12a}
\]

\[
-\Delta K^{(1)}(q^g_x) = \int d\mathbf{q}_1^c d\mathbf{q}_2^c g(q_1^c, q_2^c) \nabla_{q^g_x}^2 \Phi(|\mathbf{q}^g - \mathbf{q}^c|) \times \int_0^\infty d\tau \nabla_{q^g_x}^2 \Phi(|\mathbf{q}^g - \mathbf{q}^c - (\mathbf{v}^g - \mathbf{v}^c)\tau|), \tag{12b}
\]

где

\[g(q_1^c, q_2^c) = \tilde{F}_{02}(q_1^c, q_2^c) - \tilde{F}_0(q_1^c), \tilde{F}_0(q_2^c) \]

параметр корреляционная функция кристалла. Кроме того, в окончательных выражениях параметр \(\beta \) полагаем равным единице (см. [8]).

Если ввести статический формфактор, определяющий пространственные корреляции между атомами решетки,

\[
S(q_1^c, q_2^c) = \tilde{F}_0(q_1^c) \delta(q_1^c - q_2^c) + g(q_1^c, q_2^c), \tag{13}
\]

то величину

\[
K_{xx} \equiv K(q^g_x) = \int d\lambda_x A(\lambda_x, q^g_x)
\]

можно представить в симметризованной форме, записав \(A(\lambda_x, q^g_x) \) в виде

\[
A(\lambda_x, q^g_x) = \frac{1}{v_0} \int d\mathbf{q}_1^c d\mathbf{q}_2^c G(-q_1^c + \frac{\lambda_x}{2}, q_2^c + \frac{\lambda_x}{2}, q^g_x), \tag{14a}
\]

\[
G(q_1^c, q_2^c, q^g_x) = -S(q_1^c, q_2^c) \nabla_{q^g_x}^2 \Phi(|\mathbf{q}^g - \mathbf{q}^c|) \nabla_{q^g_x}^2 \Phi(|\mathbf{q}^g - \mathbf{q}^c|). \tag{14b}
\]

Здесь учтено, что продольная скорость много больше поперечной, т.е. \(v^g \gg v_0 \), где \(v_0 = (2E_0/m)^{1/2} \) начальная скорость частицы.
При высоких температурах $T \geq 300 \text{K}$ решения уравнения (2) при $s = 1, 2$ в квази-
гармоническом приближении имеют вид

$$
\tilde{F}_{01}(q_{\parallel}^2) = \sum_{m} w(q_{\parallel}^2 - R_m; \sigma_{T}^2),
$$

$$
\tilde{F}_{02}(q_{\parallel}^2, q_{\parallel}^2) = \sum_{m} w(q_{\parallel}^2 - R_m; \sigma_{T}^2)w(q_{\parallel}^2 - R_n; \sigma_{T}^2),
$$

где R_m — радиус-вектор m-го узла решётки, $w(q^2; \sigma^2) \sim T$. Подставляя (15) в (12) и учитывая в качестве Ф-экранированный
кулоновский потенциал с радиусом действия a_0, преобразуем основной член (12) в виду, удобный для числового интегрирования. В результате получаем

$$
K^{(1)}(q_{\parallel}^2) = \frac{1}{\kappa_0} (Z_1 Z e^2)^2 \sum_{h_n} B^{(1)}(h_n) P(h_n) \cos(h_n q_{\parallel}^2),
$$

где

$$
B^{(1)}(h_n) = \int_{0}^{\Lambda_1} d\kappa k^3 \left[\beta_n(k) \left(\beta_n(k) + \eta_n(k) \right) \right]^{-1},
$$

$\eta_n(k) = k^2 + \kappa^2 + h_n^2$, $\kappa = 1/a_0$, $\Lambda_1(Z_1 Z e^2) \frac{1}{E_0} \frac{M_e}{M_e + m}$.

Что же касается величины $-\Delta K^{(1)}(q_{\parallel}^2)$ (126), характеризующей вклад корреляционных эффектов, то её окончательное выражение имеет громоздкий вид. Поэтому корреляционная плоскость будет показана только графически.

3. Перейдем к изучению движения частиц в условиях электронного рассеяния. В процессах рассеяния частиц на электронах существенную роль играют временные корреляции [12]. Теперь необходимо учитывать пространственно-временные корреляции, когда значение электронной плотности ρ в точке q в момент t оказывает влияние на плотность в точке q' в момент $t + \tau$. Динамический формфактор $\tilde{S}(q, q'; \tau)$, характеризующий пространственно-временную корреляцию между электронами [2, 13], может быть выражён через двухвременную запаздывающую функцию Грина [14]

$$
\langle \rho(q', t + \tau) \rho(q, t) \rangle = -i \Theta(\tau) \langle [\rho(q', t + \tau), \rho(q, t)] \rangle,
$$

где усреднение $\langle \ldots \rangle$ выполняется по равновесному распределению электронов,

$$
[A, B] = AB - BA. Действительно, переходя к четырёх-компоненам по пространственным и временным переменным, имеем [2]

$$
\tilde{S}(k, k'; \omega) = (1/\pi) \text{Im} \langle \rho_k \rho_{k'} \rangle_{\omega},
$$

где Im — мнимая часть.
где \(\rho_k \) — фурье-компоненты флуктуаций плотности электронного газа. Здесь следует подчеркнуть, что после введения определений (17), (18) мы перешли к полукlassическому описанию, когда частицы по-прежнему рассматриваются как классические частицы, а электроны как квантовые [7].

Для того чтобы воспользоваться общим видом форм-фактора (18), коэффициент \(K(q_g^2) \) из (11) разложим в ряд Фурье. Фурье-компоненту этого коэффициента обозначим \(\tilde{A}(h_z) \) и, принимая во внимание (14), записаем

\[
\tilde{A}(h_z) = \int \frac{d\omega}{\varepsilon_0} \int d\mathbf{k} \tilde{G}
\left(-\frac{h_z}{2}, k + \frac{h_z}{2}; \omega\right) \delta\left(\omega_0 + k \cos \Theta\right),
\]

(19a)

\[
\tilde{G}(\mathbf{k}, \mathbf{k}'; \omega) = \frac{-\delta(\mathbf{k}, \mathbf{k}', \omega, k_0')}{\Phi(\mathbf{k}) \Phi(\mathbf{k}')}. \tag{19b}
\]

Как следует из (19a), учет пространственно-временных корреляций (в (14) рассматривались только пространственные корреляции, описываемые с помощью (13)) дает дополнительное интегрирование по переносным энергиям. Естественно, что при интегрировании по переносным энергиям и переносным импульсам учитывается и запаздывание \(\delta(\omega + \mathbf{k} \mathbf{v}_0). \) В (19a) этот закон \((\Theta) \) углов между \(\mathbf{k} \) и \(\mathbf{v}_0 \) записан таким образом, что зависимость \(\tilde{A} \) от скорости \(\mathbf{v}_0 \) (в случае высоких скоростей) выделяется в явном виде. Действительно, анализ показывает, что при \(k_0 \gg \omega \) в интеграле по \(d\mathbf{k} \) (19a) достаточно ограничиться старшим членом, который от \(\varepsilon_0 \) не зависит, так что \(\tilde{A}(h_z) \sim (1/k_0). \)

Преобразуем \(K(h_z) \) (19). Во-первых, ограничиваясь членами второго порядка по экранированному кулоновскому потенциалу \(\Phi \), заменим функцию Грина в (18) функцией Грина нулевого порядка по взаимодействию. Во-вторых, в соответствии с традиционными представлениями теории канализирования [2] будем считать, что электронный газ изотропен. В этом случае либо часть функции Грина плотность-плотность зависит только от \(k \). Принимая во внимание это обстоятельство, выполним в (19a) интегрирование по углам переносным. В-третьих, при интегрировании в (19a) по \(\omega \) воспользуемся правилом суммы для запаздывающей функции Грина [14]. В результате получаем

\[
K(q_g^2) = \frac{1}{\varepsilon_0} (Z_1 e^2)^2 \sum_{h_n \geq 0} B^{(2)}(h_n) \langle \rho_{h_n} \rangle^{(0)} \cos(h_n q_g^2), \tag{20}
\]

где

\[
B^{(2)}(h_n) = \frac{1}{\pi \rho_a^2} \int_{k_c} d^2 k \left(k^2 - (1/4) h_n^2 \right) \left[\gamma_n(k) - k^2 h_n^2 \right]^{-1} \left\{ n_0 - P_n(k) \right\}, \tag{21}
\]

\[
\gamma_n(k) = k^2 + \omega_0^2 + (1/4) h_n^2, \quad A_2 = 2 m_c e \varepsilon_0, \quad \left\{ \ldots \right\} \quad \text{условие равновесия состоянию невозмущающих электронов,}
\]

\[
P_n(k) = \langle \rho_{h_n + k \rho - k} \rangle^{(0)} / n_{k_c}(h_n), \quad \rho_0 = \langle \rho(h_n = 0) \rangle^{(0)}, \quad n_{k_c}(h_n) = \langle \rho_{h_n} \rangle^{(0)}.
\]

Минимальное значение \(k \) в интеграле (21) определено как \(k_c = \omega_F / e \), где \(\omega_F \) — частота плазменных колебаний и \(e \) — скорость Ферми, поскольку для процессов диффузионного типа достаточно учесть вклад близких столкновений с индивидуальными возбуждениями электронного газа [2]. На основе (20) и (21) искомую величину можно записать в

\[2\text{)Те же модельные представления используются во всех известных вам работах по диффузионному декаплированию (см., например, [4]).} \]
виде $\tilde{K}_{zz} = K^{(2)}(q_z^2) - \Delta K^{(2)}(q_z^2)$, где первое слагаемое, включающее n_0 из фигурных скобок в (21), дает член $K^{(2)}(q_z^2)$, а второе слагаемое, включающее $P_n(k)$, дает корреляционную часть функции $-\Delta K^{(2)}(q_z^2)$.

Найдем окончательный вид \tilde{K}_{zz} в условиях электронного рассеяния. Прежде всего, ограничиваясь вычислением $B^{(2)}(h_n)$ (21) в приближении хаотических фаз [13], поскольку в этом приближении анализ выражения значительно упрощается по сравнению с анализом в приближении Хартри-Фока. Итак, подставим в $B^{(2)}$ выражение для $P_n(k)$ в приближении хаотических фаз и выполним интегрирование по k. Далее, используя уравнение Пуассона, вычислим плотность локальных валентных электронов $n_{\text{loc}}(q_z^2)$ так же, как это сделано в [10]. Если в выражении для плоскостного потенциала, входящего в уравнение Пуассона, ограничиться ангармонизмом четвертого порядка

$$U_{pl}(q_z^2) = k_1(q_z^2)^2 + k_2(q_z^2)^4,$$

то получим

$$n_{\text{loc}}(q_z^2) = n^* Z_{\text{loc}}^{(2)}(q_z^2)^2 = (3k_2/\pi e)(q_z^2)^2,$$

где $Z_{\text{loc}}^{(2)}$ число локальных электронов, приходящихся на атом резонатора. Соответственно плотность однородного электронного газа равна [10] $n_0 = n^* Z_{\text{loc}}^{(0)} = (2k_1/2\pi e)$. С учетом этого вида $B^{(2)}(h_n)$, плотность электронов $n_{\text{loc}}(q_z^2)$ (точнее, фурье-компоненты функции $n_{\text{loc}}(q_z^2)$) выполним суммирование по h_n в (20). Известно [15], что в случае высоких скоростей частиц вклад эффекта экранирования в кинетические коэффициенты пренебрежимо мал. Поэтому, пренебрегая для простоты экранированием, окончательное выражение для K_{zz} замирает в виде

$$K^{(2)}(q_z^2) = \frac{1}{\nu_0} \left(Z e^2 \right)^2 \left(n^* Z_{\text{loc}}^{(0)} \ln \frac{2m_e v_{0T}}{\omega_p} + \frac{1}{2} \frac{Z e^2}{n^* Z_{\text{loc}}^{(2)}} \ln \left[\frac{2m_e v_0^2}{g(\pi/4)^2 - k^2} \right] \frac{2(2\pi/4)^2 - k^2}{3} \right),$$

$$-\Delta K^{(2)}(q_z^2) = \frac{1}{\nu_0} \left(Z e^2 \right)^2 n^* Z_{\text{loc}}^{(2)} \frac{8}{3} \left(4\pi/4 \right)^2 f(u),$$

где $u = (\pi/2)(q_z^2/l)$, $f(u) = (1/3) \cos u - (\pi/8) \cos^2 u$.

4. Перейдем к обсуждению полученных результатов. Если в уравнении (10) отбросить член порядка β^2, то формально оно сводится к уравнению Больцмана теории газов [8]. Необходимость учета в (10) членов порядка β^2 связана с тем, что он содержит двухчастичную функцию распределения кристалла F_{gr}. Благодаря этому члену не реализуются кинетические процессы в отсутствие рассеяния, т.е. при нулевой температуре. Таким образом и на то, что после перехода к оператору столкновений в дифференциальной форме (11) физический смысл последнего уже не тот, что в (106). Действительно, (106) характеризует изменение распределения в условиях более традиционного элементарного акта бинарного столкновения, тогда как (11) нужно интерпретировать как изменение в условиях многократного рассеяния: многочастичное взаимодействие является в данном случае результатом суперпозиции многих парных взаимодействий частиц с атомами плоскости двойственной.
Кинетическое уравнение (10a) с членом столкновений в дифференциальной форме (11) описывает дальнейшую эволюцию распределения частиц после установления лигнардо-паевского [11] (или в терминологии [16] динамического) равновесия. Поясним это утверждение. На самых малых глубинах проникновения быстрые частицы можно исследовать на основе стохастического уравнения движения для двухмерного марковского процесса \((q^0_z, \varepsilon_{\perp})\):

\[
q^0_z = \frac{2}{m} \left(\varepsilon_{\perp} - U_{pl}(q^0_z) \right) \left(\frac{1}{m} \right)^{1/2},
\]

\[
\varepsilon_{\perp} = \frac{2}{m} \left(\varepsilon_{\perp} - U_{pl}(q^0_z) \right) \left(\frac{1}{m} \right)^{1/2} f(q^0_z, t). \tag{23}
\]

Здесь \(\varepsilon_{\perp} = (1/2m)(p^2_z + U_{pl}(q^0_z))\) — поперечная энергия, а случайные толчки, которые испытывают частицы, описываются с помощью локальной стохастической силы \(f(q^0_z, t)\). Поскольку взаимодействие быстрых частиц с тепловыми колебаниями атомов решетки (электронами) мало, из второго уравнения системы (23) следует, что в условиях динамического равновесия поперечная энергия медленно меняется со временем. Время пребывания процесса в малой скорости заданного значения \(q^0_z\) обратно пропорционально скорости \(\nu^2 = \frac{q^0_z}{q^0_z}\). Поэтому для фиксированной поперечной энергии условное распределение частиц по координате может быть записано в следующем виде:

\[
P(q^0_z|\varepsilon_{\perp}) = \begin{cases}
\frac{1}{2\pi\varepsilon_{\perp}} \left(\varepsilon_{\perp} - U_{pl}(q^0_z) \right) \left(\frac{1}{m} \right)^{1/2}, & \text{при } U_{pl}(q^0_z) < \varepsilon_{\perp}, \\
0, & \text{при } U_{pl}(q^0_z) \geq \varepsilon_{\perp},
\end{cases} \tag{24}
\]

где

\[
\varkappa(\varepsilon_{\perp}) = \frac{1}{2} \int dq^0_z \left(\varepsilon_{\perp} - U_{pl}(q^0_z) \right) \left(\frac{1}{m} \right)^{1/2}
\]

нормировочная функция.

Система стохастических уравнений (23) соответствует уравнение движения для совместной плотности вероятности \(P_1(q^0_z, \varepsilon_{\perp}, t)\) [17]. Подставя в это уравнение плотности, записанную в форме

\[
P_1(q^0_z, \varepsilon_{\perp}, t) = \widetilde{P}(\varepsilon_{\perp}, t) P(q^0_z|\varepsilon_{\perp}),
\]

с учетом (24) можно получить уравнение типа Фоккера-Планка для \(\widetilde{P}(\varepsilon_{\perp}, t)\). Последнее, как показывает анализ, совпадает с кинетическим уравнением (10a), (11), если (10a) и (11) переводят в \(\varepsilon_{\perp}\)-представление и в члене столкновений сохранить только старший член. В полученном таким образом уравнении в качестве диффузионной функции в пространстве поперечных энергий фигурирует величина

\[
B(\varepsilon_{\perp}) = \left(\frac{2}{m} \right) \int dq^0_z \left(\varepsilon_{\perp} - U_{pl}(q^0_z) \right) P(q^0_z|\varepsilon_{\perp}) K(q^0_z). \tag{25}
\]

Такое же выражение для диффузионной функции дает теория уравнения Больцмана в условиях скользящих столкновений [8], если в члене столкновений заменить \(F_1\) на
Величина $K_{xx} \equiv K(q^2_x)$ (12) представляет собой диагональный элемент корреляционной матрицы сил (точнее, $f_x(q^2_x, t)$ составляющих сил взаим. оси x), действующих на частицу. Результаты численного расчета (16) в условиях фонового рассеяния представлены на рис. 1а. Здесь кривая μ_1 функция $K^{(1)}(q^2_x)/K_3$, $\mu_2 = \Delta K^{(1)}(q^2_x)/K_3$, $\mu_3 = K_{x^2}/K_3$, $K_3 = 8\pi n_0(Z_1 Z_2 e^2)^2/\nu_0$. Расчеты выполнены для исходной в плюсостям канала (100) кристалла германия при $T = 300K$. Как видно из рисунка, K_{xx} имеет вид гауссовой кривой, что обусловлено тепловым размазыванием атомов плоскости. Корреляционная часть кривая μ_2 дает отрицательную поправку (так же картина и в случае электронного рассеяния) в диагональный элемент полной матрицы $K_{xx} = K^{(1)}(q^2_x) - \Delta K^{(1)}(q^2_x)$. Графики матрицы воздействий в условиях электронного рассеяния $K_{xx} = K^{(2)}(q^2_x) - \Delta K^{(2)}(q^2_x)$ (22) при нулевой температуре показаны на рис. 16, где кривая μ_4 функция $K^{(2)}(q^2_x)/K^{(2)}(0)$, $\mu_5 = \Delta K^{(2)}(q^2_x)/K^{(2)}(0)$,
$\mu_0 = \tilde{K}_{zz}/K^{(2)}(0)$. В отличие от рассеяния на тепловых колебаниях решётки, воздействие электронов оказывается значительным по всей ширине канала, а в том числе и в центре канала. Следует иметь в виду, что кривые на рис. 16 относятся к случаю канализирования легких атомных частиц средних энергий $E_0 \lesssim 1$ МэВ, т.к. при выводе (22) мы учили только вклад валентных электронов. Естественно, что при более высоких энергиях необходимо учтывать и вклад электронов атомных керов (соответствующий расчёт будет представлен).

Рис. 2

Методом численного интегрирования вычислим диффузионную функцию (25) в случае фононного рассеяния при трех температурах $T_1 = 300$ К, $T_2 = 500$ К, $T_3 = 700$ К. При вычислении $B(\varepsilon_\perp)$ нами использованы формулы (24), (25), (16) (в том числе кривые на рис. 1а), а также выражение

$$U_p(q_0) = \int dq_{1z} \tilde{F}_{01}(q_{1z}) n(e) \int d\rho \Phi \left(\sqrt{(q_{0z}^2 - q_{1z}^2)^2 - |\rho|^2} \right), \quad \mathbf{q} = (q_z, \rho_c).$$

Результаты численного расчета представлены на рис. 2, где

$$\nu = B(\varepsilon_\perp)/D, \quad D = 4\pi n(e)(Z_1 Z_2 e^2)/(2e^2/\sqrt{m} \nu_0), \quad \chi_i = U(T_i)/\varepsilon_\perp.$$
здесь \(i = 1, 2, 3, U_0(T) \) вершины потенциального барьера плоскости при температуре \(T \) [9, 20], \(\epsilon_\perp^* = E_0\psi^2_\perp \) критическая перспективная энергия [9]. Согласно первоначальному варианту классической теории Линкенрода [11] при углах падения, меньших критического \(\psi^* \), пучок быстрых частиц распадается на две части: канализированную и хаотическую. Канализированные частицы движутся в центре канала, периодически отражаясь от кристаллографических плоскостей, образующих его стенки. Что же касается частиц хаотической части пучка, то они движутся по прямым траекториям без произвольных углов к плоскости канала. На рис. 2 эти части пучка соответствуют две области: \(\epsilon_\perp < U_0(T) \) для канализированных частиц, \(\epsilon_\perp \geq \epsilon_\perp^* \) для хаотических. Причем значения диффузии, соответствующие режиму канализации. Кроме того, из рис. 2 следует, что в случае хаотического движения функции \(B(\epsilon_\perp) \) растет линейно с ростом \(\epsilon_\perp \).

Однако наиболее интересный результат наблюдается (см. рис. 2) в области \(\epsilon_\perp \simeq U_0(T) \). Действительно, диффузионная функция имеет излом при \(\epsilon_\perp = U_0(T) \). Дело в том, что состояния частичек, энергетически прыгающих к вершине барьера, соответствуют зона квазикаллирования [21]. Другими словами, рассматриваемой здесь области поперечных энергий возможна реализация еще одного режима движения квазикаллирования. Этого режима нет в классической теории [11]. В режиме квазикаллирования частицы движутся вдоль кристаллографической плоскости в непосредственной близости от стенки канала, совершая случайным образом переходы от одной стенки к соседней (если кристаллографические плоскости пронумерованы слева направо, то наблюдается переход от первой стенки к второй, через некоторый промежуток времени от второй к третьей и т.д.). Локальная теория, развитая в настоящей работе, позволяет учесть различные вклады в кинетические процессы, которые дают частицам, движущимся в режимах канализирования, квазикаллирования и хаотического движения. Отсюда возникает сложная функциональная зависимость, в том числе появление особенности (излома) функции \(B(\epsilon_\perp) \). В то же время нелокальные теории (см., например, [22]) дают гладкие, монотонно возрастющие функции \(\epsilon_\perp \), не имеющие никаких особенностей. Отметим также, что в области \(U_0(T) < \epsilon_\perp < \epsilon_\perp^* \) (см. рис. 2) происходит переход от квазикаллирования к хаотическому движению. При этом, как показан анализ, локальные траектории квазикаллированных частиц имеют \(\epsilon_\perp^* \) вершину перехода в прямые траектории, соответствующие частичкам хаотического пучка.

На рис. 2 хорошо видно, что потенциальный барьер размер \(U_0(T) \) уменьшается с ростом температуры. Этот факт удовлетворительно согласуется с результатом аналитического расчета вершины потенциального барьера [20], где плоскость канала рассматривалась как непрерывный набор гармонических осцилляторов, а потенциал плоскости вычислялся путем суммирования отдельных слоев, образуемых осцилляторами.

Список литературы

Yu.A. Kashlev, N.M. Sadykov

STATISTICAL THEORY OF RAPID PARTICLES
CHANNELING BASED ON THE LOCAL BOLTZMANN EQUATION. CORRELATION MATRIX OF INTERACTIONS AND DIFFUSION FUNCTION OF PARTICLES

Based on Bogoliubov's chain of equations the kinetic theory of rapid particles in crystal is developed. For one-particle distribution function under iteration of particles with thermal oscillations and valent electrons a local kinetic equation is obtained. With the account of the explicit form of the collision term in the kinetic equation the basic characteristic ofa subsystem of particles in the channeling problem - diffusion function \(B(\varepsilon_\perp) \) in the space of transversal energies is found. It is shown that the functional dependence provided by \(B(\varepsilon_\perp) \) is different in three regions of \(\varepsilon_\perp \), corresponding to channeling, quasichannelling and chaotic motion of particles. It is also shown that the diffusion function hasa break when the transversal energy equals to the top of the potential barrier of a channel.