
Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use
http://www.mathnet.ru/eng/agreement

Download details:
IP: 54.70.40.11
February 2, 2018, 08:13:00
Differentiable manifolds in Euclidean space

Hassler Whitney (Cambridge, Mass.)

We present here a summary of some theorems on the imbedding of abstract differentiable manifolds in Euclidean space E^n and on the approximation to such manifolds by analytic manifolds. As a corollary it is noted that on any differentiable manifold may be given an analytic Riemannian metric.

I. The imbedding of a differentiable manifold in Euclidean space

Let M be a topological space with neighborhoods U_1, U_2, \ldots. Let each U_i be homeomorphic with the interior of the unit m-sphere S^m. If U_i and U_j have common points U_{ij}, then the homeomorphisms of U_i and U_j with S^m induce a mapping of one part of S^m on another part. If all such maps are of class C^r (i.e., have continuous partial derivatives through the rth order), $r \geq 1$, with non-vanishing Jacobian, we say M is differentiable, and of class C^r.

If M is in E^n and each point of M is in a neighborhood which may be defined by expressing $n - m$ of the coordinates in terms of the remaining m, the functions being of class C^r, then M is of class C^r in the above sense; we say M is of class C^r in E^n. Suppose M is of class C^r, and is mapped into E^n. The n coordinates at points of M are n functions defined over M. If these functions are of class C^s (with the obvious definition for $s \leq r$), and are independent (so that m independent directions at any point of M go into m independent directions in E^n), we call the map of M in E^n a regular C^r-map. Such a map is locally one-one: a neighborhood of any point of M is mapped in a one-one manner in E^n.

Theorem I. Any m-manifold of class C^r ($r \geq 1$ finite or infinite) may be imbedded by a regular C^r-map in E^{2m}, and by such a map in a one-one manner in E^{2m+1}.

The proof runs as follows:

If M is closed, a finite number of neighborhoods U_1, \ldots, U_s cover M. Corresponding to these neighborhoods we define functions f_1, \ldots, f'_μ, $\mu = (m + 1)v$, of class C^r over M, which used as coordinates, map M in a regular C^r-manner in E^v. If $r = 1$, we next approximate to M by a manifold of class C^2. We now project M or the new manifold along straight lines into spaces of lower dimension, till we have it in E^{2m+1} or in E^{2m}. If M is not closed, we define such a map successively over larger and larger parts of M.

II. Approximations to differentiable manifolds by analytic manifolds

A manifold of class C^r in E^n was defined above; it is a analytic if the functions defining its neighborhoods are analytic. If M and M^* are homeomorphic manifolds in E^n and $\eta(p)$ is a positive continuous function defined on M, we say M^* approximates to M through the rth order with an error $<\eta(p)$ if the distance from any point p of M to the corresponding point p^* of M^* is $<\eta(p)$, and corresponding partial derivatives of order $\leq r$ (in a suitable coordinate system) differ by $<\eta(p)$.

Theorem II. Let M be of class C^r in $E^n (r \geq 1$ finite), and let $\eta(p)$ be a positive continuous function defined on M. Then there is an analytic manifold M^* in E^n which approximates to M through the rth order with an error $<\eta(p)$.

To prove the theorem, we first define a positive function f, analytic in $E^n - M$, and approaching 0 as we approach M. The points $f = c > 0$ define a "tube" about M; the $(n - m)$-plane orthogonal to M at p cuts $f = c$ in an $(n - m - 1)$-sphere. We define in an analytic fashion a "centre" to the tube; the set of centre points form M^*.

From Theorems I and II follows

Theorem III. Any m-manifold of class $C^r (r \geq 1$ finite) is homeomorphic with an analytic manifold in E^{2m+1}, the homeomorphism being of class C^r.

We may define ds^2 on the manifold as the ds^2 in E^{2m+1}; hence

Theorem IV. To any manifold M of class $C^r (r \geq 1$ finite) may be given an analytic Riemannian metric, the g_{ij} being of class C^r in terms of the original neighborhoods in M.

III. Imbedding of manifolds in families of analytic manifolds

We state here a generalization of Theorem II for certain classes of manifolds in E^n.

We say M is in regular position in E^n if there exist $n - m$ independent continuous unit vector functions $v_1(p), \ldots, v_{n-m}(p)$ defined over M with the following property: each point p_0 of M is in a neighborhood U of p_0 in M which is an m-cell, and such that any vector through two points of U makes an angle $> \rho(p_0)$ with the $(n - m)$-plane determined by the $v_1(p_0), \ldots, v_{n-m}(p_0)$; $\rho(p)$ is a positive continuous function defined on M.

If M is differentiable, the condition reduces to: the normal $(n - m)$-planes to points of M may be determined by $n - m$ vector functions on M. The class of such (differentiable) manifolds is the same as the class of manifolds which may be determined by the simultaneous vanishing of $n - m$ (independent) differentiable functions.

Theorem V. Let M be an m-manifold of class $C^r (r \geq 1$ finite) in regular position in E^n, and let $\eta(p)$ be a positive continuous function on M. Then M can be imbedded in an $(n - m)$-parameter family of manifolds $M(c_1, \ldots, c_{n-m})$, each $|c_i| < 1$, such that

1) $M(0, \ldots, 0) = M$,

2) $M(c_1, \ldots, c_{n-m})$ is analytic if $(c_1, \ldots, c_{n-m}) \neq (0, \ldots, 0)$.

2 If M is differentiable, it is in regular position if and only if the normal sphere-space is a product space. See the following paper, especially 3, C) and 8, d).
3) each \(M(c_1, \ldots, c_{n-m}) \) approximates to \(M \) through the \(r \)th order with an error \(\leq \eta(p) \),

4) the manifolds fill out a neighborhood of \(M \) in a one-one way.
Дифференцируемые многообразия в евклидовом пространстве

Х. Уитнэй (Кэмбридж, С. Ш. А.)

(Резюме)

Изложение некоторых результатов о включении абстрактных дифференцируемых многообразий в евклидовы пространства и об аппроксимации этих многообразий аналитическими многообразиями. В частности: каждое r раз дифференцируемое n-мерное многообразие топологически отображается с непрерывностью первых r производных на некоторое аналитическое многообразие, лежащее в $(2n+1)$-мерном евклидовом пространстве. В качестве следствия получается, что в каждом дифференцируемом многообразии может быть введена аналитическая риманова метрика.