
DOI: https://doi.org/10.4213/tvp1074

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use
http://www.mathnet.ru/eng/agreement

Download details:
IP: 54.70.40.11
December 2, 2018, 12:19:45

Поступила в редакцию 5.V.1998

© 1999 г.

DYNKIN E. B.*

EXIT LAWS AND EXCESSIVE FUNCTIONS FOR SUPERPROCESSES¹)

Пусть ξ есть марковский процесс с переходной функцией p(r, x; t, dy), а X — соответствующий суперпроцесс Доусона–Ватанабэ (т.е. суперпроцесс с характеристикой ветвления ψ(u) = ρu²). Обозначим через P переходную функцию X и положим

\[p_n(r, x; t, dy) = \prod_{i=1}^{n} p(r, x_i; t, dy_i). \]

Любому закону выхода \(t \) для \(p_n \) соответствует закон выхода \(L_t \) для \(P \) такой, что \(L_t^\mu(\mu) \) есть полином степени n по \(\mu \) со старшим членом \((t, \mu^n) \) для любого \(t \). Любой полиномиальный закон выхода для \(P \) допускает единственное представление в виде \(L_{t_1} + \cdots + L_{t_n} \), где \(t_k \) есть закон выхода для \(p_k \).

Ключевые слова и фразы: марковский процесс, суперпроцесс Доусона–Ватанабэ, полиномиальный закон выхода для \(P \).

Dedicated to Yu. V. Prokhorov on his 70th birthday

1. Action of the Dawson–Watanabe semigroup on polynomials

1.1. The Dawson–Watanabe superprocess. With every measurable space \((E, \mathcal{B})\) another measurable space \((\mathcal{M}, \mathcal{B}_\mathcal{M})\) is associated: \(\mathcal{M}\) is the set of all finite measures on \((E, \mathcal{B})\) and \(\mathcal{B}_\mathcal{M}\) is the \(\sigma\)-algebra in \(\mathcal{M}\) generated by the functions \(F(\mu) = \mu(B)\) with \(B \in \mathcal{B}\). To every Markov transition function \(p\) in \((E, \mathcal{B})\) there corresponds a Markov transition function \(P\) in \((\mathcal{M}, \mathcal{B}_\mathcal{M})\) such that, for every \(f \in p\mathcal{B}, \quad \int_{\mathcal{M}} P(t, \mu; s, dv) e^{-f(u,v)} = e^{-f(u,v)}, \quad (1.1) \)

* Cornell University, Department of Mathematics, White Hall, Ithaca, NY, 14853; e-mail: ebdl@cornell.edu

¹) Partially supported by National Science Foundation Grant DMS-9970942.

²) This writing means that \(f\) is a \(\mathcal{B}\)-measurable function from \(E\) to \([0, \infty]\). We write \(f \in p\mathcal{B}\) if \(f \in p\mathcal{B}\) and \(f\) is bounded.
where
\[u(r, x) + \gamma \int_r^t p(r, x; s, dy) u^2(s, y) \, ds = \int_E p(r, x; t, dy) f(y) \]
(1.2)
(\(\gamma \) is a positive constant). If \(p \) is the transition function of a right Markov process \(\xi = (\xi_t, \Pi_{r,x}) \), then \(\mathcal{P} \) is the transition function of a right Markov process \(X = (X_t, P_{r,\mu}) \).

We call \(X \) the Dawson–Watanabe superprocess. The Markov semigroups of \(\xi \) and \(X \) are denoted \(T_t \) and \(\mathcal{P}_t \).

Both transition functions \(p \) and \(\mathcal{P} \) are defined on the same time interval \(I \). Without any loss of generality we can assume that \(I = \mathbb{R}_+ \).

1.2. Martingale characterisation of \(X \). We use the following property of the Dawson–Watanabe superprocess: for all \(r < u \in \mathbb{R}_+ \), \(\mu \in \mathcal{M} \) and \(\varphi \in \mathbf{p} \),
\[\langle T_u \varphi, X_t \rangle = \int X_t(dx)p(t, x; u, dy)\varphi(y) \]
(1.3)
is a continuous square integrable martingale on \((r, u)\) relative to \(\mathcal{P} \) with the quadratic variation \(\gamma((T_u \varphi)^2, X_t)dt \) (see, e.g., [2]; in a slightly different form this was proved earlier in [5]).

1.3. Polynomials on the space \(\mathcal{M} \). Denote by \(S^k \) the cone of finite positive measurable symmetric functions on the product space \((E^k, \mathcal{B}^k)\) of \(k \) replicas of \((E, \mathcal{B})\). To every \(\mu \in \mathcal{M} \) there corresponds a measure
\[\mu^k(dx_1, \ldots, dx_k) = \mu(dx_1) \cdots \mu(dx_k) \]
on \((E^k, \mathcal{B}^k)\). We deal with functions on \(\mathcal{M} \) of the form
\[F(\mu) = \sum_1^n (f_k, \mu^k) \quad \text{with } f_k \in S^k. \]
(1.4)
We call them polynomials in \(\mu \). Note that the coefficients \(f_k \) are uniquely determined by \(F \). Indeed, \(k! f_k(x_1, \ldots, x_k) \) is the coefficient at \(\lambda_1 \cdots \lambda_k \) in the polynomial \(F(\lambda_1 \delta_{x_1} + \cdots + \lambda_k \delta_{x_k}) \).

Operators \(B_k \): \(S^k \to S^{k-1} \) are defined by the formula
\[B_k f(x_1, \ldots, x_k) = \frac{k\gamma}{2} \sum_\sigma f(x_{\sigma(1)}, \ldots, x_{\sigma(k)}), \]
(1.5)
where \(\sigma \) runs over all monotone increasing mappings from \(\{1, \ldots, k\} \) onto \(\{1, \ldots, k-1\} \). For instance,
\[B_3 f(x_1, x_2) = \frac{3\gamma}{2} [f(x_1, x_1, x_2) + f(x_1, x_2, x_2)]. \]

Formula
\[p_k(r, x; t, dy) = \prod_1^k p(r, x_i; t, dy_i) \]
(1.6)
defines a transition function in \((E^k, \mathcal{B}^k)\). The corresponding semigroup \(T_k(r, t) \) preserves cone \(S^k \).

1.4. Action of \(\mathcal{P}_t^k \) on polynomials.

Theorem 1.1. For every \(r < t \) and every \(f \in S^k \)
\[P_{r,\mu}(f, X^k_t) = \sum_{j=1}^k \langle R_{j,k}(r, t) f, \mu^j \rangle, \]
(1.7)
where
\[R_{kk}(r, t) = T_k (r, t), \quad R_{jk}(r, t) = \int_r^t R_{j,k-1}(r, s) B_k T_k(s, t) \, ds \quad \text{for } j < k. \]
(1.8)

3) The definition of a right process in the nonhomogeneous setting and the construction of \(X \) can be found, e.g., in [3].
Proof. Formula \((1.7)\) follows by induction in \(k\) from the equation

\[
Pr,\mu(f, X^k_t) = (T_k(r, t) f, \mu^k) + Pr,\mu \int_r^t (B_k T_k(s, t) f, X^{k-1}_s) \, ds.
\] \((1.9)\)

To establish \((1.9)\) we note that if \(\eta\) and \(\tilde{\eta}\) are two measures on \((E^k, \mathcal{G}^k)\) and if

\[
\int f \, d\eta = \int f \, d\tilde{\eta}
\] \((1.10)\)

for all \(f\) of the form

\[
f(x) = \varphi(x_1) \cdots \varphi(x_k)\quad \text{with} \quad \varphi \in \mathbb{P} \mathcal{G} \] \((1.11)\)

then \((1.10)\) holds for all \(f \in S^k\). Therefore it is sufficient to prove \((1.9)\) for functions of the form \((1.11)\). For these functions

\[
(f, X^k_t) = (\varphi, X_t)^k.
\] \((1.12)\)

Fix \(t\) and put \(h^t_T = T_t \varphi\). Consider the martingale \(Y_s = (h^s, X_s)\) on the interval \([r, t)\). As we know, its quadratic variation is equal to \(\gamma(h^s)^2, X_s) \, ds\) and, by the Itô formula,

\[
Y^k_t = Y^k_r + \int_r^t k Y^{k-1}_s \, dY_s + \frac{1}{2} k(k - 1) \int_r^t Y^{k-2}_s \gamma(h^s)^2, X_s) \, ds.
\]

Therefore,

\[
Pr,\mu Y^k_t = Pr,\mu Y^k_r + \frac{1}{2} \gamma k(k - 1) Pr,\mu \int_r^t Y^{k-2}_s \gamma(h^s)^2, X_s) \, ds
\]

which implies \((1.9)\). Theorem 1.1 is proved.

1.5. Properties of \(R_{jk}\). It follows from \((1.8)\) that, for all \(j < k\),

\[
R_{jk}(r, t) = \int_{r < s_j < s_{j+1} < \cdots < s_{j-1} < t} T_j(r, s_j) B_{j+1} T_{j+1}(s_j, s_{j+1}) \cdots B_k T_k(s_{k-1}, t) \, ds_j \cdots ds_{k-1}.
\] \((1.13)\)

For instance,

\[
R_{j,j+2}(r, t) = \int_{r < s_j < s_{j+1} < t} T_j(r, s_j) B_{j+1} T_{j+1}(s_j, s_{j+1}) B_{j+2} T_{j+2}(s_{j+1}, t) \, ds_j \, ds_{j+1}.
\]

Formula \((1.3)\) implies that, for all \(r < s < t, i \leq j \leq k\),

\[
\sum_{i=1}^k R_{ij}(r, s) R_{jk}(s, t) = R_{ik}(r, t).
\] \((1.14)\)

(\(\frac{}{}\))

(The semigroup property of operators \(R_{ii}(r, t) = T_i(r, t)\) is a particular case of \((1.14)\) corresponding to \(i = j = k\).)

1.6. Time-homogeneous setting. In this setting, it is convenient to assume that \(I = \mathbb{R}\). If the transition function \(p\) is stationary (that is, if \(p(r,x; t, dy) = p_t(x, dy)\)), then the Dawson-Watanabe superprocess has also a stationary transition function \(\mathcal{P}_t(\mu, d\nu)\). The operator

\[
G^{k}_\lambda = \int_0^\infty e^{-\lambda t} T_k(t) \, dt
\]

is the resolvent of the semigroup \(T_k(t) = T_k(r, t + r)\). We denote resolvent corresponding to \(\mathcal{P}\) by \(G^{k}_\lambda\).

Theorem 1.2. \(\text{In the time-homogeneous case,}\)

\[
\int \mathcal{P}_t(\mu, d\nu) \langle f, \nu^k \rangle = \sum_{j=1}^{k} \langle R_{jk}(t) f, \mu^j \rangle,
\] \((1.16)\)

where

\[
R_{kk}(t) = T_k(t), \quad R_{jk}(t) = \int_0^t R_{j,k-1}(s) B_k T_k(t - s) \, ds \quad \text{for} \ j < k.
\] \((1.17)\)
If
\[F(\nu) = (f, \nu^k) \text{ with } f \in S^k, \] (1.18)
then
\[\mathcal{G}_\lambda F(\mu) = \sum_{j=1}^{k} \langle G_\lambda^j B_{j+1} G_\lambda^{j+1} \ldots B_k G_\lambda^k f, \mu^j \rangle. \] (1.19)

Proof. Formulae (1.16)–(1.17) follow from (1.7)–(1.8). Clearly, they imply (1.18)–(1.19).

2. Exit laws

2.1. Construction of polynomial \(\mathcal{P} \)-exit laws. Suppose that \(p \) is a Markov transition function in a measurable space \((E, \mathcal{B})\). Let \(0 < \beta \leq \infty \) and let a function \(\ell^t \in p\mathcal{B} \) not identically equal to \(\infty \) be given for every \(t \in (0, \beta) \). We say that \(\ell \) is a \(p \)-exit law at time \(\beta \) and we write \(\ell \in \mathcal{L}_\beta(p) \) if \(\ell_r^t = \ell^t \) for all \(r < t < \beta \).

Theorem 2.1. To every \(\ell \in \mathcal{L}_\beta(p) \) there corresponds a \(\mathcal{P} \)-exit law
\[L_\ell^t(\mu) = \langle \ell^t, \mu^n \rangle + \sum_{j=1}^{n-1} \int_{t}^{\beta} \langle R_{j,n-1}(t,u) B_n \ell^u, \mu^j \rangle du. \] (2.1)

If \(L \in \mathcal{L}_\beta(\mathcal{P}) \) and if, for every \(t \), \(L^t \) has the form (1.4), then
\[L = \sum_{j=1}^{n} L_{\ell_j}, \] (2.2)
where \(\ell_j \in \mathcal{L}_\beta(p_j) \).

Proof. 1°. By using (1.7), we establish that
\[L^t(\mu) = \sum_{k=1}^{n} \langle f_k^t, \mu^k \rangle \text{ with } f_k^t \in S^k \] (2.3)
satisfies the condition
\[\mathcal{P}_t L^t = L^t \] (2.4)
if and only if
\[f_k^t = \sum_{j=k}^{n} R_{k,j}(r,t) f_j^t \text{ for } k = 1, \ldots, n. \] (2.5)

2°. Function (2.1) has the form (2.3) with
\[f_n^t = \ell^t, \quad f_j^t = \int_{t}^{\beta} R_{j,n-1}(t,u) B_n \ell^u du \text{ for } j < n. \] (2.6)

We claim that these function satisfy (2.5). This is obvious for \(k = n \). If \(k < n \), then, by (2.6),
\[\sum_{j=k}^{n} R_{k,j}(r,t) f_j^t = R_{k,n}(r,t) f_n^t + \sum_{j=k}^{n-1} \int_{t}^{\beta} R_{k,j}(r,t) R_{j,n-1}(t,u) B_n \ell^u du. \] (2.7)

By (1.8), the first term in the right-hand side of (2.7) is equal to
\[\int_{t}^{\ell} R_{k,n-1}(r,s) B_n T_n(s,t) f_n^s ds = \int_{t}^{\ell} R_{k,n-1}(r,u) B_n \ell^u du. \] (2.8)

By (1.14), the second term is equal to
\[\int_{t}^{\beta} R_{k,n-1}(r,u) B_n \ell^u du. \] (2.9)
3°. By 1°, if L given by (2.3) is a \mathcal{P}-exit law, then the coefficients f_k^t satisfy conditions (2.5). By (1.8), this implies

$$f_n^r = T_n(r, t) f_n^t, \quad f_k^r = T_k(r, t) f_k^t + \sum_{j=k+1}^{n} \int_r^t R_{k,j-1}(r, s) B_j T_j(s, t) f_j^t \, ds \quad \text{for } k < n. \quad (2.10)$$

We conclude from this formula that $T_k(r, t) f_k^t \leq f_k^r$ for all k and all $r < t < \beta$. Therefore $T_k(r, t) f_k^t$ is monotone decreasing in t, a limit $\ell_k^t = \lim_{t \to \beta} T_k(r, t) f_k^t$ exists and it does not exceed $T_k(r, t) f_k^t$ for all k.

By passing to the limit in formula $T_k(r, s) T_k(s, t) f_k^t = T_k(r, t) f_k^t$, we prove that $\ell_k^t \in \mathcal{L}_\beta(p_k)$. (The dominated convergence theorem is applicable since $T_k(r, t) f_k^t \leq f_k^t$ and $T_k(r, s) f_k^t \leq f_k^t < \infty$.)

Since $\ell_j^t \leq T_j(s, t) f_j^t$, formula (2.10) implies

$$\int_r^t R_{k,j-1}(r, s) B_j \ell_j^t \, ds \leq \int_r^t R_{k,j-1}(r, s) B_j T_j(s, t) f_j^t \, ds \leq f_k^t$$

for all $r < t < \beta$ and all $k < j < n$. \quad (2.11)

Therefore,

$$\int_r^\beta R_{k,j-1} B_j \ell_j^t \, ds \leq f_k^t \quad \text{for all } r < t < \beta \quad \text{and all } k < j < n. \quad (2.12)$$

By passing to the limit in (2.10), we get

$$f_n^r = \ell_n^r, \quad f_k^r = \ell_k^r + \sum_{j=k+1}^{n} \int_r^\beta R_{k,j-1}(r, s) B_j \ell_j^t \, ds \quad \text{for } k < n. \quad (2.13)$$

By (2.3), (2.10) and (2.13),

$$L^t(\mu) = \sum_{k=1}^{n} (f_k^t, \mu_k^t) = \sum_{k=1}^{n} (\ell_k^t, \mu_k) + \sum_{1 \leq k < j \leq n} \int_t^\beta (R_{k,j-1}(t, s) B_j \ell_j^t, \mu_k^t) \, ds \quad (2.14)$$

which implies (2.2). Theorem 2.1 is proved.

2.2. Examples. Fix $\beta < \infty$. To every function $f \in S$ there corresponds $\ell_{\beta, f}$ given by the formula

$$\ell_{\beta,f}(x) = \int \prod_{i=1}^{n} p(t, x_i; \beta, dy_i) f(y_1, \ldots, y_n). \quad (2.15)$$

We say that m is a reference measure for p if the measure $p(r, x; t, \cdot)$ is absolutely continuous with respect to m for all $r < t$ and for all $x \in E$. By [4], the density function ρ can be chosen to satisfy the equation

$$\int \rho(r, x; s, y) m(dy) p(s, y; t, z) = \rho(r, x; t, z) \quad (2.16)$$

for all $r < s < t$ and for all $x, z \in E$. To every symmetric measure η on (E^n, \mathcal{B}^n) there corresponds $\ell_{\beta, \eta} \in \mathcal{L}_\beta(p_n)$ defined by the formula

$$\ell_{\beta, \eta}(x) = \int \prod_{i=1}^{n} \rho(t, x_i; \beta, y_i) \eta(dy_1, \ldots, dy_n). \quad (2.17)$$

We denote by $L_{\beta,f}$ and by $L_{\beta,\eta}$ the \mathcal{P}-exit laws which correspond to $\ell_{\beta,f}$ and to $\ell_{\beta,\eta}$ by Theorem 2.1. Clearly, $L(\beta, \eta) = L(\beta, f)$ if

$$\eta(dy_1, \ldots, dy_n) = f(y_1, \ldots, y_n) m(dy_1) \cdots m(dy_n).$$
3. Excessive functions

Let $T(t)$ be the semigroup corresponding to a stationary transition function p. We say that a function $h \in \mathcal{H}(p)$ is p-excessive and we write $h \in \mathcal{H}(p)$ if $h(x) < \infty$ for some x, $T(t)h \leq h$ for all t and $T(t)h \rightarrow h$ as $t \rightarrow 0$. A function $h \in \mathcal{H}(p)$ is called purely excessive if $T(t)h \rightarrow 0$ as $t \rightarrow \infty$ and it is called invariant if $T(t)h = h$ for all t. We denote the set of all purely excessive functions by $\mathcal{H}^0(p)$ and the set of all invariant functions by $\mathcal{H}_{inv}(p)$.

Every $h \in \mathcal{H}(p)$ has a unique representation $h = h_1 + h_2$, where $h_1 \in \mathcal{H}_{inv}(p)$ and $h_2 \in \mathcal{H}^0(p)$.

Note that $\mathcal{H}_{inv}(p)$ coincides with the class of t-independent p-exit laws at ∞.

To every $\ell \in L_0(p)$ there corresponds a function
\[
h = \int_{-\infty}^{0} \ell^t \, dt
\]
which is purely excessive unless it is equal to ∞ identically. The set of all purely excessive functions h of the form (3.1) will be denoted by $\mathcal{H}^0(p)$.

If there exists a reference measure for p, then, by [1] (Section 7.6), $\mathcal{H}(p) = \mathcal{H}^0(p)$.

Theorem 3.1. To every $h \in \mathcal{H}^0(p_n)$ there corresponds $H_h \in \mathcal{H}^0(p)$ defined by the formula
\[
H_h(\mu) = \langle h, \mu^n \rangle + \sum_{j=1}^{n-1} \langle G^j B_{j+1} G^{j+1} \cdots B_n h, \mu^j \rangle,
\]
where G^j is given by (1.15) with $\lambda = 0$.

Proof. Let ℓ correspond to h by (3.1) and let $L \in L_0(\mathcal{D})$ correspond to ℓ by Theorem 2.1. Then
\[
H_h(\mu) = \int_{-\infty}^{0} L^t(\mu) \, dt
\]
belongs to $\mathcal{H}^0(p)$. Formula (3.2) follows from (3.3), (2.1), (1.9), (1.17).

REFERENCES