В. А. Зорич, В. М. Кесельман, Конформный тип и изопериметрическая размерность субримановых многообразий, *УМН*, 1999, том 54, выпуск 4(328), 171–172

DOI: https://doi.org/10.4213/rm197
КОНФОРМНЫЙ ТИП И ИЗОПЕРИМЕТРИЧЕСКАЯ РАЗМЕРНОСТЬ СУБРИМАНОВЫХ МНОГООБРАЗИЙ

В. А. Зорич, В. М. Киселев

1) Мы используем понятие конформной изопериметрической размерности субриманова многообразия и изучаем ее связь с конформным типом многообразия. Эта работа является продолжением работ [1]–[3].

2) Гладкое многообразие M вместе с полризацией (распределением) $H \subset TM$ и ряжановой структурою g на H называют субримановым многообразием и обозначают через (M, H, g) или (M, H) (см. [4], [5]).

Если распределение $H \subset TM$ вполне ветвливое, то на M возникает естественная метрика, относительно которой многообразие M становится метрическим пространством, называемым M. Громовым пространством Карло-Каранеодори и, короче, C-C-пространством.

3) Метрическую (хаусдорфову) размерность многообразия M как C-C-пространства будем в дальнейшем обозначать через m. Она больше топологической размерности многообразия M, если $H \neq TM$.

4) Ряжанову метрику η называют конформно-тождественной или конформной метрикой g на H, если $\eta = \lambda^2 g$ на H для некоторой положительной регулярной функции λ на M.

5) Некомпактное субриманово многообразие (M, H) будем называть конформно-параболическим или, по-другому, многообразием конформно-параболического типа, если его конформная m-емкость бесконечна (т. е. есть абсолют M) равна нулю; если эта емкость положительна, то будем называть M конформно-гиперболическим или, по-другому, многообразием конформно-гиперболического типа (см. [3]).

ТЕОРЕМА 1. Субриманово многообразие метрической размерности m имеет конформно-параболический тип тогда и только тогда, когда на нем существует положная метрика, конформная исходной метрике многообразия, для которой расходится интеграл

$$\int_{+\infty}^{+\infty} S_{-\frac{1}{m}}(r) \, dr,$$

где $S(r)$ – площадь $(m, e. (m-1)$-мера Хаусдорфа относительно C-C-метрики) экадрической сферы радиуса r.

6) Функция $P: \mathbb{R} \to \mathbb{R}_+$ называется изопериметрической функцией субриманова многообразия (M, H, g), если для всех областей $D \subset M$ (включающих нулевые точки $(m-1)$-хаусдорфовы меры) множеств D и ∂D, обозначаемые далее через $V(D)$ и $S(\partial D)$ соответственно, выполняется изопериметрическое неравенство

$$P(V(D)) \leq S(\partial D).$$

7) Изопериметрическая размерность субриманова многообразия (M, H, g) – это точная верхняя граничных значений чисел $p \geq 0$, для каждого из которых неравенство верно

$$V^{p-1}(D) \leq c \cdot S^p(\partial D)$$

(где $c = c(p)$ – постоянная) выполняется одновременно для всех областей $D \subset M$ таких, что $V(D) \geq \delta > 0$.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 99-01-01179).
8) Конформной щелевометрической размерностью
суббима широизмы многообразия назова тонкую вершину грани его щелевометрической размерности в классе метрик, конформных исходной метрике многообразия.

9) Конформный тип суббима многообразия определяется только структурой многообразия на бесконечности (массивностью а большина), поэтому мы рассматриваем исчерпание многообразия.

Если щелевометрические соотношения (1) или (2) выполняются для всех областей данной исчерпания, начиная с некоторой, то мы естественно приходим к понятиям щелевометрической функции исчерпания, щелевометрической размерности исчерпания и конформной щелевометрической размерности исчерпания.

10) Для любого исчерпания $E = \{ D(t) \mid t \in \mathbb{R}_+ \}$ существует бесконечно много ненулевых щелевометрических функций. Но в каждой метрике есть одна максимальная щелевометрическая функция для E:

$$P_{\text{max}}(x) = S(D(t)),$$

где $x = V(D(t))$.

11) Мы рассматриваем далее только конформно-сферические исчерпания многообразия, т.е. такие исчерпания, которые являются сферическими (с общей центром) в некоторой метрике, конформной этой исходной метрике.

Будем говорить, что исчерпание E имеет конформно-параболический тип (конформно-гаусс-параболический тип), если существует полная конформная исходной на N метрика, в которой исчерпание E является сферическим и интеграл (*) расходится (соответственно, сходится).

Одним, что в силу теоремы 1 на конформно-гаусс-параболическом многообразии любое сферическое исчерпание имеет конформно-гаусс-параболический тип. А на конформно-параболическом многообразии существуют исчерпания обоих конформных типов (см. [7]).

12) Теперь сформулируем основные результаты этой работы.

ТЕОРЕМА 2. Для произвольного конформно-сферического исчерпания E суббима многообразия (M, N) щелеводородной размерности γ следующие утверждения (соответственно) эквивалентны:

1) E имеет конформно-параболический (-гаусс-параболический) тип;
2) конформная щелевометрическая размерность γ равна t_{∞};
3) существует полная метрика, конформная исходной метрике многообразия, в которой E — сферическое исчерпание и его максимальная щелевометрическая функция имеет вид $P_{\text{max}}(x) = x^{-\gamma}$ ($P_{\text{max}}(x) = x$); в частности, в этой метрике щелевометрическая размерность исчерпания равна t_{∞}.

СЛЕДСТВИЕ. Суббима многообразия щелеводородной размерности t является конформно-параболическим (-гаусс-параболическим) тогда и только тогда, когда для некоторой (любой) полной метрик, конформной исходной метрике многообразия, соответствующее ей сферическое исчерпание многообразия имеет конформную щелевометрическую размерность, равную t_{∞}.

СПИСОК ЛИТЕРАТУРЫ

Московский государственный университет им. М. В. Ломоносова; Привет кандидату
Кемеровский государственный университет 03.06.1999
E-mail: vzor@glasnet.ru, kvm@glasnet.ru