Б. М. Гуревич, А. А. Темпельман, Хаусдорфова размерность и термодинамический формализм, УМН, 1999, том 54, выпуск 2(326), 171–172

DOI: https://doi.org/10.4213/rm139

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением
http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
HAUSDORFFAЯ РАЗМЕРНОСТЬ
И ТЕРМОДИНАМИЧЕСКИЙ ФОРМАЛИЗМ

Б. М. ГУРЯЧ, А. А. ТЕМПЕЛЬМАН

На пространстве \(S^T = \{x : T \rightarrow S\} \), где \(T \) – счетное, а \(S \) – конечное множество, можно многими способами ввести метрику, согласованную с топологией, порождаемой цилиндрическими множествами. Мы определим класс метрик, относящихся к хюндoradoффу размерность всего пространства и его частей можно связать с основными понятиями термодинамического формализма [1]. Для ряда частных случаев была задача уже неоднократно рассматривалась (см. [2]) и указанную там литературу.

1. При любом \(V \subset T \) будем называть элементы \(x \) множества \(S^V \) конфигурациями на \(V \).
Если \(V \subset W \), то для каждой конфигурации \(x \in S^W \) определяется ее ограничение \(x_V \) на \(V \). Пусть заданы: последовательность конечных множеств \(T_n \subset T \), ведущее \(\tau \)-замыкание множество \(X \subset S^T \), определенное локально-конечной системой ограничений (ср. [1; §1.1]), и последовательность функций \(a_n : X \rightarrow R \), удовлетворяющие условиям: (a) \(a_n(x) > 0 \) при всех \(x \in X, n \geq 1 \); (b) \(a_n(x) = a_n(x') \) если \(x_T = x'_T \); (c) \(a_n(x) \rightarrow 0 \) при \(n \rightarrow \infty \) везде \(x \in X \).

Пусть \(X_V = \{x' \in X : x'_T = x_T \} \subseteq X \), \(V \subset T \), и \(\Xi_n(x) = \{x' \in X : x'_T = x_T \}, x \in X, n \geq 1 \). Для любых \(r > 0, b > r \), \(x \in X \) положим \((l, r, b) = \max \{n \in \mathbb{Z}^+ : b_n(x) \geq r\} \). Свойства функций \(a_n \) гарантируют, что \(\Xi(x, r, b) \) корректно определено, при этом \(\sup_x \Xi(x, r, b) < \infty \) при всех \(r, b \) и \(\inf_x \Xi(x, r, b) \rightarrow \infty \) при \(r \rightarrow 0 \) везде \(b > 0 \).

Пусть на \(X \) задана метрика \(\rho \) и \(B_p(x, r) = \{x' \in X : \rho(x, x') < r\} \), \(r > 0 \), \(x \in X \). При \(n \in N, b > 0 \) поставим в соответствие каждой точке \(x \) вектор \(B_p(x, b_n(x)) \) радиуса \(\rho \). Пусть \(L_p(x, n, b) = \max \{l(x, r, b) : r > 0, b > r, x \in X\} \) среди этих цилиндров существует \(l \) логарифмически не пересекающихся. Определены индексы \(\rho \)-мер: на множестве \(C^p_n(x) = \sup_x \rho(x, n, b) \) (ср. [2], [3]). Назовем метрику \(\rho \) согласованной с последовательностью \(\{a_n\} \), если существуют такие \(b_1, b_2 > 0 \), что \(\rho(x, x') \leq b_1 a_n(x) \) при \(x_T = x'_T \) и (i) \(\rho(x, x') \leq b_2 a_n(x) \) при \(x_T = x'_T \) и (ii) \((b_1, b_2) < \infty \).

Естественный класс таких метрик получается с помощью геометрических конструкций, отображающих \(X \) и \(\{a_n\} \) (см. [2], [3]).

Введем теперь класс последовательностей \(\{a_n\} \), сопряженных с моделями статистической физики на \(T \). Эти модели задаются потенциалами (см. [1], [4]). Пусть \(F \) – совокупность конечных множеств \(F \subset T \) и \(X^{(F)} = \bigcup_{V \in F} X^V \). Будем считать потенциал \(U \) функцией, заданной на \(X^{(F)} \), и писать \(U(V, x) \) вместо \(U(x) \), \(x \in X \), \(V \in F \). Предположим, что \(\|U\| < \infty \), где

\[\|U\| = \sup_{T \in F} \sum_{x \in X^V} \max_{V \in F} \|U(V, x)\|, \]

обозначив через \(E(U)(V, x), Z(U)(V) \) и \(E(U)(V, x) = \sum_{x \in X} \) соответственно энергию конфигурации \(x \in X^V, V \in F \), статистическую сумму в "объеме" \(V \) (с пустыми границами и условиями) и энергию взаимодействия конфигурации \(x \in X^V \) конфигурации \(x \in X^V \), где \(x \in X^V = T \setminus V \).

Предположим, что \(\lim_{n \rightarrow \infty} \left(\text{card}(T_n)\right)^{-1} \ln Z(U)(T_n) = P(U, \{T_n\}) \), если он существует, будем называть "двойной", отвечающий потенциалу \(U \) и последовательности множеств \(\{T_n\} \).

Нам понадобится следующее условие (последнее из которых будет с нашей целью формулировано Рейсмом [1]):

\begin{enumerate}
\item \(\lim_{n \rightarrow \infty} \left(\text{card}(T_n)\right)^{-1} \inf_{x \in X} E(U)(T_n, x_T) > 0; \)
\item \(\lim_{n \rightarrow \infty} \left(\text{card}(T_n)\right)^{-1} \sup_{x \in X} |E(U)(x_T) - \sum_{n} E(U)(x_T); \sum_{n} T_n, x_{T_n}| = 0; \)
\item \(\lim_{n \rightarrow \infty} \left(\text{card}(T_n+1)/\text{card}(T_n) = 1 \right); \)
\item \(\sum_{n} \left(\text{card}(T_n)^{-1} \ln \text{card}(T_n)\right) |\sum_{n} \left(\text{card}(T_n)^{-1} \ln \text{card}(T_n)\right) = 1 \) и для любых \(x, y \in X \) найдется \(z \in X \) с \(z_T = x_T, z_T - y_T = y_T - T_n). \)
\end{enumerate}
Легко видеть, что при выполнении условия (A) последовательность функций

\[a_n(U)(x) = \exp\left(-E(U)(T_n, x_{T_n})\right), \quad n \in \mathbb{N}, \ x \in X, \]

удовлетворяет условиям (a)−(c).

Теорема 1. Если \(||U|| < \infty \), выполняется условие (A) и найдётся \(\beta_0 \geq 0 \), для которого правило \(P(\beta_0, U, \{ T_n \}) \) существует и равно мере, то для любой метрики \(\rho \), согласованной с последовательностью функций \(a_n(U) \), хаусдорфова размерность \(d_H(X, \rho) \) множества \(X \) не превосходит \(\beta_0 \); если, кроме того, выполняется условие (B)−(D), то \(d_H(X, \rho) = \beta_0 \).

Замечание 1. Можно показать, что при условиях (A)−(D) хаусдорфова размерность гиббсовой меры с потенциалом \(U \) равна \(d_H(X, \rho) \).

2. Рассмотрим более конкретную ситуацию. Пусть \(T = \mathbb{Z}^d \), \(d \geq 1 \). Для любых \(V \subset T \), \(t \in T \) определим отображение \(\sigma^t \) : \(S^V \rightarrow S^{V-t} \) равенством \((\sigma^t x)(t') = x(t+t'), \ t' \in V - t, \ x \in S^V \). Пусть \(\sigma = \{ \sigma^t, t \in T \} \). Пусть множество \(X \) из п. 1 вспомогательное и \(\sigma \)-инвариантное, а потенциал \(U \) \(f^0 \rightarrow \mathbb{R} \) инвариантен в том смысле, что \(U(V + t, x) = U(U, \sigma^t x), \ t \in T, \ V \in \mathcal{F}, x \in X_{V+t} \).

Предложение. Если \(U(V, x) \geq 0 \) при всех \(V \in \mathcal{F}, x \in X_{V} \) и найдётся такое \(V^+ \in \mathcal{F} \), что \(E(U)(V^+, x) > 0 \) при всех \(x \in X_{V^+} \) (локальная положительность \(U \)), то выполняется условие (A).

Назовём последовательность \(T_n \uparrow T \) регулярной, если \(\lim_{n \rightarrow \infty} \text{card}(T_n \Delta (T_{n+1})) / \text{card}(T_n) = 0 \) при всех \(t \in T \) и \(\sup_n \text{card}(t - t', t, t' \in T_n) / \text{card}(T_n) < \infty \).

Теорема 2. Пусть регулярная последовательность \(\{ T_n \} \) удовлетворяет условию (C), а потенциал \(U \) с \(||U|| < \infty \) инвариантен и локально положителен. Тогда для любой метрики \(\rho \) на \(X \), согласованной с последовательностью \(\{ a_n(U) \} \), выполняется соотношение Бонди \(P(d_H(X, \rho)) = 0 \).

Список литературы