О. И. Богоявленский, Канонические формы инвариантных тензоров и A-B-C-когомологии интегрируемых гамильтоновых систем, Матем. сб., 1998, том 189, номер 3, 3–44

DOI: https://doi.org/10.4213/sm302
§ 1. Введение

I. Данная работа продолжает исследования тензорных инвариантов динамических систем, которые были начаты в статьях [1]–[5]. Основные применения тензорных инвариантов связаны с гамильтоновыми системами

\[x^\alpha = V^\alpha(x) = P_1^{\alpha \beta} H_{, \beta}, \quad H = \partial H / \partial x^\beta \]

на пуссоновых многообразиях \(M^{2k} \) с неразложимой пуссоновой структурою \(P_1^{\alpha \beta} \).

ОПРЕДЕЛЕНИЕ 1.1. Гамильтонова система (1.1) называется \(C \)-интегрируемой, если она является интегрируемой по Ли унитильно [6], [7] и все инвариантные многообразия постоянного уровня ее \(k \) инволютивны и функционально независимы первых гамильтонов компакты.

Класс \(C \)-интегрируемых гамильтоновых систем особенно важен, потому что он лежит в основании теории Кольмогорова–Арнольда–Мoser [8]–[12], которая изучает малые гамильтоновы возмущения этих систем. Тензорные инварианты этих систем доставляют инвариантную интерпретацию известных достаточных условий применимости теории КАМ. Теорема Кольмогорова [8]–[10] утверждает, что условие невырожденности \(C \)-интегрируемой системы (1.1) и условие ее изозернитической невырожденности являются достаточными условиями для применимости теории КАМ к малым возмущениям этой системы. Оба условия невырожденности были введены Пуанкаре в 1892 году [13]. Теория тензорных инвариантов, развитая в работах [3], [5], дает симметричную интерпретацию этих двух условий.
Два достаточных условия для применимости теории КАМ.

1) Алгебра Ли симметрий C-интегрируемой гамильтоновой системы V является абелевой.

2) Алгебра Ли изоэнергетических конформных симметрий системы V является абелевой.

В работе [5] мы получили следующее

Необходимое условие для применимости теории КАМ. Алгебра Ли— Присоединяя первых интегралов C-интегрируемой гамильтоновой системы V обнаружена быть абелевой.

Теория тензорных инвариантов имеет другое, неожиданное, применение к теории КАМ, которое заключается в конструкции [3] широкого класса нетамплотоновых возмущений, динамика которых эквивалентна динамике малых гамильтоновых возмущений в теории КАМ.

Теория тензорных инвариантов привела нас к определению A-B-C-когомологий динамических систем, которые мы изучали в работах [2], [4], [5]. В статье [5] были введены B-когомологии диффеоморфизмов гладких многообразий. В § 8, 13, 14 данной работы мы вычисляем A-B-C-когомологии малых размерностей для C-интегрируемых гамильтоновых систем и некоторых диффеоморфизмов $f: M^{2k} \to M^{2k}$.

Имеется некоторая параллель между теорией тензорных инвариантов интегрируемых динамических систем и теорией алгебраических инвариантов, созданной Гильбертом в 1890–1933 годах. Обе теории дают новую перспективу, исследуя основные инвариантные объекты, связанные с базовыми симметриями. Однако, в то время как теория ГильBERTа не имела первоочередных применений вне контекста, в котором она была создана, теория тензорных инвариантов интегрируемых динамических систем определяет применение в конкретных задачах динамики, математической физики и механики. Некоторые из этих применений будут рассмотрены и подробно исследованы в работах [3], [5].

Определение 1.2. Тензор T^ℓ_m типа (ℓ, m) на многообразии M^{2k} называется C-инвариантным, если он инвариантен по отношению к C-интегрируемой гамильтоновой системе (1.1), которая является невырожденной в смысле Пуанкаре.

В данной работе мы изучаем C-инвариантные тензоры T^ℓ_m при $\ell + m \leq 3$. Именно эти тензоры играют наиболее важную роль в теории интегрируемых гамильтоновых систем. C-инвариантные тензоры U^α типа $(1, 0)$ соответствуют симметриям этих систем. Тензоры θ^α типа $(0, 1)$ являются дифференциальными формами. Тензоры $h_{\alpha\beta}$ типа $(0, 2)$ являются касательные симплетические структуры $\omega_{\alpha\beta}$ и инвариантные метрики $g_{\alpha\beta}$. Тензоры T^α_m типа $(2, 0)$ имеют применение как пуссоновы структуры P^α. C-инвариантные тензоры A^α типа $(1, 1)$ появляются в виде рекурсивных операторов в теории бигамильтоновых систем. C-инвариантные тензоры $N^\alpha_{\beta\gamma}$ типа $(1, 2)$ появляются как тензоры Неймана [14] рекурсивных операторов $A^\alpha_{\beta\gamma}$. Тензоры $T^\alpha_{\beta\gamma}$ типа $(0, 3)$ имеют применение как C-инвариантные дифференциальные 3-формы. C-инвариантные тензоры $R^\alpha_{\beta\gamma}$ типа $(3, 0)$ возникают как скобки Скотта двух общих пуссоновых структур для C-интегрируемых гамильтоновых систем. Тензоры $S^\alpha_{\beta\gamma}$ типа $(2, 1)$ описывают инвариантные алгебраические структуры в кожественном расслоении $T^*(M^n)$.

II. Результаты статьи [1]–[5] приводят к следующей общей проблеме.
Проблема канонических форм. Какой вид имеют канонические формы C-инвариантных тензоров T^e_m типа (ℓ, m)?

В серии предложений, мы выводим канонические формы тензоров T^e_m при $\ell + m \leq 3$, которые инвариантны по отношению к C-интегрируемой невырожденной по Пуанкаре гамильтоновой системе V:

$$
\dot{I}_j = 0, \quad \varphi_j = \frac{\partial H(I)}{\partial I_j}, \quad j = 1, \ldots, k,
$$

в переменных действия-угол I_j, φ_j. Переменные действия I_j изменяются в царе $B_n \in \mathbb{R}^k$, угловые переменные φ_j пробегают тор \mathbb{T}^k. Канонические формы C-инвариантных тензоров T^e_m типа (ℓ, m) выводены с помощью следующего метода.

а) Уравнение инвариантности $L_V T^e_m = 0$ сводится к системе линейных обыкновенных дифференциальных уравнений в пространстве тензорных компонент T^e_m (всюду L_V означает производную Ли по отношению к векторному полю V).

б) Возникающая линейная динамическая система преобразуется к верхне-трехугольному виду с постоянными коэффициентами в некоторой специальной системе координат.

в) На основе обнаруженной верхне-трехугольной структуры получена линейная динамическая система интегрируется в явном виде. Выведенные формулы показывают, что область значений компонент C-инвариантных тензоров T^e_m является линейным подпространством, которое состоит из особых точек этой динамической системы. Именно это особое множество и определяет канонические формы C-инвариантных тензоров T^e_m.

Этот метод является общим и применяется к исследованию C-инвариантных тензоров T^e_m произвольных валентностей ℓ и m.

III. Основные результаты данной работы сформулированы в инвариантном виде в следующей теореме. Всюду L_U означает производную Ли по отношению к произвольной симметрии U, и i_U означает оператор внутреннего умножения [15].

Теорема 1. Предположим, что тензор T^e_m типа (ℓ, m) на пакссононом многообразии M^{2k} инвариантен по отношению к C-интегрируемой невырожденной гамильтоновой системе V. Тогда следующие свойства справедливы для любых симметрий U и U_1 системы V и любых C-инвариантных 1-форм θ и θ_1.

1) Любая C-инвариантная дифференциальная 1-форма θ удовлетворяет уравнениям

$$
\text{rank} d\theta \leq k, \quad \theta(U) = 0, \quad L_U \theta = 0, \quad i_U \theta = 0.
$$

2) При $\ell + m = 2$ справедливо уравнение

$$
\text{rank} \|L_U T^e_m\| \leq k.
$$

3) Характеристический многочлен $P(\lambda, x) = \det(A(x) - \lambda)$ любого C-инвариантового тензора $A(x)$ типа $(1, 1)$ является полым квадратом, $P(\lambda, x) = Q^2(\lambda, x)$. Поэтому собственные значения любого C-инвариантного тензора $A(x)$ типа $(1, 1)$ имеют четные кратности.
4) Любой C-инвариантный тензор $h_{\alpha\beta}$ типа $(0, 2)$ и любой C-инвариантный тензор P^β_γ типа $(2, 0)$ удовлетворяют уравнениям $h(U, U_1) = 0$, $P(\theta, \theta_1) = 0$. Любой C-инвариантный метрика $g_{\alpha\beta} = g_{\beta\alpha}$ является неопределенной с сигнатуры $\sigma = |n_+ - n_-| \leq k$. Числа n_+ и n_- ее положительных и отрицательных квадратов удовлетворяют неравенствам $n_+ \leq k$, $n_- \leq k$. При $n = 2k = 4\ell + 2$ любой C-инвариантный метрика $g_{\alpha\beta}$ является выраженной.

5) При $\ell + m \leq 3$ любой C-инвариантный тензор T^ℓ_m типа (ℓ, m) удовлетворяет уравнению

$$L_{U_1}L_U T^\ell_m = 0.$$

6) Любой C-инвариантный тензор $N^\alpha_\beta\gamma$ типа $(1, 2)$ и любой C-инвариантный тензор $S^\beta_\gamma\alpha$ типа $(2, 1)$ удовлетворяют соотношениям

$$\text{rank} \|N^\alpha_\beta\gamma U^\tau\| \leq k, \quad \text{rank} \|N^\alpha_\beta\gamma\theta^\tau\| \leq k,$$

$$\text{rank} \|S^\beta_\gamma\alpha U^\tau\| \leq k, \quad \text{rank} \|S^\beta_\gamma\alpha\theta^\tau\| \leq k.$$

Любой C-инвариантный тензор $T_{\alpha\beta\gamma}$ типа $(0, 3)$ и любой C-инвариантный тензор $R^{\alpha\beta\gamma}$ типа $(3, 0)$ удовлетворяют соотношениям

$$\text{rank} \|T_{\alpha\beta\gamma} U^\tau\| \leq k, \quad \text{rank} \|R^{\alpha\beta\gamma}\theta^\tau\| \leq k.$$

7) При $\ell + m = 3$ все возможные свертки C-инвариантных тензоров $N^\alpha_\beta\gamma$, $S^\beta_\gamma\alpha$, $T_{\alpha\beta\gamma}$ и $R^{\alpha\beta\gamma}$ с двумя произвольными симметриями или двуми произвольными C-инвариантными 1-формами равны нулю.

Доказательство теоремы 1 разбито на девять частей, которые представлены в §§ 3–12.

Свойства C-инвариантных тензоров T^ℓ_m, указанные в теореме 1, имеют применение в качестве необходимых условий для невырожденной C-интегрируемости данной динамической системы V.

IV. Канонические формы C-инвариантных тензоров и теорема 1 применяются в §§ 13 и 14 для вычисления A-B-C-когомологий C-интегрируемых невырожденных гамильтоновых систем. Мы доказываем, что первые пять B-когомологий таких динамических систем V в инвариантных торoidalных областях $\theta = B_a \times \mathbb{R}^k$ имеют вид

$$H^0_B(V, \theta) = \mathbb{R}^1, \quad H^1_B(V, \theta) = 0, \quad H^2_B(V, \theta) = \mathbb{R}^\infty, \quad H^3_B(V, \theta) = 0, \quad H^4_B(V, \theta) = \mathbb{R}^\infty.$$

Поскольку бесконечномерность четных когомологий $H^2_B(V, M^{2k})$ и $H^4_B(V, M^{2k})$ является необходимым условием для невырожденной C-интегрируемости данной гамильтоновой системы V.

§ 2. Предварительные результаты

I. Напомним, что гамильтонова система (1.1) называется полностью интегрируемой по Лиувилю [6], [7], [16], если существуют \(k = n/2 \) интегральных функционально-независимых первых интегралов \(F_1(x), \ldots, F_k(x) \) этой системы

\[
\{ F_j, F_\ell \} = P_{\alpha \beta}^* F_j, F_{\ell, \beta} = 0.
\]

В данной статье все греческие индексы \(\alpha, \beta, \gamma, \delta \) изменяются между 1 и \(n = 2k \).

Все латинские индексы \(i, j, \ell, m \) изменяются между 1 и \(n = k \). Всюду подразумевается суммирование по повторяющимся индексам.

Кlassическая теорема Лиувиля [6], [7] утверждает, что почти все многообразие \(M^n \) (исключая некоторое инвариантное подмножество \(S \subset M^n, \dim S \leq n-1 \)) покрыто системой открытых тороидальных областей \(\Theta_m \subset M^n \) с координатами действительных углов \(I_1, \ldots, I_k, \varphi_1, \ldots, \varphi_k \). В этих координатах интегрируемая по Лиувилю система (1.1) имеет вид

\[
\dot{I}_j = 0, \quad \dot{\varphi}_j = \frac{\partial H}{\partial I_j}, \quad H = H(I_1, \ldots, I_k).
\]

Симплектическая структура \(\omega_1 = P_1^{-1} \) имеет канонический вид

\[
\omega_1 = dI_j \wedge d\varphi_j, \quad \omega_1 = P_1^{-1}.
\]

Координаты \(I_1, \ldots, I_k \) определены в сфере

\[
B_n : \sum_{j=1}^k (I_j - I_{j0})^2 < a^2.
\]

Условные координаты \(\varphi_1, \ldots, \varphi_k \) пробегают тор \(T^k, 0 \leq \varphi_j \leq 2\pi \), в компактном случае и торический цилиндр \(T^m \times \mathbb{R}^{k-m}, 0 \leq m < k \), если многообразие \(I_j(x) = I_{j0} \) является некompактным.

Полностью интегрируемая гамильтонова система (1.1), (2.1) называется невыводимой, если условие Пуанкаре [13] для гессiana

\[
\det \left| \frac{\partial^2 H(I)}{\partial I_\alpha \partial I_\beta} \right| \neq 0
\]

выполнено в открытой плотной области в переменных действительного угola

\[
I_1, \ldots, I_k, \quad \varphi_1, \ldots, \varphi_k, \quad \varphi_i = \varphi_i \mod(2\pi).
\]

Инвариантные подмногообразия \(C \)-интегрируемой гамильтоновой системы (1.1) являются торами \(T^k \):

\[
T^k : I_1 = c_1, \ldots, I_k = c_k, \quad 0 \leq \varphi_i \leq 2\pi.
\]

Соответствующие касательные подпространства определяют \(k \)-мерное распределение

\[
\mathcal{L}_x = T_x (T^k) \subset T_x(M^n).
\]

Эта статья содержит фрагменты из русского языка, которые не могут быть полностью переведены на английский язык.
II. Условие невырожденности по Пуанкаре (2.3) означает, что k функций

$$ J_i(I) = \frac{\partial H(I)}{\partial I_i} $$

образуют систему локальных координат в шаре B_a (2.2). Гамильтонова система (2.1) принимает вид

$$ J_i = 0, \quad \varphi_i = J_i $$

в локальных координатах

$$ J_1, \ldots, J_k, \quad \varphi_1, \ldots, \varphi_k, \quad \varphi_i = \varphi_i \mod (2\pi). \quad (2.6) $$

Преимуществом использования неканонических координат J_i, φ_i состоит в том, что гамильтонова система (1.1), (2.1) принимает наиболее простой вид (2.6) в координатах (2.7). Наши результаты относительно алгебраических свойств инвариантных тензоров доказаны в горизонтальных областях θ_m, которые покрывают все многообразие M^n за исключением некоторого инвариантного под множества $S, \dim S \leq n - 1$. Гладкость рассматриваемых C-инвариантных тензоров влечет непрерывное продолжение их алгебраических свойств на все многообразие M^n, независимо от выбора локальных координат.

Произвольная траектория динамической системы (2.6) является всевозможной на сфере T_k (2.4), если и только если соответствующие k координат J_1, \ldots, J_k рационально независимы. Это означает, что для произвольных целых чисел $m_1, \ldots, m_k, (m_1, \ldots, m_k) \neq (0, \ldots, 0)$, справедливо неравенство

$$ m_1 J_1 + \cdots + m_k J_k \neq 0. $$

Это условие справедливо почти всюду в шаре B_a (2.2). Поэтому траектории C-интегрируемой невырожденной гамильтоновой системы (2.1), (2.6) являются всевозможными на почти всех торах (2.4). Следовательно, любой гладкий первый интеграл $F(J_i, \varphi_i)$ системы (2.6) является постоянным на всех торах T_k и поэтому зависит только от переменных действия

$$ \frac{dF}{dt} = 0 \implies F = F(J_1, \ldots, J_k). \quad (2.8) $$

III. Координаты (2.7) определяют базис касательных векторов

$$ e_i = \frac{\partial}{\partial J_i}, \quad e_{i+k} = \frac{\partial}{\partial \varphi_i} \quad (2.9) $$

в касательном пространстве $T_x(M^n)$ и двойственный базис

$$ e^i = dJ_i, \quad e^{i+k} = d\varphi_i \quad (2.10) $$

в кокасательном пространстве $T^*_x(M^n)$. Касательные векторы обозначаются u, v, w, кокасательные векторы обозначаются u^*, v^*, w^*. Внутреннее произведение определяется формулой

$$ \langle u, u^* \rangle = u^*(u). \quad (2.11) $$

Два базиса (2.9) и (2.10) связаны соотношениями $\langle e_i, e^j \rangle = \delta^j_i$.
В любой инвариантной торидалной области θ мы вводим нилпотентный оператор D. Этот оператор действует на касательном пространстве $T_x(M^n)$ по формулам
\[
D e_i = e_{i+k}, \quad D e_{i+k} = 0, \quad D^2 = 0. \tag{2.12}
\] Оператор D действует на касательном пространстве $T^*_x(M^n)$ по формулам
\[
D e^i = 0, \quad D e^{i+k} = e^i. \tag{2.13}
\] Очевидно справедлив тождество $(Du, u^*) = (u, Du^*)$ для любого вектора $u \in T_x(M^n)$ и любого ковектора $u^* \in T^*_x(M^n)$.
Оператор $D(x)$ порождает некоторые дифференцирование [15] тензорной алгебры $T(T(M^n))$. Это дифференцирование также обозначается $D(x)$.

IV. Векторное поле U на многообразии M^n называется симметричной динамической системой $\dot{x} = V^i(x)$, если оно коммутирует с векторным полем V:
\[
[U, V] = 0.
\] В этом случае векторное поле U является инвариантным по отношению к динамической системе $\dot{x} = V^i(x)$.
В работе [5] изучалась симметрия общих динамических систем с квазипериодической динамикой
\[
I_1 = 0, \ldots, I_p = 0, \quad \varphi_1 = \omega_1(I), \ldots, \varphi_q = \omega_q(I) \tag{2.14}
\] в торидалных областях $\theta = B_a \times T^q \subset M^n$ при произвольных размерностях p и q, $p + q = n$. Пусть $X \subset B_a$ - множество точек $I \in B_a$, для которых траектория системы (2.14) является всюду плотной на торах T^q.

ОПРЕДЕЛЕНИЕ 2.1. Динамическая система (2.14) называется T^n-плотной в торидалной области $\theta = B_a \times T^q \subset M^n$, если множество X является всюду плотным в шаре B_a.

Лемма 2.1. Векторное поле U тогда и только тогда является симметричной T^n-плотной динамической системой (2.14), если оно имеет вид
\[
U = \sum_{j=1}^p U^j(I) \frac{\partial}{\partial I_j} + \sum_{\alpha=1}^q U^{\alpha+p}(I) \frac{\partial}{\partial \varphi_\alpha}.
\] Здесь гладкие функции $U^{\alpha+p}(I)$ являются произвольными и гладкие функции $U^j(I)$ удовлетворяют системе линейных уравнений
\[
\sum_{j=1}^p \frac{\partial \varphi_\alpha(I)}{\partial I_j} U^j(I) = 0, \quad \alpha = 1, \ldots, q.
\] Применя эту лемму к динамической системе (2.6), мы получаем, что любая ее симметрия U имеет вид
\[
U = \sum_{i=1}^k U^{i+k}(J) \frac{\partial}{\partial \varphi_i}, \tag{2.15}
\] где $U^{i+k}(J)$ являются произвольными гладкими функциями.
Формула (2.15) приводит к выражению для частных производных
\[
U_{,\beta} = \delta_{i+k}^{\alpha} \delta_\beta^\ell U^{i+p}(J), \tag{2.16}
\] которое используется в дальнейшем.
Следствие 2.1. Любой симметрия \(U \) \(C \)-интегрируемой невырожденной гамильтоновой системы (1.1) удовлетворяет уравнению \(DU = 0 \). Векторное поле \(U \) несет \(k \)-мерное распределение \(\mathcal{L}_x \) (2.5). Соответствующая динамическая система

\[\dot{x}^\alpha = U^\alpha(x^1, \ldots, x^n) \] (2.17)

является интегрируемой. Первые интегралы \(F(x) \) системы (1.1) одновременно являются первыми интегралами системы (2.17).

Действительно, видно (2.15), система (2.17) имеет вид

\[\dot{J}_i = 0, \quad \dot{\varphi}_i = U^{i+k}(J) \] (2.18)

в ториальных координатах (2.7). Следствие 2.1 легко выводится из формулы (2.18).

§ 3. \(C \)-Инвариантные дифференциальные 1-формы

I. Любой дифференциальная 1-форма \(\theta \) имеет вид

\[\theta = \theta_i(J, \varphi) dJ_i + \theta_{i+k}(J, \varphi) d\varphi_i \] (3.1)

в ториальных координатах (2.7).

Предложение 3.1. Дифференциальная 1-форма \(\theta \) является интегрируемой по отношению к \(C \)-инвариантной невырожденной гамильтоновой системе (1.1) тогда и только тогда, если она имеет вид

\[\theta = \theta_i(J) dJ_i \] (3.2)

в координатах \(J_i, \varphi_i \) (2.7).

Доказательство. Векторное поле \(V \), определенное динамической системой (2.6), имеет компоненты

\[V^i = 0, \quad V^{i+k} = J_i. \] (3.3)

Эти формулы влечут

\[V^\alpha_\beta = \delta^\alpha_{i+k} \delta^i_\beta, \] (3.4)

где подразумевается суммирование по индексу \(i = 1, \ldots, k \). Уравнение инвариантности \(L_V \theta = 0 \) для дифференциальной 1-формы \(\theta \) имеет вид

\[(L_V \theta)_\beta = \dot{\theta}_\beta + V^\alpha_\beta \theta_\alpha = 0. \] (3.5)

Здесь оператор \(L_V \) сознавает производную \(\theta \) по отношению к векторному полю \(V \). После подстановки формул (3.1) и (3.4), уравнение (3.5) дает

\[\dot{\theta}_i = -\theta_{i+k}, \quad \dot{\theta}_{i+k} = 0. \] (3.6)

Вследствие (2.8), решения уравнений (3.6) имеют вид

\[\theta_i(t) = -\theta_{i+k}(J)t + \theta_i(J), \quad \theta_{i+k}(t) = \theta_{i+k}(J), \] (3.7)

где \(\theta_i(J) \) и \(\theta_{i+k}(J) \) являются произвольными гладкими функциями. Компоненты \(\theta_i(J, \varphi) \) любой гладкой дифференциальной 1-формы (3.1) ограничены по модулю на любом торе \(\mathbb{T}^k \) (2.4). Решения (3.7) являются ограниченными при любом \(t \) тогда и только тогда, если \(\theta_{i+k}(J) = 0 \) при \(i = 1, \ldots, k \). Поэтому, используя (3.7) и тот факт, что обычные траектории \(C \)-интегрируемой невырожденной гамильтоновой системы (1.1), (2.6) изолируют плотное на торах \(\mathbb{T}^k \), мы получаем, что 1-форма \(\theta \) является \(C \)-инвариантной тогда и только тогда, если она имеет вид (3.2).

Лемма Пуанкаре и предложение 3.1 приводит к следствию:
Любая замкнутая C-инвариантная 1-форма θ является точкой в любой торидальной области $\theta = B_{n} \times T^{k}$.

II. Теорема 1, часть 1. Если динамическая система V

$$\dot{x}^{i} = V^{i}(x^{1}, \ldots, x^{n})$$

(3.8)
на гладком многообразии M^{2k} является C-интегрируемой неразрушенной гамильтоновой системой, то выполняются следующие необходимые условия.

1) Любая C-инвариантная дифференциальная 1-форма θ удовлетворяет уравнениям

$$\theta(V) = 0, \quad i_{V}d\theta = 0, \quad \text{rank } d\theta \leq k.$$

(3.9)
При $k = 2\ell$ справедливы уравнения

$$\theta \wedge d\theta \wedge \cdots \wedge d\theta = 0,$$

(3.10)
где число сомножителей равно $[\frac{n}{2}] + 1 = \ell + 1$. При $k = 2\ell + 1$ справедливы уравнения

$$d\theta \wedge \cdots \wedge d\theta = 0,$$

(3.11)
где число сомножителей равно $[\frac{n}{2}] + 1 = \ell + 1$.

2) Любая симметрия U и любая C-инвариантная дифференциальная 1-форма θ удовлетворят уравнениям

$$\theta(U) = 0, \quad i_{U}d\theta = 0, \quad L_{U}\theta = 0.$$

(3.12)
Доказательство. 1) Применя предложение 1, мы получаем, что если динамическая система (3.8) является C-интегрируемой, то любая инвариантная 1-форма θ имеет вид (3.2) в торидальных координатах (2.7). Отсюда следует (3.9). Внешние произведения (3.10) и (3.11) имеют степень $k + 1$. Поэтому для 1-формы θ (3.2), которая зависит только от k переменных J_{1}, \ldots, J_{k}, мы получаем

$$\theta \wedge d\theta \wedge \cdots \wedge d\theta = 0, \quad d\theta \wedge \cdots \wedge d\theta = 0$$
при $k = 2\ell$ и $k = 2\ell + 1$ соответственно.

2) Применя лемму 2.1 и предложение 3.1, мы получаем, что если динамическая система (3.8) является C-интегрируемой, то любая симметрия U имеет вид (2.15) и любая C-инвариантная 1-форма θ имеет вид (3.2) в координатах (2.7). Отсюда мы находим

$$\theta(U) = 0, \quad d\theta(U, W) = 0$$

(3.13)
для любого касательного вектора W. Второе уравнение (3.13) означает, что $i_{U}d\theta = 0$. Поэтому, применя (3.13) и формулу Картана [15], [17], [18]

$$L_{U} = i_{U} \circ d + d \circ i_{U},$$

(3.14)
мы получаем

$$L_{U}\theta = i_{U}d\theta + d(\theta(U)) = 0.$$

Следовательно, любая симметрия U системы (3.8) сохраняет любую C-инвариантную 1-форму θ.
Уравнения (3.9)-(3.11) не являются независимыми. Действительно, формула Картана (3.14) влечет
\[L_V \theta = i_V d\theta + d(\theta(V)) = 0 \]
(3.15)
для инвариантной 1-формы \(\theta \). Ввиду (3.15) равенство \(\theta(V) = 0 \) влечет \(i_V d\theta = 0 \). Стандартные методы линейной алгебры доказывают, что (3.10) и (3.11) влечет неравенство \(\text{rank} d\theta \leq k \).

Пусть \(M^{2k} \) — симплектическое многообразие с симплектической структурой \(\omega \). Предположим, что \(\omega = d\theta \) в некоторой области \(\mathcal{D} \subset M^{2k} \).

Следствие 3.1. Если некоторая гамильтонова система
\[\dot{\alpha} = V^\alpha = (\omega^{-1})^{\alpha\beta} H_{,\beta} \]
в инвариантной области \(\mathcal{D} \) сохраняет 1-форму \(\theta \), \(d\theta = \omega \), то эта система не является C-интегрируемой и невырожденной в любой инвариантной подобласти \(\theta \subset \mathcal{D} \).

Доказательство. Вследствие \(d\theta = \omega \), инвариантная 1-форма \(\theta \) удовлетворяет уравнениям
\[i_V d\theta = -dH, \quad \text{rank} d\theta = 2k. \]
Эти уравнения не совместимы с необходимыми условиями (3.9).

Следствие 3.1 имеет применение к гамильтоновым системам
\[\dot{p}_i = -\frac{\partial H}{\partial q_i}, \quad \dot{q}_i = \frac{\partial H}{\partial p_i} \]
(3.16)
с однородными степенями 2 гамильтоновыми функциями \(H(p, q) \). Эти гамильтоновы системы сохраняют 1-форму \(\theta = p_i dq_i - q_i dp_i \), которая удовлетворяет уравнению \(d\theta = 2\omega \). Действительно, дифференцируя 1-форму \(\theta \) по отношению к системе (3.16) и применяя теорему Эйлера об однородных функциях, мы получаем
\[\dot{\theta} = d\left(p_i \frac{\partial H}{\partial p_i} + q_i \frac{\partial H}{\partial q_i} - 2H\right) = 0, \]
поскольку гамильтониан \(H(p, q) \) является однородной функцией степени 2. Применяя следствие 3.1, мы получаем, что любая гамильтонова система (3.16) с однородной степеню 2 гамильтоновой функцией \(H(p, q) \) или не является C-интегрируемой, или выражена.

Следствие 3.2. Любая C-инвариантная 1-форма \(\theta \) удовлетворяет уравнению \(D\theta = 0 \). C-инвариантные дифференциальные формы \(\theta \) и \(d\theta \) аннулируют k-мерное распределение \(\mathcal{L}_x \) (2.5):
\[\theta(\mathcal{L}_x) = 0, \quad d\theta(\mathcal{L}_x, T_x(M^n)) = 0. \]

Доказательство следует из формулы (3.2) и определения оператора дифференцирования \(D \) (2.13).
§4. Общие C-инвариантные тензоры типа (0, 2)

I. Представим тензор \(h_{\alpha\beta}(J, \varphi) \) типа (0, 2) в блочном виде

\[
h_{\alpha\beta}(J, \varphi) = \begin{pmatrix} b_1 & b_3 \\ b_2 & b_4 \end{pmatrix}
\]

в торoidalных координатах \(J_i, \varphi_i \) (2.7). Здесь \(b_1, b_2, b_3, b_4 \) – матрицы размера \(k \times k \).

ПРЕДЕЛОЖЕНИЕ 4.1. Тензор \(h_{\alpha\beta} \) типа (0, 2) является инвариантным по отношению к C-интегрируемой невырожденной гамильтоновой системе (1.1) тогда и только тогда, если он имеет блочный вид

\[
h_{\alpha\beta} = \begin{pmatrix} a(J) & b(J) \\ -b(J) & 0 \end{pmatrix}
\]

в координатах (2.7). Здесь \(a(J) \) и \(b(J) \) – произвольные \(k \times k \) матрицы.

ДОКАЗАТЕЛЬСТВО. Уравнение инвариантности для тензора \(h \) типа (0, 2) имеет вид

\[
(L_V h)_{\alpha\beta} = \delta_{\alpha\beta} + V_{\alpha\gamma} h_{\gamma\beta} + V_{\beta\gamma} h_{\alpha\gamma} = 0.
\]

Вследствие (3.4) и (4.1), система (4.3) эквивалентна системе четырех линейных матричных уравнений

\[
\begin{align*}
\tilde{b}_1 &= -b_2 - b_3, \\
\tilde{b}_2 &= -b_4, \\
\tilde{b}_3 &= -b_4, \\
\tilde{b}_4 &= 0.
\end{align*}
\]

Эта система очевидно имеет верхне-трехугольную структуру. Применим (2.8), мы получаем, что все решения уравнений (4.4) имеют вид

\[
\begin{align*}
b_1(t) &= \tilde{b}_4(J) t^2 - (\tilde{b}_2(J) + \tilde{b}_3(J)) t + \tilde{b}_1(J), \\
b_2(t) &= -\tilde{b}_4(J) t + \tilde{b}_2(J), \\
b_3(t) &= -\tilde{b}_4(J) t + \tilde{b}_3(J), \\
b_4(t) &= \tilde{b}_4(J).
\end{align*}
\]

Компоненты \(h_{\alpha\beta}(J, \varphi) \) (4.1) гладкого инвариантного тензора \(h \) типа (0, 2) ограничены модулем на любом торе \(T^k \) (2.4). Решения (4.5) ограничены при всех \(t \) тогда и только тогда, если

\[
\tilde{b}_2(J) = -\tilde{b}_3(J), \quad \tilde{b}_4(J) = 0.
\]

Отсюда следует блочный вид (4.2).

Типичные траектории C-интегрируемой невырожденной гамильтоновой системы (1.1) ведут плотность на торах (2.4). Поэтому формулы (4.5) и (4.6) доказывают, что компоненты \(h_{\alpha\beta} \) (4.1) зависят только от координат \(J_i \).

СЛЕДСТВИЕ 4.1. Любой C-инвариантный тензор \(h \) типа (0, 2) удовлетворяет уравнению

\[
h(Du, v) + h(u, Dv) = 0
\]

и аннулирует k-мерное распределение \(\mathcal{L}_x \) (2.5): \(h(\mathcal{L}_x, \mathcal{L}_x) = 0 \).

Доказательство следует из формул (2.12) и (4.2).
II. Теорема 1, часть 2. 1) Любые две симметрии U и U_1 C-интегрируемой невырожденной гамильтоновой системы (1.1) и любой C-инвариантный тензор h типа $(0, 2)$ удовлетворяют уравнениям

\[h(U, U_1) = 0, \quad \text{rank}(L_U h) \leq k, \quad L_U L_U h = 0. \quad (4.7) \]

2) Симплектическая структура $\omega_1 = P_1^{-1} C$-интегрируемой невырожденной гамильтоновой системы (1.1) удовлетворяет уравнениям

\[\text{rank}(L_U \omega) \leq k, \quad L_U L_U \omega = 0, \quad (4.8) \]

где U — произвольная симметрия системы (1.1).

Доказательство. 1) Первое уравнение (4.7) следует из блочной структуры (4.2) и формулы (2.15). Производная Ли $L_U h$ имеет вид

\[(L_U h)_{\alpha \beta} = \dot{h}_{\alpha \beta} + U^\gamma_{\alpha \beta} h_{\gamma \beta} + U^\gamma_{\beta \alpha} h_{\alpha \gamma}. \quad (4.9) \]

Используя формулы (2.16) и (4.2), мы находим, что тензор (4.9) имеет блочную структуру

\[(L_U h)_{\alpha \beta} = \begin{pmatrix} \dot{a}(J)_{ij} & 0 \\ 0 & 0 \end{pmatrix}, \quad (4.10) \]

где $\dot{a}(J)_{ij} = U^\ell_b b_{i\ell} - U^{\ell\ell}_b b_{\ell j}$. Отсюда следует второе уравнение (4.7). Применяя производную Ли $L_U h$ к тензору $L_U h$ (4.10) типа $(0, 2)$, мы выводим третье уравнение (4.7).

2) Гамильтонова система (1.1) сохраняет симплектическую структуру ω. Поэтому (4.8) следуют из (4.7).

§5. Любая C-инвариантная метрика является неопределенной

C-инвариантный тензор $h_{\alpha \beta}$ (4.2) типа $(0, 2)$ очевидно является симметричным, если выполняются уравнения

\[a^t = a, \quad b^t = -b. \quad (5.1) \]

Обозначим через $g_{\alpha \beta}$ возникающую метрику на многообразии M^{2k}.

Теорема 1, часть 3. 1) Любая C-инвариантная метрика $g_{\alpha \beta} = g_{\beta \alpha}$ является неопределенной с сигнатурой $\sigma = n_+ - n_- \leq k$. Числа n_+ и n_- ее положительных и отрицательных квадратов удовлетворяют неравенствам

\[n_+ \leq k, \quad n_- \leq k. \quad (5.2) \]

Любая C-инвариантная метрика $g_{\alpha \beta}$ при $n = 4\ell + 2$ является невырожденной всюду на многообразии M^n.

2) Траектории C-интегрируемой гамильтоновой системы (1.1) и траектории любого C-инвариантного векторного поля U являются состояниями геодезическими любой невырожденной C-инвариантной метрики $g_{\alpha \beta}$ при $n = 4\ell$.

ДОКАЗАТЕЛЬСТВО. 1) Предположение 4.1 доказывает, что C-инвариантная метрика $g_{\alpha\beta}$ имеет блочный вид (4.2), где матрица $a(J)$ симметрична и матрица $b(J)$ кососимметрична вследствие (5.1). Поэтому ограничение метрики (4.2) на k-мерное распределение $\mathcal{L}_x \subset T_x(M^{2k})$ равнo нулю и неравенства (5.2) справедливы вместе с $\sigma = |n_+ - n_-| \leq k$.

Для любого нечетного $k = 2\ell + 1$, кососимметричная $k \times k$ матрица $b(J)$ является вырожденной. Формула (4.2) влечет

$$\det \|g\| = (\det \|b\|)^2 = 0.$$

Следовательно, при $n = 2k = 4\ell + 2$ любая C-инвариантная метрика g вырождена.

2) Траектории системы (1.1) и траектории любого C-инвариантного векторного поля U (2.15) имеют вид

$$J_i = \text{const}, \quad \varphi_i(t) = J_i t + \varphi_i(0),$$

$$J_i = \text{const}, \quad \varphi_i(t) = U^i + k(J) t + \varphi_i(0) \quad (5.3)$$

в торидальных координатах $x^i = J_i$, $x^i + k = \varphi_i$. Траектория (5.3) очевидно удовлетворяет уравнениям

$$\frac{dx^i(t)}{dt} = 0, \quad \frac{dx^{i+k}(t)}{dt} = \text{const}, \quad 1 \leq i \leq k, \quad \frac{d^2 x^\alpha(t)}{dt^2} = 0. \quad (5.4)$$

Вследствие блочной структуры (4.2), траектория (5.3) имеют нулевую длину (или являются “световыми” траекториями) по отношению к любой C-инвариантной метрике g.

Кривая $x^\alpha(t)$ является геодезической метрики $g_{\alpha\beta}$, если она удовлетворяет уравнениям

$$\frac{d^2 x^\alpha}{dt^2} + \Gamma^\alpha_{\beta\gamma} \frac{dx^\beta}{dt} \frac{dx^\gamma}{dt} = 0. \quad (5.5)$$

Здесь символы Кристоффеля $\Gamma^\alpha_{\beta\gamma}$ имеют вид

$$\Gamma^\alpha_{\beta\gamma} = \frac{1}{2} g^{\alpha\tau} \left(\frac{\partial g_{\tau\gamma}}{\partial x^\beta} + \frac{\partial g_{\beta\tau}}{\partial x^\gamma} - \frac{\partial g_{\beta\gamma}}{\partial x^\tau} \right).$$

Вследствие (5.4), ненулевые слагаемые в (5.5) имеют коэффициенты

$$\Gamma^\alpha_{i+k} j + k = \frac{1}{2} g^{\alpha\tau} \left(\frac{\partial g_{\tau,j+k}}{\partial x^{i+k}} + \frac{\partial g_{i+k, \tau}}{\partial x^{i+k}} - \frac{\partial g_{i+k,j+k}}{\partial x^\tau} \right). \quad (5.6)$$

Использовав формулу (4.2), мы находим, что все коэффициенты (5.6) равны нулю. Поэтому траектория (5.3)–(5.4) удовлетворяет уравнениям (5.5) и параметр t в (5.3) является аффинным параметром. Следовательно, траектория (5.3) являются световыми геодезическими любой C-инвариантной невырожденной метрики.
§ 6. Классификация C-инвариантных
замкнутых дифференциальных 2-форм

I. C-инвариантный тензор $h_{\alpha \beta}$ (4.2) типа $(0, 2)$ очевидно является кососимметричным, если справедливы уравнения

$$a^\ell = -a_\ell, \quad b^\ell = b_\ell. \quad (6.1)$$

Соответствующая дифференциальная 2-форма ω_2 имеет вид

$$\omega_2 = a_{qf}(J)dJ_i \wedge dJ_\ell + 2b_{qf}(J)dJ_i \wedge d\varphi_\ell. \quad (6.2)$$

Предложение 6.1. Замкнутая дифференциальная 2-форма ω_2 является инвариантной по отношению к C-интегрируемой невырожденной гамильтоновой системе (1.1) тогда и только тогда, если она имеет вид

$$\omega_2 = d\left(\frac{\partial B(J)}{\partial J_i} \right) \wedge d\varphi_i + df_i(J) \wedge dJ_i \quad (6.3)$$

в торoidalных координатах (2.7). Здесь $B(J)$ и $f_i(J)$ являются произвольными гладкими функциями k переменных J_1, \ldots, J_k.

Доказательство. Производная Ли от 2-формы ω_2 по отношению к динамической системе (2.6) имеет вид

$$\hat{\omega}_2 = d\left(\frac{\partial B(J)}{\partial J_i} \right) \wedge dJ_i = \frac{\partial^2 B(J)}{\partial J_\ell \partial J_i} dJ_\ell \wedge dJ_i = 0. \quad (6.4)$$

Поэтому замкнутая 2-форма (6.3) является C-инвариантной.

Вследствие предложения 4.1 и уравнений (6.1) любая C-инвариантная 2-форма ω_2 имеет вид (6.2). Уравнение $d\omega_2 = 0$ эквивалентно системе $k + 1$ уравнений

$$d(a_{qf}(J)dJ_i \wedge dJ_\ell) = 0, \quad d(b_{qf}(J)dJ_i) = 0, \quad \ell = 1, \ldots, k.$$

Применяя лемму Пуанкаре, мы получаем

$$a_{qf}(J)dJ_i \wedge dJ_\ell = df_i(J)dJ_i, \quad (6.4)$$

$$2b_{qf}(J)dJ_i = dB_\ell(J), \quad (6.5)$$

где $f_i(J)$ и $B_\ell(J)$ – некоторые гладкие функции. Уравнения (6.5) и симметричность матрицы b (6.1) ведут к

$$2b_{qf}(J)dJ_i \wedge dJ_\ell = \frac{\partial B_\ell(J)}{\partial J_i} = \frac{\partial B_i(J)}{\partial J_\ell}. \quad (6.6)$$

Отсюда следуют равенства

$$B_i(J) = \frac{\partial B(J)}{\partial J_i}, \quad 2b_{qf}(J) = \frac{\partial^2 B(J)}{\partial J_\ell \partial J_i}. \quad (6.6)$$

где $B(J)$ – некоторая гладкая функция.

Формула (6.3) следует из (6.2) после подстановки выражений (6.4) и (6.6).

Предложения 3.1 и 6.1 приводят к следствию:
Если функция $B(J)$ нелинейна, то C-инвариантная замкнутая 2-форма ω_2 (6.3) не является внешней производной какой C-инвариантной 1-формы θ (3.2).

II. Применяя оператор i_V к C-инвариантной 2-форме ω_2 (6.3). По определению [15] мы имеем $i_V \omega_2(X) = 2 \omega_2(V, X)$. Используя формулы (3.3) и (6.3), получаем

$$i_V \omega_2 = -J_i \frac{\partial^2 B(J)}{\partial J_i \partial J_t} dJ_t = d\left(B(J) - J_i \frac{\partial B(J)}{\partial J_i}\right).$$

Эта формула означает, что 1-форма $i_V \omega_2$ является дифференциалом первого интеграла

$$F(J) = B(J) - J_i \frac{\partial B(J)}{\partial J_i},$$

гамильтоновой системы (1.1)-(2.6). Первый интеграл $F(J)$ совпадает с преобразованием Лежандра функции $-B(J)$.

§7. Пуассоновы структуры и C-инвариантные тензоры типа $(2,0)$

I. Представим тензор $P^\alpha_\beta(J, \varphi)$ типа $(2,0)$ в блочном виде

$$P^\alpha_\beta(J, \varphi) = \begin{pmatrix} p_4 & p_3 \\ p_2 & p_1 \end{pmatrix}$$

в тороидальных координатах J_i, φ_i. Здесь $p_1, p_2, p_3, p_4(J, \varphi)$ - матрицы размера $k \times k$.

ПРЕДЛОЖЕНИЕ 7.1. Тензор P^α_β типа $(2,0)$ тогда и только тогда является инвариантным по отношению к C-инвариантной невырожденной гамильтоновой системе (1.1), если он имеет блочный вид

$$P^\alpha_\beta = \begin{pmatrix} 0 & -p(J) \\ p(J) & p_1(J) \end{pmatrix}$$

в координатах J_i, φ_i. Здесь $p_1(J)$ и $p(J)$ - произвольные $k \times k$ матрицы, зависящие от переменных J.

ДОКАЗАТЕЛЬСТВО. Уравнение инвариантности $L_V P = 0$ для тензора P типа $(2,0)$ имеет вид

$$(L_V P)^\alpha_\beta = p_4^\alpha_\beta - V^\alpha_\gamma P^\gamma_\beta - V^\beta_\gamma P^\alpha_\gamma = 0.$$ (7.3)

После подстановки формул (3.4) и (7.1), уравнение (7.3) принимает эквивалентный вид

$$p_1 = p_2 + p_3, \quad p_2 = p_4, \quad p_3 = p_4, \quad p_4 = 0,$$ (7.4)

где p_1, p_2, p_3, p_4 - $k \times k$ матрицы (7.1). Вследствие (2.8), все решения линейной веркструктуральной системы (7.4) даются формулами

$$p_1(t) = \bar{p}_4(J) t^2 + (\bar{p}_2(J) + \bar{p}_3(J)) t + \bar{p}_1(J),$$

$$p_2(t) = \bar{p}_4(J) t + \bar{p}_2(J), \quad p_3(t) = \bar{p}_4(J) t + \bar{p}_3(J), \quad p_4(t) = \bar{p}_4(J).$$ (7.5)

Все компоненты такого C-инвариантного тензора P^α_β ограничены по модулю на любом торе (2.4). Решения (7.5) ограничены при всех t тогда и только тогда, если

$$\bar{p}_2(J) = -\bar{p}_3(J), \quad \bar{p}_4(J) = 0.$$
Следовательно, используя (7.5) и тот факт, что обшие траектории невырожденных интегрируемых систем (1.1), (2.6) всюду плотны на торах \mathbb{T}^k, мы получаем блоенную структуру (7.2).

II. Скобкой $[P, Q]$ двух кососимметричных тензоров P и Q типа $(2,0)$ называется кососимметричный тензор типа $(3,0)$, компоненты которого имеют вид

$$
2 [P, Q]_{\alpha \beta} = P^\gamma_{\alpha \beta} Q_{\gamma \tau} + P^\gamma_{\beta \alpha} Q_{\tau \gamma} + P^\gamma_{\gamma \alpha} Q_{\tau \beta} + Q^\gamma_{\alpha \beta} P_{\gamma \tau} + Q^\gamma_{\beta \alpha} P_{\tau \gamma} + Q^\gamma_{\gamma \alpha} P_{\tau \beta}.
$$

(7.6)

Тензор P^α_{β} типа $(2,0)$ называется пуссоновой структурой, если он кососимметричен, $P^\alpha_{\beta} = -P^\beta_{\alpha}$, и его скобка Сютгена с самим собой равна нулю

$$
[P, P]_{\alpha \beta} = P^\gamma_{\alpha \beta} P_{\gamma \tau} + P^\gamma_{\beta \alpha} P_{\tau \gamma} + P^\gamma_{\gamma \alpha} P_{\tau \beta} = 0.
$$

(7.7)

Две пуссоновы структуры P и Q называются совместными в смысле Магри [19], если их скобка Сютгена равна нулю $[P, Q] = 0$.

Предложение 7.2. Тензор P^α_{β} типа $(2,0)$ является C-инвариантной пуссоновой структурой тогда и только тогда, если он имеет блочную структуру (7.2) в координатах (2.7) и $k \times k$ матрицы $p(J)$ и $p_1(J)$ удовлетворяют уравнениям

$$
p^t = p,
$$

$$
p^t_1 = -p_1,
$$

$$
p_{ij, ml} p^{nl} + p_{ml}^{ij} p^{nl} + p_{mi}^{ij} p^{mj} = 0.
$$

(7.8)

(7.9)

(7.10)

Доказательство. Формулы (7.8) следуют из (7.2) и уравнений $P^\alpha_{\beta} = -P^\beta_{\alpha}$. Формулы (7.9) эквивалентны (7.7) для индексов $(\alpha, \beta, \gamma) = (i, j + k, \ell + k)$. Для остальных значений индексов $(\alpha, \beta, \gamma) = (i, j, \ell)$ или $(\alpha, \beta, \gamma) = (i, j, \ell + k)$, формулы (7.7) справедливы тождественно для любых тензоров (7.2).

III. Теорема 1, част 4. 1) Любой C-инвариантный тензор P типа $(2,0)$ удовлетворяет уравнениям

$$
\text{rank}(L_U P) \leq k,
$$

$$
L_U L_U P = 0.
$$

(7.11)

2) Любой C-инвариантный тензор P типа $(2,0)$ аннулирует любые две C-инвариантные 1-формы θ_1, θ_2: $P(\theta_1, \theta_2) = 0$.

3) Любой C-инвариантный тензор P типа $(2,0)$ и любая C-инвариантная симметрия U удовлетворяют уравнению

$$
[L_U P, L_U P] = 0.
$$

(7.12)

Уравнение (7.12) означает, что кососимметричный тензор $L_U P$ $(2,0)$ является C-инвариантной пуссоновой структурой. Если тензор P типа $(2,0)$ является пуссоновой структурой, то P и $L_U P$ совместны в смысле Магри.

4) Для любых двух C-инвариантных кососимметричных тензоров P и Q типа $(2,0)$ и любых двух симметрий U и U_1 кососимметричные тензоры $L_U P$ и $L_{U_1} Q$ типа $(2,0)$ являются пуссоновыми структурами в смысле Магри.
Доказательство. 1) Производная Ли $L UP$ имеет вид
\begin{equation}
(L UP)_{\alpha \beta} = P_{\alpha \beta} - U_{\alpha \gamma}^\beta P_{\gamma \beta} - U_{\gamma \beta}^\alpha P_{\alpha \gamma}.
\end{equation}

Используя формулы (2.16) и (7.2), мы получаем, что тензор (7.13) имеет блочную структуру
\begin{equation}
(L UP)_{\alpha \beta} = \begin{pmatrix}
0 & 0 \\
0 & \tilde{p}_1(J)
\end{pmatrix},
\end{equation}
где $\tilde{p}_1(J)_{ij} = U_{i+1}^{j+k} p(J)_{i+1}^{j+k} - U_{i+1}^{j+k} p(J)_{j+k}^{i+k}$. Отсюда следует первое уравнение (7.11). Применяя производную Ли $L U_1 P$ к тензору $L U P$ (7.14) типа (2, 0), мы выводим второе уравнение (7.11).

2) Уравнение $P(\theta_1, \theta_2) = 0$ следует из формул (3.2) и (7.2).

3) Используя формулу (7.14), легко убедиться, что кососимметричный C^--инвариантный (2, 0) тензор $L UP$ удовлетворяет уравнениям (7.8)–(7.10). Вследствие предложения 7.2, тензор $L U P$ типа (2, 0) является пласконовой структурой. Поэтому (7.12) справедливо. Если тензор P является пласконовой структурой, то, применяя производную Ли к скобке Скоутена (7.7), мы получаем
\[L U [P, P] = 2[L UP, P] = 0. \]
Следовательно, две пласконовые структуры P и $L UP$ совместимы в смысле Магри.

4) Кососимметричные тензоры $L U P$ и $L U_1 Q$ типа (2, 0) являются пласконовыми структурами вследствие (7.12). Формулы (7.6) и (7.14) приводят к уравнению
\[[L U P, L U_1 Q] = 0. \]
Поэтому две пласконовые структуры $L U P$ и $L U_1 Q$ совместимы по Магри.

Следствие 7.1. Пусть P является произвольной (возможно вырожденной) пласконовой структурой на многообразии M^{2k}. Если гамильтонова система
\begin{equation}
\dot{x}^\alpha = P_{\alpha \beta} H^\beta, \tag{7.15}
\end{equation}
является C^--инвариантной и неяворожденной по отношению к некоторой другой пласконовой структуре P_1, то для любой ее симметрии U справедливы уравнения
\[[L U P, L U P] = 0, \quad [L U P, P] = 0, \quad L U L U P = 0, \quad \text{rank}(L U P) \leq k. \]

Доказательство. Гамильтонова система (7.15) сохраняет пласконовую структуру P. Поэтому представляемые уравнения следуют из доказанной выше теоремы 1, часть 4.

Любой C^--инвариантный тензор P типа (2, 0) удовлетворяет уравнению
\begin{equation}
P(D u^*, v^*) + P(u^*, D v^*) = 0 \tag{7.16}
\end{equation}
для любых двух ковекторов $u^*, v^* \in T^*_x(M^n)$. Действительно, уравнение (7.16) следует из формулу (2.13), (3.2) и (7.2).
§ 8. Характеристический многочлен любого C-инвариантного тензора типа $(1, 1)$ является полным квадратом

I. Представим тензор $A_\alpha^\beta(J, \varphi)$ типа $(1, 1)$ в блочном виде

$$A_\alpha^\beta(J, \varphi) = \begin{pmatrix} B_2 & B_4 \\ B_1 & B_3 \end{pmatrix} \quad (8.1)$$

в торoidalных координатах (2.7). Здесь $B_1, B_2, B_3, B_4(J, \varphi)$ — матрицы размера $k \times k$.

Предложение 8.1. Тензор $A_\alpha^\beta(J, \varphi)$ типа $(1, 1)$ тогда и только тогда является инвариантным по отношению к C-интегрируемой неэкроножденной гамильтоновской системе (1.1), если он имеет блочный вид

$$A_\alpha^\beta = \begin{pmatrix} B(J) & 0 \\ \sigma(J) & B(J) \end{pmatrix} \quad (8.2)$$

в координатах (2.7). Здесь $B(J)$ и $\sigma(J)$ — произвольные $k \times k$ матрицы.

Доказательство. Уравнение инвариантности $L \cdot A = 0$ для тензора $A_\alpha^\beta(J, \varphi)$ (8.1) типа $(1, 1)$ имеет вид

$$(L \cdot A)_\alpha^\beta = A_\beta^\alpha - V_\beta^\gamma A_\gamma^\alpha + V_\alpha^\gamma A_\gamma^\beta = 0. \quad (8.3)$$

Используя формулы (8.1) и (3.4), мы находим, что уравнение инвариантности (8.3) эквивалентно следующей линейной динамической системе в пространстве матриц

$$\dot{B}_1 = B_2 - B_3, \quad \dot{B}_2 = -B_4, \quad \dot{B}_3 = B_4, \quad \dot{B}_4 = 0. \quad (8.4)$$

Эта система очевидно имеет верхне-треугольную структуру. Вследствие (2.8), решения уравнения (8.4) имеют вид

$$B_1(t) = -\bar{B}_4(J)t^2 + (\bar{B}_2(J) - \bar{B}_3(J))t + \bar{B}_1(J),$$
$$B_2(t) = -\bar{B}_4(J)t + \bar{B}_2(J), \quad B_3(t) = \bar{B}_4(J)t + \bar{B}_3(J), \quad B_4(t) = \bar{B}_4(J). \quad (8.5)$$

Все компоненты гладкого инвариантного $(1, 1)$ тензора $A_\alpha^\beta(J, \varphi)$ ограничены по модулю на любом торе T^k (2.4). Решения (8.5) ограничены при всех t тогда и только тогда, если

$$\bar{B}_2(J) = \bar{B}_3(J), \quad \bar{B}_4(J) = 0.$$

Поэтому, используя тот факт, что общие траектории интегрируемой неэкроножденной гамильтоновской системы $(1, 1)$ входят плотны на торах T^k, мы получаем, что любой C-инвариантный тензор A_α^β типа $(1, 1)$ имеет блочный вид (8.2).
II. Теорема 1, часть 5. 1) Если тензор $A_\beta^\alpha(x)$ типа (1, 1) является C-инвариантым, то его характеристический многочлен

$$P(\lambda, x) = \det \| A(x) - \lambda \|$$

является полным квадратом

$$P(\lambda, x) = Q^2(\lambda, x).$$

Все собственные значения любого C-инвариантного тензора типа (1, 1) имеют четные кратности.

2) Любые две симметричные U и U_1 C-инвариантной гамильтоновой симметрии (1, 1) и любой C-инвариантный тензор $A(x)$ удовлетворяют уравнениям

$$(L_U A)^2 = 0, \quad \text{так}(L_U A) \leq k, \quad L_{U_1} L_U A = 0.$$

Доказательство. 1) Характеристический многочлен (8.6) является инвариантом тензора A_β^α типа (1, 1) и не зависит от выбора локальных координат. Используя блочную структуру (8.2) C-инвариантного тензора A_β^α типа (1, 1) в топологических координатах (2.7), мы получаем формулу (8.7), где

$$Q(\lambda, x) = \det \| B(J) - \lambda \|.$$

Формула (8.7) доказывает, что каждый корень многочлена $P(\lambda, x)$ или каждое собственное значение тензора A_β^α типа (1, 1) имеет четную кратность.

2) Производная Ли $L_U A$ имеет следующие компоненты

$$(L_U A)_\beta^\gamma = A_\beta^\gamma - U_\gamma^\alpha A_\beta^\alpha + U_\alpha^\gamma A_\beta^\alpha.$$

Используя формулы (2.16) и (8.2), мы получаем, что тензор (8.9) типа (1, 1) имеет блочную структуру

$$L_U A = \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix},$$

где $k \times k$-матрица $C(J)$ имеет компоненты $C_i^j = B_i^j U_i^{l+k} - U_i^{l+k} B_i^j$. Тензор (8.10) типа (1, 1) очевидно удовлетворяет первому и второму уравнению (8.8).

Примем производную Ли L_{U_1} к тензору $L_U A$ (8.10) типа (1, 1), мы выводим третье уравнение (8.8).

Следствие 8.1. 1) Нилпотентный тензор D (2.12) типа (1, 1) является C-инвариантым.

2) Любой C-инвариантный тензор A типа (1, 1) коммутирует с нилпотентным тензором D (2.12)

$$AD = DA.$$

Распределение $L_x = T_x(T^k)$ (2.5) инварианты по отношению к любому C-инвариантому тензору A типа (1, 1):

$$A(L_x) \subset L_x.$$

Доказательство. 1) Формулы (2.12) означают, что тензор D типа (1, 1) имеет блочную структуру (8.2), где $B(J) = 0$ и $\sigma(J) = 1$. Поэтому инвариантность тензора D следует из предложения 8.1.

2) Уравнения (8.11) и (8.12) следуют из блочной структуры (8.2) и формулы (2.12).
§ 9. Тензор Нейнкейса и C-инвариантные тензоры типа (1, 2)

I. Тензор Нейнкейса $N_{\alpha \beta \gamma}^0$ типа (1, 2) определяется формулой [14]

$$N_{\alpha \beta \gamma}^0 = A_{\gamma, \tau}^\alpha A_{\beta, \tau}^\gamma - A_{\beta, \tau}^\alpha A_{\gamma, \tau}^\beta + (A_{\beta, \gamma}^\alpha - A_{\gamma, \beta}^\alpha) A_{\tau}^\gamma. \quad (9.1)$$

Тензор Нейнкейса N_4 является C-инвариантным, если тензор A типа (1, 1) C-инвариант. Тензор Нейнкейса N_4 обладает замечательными алгебраическими свойствами, которые могут быть выведены прямым вычислением, используя определение этого тензора (9.1) и формулу (8.2). Это вычисление показывает, что основные алгебраические свойства тензора Нейнкейса N_4 являются проявлением общих алгебраических свойств всех C-инвариантных тензоров $N_{\alpha \beta \gamma}^0$ типа (1, 2).

II. Любой тензор $N_{\alpha \beta \gamma}^0$ типа (1, 2) определяет билинейное произведение касательных векторов $u, v \in T_x(M^n)$

$$(N(u, v))^\alpha = N_{\alpha \beta \gamma}^0 u^\beta v^\gamma \in T_x(M^n). \quad (9.2)$$

Эта формула определяет некоторую алгебраическую структуру в касательном пространстве $T_x(M^n)$.

Мы объединяем компоненты тензора $N_{\alpha \beta \gamma}^0(J, \varphi)$ в торийдальных координатах J_1, φ_1 (2.7) в следующие восьмь группы

$$N_j^{i+k} = N_{ij \ell}^0, \quad N_{j+1, \ell+k} = N_{ij \ell}^0, \quad N_{j+1, \ell+1} = N_{j+1, \ell+1}^0, \quad N_{j+1, \ell+1+k} = N_{j+1, \ell+1+k}^0, \quad (9.3)$$

где индексы i, j, ℓ изменяются между 1 и k.

Предложение 9.1. Тензор $N_{\alpha \beta \gamma}^0(J, \varphi)$ типа (1, 2) является инвариантным по отношению к C-интегрируемой невырожденной гамильтоновой системе (1.1) тогда и только тогда, если все компоненты (9.3) зависят только от переменных J_i и справедливо уравнение

$$N_4(J) = N_2(J) + N_3(J), \quad N_5 = N_6 = N_7 = N_8 = 0. \quad (9.4)$$

Компоненты группы $N_1(J), N_2(J)$ и $N_3(J)$ являются производными гладкими функциями от J_1, \ldots, J_k.

Доказательство. Уравнение инвариантности $L \cdot N = 0$ для тензора $N_{\alpha \beta \gamma}^0(J, \varphi)$ типа (1, 2) имеет вид

$$(L \cdot N)_{\beta \gamma}^\alpha = \dot{N}_{\beta \gamma}^\alpha - V_\tau^\alpha N_{\beta \gamma}^\tau + V_\tau^\beta N_{\gamma \tau}^\alpha + V_\tau^\gamma N_{\beta \tau}^\alpha = 0. \quad (9.5)$$

Получая формулы (3.4) и (9.3), мы выясним, что уравнения (9.5) эквивалентны следующей линейной динамической системе в пространстве тензоров $N_a, a = 1, \ldots, 8$:

$$\dot{N}_1 = N_4 - N_2 - N_3, \quad \dot{N}_2 = N_5 - N_7, \quad \dot{N}_3 = N_6 - N_7, \quad \dot{N}_4 = -N_5 - N_6, \quad \dot{N}_5 = -N_8, \quad \dot{N}_6 = -N_8, \quad \dot{N}_7 = N_8, \quad \dot{N}_8 = 0. \quad (9.6)$$
Используя очевидную верхнетреугольную структуру системы (9.6) и основное свойство первых интегралов (2.8), мы получаем явные формулы для всех решений системы (9.6):

\[N_1(t) = \tilde{N}_6(J)t^3 + (\tilde{N}_7(J) - \tilde{N}_5(J) - \tilde{N}_6(J))t^2 + (\tilde{N}_4(J) - \tilde{N}_2(J) - \tilde{N}_3(J))t + \tilde{N}_1(J), \]

\[N_2(t) = -\tilde{N}_6(J)t^2 + (\tilde{N}_5(J) - \tilde{N}_7(J))t + \tilde{N}_2(J), \]

\[N_3(t) = -\tilde{N}_6(J)t^2 + (\tilde{N}_6(J) - \tilde{N}_7(J))t + \tilde{N}_3(J), \]

(9.7)

где \(\tilde{N}_a(J) \) являются произвольными гладкими функциями от \(J_1, \ldots, J_k \).

Компоненты \(N_{\gamma \gamma}^\alpha(J) \) любого гладкого C-инвариантного тензора типа (1, 2) ограничены по модулю на любом торе \(T^k \) (2.4). Решения (9.7) ограничены при всех \(t \) тогда и только тогда, если выполнены уравнения (9.4). Поэтому, используя тот факт, что общие траектории интегрируемой невырожденной гамильтоновой системы (1.1) всюду плоски на торах \(T^k \), мы получаем, что все компоненты \(N_{\gamma \gamma}^\alpha \) зависят только от переменных \(J_i \) и удовлетворяют уравнениям (9.4).

III. Для любого касательного вектора \(u \in T_x(M^n) \), мы определяем линейный оператор

\[N_u: T_x(M^n) \to T_x(M^n), \quad N_u w = N(u, w). \]

(9.8)

В статье [3], мы вывели следующую полиномиально-значную функцию на касательном расслоении \(T(M^n) \)

\[P_N(u, \lambda) = \det(N_u - \lambda). \]

(9.9)

Предложение 9.2. Любой C-инвариантный тензор \(N \) типа (1, 2) обладает следующими свойствами.

1) Линейные \(k \)-мерные подпространства \(L_x \) (2.5) являются идеалами по отношению к алгебраическим структурам (9.2):

\[N(L_x, L_x) = 0, \quad N(T_x(M^n), L_x) \subset L_x, \quad N(L_x, T_x(M^n)) \subset L_x. \]

(9.10)

2) Многочлен \(P_N(u, \lambda) \) приводим и является произведением двух многочленов степени \(k \). Справедливы тождества

\[P_N(u + v, \lambda) = P_N(u, \lambda), \quad P_N(v, \lambda) = \lambda^n \quad \text{(9.11)} \]

для произвольных касательных векторов \(u \in T_x(M^n) \) и \(v \in L_x, L_x = T_x(T^k) \subset T_x(M^n) \).

3) Нилпотентный C-инвариантный (1, 1) тензор \(D \) (2.12) является дифференцируем C-инвариантной алгебраической структурой (9.2), что означает справедливость тождества

\[DN(u, v) = N(Du, v) + N(u, Dv) \]

(9.12)

для любых касательных векторов \(u, v \in T_x(M^n) \).
Доказательство. 1) Касательные векторы \(u \in T_x(M^n) \) и \(v \in \mathcal{L}_x \) имеют вид

\[
u = u^\alpha e_\alpha, \quad v = v^{i+k} e_{i+k}
\]

(9.13)

в базисе (2.9). Поэтому формула (9.10) является прямым следствием последних четырех уравнений (9.4).

2) Из формулы (9.10) следует, что линейные операторы \(N_{e_\alpha} \) (9.8) имеют следующую \(k \times k \) блочную структуру

\[
N_{e_i} = \begin{pmatrix} V_i & 0 \\ U_i & W_i \end{pmatrix}, \quad N_{e_{i+k}} = \begin{pmatrix} 0 & 0 \\ Q_i & 0 \end{pmatrix}.
\]

Используя формулу \(u = u^i e_i + u^{i+k} e_{i+k} \), мы получаем

\[
P_N(u, \lambda) = \det(u^i V_i - \lambda) \det(u^i W_i - \lambda),
\]

(9.14)

где \(i = 1, \ldots, k \). Эта формула представляет многочлен \(P_N(u, \lambda) \) в виде произведения двух сомножителей степени \(k \). Тождества (9.11) следуют из (9.13) и (9.14).

3) Тождество (9.12) эквивалентно (9.4). Действительно, эта эквивалентность легко проверяется в базисе (2.9).

Теорема 1, часть 6. 1) Любые две симметрии \(U \) и \(U_1 \) \(C \)-интегрируемой невырожденной гамильтоновой системы (1.1) и любые \(C \)-инвариантные 1-формы \(\theta \) и тензор \(N^\alpha_{\beta \gamma} \) типа (1, 2) удовлетворяют уравнениям

\[
N^\alpha_{\beta \gamma} U^\beta U^\gamma = 0, \quad N^\alpha_{\beta \gamma} U^\beta \theta_\alpha = 0, \quad L_{U_1} L_{U} N = 0.
\]

(9.15)

2) \(C \)-инвариантный тензор \(\left(A_U \right)^\alpha_{\beta \gamma} = N^\alpha_{\beta \gamma} U^\tau \) и тензор \(\left(N_\theta \right)^\alpha_{\beta \gamma} = N^\alpha_{\beta \gamma} \theta^\tau \) удовлетворяют уравнениям

\[
\text{rank} \|A_U\| \leq k, \quad A^2_U = 0, \quad L_{U_1} A_U = 0, \quad \text{rank} \|N_\theta\| \leq k, \quad L_{U_1} N_\theta = 0.
\]

(9.16)

3) Тензор \(\tilde{N} = L_{U_1} N \) типа (1, 2) определяет нильпотентную алгебраическую структуру в касательном пространстве \(T(M^n) \): уравнения

\[
\tilde{N}(N(u, v), w) = 0, \quad \tilde{N}(u, \tilde{N}(v, w)) = 0
\]

(9.17)

справедливы для любых касательных векторов \(u, v, w \in T_x(M^n) \).

4) Многочлен \(P_N(u, \lambda) \) (9.9) удовлетворяет уравнениям

\[
P_N(u + U, \lambda) = P_N(u, \lambda), \quad P_N(U, \lambda) = \lambda^n
\]

dля любого касательного вектора \(u \in T_x(M^n) \) и любой симметрии \(U \). Многочлен \(P_N(u, \lambda) \) приводим и является произведением двух многочленов степени \(k \).

5) Для любых двух \(C \)-инвариантных тензоров \(M \) и \(N \) типа (1, 2) и любой симметрии \(U \), тензор \(h_{\alpha \beta} = M^\tau_{\alpha \beta} N^\nu_{\beta \tau} \) типа (0, 2) удовлетворяет уравнениям

\[
\text{rank} \|h\| \leq k, \quad h_{\alpha \beta} U^\beta = 0, \quad L_{U} h = 0.
\]

(9.18)
ДОКАЗАТЕЛЬСТВО. 1) Первое уравнение (9.15) следует из первого уравнения (9.10), так как любая симметрия \(U \) (2.15) приводит к распределению \(\mathcal{L}_x \) (2.5).
Второе уравнение (9.15) следует из формулы (2.15), (3.2) и (9.4).
Используя предложение 9.1 и формулы (2.16), (2.18) и (9.5), мы получаем, что все ненулевые компоненты тензора \(L_U \cdot N \) типа \((1, 2)\) имеют вид

\[
(L_U \cdot N)_{j^+k}^{i^+\ell} = U_{m+k}^\ell N_{m+k}^{i+j} + U_{m+k}^\ell N_{m+k}^{i+j} - U_{m+k}^\ell N_{m+k}^{i+j}.
\]

(9.19)

Поскольку только первая группа (9.3) компонент тензора \(\bar{N} = L_U \cdot N \) является ненулевой.
Примем формулу (9.19) к тензору \(L_U \cdot \bar{N} = L_U \cdot L_U \cdot N \) типа \((1, 2)\), мы получим третье уравнение (9.15).

2) Следствие формула (2.15) и (3.2) для симметрим \(U \) и для \(C \)-инвариантных 1-форм \(\theta \), и формул (9.3), (9.4), все ненулевые компоненты тензоров \(A_U \) типа (1, 1) и тензора \(N_{\theta} \) типа (0, 2) имеют вид

\[
A_{i^+k}^{j^+\ell} = N_{j^+k}^{i^+\ell} U^\ell_{i^+k}, \quad N_{\theta}^{i^+\ell} = U^\ell_{i^+k} \theta_k.
\]

(9.20)

Отсюда следует, что все компоненты тензора \(\bar{N} = L_U \cdot N \) типа \((1, 2)\), за исключением \((L_U \cdot N)_{j^+k}^{i^+\ell} \), равны нулю. Этот факт означает, что тензор \(\bar{N} \) типа (1, 2) удовлетворяет уравнениям

\[
\bar{N}(T_x(M^n), T_x(M^n)) \subset \mathcal{L}_x, \quad \bar{N} (\mathcal{L}_x, T_x(M^n)) = \bar{N}(T_x(M^n), \mathcal{L}_x) = 0.
\]

Отсюда следует уравнение (9.17).

4) Утверждение 4) следует из утверждения 2) предложения 9.2, поскольку векторное поле любой симметрии \(U \) приводит к распределению \(\mathcal{L}_x = T_x(\mathbb{T}^k) \).

5) Используя формулу (9.3) и (9.4) для любых \(C \)-инвариантных тензоров \(M \) и \(N \) типа (1, 2), легко проверить, что все ненулевые компоненты тензора \(h \) типа (0, 2) имеют вид

\[
h_{ij} = M_i^\ell N_j^k + M_j^\ell N_i^k + M_i^k N_j^\ell + M_j^k N_i^\ell.
\]

(9.21)

Отсюда следует первое верно уравнение (9.18). Второе уравнение (9.18) следует из выражений (2.15) для симметрии \(U \) и (9.21). Примем формулу Лейбница, мы получаем

\[
(L_U \cdot h)_{\alpha\beta} = (L_U \cdot M)_{\alpha\gamma}^\tau N_{\beta\gamma}^\nu + M_{\alpha\beta}^\tau (L_U \cdot N)_{\beta\gamma}^\nu.
\]

(9.22)

Используя формулы (9.19) для ненулевых компонент тензоров \(L_U \cdot M \) и \(L_U \cdot N \), и формулы (9.3), (9.4), мы находим, что обе суммы в (9.22) равны нулю. Поэтому \(L_U \cdot h = 0 \) для любой симметрии \(U \).

§ 10. Замкнутые дифференциальные
3-формы и \(C \)-инвариантные (0, 3) тензоры

1. Мы объединяем компоненты \(T_{\alpha\beta\gamma}(J, \varphi) \) тензора \(T \) типа (0, 3) в следующие восемь групп

\[
T_{i^+j^+k^+}^{i^+j^+k^+} = T_{i^+j^+k^+}^{i^+j^+k^+}, \quad T_{i^+j^+k}^{i^+j^+k} = T_{i^+j^+k}^{i^+j^+k}, \quad T_{i^+j^+k}^{i^+j^+k} = T_{i^+j^+k}^{i^+j^+k},
\]

(10.1)
где индексы i, j, ℓ изменяются между 1 и k.

Предложение 10.1. Тензор $T_{\alpha \beta \gamma} (J, \varphi)$ типа (0, 3) тогда и только тогда является инвариантом по отношению к C-интегрируемой невырожденной гамильтоновой системе (1.1), если все компоненты (10.1) зависят только от переменных J_i и справедливы уравнения

$$T_2(J) + T_3(J) + T_4(J) = 0, \quad T_5 = T_6 = T_7 = T_8 = 0. \quad (10.2)$$

Компоненты $T_2(J)$, $T_3(J)$ и $T_4(J)$ являются произвольными гладкими функциями переменных J_1, \ldots, J_k.

Доказательство. Уравнение инвариантности $L_T = 0$ для тензора $T_{\alpha \beta \gamma} (J, \varphi)$ типа (0, 3) имеет вид

$$(L_T)_{\alpha \beta \gamma} = \dot{T}_{\alpha \beta \gamma} + V^\tau_{\alpha \beta \gamma} T_{\tau \beta \gamma} + V^\tau_{\alpha \gamma \beta} T_{\tau \alpha \beta} + V^\tau_{\beta \gamma \alpha} T_{\alpha \beta \tau} = 0. \quad (10.3)$$

Используя формулы (3.4) и (10.1), мы получаем, что уравнения (10.3) эквивалентны следующей линейной динамической системе в пространстве тензоров T_α,

$\alpha = 1, \ldots, 8$.

$$T_1 = -T_2 - T_3 - T_4, \quad T_2 = -T_5 - T_6, \quad T_3 = -T_6 - T_7, \quad T_4 = -T_5 - T_7, \quad T_5 = -T_8, \quad T_6 = -T_8, \quad T_7 = -T_8, \quad T_8 = 0. \quad (10.4)$$

Вследствие основного свойства первых интегралов (2.8) и верхне-треугольной структуры системы (10.4), все решения (10.4) определяются формулами

$$T_1(t) = -\bar{T}_8(J) t^3 + (\bar{T}_5(J) + \bar{T}_6(J) + \bar{T}_7(J)) t^2$$
$$- (\bar{T}_2(J) + \bar{T}_3(J) + \bar{T}_4(J)) t + \bar{T}_1(J),$$
$$T_2(t) = \bar{T}_5(J) t^2 - (\bar{T}_5(J) + \bar{T}_6(J)) t + \bar{T}_2(J),$$
$$T_3(t) = \bar{T}_6(J) t^2 - (\bar{T}_6(J) + \bar{T}_7(J)) t + \bar{T}_3(J),$$
$$T_4(t) = \bar{T}_7(J) t^2 - (\bar{T}_5(J) + \bar{T}_7(J)) t + \bar{T}_4(J),$$
$$T_5(t) = -\bar{T}_8(J) t + \bar{T}_5(J), \quad T_6(t) = -\bar{T}_8(J) t + \bar{T}_6(J),$$
$$T_7(t) = -\bar{T}_8(J) t + \bar{T}_7(J), \quad T_8(t) = \bar{T}_8(J), \quad (10.5)$$

где $\bar{T}_\alpha(J)$ являются произвольными гладкими функциями переменных J_1, \ldots, J_k.

Все компоненты $T_{\alpha \beta \gamma} (J, \varphi)$ гладкого C-инвариантного тензора T типа (0, 3) ограничены по модулю на любом торе T^k (2.4). Решения (10.5) ограничены при всех ℓ тогда и только тогда, если справедливы уравнения (10.2). Поэтому, используя тот факт, что общие траектории интегрируемой невырожденной системы (1.1) всюду плотны на торах T^k, мы получаем, что все компоненты $T_{\alpha \beta \gamma}$ зависят только от переменных J_i и удовлетворяют уравнениям (10.2).
Уравнения (10.2) означают, что C-инвариантные тензоры \(T_{\alpha\beta\gamma} \) типа (0, 3) соответствуют особым точкам системы (10.4). Прямая проверка показывает, что уравнения (10.2) эквивалентны тождеству

\[
T(Du, v, w) + T(u, Dw, v) + T(u, v, Dw) = 0,
\]

где \(u, v, w \in T_x(M^n) \) — произвольные касательные векторы и \(D \) — нильпотентный тензор (2.12) типа (1, 1).

Н. Следствие 10.1. Любая C-инвариантная дифференциальная 3-форма \(\omega_3 \) имеет вид

\[
\omega_3 = b_{i\ell m}(J)dJ_i \wedge dJ_{\ell} \wedge d\varphi_m + c_{i\ell m}(J)dJ_i \wedge dJ_{\ell} \wedge dJ_m,
\]

где коэффициенты \(b_{i\ell m}(J) \) удовлетворяют уравнениям

\[
b_{i\ell m}(J) + b_{\ell mi}(J) + b_{m\ell i}(J) = 0, \quad b_{i\ell m}(J) = -b_{\ell im}(J)
\]

и коэффициенты \(c_{i\ell m}(J) \) являются знакопеременными.

Доказательство. Формулы (10.6) и (10.7) следуют из (10.2) для любого C-инвариантного тензора типа (0, 3) и из определения дифференциальных 3-форм.

Предложение 10.2. 1) Замкнутая дифференциальная 3-форма \(\omega_3 \) тогда и только тогда инвариантна по отношению к C-интегрируемой невырожденной гамильтоновой системе (1.1), если она имеет вид

\[
\omega_3 = d\left(\frac{\partial B_i(J)}{\partial J_m} + b_{im}(J) \right) \wedge dJ_i \wedge d\varphi_m + d(a_{i\ell}(J)dJ_i \wedge dJ_{\ell})
\]

в сфероидах координатах (2.7). Здесь коэффициенты \(a_{i\ell}(J) \) \(b_{im}(J) \) удовлетворяют уравнениям

\[
a_{i\ell}(J) = -a_{\ell i}(J), \quad b_{im}(J) = b_{mi}(J)
\]

и \(B_i(J) \) — произвольные гладкие функции переменных \(J_1, \ldots, J_k \).

2) Справедливо уравнение \(\omega_3 = d\tilde{\omega}_2 \), где

\[
\tilde{\omega}_2 = \left(\frac{\partial B_i(J)}{\partial J_m} + \frac{\partial B_m(J)}{\partial J_i} + b_{im}(J) \right) dJ_i \wedge d\varphi_m + a_{i\ell}(J)dJ_i \wedge dJ_{\ell}
\]

является C-инвариантной 2-формой.

Доказательство. 1) Производная Ли от замкнутой 3-формы (10.8) по отношению к динамической системе (2.6) имеет вид

\[
\tilde{\omega}_3 = \frac{\partial^2 B_i(J)}{\partial J_m \partial J_{\ell}} dJ_i \wedge dJ_{\ell} \wedge dJ_m + db_{im}(J) \wedge dJ_i \wedge dJ_m = 0.
\]

Это выражение равно нулю ввиду кососимметричности внешнего произведения и симметричности смешанных вторых производных от функции \(B_i(J) \) и симметричности коэффициентов \(b_{im}(J) \) (10.9). Поэтому замкнутая 3-форма (10.8) является C-инвариантной.
Следствие 10.1 показывает, что любая \(C \)-инвариантная дифференциальная 3-форма \(\omega_3 \) имеет вид (10.6). Уравнение \(d\omega_3 = 0 \) эквивалентно \(k + 1 \) уравнениям

\[
d(b_{itm}(J)dJ_i \wedge dJ_t) = 0, \quad m = 1, \ldots, k,
\]
\[
d(c_{itm}(J)dJ_i \wedge dJ_t \wedge dJ_m) = 0.
\]

Применяя лемму Пуанкаре, мы получаем

\[
b_{itm}(J)dJ_i \wedge dJ_t = d(c_{im}(J)dJ_i), \quad m = 1, \ldots, k, \tag{10.11}
\]
\[
c_{itm}(J)dJ_i \wedge dJ_t \wedge dJ_m = d(a_{it}(J)dJ_i \wedge dJ_t), \tag{10.12}
\]

где \(c_{im}(J) \) и \(a_{it}(J) \) являются гладкими функциями. После подстановки формулы (10.11) в (10.6), уравнение инвариантности \(\dot{\omega}_3 = 0 \) принимает вид

\[
\dot{\omega}_3 = d(c_{im}(J)dJ_i \wedge dJ_m) = 0.
\]

Используя лемму Пуанкаре, мы получаем

\[
c_{im}(J)dJ_i \wedge dJ_m = -d(B_i(J)dJ_i), \tag{10.13}
\]

где \(B_i(J) \) — некоторые гладкие функции. Общее решение уравнения (10.13) имеет вид

\[
c_{im}(J) = \frac{\partial B_i(J)}{\partial J_m} + b_{im}(J), \quad b_{im}(J) = b_{m,i}(J), \tag{10.14}
\]

где \(b_{im}(J) \) — произвольные гладкие функции от \(J_1, \ldots, J_k \). Теперь формула (10.8) следует из (10.6), (10.11), (10.12) и (10.14) прямой подстановкой.

2) Уравнение \(\dot{\omega}_3 = d\tilde{\omega}_2 \) легко выводится из (10.10). \(C \)-инвариантность 2-формы \(\tilde{\omega}_2 \) следует из формулы для производной Ли \(L_V \tilde{\omega}_2 \):

\[
L_V \tilde{\omega}_2 = \dot{\omega}_2 = \left(\frac{\partial B_i(J)}{\partial J_m} + \frac{\partial B_m(J)}{\partial J_i} + b_{im}(J) \right)dJ_i \wedge dJ_m
\]
\[
= dJ_i \wedge dJ_m + dJ_m \wedge dJ_i + b_{im}(J)dJ_i \wedge dJ_m. \tag{10.15}
\]

Первая и вторая суммы в правой части (10.15) сокращаются. Третья сумма в (10.15) равна нулю ввиду симметричности коэффициентов \(b_{im}(J) \) и кососимметричности внешнего произведения \(dJ_i \wedge dJ_m \). Отсюда мы получаем \(L_V \tilde{\omega}_2 = 0 \). Поэтому 2-форма \(\tilde{\omega}_2 \) является \(C \)-инвариантной.

Уравнение инвариантности

\[
L_V \tilde{\omega}_2 = (i_V \circ d + d i_V) \tilde{\omega}_2 = 0
\]

и уравнение \(\dot{\omega}_3 = d\tilde{\omega}_2 \) влечет

\[
i_V \dot{\omega}_3 = -d(i_V \tilde{\omega}_2).
\]

Поэтому \(C \)-инвариантная 2-форма \(i_V \dot{\omega}_3 \) является внешней производной \(C \)-инвариантной 1-формы \(-i_V \tilde{\omega}_2 \).
III. ТЕОРЕМА 1, ЧАСТЬ 7. 1) Любые две симметрии \(U \) и \(U_1 \) \(C \)-интегрируемой невырожденной гамильтоновой системы (1.1) и любой \(C \)-инвариантный тензор \(T_{\alpha \beta \gamma} \) типа (0, 3) удовлетворяют уравнениям

\[
T_{\alpha \beta \gamma} U^\beta U^\gamma_1 = 0, \quad L_{U_1} L_U T = 0. \tag{10.16}
\]

2) \(C \)-инвариантный тензор \((T_U)_{\alpha \beta} = T_{\alpha \beta \gamma} U^\gamma \) типа (0, 2) удовлетворяют уравнениям

\[
\text{rank} \| T_U \| \leq k, \quad L_{U_1} T_U = 0. \tag{10.17}
\]

ДОКАЗАТЕЛЬСТВО. 1) Первое уравнение (10.16) следует из предложения 10.1 и формулы (2.15) для симметрий \(U \) в торoidalных координатах (2.7).

Используя предложение 10.1 и формулы (2.16), (2.18) и (10.3), мы получаем, что все венулеевые компоненты тензора \(L_U T \) типа (0, 3) имеют вид

\[
(L_U T)_{ij \ell} = U^{\gamma} T_m^{+k} T_{i \ell \gamma} + U^{\gamma} T_{i \ell \gamma} + U^{\gamma} T_{i \ell \gamma} + U^{\gamma} T_{i \ell \gamma}. \tag{10.18}
\]

Поскольку только первая группа компонента \((10.1) \) тензора \(\mathbf{T} = L_U T \) типа (0, 3) отлична от нуля. Применяя формулы (10.18) к тензору \(L_{U_1} \mathbf{T} = L_{U_1} L_U T \), мы выводим второе уравнение (10.16).

2) Вследствие выражения (2.15) для симметрий \(U \) и формул (10.1), (10.2), все компоненты тензора \(T_U \) типа (0, 2) имеют вид \(T_{ij \ell} = T_{ij \ell} U_{i \ell + k} \). Отсюда следует первое уравнение (10.17). Применяя формулы (4.9) к тензору \(T_U \), мы получаем второе уравнение (10.17).

§ 11. Скобки Шютенна и \(C \)-инвариантные тензоры типа \((3, 0)\)

I. Любый тензор \(R^{\alpha \beta \gamma} \) типа (3, 0) определяет тривиальной функцией на юккса-телемском пространстве \(T^*_\alpha(M^n) \):

\[
R(\zeta, \eta, \theta) = R^{\alpha \beta \gamma} \zeta_\alpha \eta_\beta \theta_\gamma.
\]

Кососимметричные тензоры \(R^{\alpha \beta \gamma}(J, \varphi) \) типа (3, 0) имеют важные применения как скобки Шютенна двух общих пуассоновых структур.

Мы объединяем тензорные компоненты \(R^{\alpha \beta \gamma}(J, \varphi) \) в торoidalных координатах \(J, \varphi \) (2.7) в следующие восьм из групп

\[
R^{\delta k + \ell k + k} = R^{\delta k + \ell k + k}, \quad R^{\delta k + \ell k + k} = R^{\delta k + \ell k + k}, \quad R^{\delta k + \ell k + k} = R^{\delta k + \ell k + k}, \quad R^{\delta k + \ell k + k} = R^{\delta k + \ell k + k},
\]

где индексы \(i, j, \ell \) изменяются между 1 и \(k \).

ПРЕДЛОЖЕНИЕ 11.1. Тензор \(R^{\alpha \beta \gamma}(J, \varphi) \) типа (3, 0) тогда и только тогда инвариантен по отношению к \(C \)-интегрируемой невырожденной гамильтоновой системе (1.1), если все компоненты \(R^{\alpha \beta \gamma} \) зависят только от переменных \(J_i \) и справедливо уравнения

\[
R_4 (J) = -R_2 (J) - R_3 (J), \quad R_5 = R_6 = R_7 = R_8 = 0. \tag{11.2}
\]

Компоненты \(R_3 (J) \), \(R_2 (J) \) и \(R_3 (J) \) являются произвольными гладкими функциями переменных \(J_1, \ldots, J_k \).
Доказательство. Уравнение инвариантности $L_V R = 0$ имеет вид
\[
(L_V R)_{\alpha \beta \gamma} = R^\alpha_{\alpha \gamma} - V^\alpha_{\alpha \gamma} R^\beta_{\gamma \beta} - V^\beta_{\gamma \beta} R^\alpha_{\alpha \gamma} - V^\gamma_{\alpha \gamma} R^\alpha_{\beta \gamma} = 0. \tag{11.3}
\]
Подставляя формулы (3.4) и (11.1), мы получаем, что уравнения (11.3) эквивалентны следующей линейной динамической системе в пространстве тензоров R_a, $a = 1, \ldots, 8$:
\[
\begin{align*}
\dot{R}_1 &= R_2 + R_3 + R_4, \quad \dot{R}_2 = R_5 + R_6, \quad \dot{R}_3 = R_6 + R_7, \\
\dot{R}_4 &= R_5 + R_7, \quad \dot{R}_5 = R_8, \quad \dot{R}_6 = R_8, \quad \dot{R}_7 = R_8, \quad \dot{R}_8 = 0. \tag{11.4}
\end{align*}
\]
Используя очевидную верхнетреугольную структуру этой системы и основное свойство первых интегралов (2.8), мы представляем все решения уравнений (11.4) в явном виде:
\[
\begin{align*}
R_1(t) &= \tilde{R}_6(J) t^3 + (\tilde{R}_5(J) + \tilde{R}_6(J) + \tilde{R}_7(J)) t^2 \\
&\quad + (\tilde{R}_2(J) + \tilde{R}_3(J) + \tilde{R}_4(J)) t + \tilde{R}_1(t), \\
R_2(t) &= \tilde{R}_6(J) t + (\tilde{R}_5(J) + \tilde{R}_6(J) + \tilde{R}_7(J)) t + \tilde{R}_2(J), \\
R_3(t) &= \tilde{R}_6(J) t^2 + (\tilde{R}_5(J) + \tilde{R}_6(J) + \tilde{R}_7(J)) t + \tilde{R}_3(J), \\
R_4(t) &= \tilde{R}_6(J) t^3 + (\tilde{R}_5(J) + \tilde{R}_6(J) + \tilde{R}_7(J)) t + \tilde{R}_4(J), \\
R_5(t) &= \tilde{R}_6(J) t + \tilde{R}_5(J), \quad R_6(t) = \tilde{R}_6(J) t + \tilde{R}_6(J), \\
R_7(t) &= \tilde{R}_6(J) t + \tilde{R}_7(J), \quad R_8(t) = \tilde{R}_6(J),
\end{align*}
\]
где $\tilde{R}_a(J)$ — произвольные гладкие функции переменных J_1, \ldots, J_8.

C-инвариантный тензор $R^a_{\alpha \beta \gamma}(J, \varphi)$ типа (3, 0) является гладким в любой тороидальной области $\theta = B_a \times T^k$. Поэтому все компоненты $R^a_{\alpha \beta \gamma}(J, \varphi)$ ограничены по модулю на любом торе T^k. Точные решения (11.5) ограничены при всех t тогда и только тогда, если справедливы уравнения (11.2). Поэтому, используя тот факт, что общие траектории интегрируемой невырожденной гамильтоновой системы (1.1) всюду плотны на торах T^k (2.4), мы получаем, что все компоненты $R^a_{\alpha \beta \gamma}$ удовлетворяют (11.2).

Уравнения (11.2) определяют особые точки динамической системы (11.4). Поэтому тензор $R^a_{\alpha \beta \gamma} (11.1)$ типа (3, 0) является C-инвариантным тогда и только тогда, если функции $R_a(J)$ зависят только от переменных J_i и область их значений принадлежит особому множеству (11.2) динамической системы (11.4). Прямоое вычисление доказывает, что уравнения (11.2) эквивалентны уравнению
\[
R(D\zeta, \eta, \theta) + R(\zeta, D\eta, \theta) + R(\zeta, \eta, D\theta) = 0,
\]
где D — C-инвариантный нильпотентный тензор (2.12), (2.13) типа (1, 1) и ζ, η, θ — произвольные коэффициенты.

II. Теорема 1, часть 8. 1) Любой двухсимптом U и U_1 C-интегрируемой невырожденной гамильтоновой системы (1.1), любой двух C-инвариантные 1-формы θ и η и любой C-инвариантный тензор $R^a_{\alpha \beta \gamma}$ типа (3, 0) удовлетворяют уравнениям
\[
R^a_{\alpha \beta \gamma} \theta \beta \eta \gamma = 0, \quad L_{U_1} L_U R = 0. \tag{11.6}
\]
2) \(C \)-иинвариантный тензор \(R^\alpha{}_{\beta} = R^\alpha{}_{\gamma}{}^\gamma \) типа (2,0) удовлетворяет уравнениям

\[
\text{rank} \| R_\theta \| \leq k, \quad L_U R_\theta = 0. \tag{11.7}
\]

3) Для любых двух \(C \)-иинвариантных тензоров \(R \) и \(T \) типа (0,3) и любой симметрии \(U \), тензор \(A^\alpha{}_{\beta} = R^{\alpha\tau\nu} T_{\beta\tau\nu} \) типа (1,1) удовлетворяет уравнениям

\[
\text{rank} \| A \| \leq k, \quad A^2 = 0, \quad L_U A = 0. \tag{11.8}
\]

Доказательство. 1) Первое уравнение (11.6) следует из предложения 11.1 и формулы (3.2) для \(C \)-иинвариантных 1-форм.

Вследствие предложения 10.1 и формулы (2.16), (2.18) и (11.3), все ненулевые компоненты тензора \(L_U R \) типа (3,0) имеют вид

\[
(L_U R)^{i+k,j+k} = -U^{i+k} R^{m,j+k} - U^{j+k} R^{i+k,m} - U^{i+k} R^{i+k,j+k}. \tag{11.9}
\]

Поэтому толькто первая группа компонент (11.1) тензора \(\tilde{R} = L_U R \) является ненулевой. Применяя формулу (11.9) к тензору \(L_U \tilde{R} = L_U L_U R \) типа (3,0), мы получаем второе уравнение (11.6).

2) Вследствие формулы (3.2) для \(C \)-иинвариантных 1-форм и формулы (11.1), (11.2), мы получаем, что все ненулевые компоненты тензора \(R_\theta \) типа (2,0) имеют вид \(R_\theta^{i+k,j+k} = R^{i+k,j+k}. \) Отсюда следует первое уравнение (11.7). Второе уравнение (11.7) следует из (7.13).

3) Используя формулу (10.2) и (11.2), мы получаем, что все ненулевые компоненты тензора \(A \) типа (1,1) имеют вид

\[
A^{i+k} = R^{i+k} T^{j,k} + R^{i+k} T^{j,k}. \]

Поэтому тензор \(A \) имеет блочную структуру (8.10). Отсюда следует первые два уравнения (11.8). Применяя формулу Лейбница, мы находим

\[
(L_U A)^{\alpha} = (L_U R)^{\alpha\tau\nu} T_{\beta\tau\nu} + R^{\alpha\tau\nu} (L_U T)_{\beta\tau\nu}. \tag{11.10}
\]

Используя формулы (11.9) и (10.18) для ненулевых компонент тензоров \(L_U R \) и \(L_U T \), мы получаем, что обе суммы в (11.10) равны нулю. Следовательно, \(L_U A = 0 \) для любой симметрии \(U \).

§ 12. \(C \)-иинварианты (2,1) тензоры

I. Любой тензор \(S^\alpha{}_{\beta} \) типа (2,1) определяет алгебраическую структуру в кокасательном пространстве \(T^*_a(M^n) \):

\[
(S(\zeta, \eta))_{\gamma} = S^{\alpha} \zeta^\alpha \eta^\gamma \in T^*_a(M^n). \tag{12.1}
\]

Мы объединяем компоненты тензора \(S^\alpha{}_{\beta} \) в торoidalные координатах \(J, \varphi \) (2.7) в следующие восьмерки групп

\[
S^i_j{}^{i+k,j+k} = S^{ij} \quad S^i_j{}^{i+k,j+k} = S^{ij} \quad S^i_j{}^{i+k,j+k} = S^{ij} \quad S^i_j{}^{i+k,j+k} = S^{ij}, \tag{12.2}
\]

Предложение 12.1. Тензор \(S^\alpha{}_{\beta} \) типа (2,1) тогда и только тогда является иинвариантом по отношению к \(C \)-иинвариантной неопределенной
гамильтоновой системе (1.1), если все компоненты (12.2) зависят только от переменных x_i и правильным уравнения

$$S_4(J) = S_2(J) - S_3(J), \quad S_5 = S_6 = S_7 = S_8 = 0. \quad (12.3)$$

Компоненты $S_1(J), S_2(J)$ и $S_3(J)$ являются произвольными гладкими функциями от переменных x_1, \ldots, x_k.

Доказательство. Уравнение инвариантности $L\alpha S = 0$ для тензора $S_{\alpha\beta}$ типа (2, 1) имеет вид

$$\left(L\alpha S\right)_{\gamma} = \delta^\gamma_{\alpha\beta} + V^\gamma_{\alpha\beta} - V^\gamma_{\alpha\beta} - V^\gamma_{\alpha\beta} = 0. \quad (12.4)$$

Подставив формулы (3.4) и (12.2), мы переходим к системе (12.4) в следующую линейную динамическую систему на пространстве тензоров $S_{\alpha}, a = 1, \ldots, 8$:

$$\dot{S}_1 = S_3 + S_4 - S_2, \quad \dot{S}_2 = S_5 + S_6, \quad \dot{S}_3 = S_7 - S_6,$$
$$\dot{S}_4 = S_7 - S_5, \quad \dot{S}_5 = S_8, \quad \dot{S}_6 = S_8, \quad \dot{S}_7 = -S_8, \quad \dot{S}_8 = 0. \quad (12.5)$$

Используя очевидную верхнетреугольную структуру этой системы и основное свойство первых интегралов (2.8), мы получаем явный вид всех решений уравнений (12.5):

$$S_1(t) = -\tilde{S}_a(J) + (\tilde{S}_7(J) - \tilde{S}_6(J)t)^2 + (\tilde{S}_4(J) + \tilde{S}_3(J) - \tilde{S}_2(J))t + \tilde{S}_1(J),$$
$$S_2(t) = \tilde{S}_6(J)t + (\tilde{S}_5(J) + \tilde{S}_6(J))t + \tilde{S}_2(J),$$
$$S_3(t) = -\tilde{S}_6(J)t + (\tilde{S}_7(J) - \tilde{S}_6(J))t + \tilde{S}_3(J),$$
$$S_4(t) = -\tilde{S}_6(J)t + (\tilde{S}_7(J) - \tilde{S}_6(J))t + \tilde{S}_4(J),$$
$$S_5(t) = \tilde{S}_6(J)t + \tilde{S}_5(J), \quad S_6(t) = \tilde{S}_6(J)t + \tilde{S}_6(J),$$
$$S_7(t) = -\tilde{S}_6(J)t + \tilde{S}_7(J), \quad S_8(t) = \tilde{S}_6(J),$$

где $\tilde{S}_a(J)$ — произвольные гладкие функции переменных x_1, \ldots, x_k.

C-инвариантный тензор $S^\alpha_{\alpha\beta}(J, \varphi)$ типа (2, 1) является гладким в любой торической области $\theta = B_{\alpha} \times \mathbb{T}^k$. Поэтому все компоненты $S^\alpha_{\alpha\beta}(J, \varphi)$ ограничены по модулю на любом торе \mathbb{T}^k. Точные решения (12.6) ограничены при всех t тогда и только тогда, если выполнены уравнения (12.3). Поэтому, используя тот факт, что общие траектории интегрируемой невырожденной гамильтоновой системы (1.1) всюду плотны на торах \mathbb{T}^k (2.4), мы получаем, что все компоненты $S^\alpha_{\alpha\beta}$ зависят только от переменных J_1, \ldots, J_k и удовлетворяют уравнениям (12.3).

Уравнения (12.3) определяют особые точки динамической системы (12.5). Поэтому тензор $S^\alpha_{\alpha\beta}$ (12.2) типа (2, 1) является C-инвариантным тогда и только тогда, если функции $S_a(J)$ зависят только от переменных J_1, \ldots, J_k и их значения определяют особую множества (12.3) динамической системы (12.5). Прямая проверка показывает, что уравнения (12.3) влечут тождество

$$DS(\zeta, \eta) = S(D\zeta, \eta) + S(\zeta, D\eta), \quad (12.7)$$

где D — C-инвариантный виллотентный тензор (2.12), (2.13) типа (1, 1) и ζ, η — произвольные координаты. Тождество (12.7) означает, что тензор D является
диференцированием алгебраической структуры (12.1) в кокасательном расслоении $T^*(M^n)$.

II. Пусть $\mathcal{L}^\perp \subset T^*(M^n)$ означает k-мерное распределение, порожденное 1-формами dJ_1, \ldots, dJ_k (2.10). Уравнения (12.3) влечет

$$S(\mathcal{L}^\perp, \mathcal{L}^\perp) = 0, \quad S(\mathcal{L}^\perp, T^*_x(M^n)) \subset \mathcal{L}^\perp, \quad S(T^*_x(M^n), \mathcal{L}^\perp) \subset \mathcal{L}^\perp. \quad (12.8)$$

Поскольку k-мерные подпространства \mathcal{L}^\perp_x являются коммутативными идеалами по отношению к алгебраической структуре (12.1).

Для любой 1-формы η мы определяем оператор S_η по формуле $S_\eta(\zeta) = S(\zeta, \eta)$. Рассмотрим эти операторы в базисе (2.10) $e^1 = dJ_i, e^{i+k} = d\varphi_i$. Формулы (12.8) означают, что операторы S_η имеют вид

$$S_\eta = \begin{pmatrix} 0 & Q_i \\ 0 & 0 \end{pmatrix}, \quad S_{\eta+k} = \begin{pmatrix} U_i & V_i \\ 0 & V_i \end{pmatrix}, \quad (12.9)$$

где U_i, V_i, W_i и Q_i некоторые $k \times k$ матрицы. Введем следующую полиномиально-возрастающую функцию

$$P_S(\eta, \lambda) = \det(S_\eta - \lambda) \quad (12.10)$$

на кокасательном расслоении $T^*(M^n)$.

Предложение 12.2. Если тензор $S_{\alpha\beta}^\gamma$ типа (2, 1) является C-инвариантным, то многочлен $P_S(\eta, \lambda)$ приводим и является произведением двух многочленов степени k. Для любого ковектора η и ковектора $\theta \in \mathcal{L}^\perp$ справедливы тождества

$$P_S(\eta + \theta, \lambda) = P_S(\eta, \lambda), \quad P_S(\theta, \lambda) = \lambda^n. \quad (12.11)$$

Доказательство. Ковектор η имеет вид

$$\eta = \rho_1 e^1 + \ldots + \rho_k e^k + v_1 e^{1+k} + \ldots + v_k e^{2k}$$

в базисе (2.10). Используя формулы (12.9), получаем

$$P_S(\eta, \lambda) = \det(\eta U_i - \lambda) \det(\eta V_i - \lambda). \quad (12.12)$$

Эта формула представляет многочлен (12.10) в виде произведения двух многочленов степени k. Формулы (12.11) следуют из (12.12).

III. Теорема 1, часть 9. Любые две симметрии U и U_1 C-интегрируемой невяжущейся гамильтоновой системы (1.1), любые две C-инвариантные 1-формы η и θ и любой C-инвариантный тензор $S_{\alpha\beta}^\gamma$ типа (2, 1) удовлетворяют уравнениям

$$S_{\alpha\beta}^\gamma \eta_{\alpha\beta} = 0, \quad S_{\alpha\beta}^\gamma U_1 \eta_{\beta} = 0, \quad L_{U_1} L_U S = 0. \quad (12.13)$$

2) C-инвариантный тензор $(S_{\theta})_{\alpha\beta}^\gamma = S_{\alpha\beta}^\gamma \theta_\gamma$ типа (1, 1) и C-инвариантный тензор $(S_{U})_{\alpha\beta}^\gamma = S_{\alpha\beta}^\gamma U^\gamma$ типа (2, 0) удовлетворяют уравнениям

$$\text{rank} \|S_\theta\| \leq k, \quad \text{rank} \|S_U\| \leq k, \quad S_{\theta}^2 = 0, \quad L_U S_\theta = 0, \quad L_{U_1} S_U = 0. \quad (12.14)$$
3) Тензор \(\bar{S} = L_U S \) типа (2, 1) определяет нильпотентную алгебраическую структуру в комплексном расслоении \(T_*(M^n) \): для произвольных ковекторов \(\zeta, \eta, \theta \in T^*_x(M^n) \) справедливо уравнение
\[
\bar{S}(\bar{S}(\zeta, \eta), \theta) = 0, \quad \bar{S}(\zeta, \bar{S}(\eta, \theta)) = 0.
\] (12.15)

4) Многочлен \(P_S(\eta, \lambda) \) удовлетворяет уравнениям
\[
P_S(\eta + \theta, \lambda) = P_S(\eta, \lambda), \quad P_S(\theta, \lambda) = \lambda^n
\] для любого ковектора \(\eta \in T^*_x(M^n) \) и любой \(C \)-инвариантной 1-формы \(\theta \). Многочлен \(P_S(\eta, \lambda) \) приводим и является произведением двух многочленов степени \(k \).

5) Для любых двух \(C \)-инвариантных тензоров \(S \) и \(Q \) типа (2, 1), любой \(C \)-инвариантной 1-формы \(\theta \) и любой симметрии \(U \), тензор \(P^{\alpha \beta} = S^\alpha_{\nu} Q^\beta_{\mu} \) типа (2, 0) удовлетворяет уравнениям
\[
\text{rank} \|P\| \leq k, \quad P^{\alpha \beta} \theta_{\beta} = 0, \quad L_U P = 0.
\] (12.16)

6) Для любых \(C \)-инвариантных тензоров \(N \) типа (1, 2) и тензора \(S \) типа (2, 1) и любой симметрии \(U \) \(C \)-инвариантные тензоры \(A_{\alpha} = N_{\alpha_\mu} S^\mu_{\nu} \) и
\[
B_{\beta} = N^\alpha_{\nu} S_{\alpha \nu}
\] удовлетворяют уравнениям
\[
\text{rank} \|A\| \leq k, \quad \text{rank} \|B\| \leq k, \quad A^2 = B^2 = AB = BA = 0, \quad L_U A = L_U B = 0.
\] (12.17)

Доказательство. 1) Первое уравнение (12.13) следует из первого уравнения (12.8), поскольку любая \(C \)-инвариантная 1-форма \(\theta \) (3.2) принадлежит распределению \(\mathcal{L}^\perp \). Второе уравнение (12.13) следует из формулы (2.15), (3.2) и (12.3) для \(C \)-инвариантных тензоров \(U, \theta \) и \(S \).

Применяя предложение 12.1 и формулы (2.16), (2.18) и (12.4), мы получаем, что ненулевые компоненты тензора \(L_U S \) типа (2, 1) имеют вид
\[
(L_U S)_{i^k + j^k} = U^m_{i^k + j^k} S^i_{m^k} S^j_{m^k} - U^m_{i^k + j^k} S^i_{m^k} S^j_{m^k} + U^m_{j^k + i^k} S^i_{m^k} S^j_{m^k} - U^m_{j^k + i^k} S^i_{m^k} S^j_{m^k}.
\] (12.18)

Поэтому только первая группа компонент (12.2) тензора \(\bar{S} = L_U S \) типа (2, 1) является ненулевой. Применим формулу (12.18) к тензору \(L_U \bar{S} = L_U L_U S \) типа (2, 1), мы получим третье уравнение (12.13).

2) Последнее уравнение (2.15), (3.2) и уравнений (12.2), (12.3), все ненулевые компоненты тензоров \(S_\theta \) и \(S_U \) имеют вид
\[
(S_\theta)^i_{j^k + k} = S^i_{j^k + k} \theta_{\ell}, \quad S^i_{j^k + k} = S^i_{j^k + k} U_{i^k + k}.
\]

Отсюда следует алгебраические уравнения (12.14). Применим формулы (7.13) и (8.9), мы получаем уравнения \(L_U S_\theta = 0 \) и \(L_U S_U = 0 \).

3) Мы доказали, что все компоненты тензора \(\bar{S} = L_U S \) типа (2, 1) равны нулю, за исключением компонент \((L_U S)_{i^k + j^k} \). Этот факт означает, что тензор \(\bar{S} \) типа (2, 1) удовлетворяет уравнениям
\[
\bar{S}(T^*_x(M^n), T^*_x(M^n)) \subset \mathcal{L}^\perp_x, \quad \bar{S}(\mathcal{L}^\perp_x, T^*_x(M^n)) = \bar{S}(T^*_x(M^n), \mathcal{L}^\perp_x) = 0.
\]
Канонические формы инвариантных тензоров

Отсюда следуют уравнения (12.15).

4) Утверждение (4) следует из предложения 12.2, поскольку все \(C \)-инвариантные 1-формы \(\theta \) принадлежат распределению \(\mathcal{L}^1 \) вследствие (3.2).

5) Используя формулы (12.2) и (12.3) для любого \(C \)-инвариантного тензора типа \((2,1)\), мы получаем, что все ненулевые компоненты тензора \(P \) типа \((2,0)\) имеют вид

\[
P_{i+k,j+k} = S_{i+k,j+k} Q_{i+k,j+k} m + S_{i+k,j+k} m + k Q_{i+k,j+k} m + k.
\]

(12.19)

Отсюда следует первое уравнение (12.16). Второе уравнение (12.16) следует из формул (3.2) для \(C \)-инвариантной \(1 \)-формы \(\theta \) и (12.19). Применя формулу Лейбница, мы находим

\[
(L_U P)^{\alpha \beta} = (L_U S)^{\alpha \sigma} Q^{\beta \nu} + S^{\alpha \sigma} (L_U Q)^{\beta \nu}.
\]

(12.20)

Используя формулы (12.18) для ненулевых компонент тензоров \(L_U S \) и \(L_U Q \) типа \((2,1)\) и формулы (12.3), мы получаем, что обе суммы в (12.20) равны нулю. Поэтому \(L_U P = 0 \) для любой симметрии \(U \).

6) Используя формулы (9.4) и (12.3) для \(C \)-инвариантных тензоров \(N \) типа \((1,2)\) и \(\tau \) типа \((2,1)\), мы получаем, что все ненулевые компоненты тензоров \(A^3 = N^3_3, S^3_3 \) и \(B^3 = N^3_3, S^3^3_3 \) типа \((1,1)\) имеют вид

\[
A^{i+k}_{j+k} = N^{i+k}_{j+k} S^k_{i+k} + N^{i+k}_{j+k} S^k_{i+k},
\]

(12.21)

Б) Используя формулу (12.20) для ненулевых компонент тензоров \(L_U S \) и \(L_U Q \) типа \((2,1)\) и формулы (12.3), мы получаем, что обе суммы в (12.20) равны нулю. Поэтому \(L_U P = 0 \) для любой симметрии \(U \).

Поэтому тензоры \(A \) и \(B \) имеют блочную структуру (8.10). Отсюда следует алгебраические уравнения (12.17). Уравнения \(L_U A = L_U B = 0 \) следуют из равенства (8.9) и формул (2.15) и (12.21).

§ 13. \(A-B-C \)-когомологии динамических систем

1. Напомним конструкцию \(A-B-C \)-когомологий динамических систем, предложенную в работах [2], [4], [5]. Пусть \(\mathcal{A}^n \) - линейное пространство гладких дифференциальных \(m \)-форм на многообразии \(M^n \), которые инвариантны по отношению к динамической системе \(V \)

\[
\dot{x}^i = V^i(x^1, \ldots, x^n)
\]

на \(M^n \). Оператор \(i_V \) внутреннего умножения и оператор \(d \) внешнего дифференцирования действуют на \(V \)-инвариантных дифференциальных формах. Любой \(V \)-инвариантной \(m \)-формы \(\omega_m \) апшилируется производной Ли

\[
L_V = i_V d + d i_V, \quad L_V \omega_m = 0.
\]

Поэтому два оператора \(i_V \) и \(d \) удовлетворяют уравнениям

\[
i_V^2 = 0, \quad d^2 = 0, \quad i_V d = -d i_V
\]

(13.2)

на линейном пространстве \(V \)-инвариантных дифференциальных форм. Вследствие уравнений (13.2), оператор \(d_V = i_V d = -d i_V \) удовлетворяет уравнениям

\[
d_V^2 = 0, \quad d_V i_V = i_V d_V = 0, \quad d_V d = d d V = 0.
\]

(13.3)
Линейные подпространства \(\Lambda^m_V \) \(V \)-инвариантных дифференциальных \(m \)-форм с тремя операторами \(i_V \), \(d \) и \(dV = i_V \circ d \) образуют \(A \)-, \(B \)-, и \(C \)-комплексы соответственно:

\[
A: \quad 0 \longrightarrow \Lambda^0_V \overset{i_V}{\longrightarrow} \Lambda^1_V \overset{i_V}{\longrightarrow} \ldots \overset{i_V}{\longrightarrow} \Lambda^{n-1}_V \overset{i_V}{\longrightarrow} \Lambda^n_V \longrightarrow 0, \\
B: \quad 0 \longrightarrow \Lambda^0_V \overset{d}{\longrightarrow} \Lambda^1_V \overset{d}{\longrightarrow} \ldots \overset{d}{\longrightarrow} \Lambda^{n-1}_V \overset{d}{\longrightarrow} \Lambda^n_V \longrightarrow 0, \\
C: \quad dV \circ dV \circ \Lambda^m_V \overset{dV}{\longrightarrow} \Lambda^m_V \overset{dV}{\longrightarrow} \Lambda^m_V
\]

II. Линейные подпространства \(H^*_A(V, M^n) \), \(H^*_B(V, M^n) \) и \(H^*_C(V, M^n) \) являются когомологиями по отношению к операторам \(i_V \), \(d \) и \(dV \) соответственно:

\[
H^*_A(V, M^n) = \ker i_V / \text{Im} i_V, \quad H^*_B(V, M^n) = \ker d / \text{Im} d, \\
H^*_C(V, M^n) = \ker dV / \text{Im} dV. \tag{13.4}
\]

Кольцевые структуры в когомологиях (13.4) индуцируются внешним произведением \(V \)-инвариантных дифференциальных форм. Факторпространства (13.4) называются кольцевыми структурами, и это дифференциальные формы, вследствие того, что операторы \(i_V \) и \(d \) являются кольцевыми дифференцированиями [15] и оператор \(dV = i_V \circ d \) является дифференцированием:

\[
dV(\omega \wedge \eta) = dV\omega \wedge \eta + \omega \wedge dV\eta.
\]

Здесь \(\omega \) и \(\eta \) — произвольные \(V \)-инвариантные дифференциальные формы.

Для любой постоянной с оператор \(d_c = d + c i_V \) удовлетворяет уравнению \(d'^2 = 0 \) на \(V \)-инвариантных дифференциальных формах. Поэтому можно определить когомологию по отношению к оператору \(d_c \). \(A \)-когомологии \(H^*_A(V, M^n) \) образуют дифференциальный комплекс по отношению к оператору \(d \). \(B \)-когомологии \(H^*_B(V, M^n) \) образуют дифференциальный комплекс по отношению к оператору \(i_V \) и \(d \). \(C \)-когомологии этих дифференциальных комплексов строятся непосредственными инвариантными динамической системы \(V \).

III. Рассмотрим динамическую систему \(V \) (2.6):

\[
\dot{J}_i = 0, \quad \varphi_i = J_i
\]

в торической области \(\mathcal{O} = B_a \times T^k \), где \(B_a \) — \(k \)-мерный шар, и \(J_i \in B_a, \varphi_i \in T^k \). Система (2.6) является канонической формой [3] всех \(C \)-интегрируемых гамильтоновых систем, непрерывных в смысле Пуанкаре (2.3). В §§ 3, 6 и 10 мы показали, что \(C \)-инвариантные 1-, 2- и 3-формы имеют канонический вид

\[
\omega_1 = \theta_i(J) dJ_i, \\
\omega_2 = a_{\ell m}(J) dJ_i \wedge dJ_{\ell} + b_{\ell m}(J) dJ_i \wedge d\varphi_{m}, \\
\omega_3 = b_{\ell m}(J) dJ_i \wedge dJ_{\ell} \wedge d\varphi_m + c_{\ell m}(J) dJ_i \wedge dJ_{\ell} \wedge dJ_m. \tag{13.5}
\]

Здесь коэффициенты \(a_{\ell m}(J) \) и \(c_{\ell m}(J) \) являются независимыми и коэффициенты \(b_{\ell m}(J) \) и \(b_{\ell m}(J) \) удовлетворяют уравнениям \(b_{\ell m}(J) = b_{\ell m}(J) + b_{\ell m}(J) + b_{\ell m}(J) = 0 \).

(A) Для \(C \)-инвариантных дифференциальных форм (13.5)–(13.7), мы имеем

\[
\dot{V} \omega_1 = 0, \quad \dot{V} \omega_2 = -b_{\ell m}(J) dJ_{\ell} dJ_i, \quad \dot{V} \omega_3 = b_{\ell m}(J) dJ_i \wedge dJ_{\ell}. \tag{13.8}
\]
Отсюда мы получаем $H^1_A(V, \theta) = 0$, $H^2_A(V, \theta) = \mathbb{R}^\infty$. Векторы из группы когомологий $H^2_A(V, \theta)$ представляются 2-формами

$$\omega_{2a} = b_{\alpha \ell}(J) \, dJ_i \wedge d\varphi_{\ell},$$

где $b_{\alpha \ell}(J) = b_{\ell \alpha}(J)$ и $b_{\alpha \ell}(J)J_\ell = 0$.

(B) Любой C-инвариантный 1-форма θ имеет вид (13.5). Поэтому, применяя лемму Пуанкаре к замкнутой 1-форме (13.5), мы получаем $\theta = dF(J)$. Поэтому $H^2_B(V, \theta) = 0$. В предложении 6.1 мы доказали, что любая C-инвариантная замкнутая 2-форма ω_2 имеет вид (6.3). Поэтому векторы из когомологической группы $H^2_B(V, \theta)$ представляются замкнутыми 2-формами

$$\omega_{2b} = \frac{\partial^2 B(J)}{\partial J_i \partial J_\ell} \, dJ_i \wedge d\varphi_{\ell},$$

где $B(J)$ — произвольная гладкая функция. Когомологические классы в группе $H^2_B(V, \theta)$ определяются классами гладких функций $B(J)$ по модулю линейных функций $c_1J_1 + \ldots + c_k J_k$. Поэтому группа когомологий $H^2_B(V, \theta)$ является бесконечномерной.

(C) Уравнение (13.6) и (13.8) приводят к формулам

$$d_V \omega_2 = -dV \cdot \omega_2 = d(b_{\alpha \ell}(J) J_\ell) \wedge dJ_i.$$ Потому группа когомологий $H^2_C(V, M^n)$ бесконечномерна. Векторы этой группы представляются 2-формами

$$\omega_{2c} = a_{\alpha \ell}(J) \, dJ_i \wedge dJ_\ell + b_{\alpha \ell}(J) \, dJ_i \wedge d\varphi_{\ell}, \quad b_{\alpha \ell}(J)J_\ell = \frac{\partial C(J)}{\partial J_\ell},$$

где $C(J)$ — произвольная гладкая функция и $b_{\alpha \ell}(J) = b_{\ell \alpha}(J)$.

Формулы (13.9)—(13.11) показывают, что три группы когомологий

$$H^2_A(V, \theta), \quad H^2_B(V, \theta), \quad H^2_C(V, \theta)$$

отличаются друг от друга и что B-когомологическая группа $H^2_B(V, \theta)$ является "наи меньшей" из них.

B-когомологии являются наиболее важными из A-B-C-типов вследствие их связей с классическими когомологиями де Рама [20]. B-когомологии динамических систем имеют аналоги для дискретных динамических систем, которые определяются гладкими отображениями $f: M^n \to M^n$ многообразия M^n в себя.

§ 14. B-когомологии динамических систем и гладких отображений

I. Существует естественный кольцевой гомоморфизм

$$\alpha: H^*_B(V, M^n) \to H^*(M^n),$$

который отображает класс B-когомологий V-инвариантной замкнутой q-формы ω_q в соответствующий класс когомологий де Рама [20] общих замкнутых q-форм.

Для любой постоянной $c \neq 0$ имеется изоморфизм

$$H^*_B(cV, M^n) = H^*_B(V, M^n).$$
При \(c = 0 \) когомологии \(H^*_p(0, M^n) \) изоморфны когомологиям де Рама \(H^*(M^n) \).

Гомоморфизм \(\alpha \) имеет обратный и поэтому является изоморфизмом для следующих динамических систем.

1) Предположим, что все траектории динамической системы (13.1) замкнуты и имеют одинаковый период \(T \). Обозначим через

\[
\psi_t: M^n \to M^n, \quad \psi_T = \text{id}
\]

соответствующее действие окружности \(S^1 \). Для любой замкнутой \(q \)-формы \(\omega_q \) мы определим \(q \)-форму

\[
\alpha^{-1}\omega_q = \frac{1}{T} \int_0^T \psi_T^*(\omega_q) \, dt.
\]

Очевидно, что \(q \)-форма \(\alpha^{-1}\omega_q \) замкнута и инвариантна по отношению ко всем диффеоморфизмам (14.1) и что \(\alpha^{-1}\alpha = \text{id} \). Эта \(q \)-форма \(\alpha^{-1}\omega_q \) принадлежит тому же классу когомологий де Рама в \(H^c(M^n) \), что и замкнутая \(q \)-форма \(\omega_q \), потому что \(q \)-формы \(\psi_T^*(\omega_q) \) гомотопны \(\omega_q \) при всех \(t \). Поэтому \(\alpha \circ \alpha^{-1} = \text{id} \) в \(H^c(M^n) \). Следовательно отображение \(\alpha \) является изоморфизмом.

2) Пусть \(M^n = X^{n-k} \times T^k \), где \(X^{n-k} \) - гладкое \((n-k) \)-мерное многообразие с атласом локальных координат \(x^1, \ldots, x^n \) и \(T^k \) - \(k \)-мерный тор с угловыми координатами \(\varphi_1, \ldots, \varphi_k \).

Рассмотрим динамическую систему

\[
\dot{x}^i = 0, \quad \dot{\varphi}_j = b_j
\]

на многообразии \(M^n \). Здесь \(b_j \) - произвольные рационально независимые постоянные. Динамическая система (14.2) определяет следующую группу диффеомorfизмов

\[
\phi_t: (x^i, \varphi_j) \to (x^i, \varphi_j + tb_j)
\]

многообразия \(M^n \) в себя.

Пусть \(f(x, \varphi) \) - произвольная гладкая функция на \(M^n \). Применив эргодическую теорему [21], для подсистемы (14.2) на торе \(T^k \), получаем равенство

\[
\overline{f(x)} = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(x^i, \varphi_j + tb_j) \, dt = \frac{1}{(2\pi)^k} \int_{T^k} f(x, \varphi) \, d\varphi_1 \wedge \cdots \wedge d\varphi_k.
\]

Пусть \(\omega_q \) - произвольная замкнутая \(q \)-форма

\[
\omega_q = \sum_{\ell + m = q} \sum_{i,j} a_{i,j}(x, \varphi) \, dx^{i_1} \wedge \cdots \wedge dx^{i_{\ell}} \wedge d\varphi_{j_1} \wedge \cdots \wedge d\varphi_{j_m}
\]

на многообразии \(M^n \). Для всех диффеоморфизмов \(\phi_t \) (14.3), дифференциалы \(d\phi_t \) являются тождественными отображениями касательных пространств \(T_{(x, \varphi)}(X^{n-k} \times T^k) \). Используя этот факт, выводим равенство

\[
\lim_{T \to \infty} \frac{1}{T} \int_0^T \phi_t^*(\omega_q) \, dt = \sum_{\ell + m = q} \sum_{i,j} \overline{a_{i,j}(x)} \, dx^{i_1} \wedge \cdots \wedge dx^{i_{\ell}} \wedge d\varphi_{j_1} \wedge \cdots \wedge d\varphi_{j_m}.
\]

Определим \(q \)-форму

\[
\alpha^{-1}\omega_q = \overline{\omega}_q = \lim_{T \to \infty} \frac{1}{T} \int_0^T \phi_t^*(\omega_q) \, dt.
\]
Очевидно, что q-форма ω_q является замкнутой и инвариантной по отношению к динамической системе (15.2). Поэтому $\mathcal{H}_q \in H^q_B(V, M^n)$. Очевидно, что $\alpha^{-1}\alpha = \text{id}$.

V-инвариантная замкнутая q-форма \mathcal{H}_q принадлежит тому же классу когомологий, который ω_q в $H^q(M^n)$, что и замкнутая q-форма ω_q, потому что q-формы $\phi^*_t(\omega_q)$ гомотопны ω_q при всех t. Поэтому $\alpha^{-1}\alpha = \text{id}$ в $H^q(M^n)$. Следовательно, отображение α является изоморфизмом. Таким образом, мы доказали изоморфизм двух когомологий

$$\alpha: H^*_B(V, M^n) = H^*(M^n)$$

для динамической системы (14.2) на многообразии $M^n = X^{n-k} \times \mathbb{T}^k$.

Классический гармонический осциллятор

$$\dot{p}_i = -a_i q_i, \quad \dot{q}_i = \frac{1}{m_i} p_i$$

является примером системы (14.2). Поэтому для гармонического осциллятора кольца B-когомологий

$$H^*_B(V, \mathbb{R}^{2k}) = H^*(\mathbb{R}^{2k}) = H^0(\mathbb{R}^{2k}) = \mathbb{R}$$

изоморфно кольцу вещественных чисел \mathbb{R}.

II. Предположим, что динамическая система (13.1) является общей неинтегрируемой гамильтоновой системой. Тогда $V^i = P^i_1 \partial H(x)/\partial x^i$, где P_1 – невырожденная пуссонова структура на M^{2k}. Соответствующие B-когомологии изоморфны сумме

$$H^*_B(V, M^{2k}) = \mathbb{R}[u]/u^{k+1} \mathbb{R}[u] + H^2_B(V, M^{2k})$$

факторкольца $\mathbb{R}[u]/u^{k+1} \mathbb{R}[u]$ многочленов от одной переменной u и бесконечно-мерной группы $H^2_B(V, M^{2k})$ с тривиальным законом умножения. Образующая $u \in H^2_B(V, M^{2k})$ соответствует V-инвариантной симплектической структуре $\omega_1 = P_1^{-1}$. Линейно независимые элементы бесконечно-мерной группы $H^2_B(V, M^{2k})$ представляются V-инвариантными замкнутыми $2k$-формами

$$\omega_F = F(H)\omega_1 \wedge \cdots \wedge \omega_1.$$

Внешнее произведение (14.6) содержит k сомножителей ω_1, $F(H)$ – произвольная гладкая функция одной переменной и $H(x)$ – гамильтониан системы V.

Изоморфизм (14.4) для интегрируемой динамической системы (14.2) и изоморфизм (14.5) для общей неинтегрируемой гамильтоновой системы V показывают, что кольцо когомологий $H^*_B(V, M^n)$ является новым инвариантом, который характеризует одновременно топологические свойства многообразия M^n и глобальные свойства динамической системы V на M^n.

III. Рассмотрим C-интегрируемую невырожденную гамильтонову систему (2.1) в торoidalной области $\theta = B_\alpha \times T^k$. Гамильтонова система (2.1) имеет вид (2.6) в торoidalных координатах $J_t(I) = \partial H(I)/\partial I_t, \phi_t$.

Теорема 2. Приведенная группа B-когоомологий для C-интегрируемой невырожденной гамильтоновы системы V (2.1) в торoidalной области θ имеет вид

$$H^0_B(V, \theta) = \mathbb{R}, \quad H^1_B(V, \theta) = 0, \quad H^2_B(V, \theta) = \mathbb{R},$$

$$H^3_B(V, \theta) = 0, \quad H^4_B(V, \theta) = \mathbb{R}.$$
Доказательство. 1) Предложение 3.1 утверждает, что любая C-инвариантная 1-форма θ имеет канонический вид (3.2). Применяя лемму Пуанкаре, получаем $\theta = dF(J)$, где $F(J)$ — некоторый первый интеграл системы (2.6). Поэтому $H^1_B(V, \theta) = 0$.

2) Предложение 6.1 утверждает, что любая C-инвариантная замкнутая 2-форма ω_2 имеет канонический вид (6.3). Вследствие (3.2), любая C-инвариантная точная 2-форма имеет вид

$$d\theta = d\theta_f(J) \wedge dJ_\ell.$$

Последующие C-инвариантные замкнутые 2-формы (6.3) с непрерывными функциями $B(J)$ не являются точными. Отсюда мы получаем $H^2_B(V, \theta) = \mathbb{R}^\infty$.

3) Предложение 10.2 утверждает, что любая C-инвариантная замкнутая 3-форма ω_3 является точной в тородальной области θ и имеет вид $\omega_3 = d\omega_2$, где 2-форма ω_2 (10.10) C-инвариантна. Поэтому $H^3_B(V, \theta) = 0$.

4) Пусть $\omega_4 = C$-инвариантные замкнутые 2-формы (6.3)

$$\omega_4 = \sum_{i, j=1}^N c_{ij} \omega_i \wedge \omega_j$$

являются C-инвариантными и замкнутыми при произволах постоянных c_{ij}. Каноническая форма (10.6)

$$\omega_5 = b_{itm}(J) dJ_i \wedge dJ_\ell \wedge d\varphi_m + c_{itm}(J)dJ_i \wedge dJ_\ell \wedge dJ_m$$

для любой C-инвариантной 3-формы ω_3 доказывает, что равенство $\omega_4 = d\omega_3$ невозможно, если функции $B_{ij}(J)$ в (14.7) и постоянные c_{ij} находятся в общем положении. Поэтому группа когомологий $H^4_B(V, \theta)$ бесконечна.

Применяя методы данной работы, можно доказать, что для любой интегрируемой динамической системы V (2.1), невырожденной в смысле Пуанкаре (2.3), все нечетные когомологии $H^{2l+1}_B(V, \theta)$ равны нулю и все четные когомологии $H^{2l}_B(V, \theta)$ бесконечны при $l \leq k$.

IV. Метод "тородальных перестроек" [3] определяет гладкое продолжение любой C-инвариантной замкнутой 2-формы ω_4 (14.7) на все многообразие M^{2k}. Поэтому вторая и четвертая группы когомологий $H^2(V, M^{2k})$ и $H^4(V, M^{2k})$ являются бесконечными. Таким образом, мы приходим к следующему результату.

Следствие. 14.1. Бесконечномерность групп когомологий $H^2_B(V, M^{2k})$ и $H^4_B(V, M^{2k})$ является необходимым условием для невырожденной C-интегрируемости динамической системы V на многообразии M^{2k}.

V. В §13 мы рассмотрели $A-B-C$-когомологию динамических систем. Среди них только B-когомологии имеют аналоги для гладких отображений. Пусть f — некоторое гладкое отображение многообразия M^n в себя. Обозначим через Λ^m_f пространство f-инвариантных m-форм ω_f: $f^*\omega_f = \omega_f$. Рассмотрим комплекс f-инвариантных дифференциальных форм

$$0 \longrightarrow \Lambda^0_f \xrightarrow{d} \Lambda^1_f \xrightarrow{d} \ldots \xrightarrow{d} \Lambda^{n-1}_f \xrightarrow{d} \Lambda^n_f \longrightarrow 0.$$
Определем B-когомологию гладкого отображения f формулой

$$H^*_B(f, M^n) = \ker d/\operatorname{Im}d.$$

Когомологию $H^*_B(f, M^n)$ имеют кольцевую структуру, которая индуцируется внешним произведением f-инвариантных дифференциальных форм.

Если диффеоморфизм f_τ является сдвигом на время τ по некоторой динамической системе V, то определен кольцевой гомоморфизм $H^*_B(V, M^n) \to H^*_B(f_\tau, M^n)$. Поэтому когомологии $H^*_B(f_\tau, M^n)$ при $\tau \to 0$ являются дискретизированными когомологиями $H^*_B(V, M^n)$.

Существует естественный гомоморфизм $\alpha: H^*_B(f, M^n) \to H^*(M^n)$, который преобразует класс когомологий f-инвариантных форм в соответствующий класс когомологий де Рама [20] общих замкнутых q-форм.

Обозначим $S^f M^n$ надстройку множества M^n, соответствующую некоторому диффеоморфизму $f: M^n \to M^n$. Пусть $t \in [0, 1]$ - "вертикальная" координата на $S^f M^n$, определяющая векторное поле $V = \partial/\partial t$. Отображение f индуцирует диффеоморфизм f_1 надстройки $S^f M^n$: $f_1(x, t) = (f(x), t)$. Очевидно, что диффеоморфизм f_1 является сдвигом на 1 по вдоль траекторий динамической системы $V = \partial/\partial t$ на $S^f M^n$.

Любая f-инвариантная m-форма ω_m на M^n индуцирует V-инвариантную m-форму $E\omega_m$ на $S^f M^n$. Эта m-форма $E\omega_m$ определяется вложениями $E_t: M^n \to S^f M^n$, $E_t(x) = (x, t)$ и удовлетворяет уравнениям $E_t^*(E\omega_m) = \omega_m$, $tV E\omega_m = 0$.

Предложение 14.1. Для любого диффеоморфизма $f: M^n \to M^n$ следующие два условия когомологий изоморфны:

$$H^*(V, S^f M^n) = H^*_B(f, M^n) \otimes H^*(S^1).$$

Здесь $H^*(S^1) = \mathbb{R}^1 \oplus \mathbb{R}^1$ - кольцо когомологий окружности S^1.

Доказательство следует из того, что любая V-инвариантная $(m+1)$-форма η_{m+1} на $S^f M^n$ имеет вид $\eta_{m+1} = dt \wedge E\omega_m + E\omega_{m+1}$, где ω_m и ω_{m+1} - некоторые f-инвариантные формы на M^n.

Пусть многообразие M^{2k} является торидальной областью $\theta = B_\alpha \times \mathbb{T}^k$, где $B_\alpha \subset \mathbb{R}^k$ - шар (2.2). Определем диффеоморфизм $f: \theta \to \theta$ формулой

$$f(I_j, \varphi_j) = (I_j, \varphi_j + \alpha_j(I)), \quad j = 1, \ldots, k,$$

где $\alpha_j(I) = \text{непрерывные гладкие функции}$.

Предложение 14.2. Предположим, что диффеоморфизм f (14.8) удовлетворяет условию невырожденности

$$\det \left| \frac{\partial \alpha_j(I)}{\partial I_\ell} \right| \neq 0, \quad \ell, j = 1, \ldots, k,$$

и что отображение $(I_1, \ldots, I_k) \to (\alpha_1(I), \ldots, \alpha_k(I))$ является взаимно однозначным. Тогда первые пять групп B-когомологий имеют вид

$$H^0_B(f, \theta) = \mathbb{R}^1, \quad H^1_B(f, \theta) = 0, \quad H^2_B(f, \theta) = \mathbb{R}^\infty, \quad H^3_B(f, \theta) = 0, \quad H^4_B(f, \theta) = \mathbb{R}^\infty.$$

Доказательство основано на явном виде канонических форм для f-инвариантных дифференциальных форм в локальных координатах $\varphi_j, J_\ell = \alpha_\ell(I)$ и аналогично доказательству теоремы 2.
\$15.\quad Заключительные замечания о свойствах C-инвариантных тензоров

(i) Симметрии U C-интегрируемых невырожденных гамильтоновых систем (2.1) на симплектических многообразиях M^{2k}, или C-инвариантные $(1,0)$ тензоры, исследовались в работе [5]. Теорема о симметриях [5] утверждает, что Ли алгебра S симметрий интегрируемой по Ли упругой гамильтоновой системы (2.1) является абелевой тогда и только тогда, если все инвариантные подмногообразия этой системы компактны и система является невырожденной в смысле Пуанкаре.

(ii) C-инвариантные дифференциальные 1-формы θ или $(0,1)$ тензоры удовлетворяют необходимым условиям

$$\operatorname{rank} \theta \leq k, \quad \theta(U) = 0, \quad L_U \theta = 0, \quad i_U \theta = 0,$$

где U — произвольная симметрия. Здесь L_U означает производную Ли по отношеню к симметрии U.

(iii) Любая C-инвариантный тензор T^ℓ_m типа (ℓ, m) для $\ell + m = 2$ удовлетворяет соотношению

$$\operatorname{rank} \| L_U T^\ell_m \| \leq k.$$

При $\ell + m \leq 3$, справедливо уравнение

$$L_{U_1} L_U T^\ell_m = 0.$$

Здесь U и U_1 — произвольные симметрии C-интегрируемой невырожденной системы (2.1).

(iv) Характеристический многочлен $P(\lambda, x) = \det(A(x) - \lambda)$ любого C-инвариантного тензора $A(x)$ типа (1,1) является полным квадратом: $P(\lambda, x) = Q^2(\lambda, x)$. Поэтому каждое собственное значение оператора $A(x)$ имеет четную кратность. Уравнение $(L_U A)^2 = 0$ справедливо для любой симметрии U.

(v) Любая C-инвариантный тензор $h_{\alpha \beta}$ типа (0,2) удовлетворяет уравнению $h(U, U_1) = 0$ для произвольных симметрий U и U_1. Поэтому любая C-инвариантная метрика $g_{\alpha \beta} = g^\beta_\alpha$ является неопределенной. Числа ее положительных и отрицательных квадратов $n_+ \leq k, n_- \leq k$. Любая C-инвариантная метрика $g_{\alpha \beta}$ при $n = 2k = 4\ell + 2$ является вырожденной вследствие многообразия M^{2k}.

(vi) Полная классификация C-инвариантных замкнутых дифференциальных 2-форм была получена в работах [1], [3]. Эта классификация доказывает, что общие C-инвариантные пуассоновы структуры являются несовместными в смысле Магри и что совместимые C-инвариантные пуассоновы структуры являются неустойчивыми.

(vii) Любая C-инвариантный тензор $P^{\alpha \beta}$ типа (2,0) удовлетворяет уравнению $P(U, U_1) = 0$, где θ и θ_1 — любые C-инвариантные 1-формы. Для любого коосиметричного C-инвариантного тензора P типа (2,0) и любой симметрии U, произвольная Ли $L_U P$ является пуассоновой структурой. Если P является пуассоновой структурой, то P и $L_U P$ совместимы в смысле Магри. Для любых двух C-инвариантных коосиметричных тензоров P и P_1 типа (2,0) и любых двух суммостей U и U_1 пуассоновы структуры $L_U P$ и $L_{U_1} P_1$ являются совместными по Магри.
(viii) Любой C-инвариантный тензор $N_{\alpha \gamma}^\beta$ типа $(1, 2)$ и любой C-инвариантный тензор $S_{\alpha \beta}^\gamma$ типа $(2, 1)$ удовлетворяют уравнениям
\[
\text{rank} \left\| N_{\beta \gamma}^\alpha U^\top \right\| \leq k, \quad \text{rank} \left\| N_{\beta \gamma}^\alpha \theta^\top_{\tau} \right\| \leq k,
\]
\[
\text{rank} \left\| S_{\alpha \beta}^\gamma U^\top \right\| \leq k, \quad \text{rank} \left\| S_{\alpha \beta}^\gamma \theta^\top_{\tau} \right\| \leq k,
\]
где U — произвольная симметрия и θ — произвольная C-инвариантная 1-форма. Любой C-инвариантный тензор $T_{\alpha \beta \gamma}$ типа $(0, 3)$ и тензор $R_{\alpha \beta \gamma}^\delta$ типа $(3, 0)$ удовлетворяют уравнениям
\[
\text{rank} \left\| T_{\alpha \beta \gamma} U^\top \right\| \leq k, \quad \text{rank} \left\| R_{\alpha \beta \gamma}^\delta \theta^\top_{\tau} \right\| \leq k.
\]
Любые свертки этих тензоров с двумя произвольными симметриями U и U_1 или с C-инвариантными 1-формами θ и θ_1 равны нулю:
\[
N_{\tau \nu}^\alpha U^\nu U_1^\nu = 0, \quad N_{\nu}^\tau U^\nu \theta^\top_{\tau} = 0, \quad S_{\nu}^\alpha U^\nu \theta^\top_{\nu} = 0,
\]
\[
S_{\tau}^\nu \theta^\top_{\nu 1, \nu} = 0, \quad T_{\tau \nu \rho} U^\nu U_1^\nu = 0, \quad R_{\tau \nu \rho} \theta^\top_{\nu 1, \nu} = 0.
\]
(ix) Для произвольного C-инвариантного тензора $N_{\beta \gamma}^\alpha$ типа $(1, 2)$ многочлен
\[
P_N(u, \lambda) = \det(N_u - \lambda)
\]
приводим и является произведением двух многочленов степени k. Здесь $(N_u)^{\alpha}_{\beta \gamma} = N_{\alpha \beta \gamma} U^\alpha, u \in T(M^{2k})$. Многочлен $P_N(u, \lambda)$ удовлетворяет уравнениям
\[
P_N(u + U, \lambda) = P_N(U, \lambda), \quad P_N(U, \lambda) = \lambda^{2k},
\]
где U — произвольная симметрия.

(х) Для любого C-инвариантного тензора S_{γ}^α типа $(2, 1)$ многочлен
\[
P_S(\eta, \lambda) = \det(S_\eta - \lambda)
\]
приводим и является произведением двух многочленов степени k. Здесь $(S_\eta)^{\alpha}_{\gamma} = S_{\alpha \gamma} \eta^\top, \eta \in T^*(M^{2k})$. Уравнения
\[
P_S(\eta + \theta, \lambda) = P_S(\eta, \lambda), \quad P_S(\theta, \lambda) = \lambda^{2k}
\]
справедливы для любой C-инвариантной 1-формы θ.

(xi) Определены циклы A-B-C-когомологиях
\[
H^*_A(V, M^n), \quad H^*_B(V, M^n), \quad H^*_C(V, M^n)
\]
для произвольной динамической системы на многообразии M^n. В § 13, используя введенные канонические формы для C-инвариантных тензоров, доказана бесконечномерность групп когомологий
\[
H^*_A(V, \theta), \quad H^*_B(V, \theta), \quad H^*_C(V, \theta)
\]
для C-интегрируемых и невырожденных по Пуанкаре гамильтоновых систем в ториальных областях $\theta = B_u \times T^k$.

(xii) В § 14 установлены связи между B-когомологиями динамических систем $H^*_B(V, M^n)$, B-когомологиями гладких отображений $H^*_B(f, M^n)$ и классическими когомологиями де Рама $H^*(M^n)$. В теореме 2 доказано, что бесконечномерность групп когомологий $H^*_B(V, M^{2k})$ и $H^*_B(V, M^{2k})$ является необходимым условием для невырожденной C-интегрируемости динамической системы V на многообразии M^{2k}.
Список литературы

Математический институт им. В. А. Стеклова РАН, Москва, Россия;
Киевский университет, Киев, Украина.