
DOI: https://doi.org/10.4213/tvp4225

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use
http://www.mathnet.ru/eng/agreement

Download details:
IP: 54.70.40.11
December 28, 2018, 11:40:15
LOCAL AND TRUE MARTINGALES IN DISCRETE TIME\footnote{The second author gratefully acknowledges the financial support received from Austrian Science Fund (FWF) grant F 19456 and from Hungarian Science Foundation (OTKA) grant F 049094. While the research of this paper was conducted the second author was also affiliated with Vienna University of Technology, Financial and Actuarial Mathematics Research Unit.}

Доказывается, что для процесса с дискретным временем и с бесконечным временем горизонтом множество эквивалентных L^p-мартингальных мер плотно в множестве эквивалентных локально-мартингальных мер относительно нормы, определяемой полной вариацией.

Ключевые слова и фразы: эквивалентная мартингальная мера; локальный мартингал; норма, определяемая полной вариацией.

1. Introduction. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. All σ-algebras we consider are assumed to be \mathbb{P}-complete sub-σ-algebras of \mathcal{F}. Let $(\mathcal{G}_n)_{n \geq 0}$ be a discrete-time filtration and $(S_n)_{n \geq 0}$ an \mathbb{R}^d-valued local martingale with respect to $(\mathcal{G}_n)_{n \geq 0}$.

The following theorem was formulated in [3].
Theorem 1.1. There is a probability measure \(Q \) on \(\mathcal{F} \) such that \(P \sim Q \) and \(S \) is a \(Q \)-martingale.

In fact, it is a byproduct of results in [6] on arbitrage theory: if \(S \) is a local martingale, then it is known to satisfy the so-called NFLBR property and the main theorem of [6] implies that \(S \) admits an equivalent martingale measure. Though the direct proof given in [3] is much shorter, its arguments, as well as those of [6], are still based on the same functional analytic approach (countably normed spaces, infinite dimensional separation, Komlós' theorem, and [1]). In the present paper we give a proof for the stronger result below, using less heavy artillery (namely [1] and [4] which rely on measurable selection techniques).

Theorem 1.2. For each \(\varepsilon > 0 \), there is a probability measure \(Q \) on \(\mathcal{F} \) such that \(P \sim Q \), \(\|P - Q\| \leq \varepsilon \), and \(S \) is a \(Q \)-martingale.

Here \(\|\cdot\| \) denotes the total variation norm, i.e.,

\[
\|P - Q\| = \sup \left\{ \int X \, d(P - Q) : X \text{ random variable, } |X| \leq 1 \right\}.
\]

Recall that if \(\lambda \) is a common dominating measure, then the total variation distance can be expressed with the densities:

\[
\|P - Q\| = \int_0^\infty |dP - dQ| \, d\lambda.
\]

Remark 1.1. After having read the first version of this paper, Yuri Kabanov has kindly pointed out to us that Theorem 1.2 is a direct consequence of Theorem 1.1 and the main result of [2]. The latter paper uses advanced semimartingale theory, we manage to obtain Theorem 1.2 using only [4] which is the (simpler) discrete-time finite horizon translation of the proof in [2].

Actually, our proof gives much more than Theorem 1.2.

Theorem 1.3. Let \((Y_n)_{n\geq 0}\) be an adapted \(\mathbb{R} \)-valued process. If \((S_n)_{n\geq 0}\) is an \(\mathbb{R}^d \)-valued \(P \)-local martingale, then for each \(\varepsilon > 0 \) there is a probability measure \(Q \) such that \(P \sim Q \), \(\|P - Q\| \leq \varepsilon \), \((S_n)_{n\geq 0}\) is a \(Q \)-martingale, and each \(Y_n \) is \(Q \)-integrable.

Theorem 1.3 clearly implies Theorem 1.2. Let \(1 \leq p < \infty \). Applying Theorem 1.3 with the choice \(Y_n := |S_n|^p \) we get the following theorem.

Theorem 1.4. For each \(1 \leq p < \infty \) and each \(\varepsilon > 0 \) there is a probability measure \(Q \) on \(\mathcal{F} \) such that \(P \sim Q \), \(\|P - Q\| \leq \varepsilon \), and \(S \) is a \(Q \)-martingale in \(L^p(Q) \).

Now let \((S_t)_{t \geq 0} \) be an arbitrary process on \((\Omega, \mathcal{F}, \mathbb{P})\) adapted to \((\mathcal{F}_t)_{t \geq 0}\). Let \(\mathcal{M}_p^\mathbb{P} \) denote the set of \(Q \sim P \) such that \(S \) is a \(Q \)-martingale in \(L^p(Q) \) (respectively, \(Q \)-local martingale) with respect to the given filtration. The following result is an obvious consequence of Theorem 1.4.

Corollary 1.1. \(\mathcal{M}_p^\mathbb{P} \) is dense in \(\mathcal{M}_\mathbb{P}^\omega \) with respect to \(\|\cdot\| \).

In the usual setting of mathematical finance \(S \) represents the price process of an asset. The sets \(\mathcal{M}_p^\mathbb{P}, \mathcal{M}_\mathbb{P}^\omega \) correspond to pricing functionals for derivative securities and play a prominent role in the arbitrage theory of financial markets.

2. Proof. We recall that, for arbitrary nonnegative random variable \(Y \) and \(\sigma \)-algebra \(\mathcal{G} \), one can define \(\mathbb{E}(Y \mid \mathcal{G}) \) (finite or infinite). If both the positive and negative parts \(X_+, X_- \) of a random variable \(X \) satisfy \(\mathbb{E}(X_+ \mid \mathcal{G}) < \infty \), \(\mathbb{E}(X_- \mid \mathcal{G}) < \infty \), then \(\mathbb{E}(X \mid \mathcal{G}) := \mathbb{E}(X_+ \mid \mathcal{G}) - \mathbb{E}(X_- \mid \mathcal{G}) \) can be defined. Multidimensional extension of this notion is straightforward.

Definition 2.1. An \(\mathbb{R}^d \)-valued process \((S_t)_{t \geq 0} \) adapted to \((\mathcal{F}_t)_{t \geq 0}\) is called a generalized martingale if, for all \(n \geq 0 \), \(\mathbb{E}(S_{n+1} \mid \mathcal{F}_n) = S_n \) in the above generalized sense.

The following result goes back to Meyer, see [7, Chap. VII, Theorem 1].
Proposition 2.1. On a discrete-time filtration \mathcal{F}_k every local martingale is a generalized martingale.

We note that if \mathcal{G}_0 is trivial, then the reverse implication also holds. Our arguments will be based on the following lemma.

Lemma 2.1. Let $X: \Omega \to \mathbb{R}^h$, $Y: \Omega \to \mathbb{R}^n$ be random variables and $\mathcal{G} \subset \mathcal{F}$ a σ-algebra. Assume that $E(X \mid \mathcal{G})$ exists and $E(X \mid \mathcal{G}) = 0$. Then for any $\varepsilon > 0$ there is a bounded random variable $Z > 0$ such that

(i) $E[Z - 1] < \varepsilon$;

(ii) $E(ZX \mid \mathcal{G})$ exists and $E(ZX \mid \mathcal{G}) = 0$;

(iii) ZY is bounded.

Proof. Define $\mathcal{H} := \mathcal{G} \vee \sigma(X) \vee \sigma(Y)$. We recall one direction of Theorem 2.4 in [1].

Theorem 2.1. Let $\mathcal{G} \subset \mathcal{H}$ be (complete) sub-σ-algebras of \mathcal{F}, and let $W: \Omega \to \mathbb{R}^h$ be an \mathcal{H}-measurable random variable satisfying

$$ (W, R) \geq 0 \text{ a.s.} \Rightarrow (W, R) = 0 \text{ a.s.} \tag{1} $$

for each \mathcal{G}-measurable h-dimensional random variable R; here $\langle \cdot, \cdot \rangle$ denotes scalar product. Then there exists an \mathcal{H}-measurable scalar random variable L such that $0 < L \leq 1$ a.s., $E(W \mid L) < \infty$ and $E(WL \mid \mathcal{G}) = 0$ a.s.

We claim that (1) holds for $W := X$. Indeed, if $(X, R) \geq 0$ a.s., then

$$ E\langle X, R \rangle = E E\langle (X, R) \mid \mathcal{G} \rangle = E(E(X \mid \mathcal{G}), R) = 0, $$

showing (1). Define now a new probability $P_1 \sim P$ by

$$ \frac{dP_1}{dP} = \frac{(1 + Y)^{-1}}{E(1 + Y)^{-1}}. $$

Note that (1) continues to hold under P_1 hence applying Theorem 2.1 (under P_1) we may set

$$ \frac{dP_2}{dP_1} := \frac{L}{E(L)} $$

and get that X is P_2-integrable with $E_2(X \mid \mathcal{G}) = 0$. Here and in what follows we use E_2 for the expectation with respect to P_2. Now we restate Proposition 2.3 of [4].

Lemma 2.2. Let σ-algebras \mathcal{G} and \mathcal{H} satisfy $\mathcal{G} \subset \mathcal{H} \subset \mathcal{F}$. Let $W: \Omega \to \mathbb{R}^d$, $F: \Omega \to \mathbb{R}^d \setminus \{0\}$ be \mathcal{H}-measurable random variables with

$$ E|W| < \infty, \quad E(W \mid \mathcal{G}) = 0, \quad E(F \mid \mathcal{G}) = 1, \quad E(WF \mid \mathcal{G}) = 0. $$

Then there is a sequence of strictly positive \mathcal{H}-measurable bounded random variables F_n such that

$$ E(F_n \mid \mathcal{G}) = 1, \quad E(WF_n \mid \mathcal{G}) = 0 \tag{2} $$

and we also have

$$ F_n \to F \text{ a.s.} \tag{3} $$

Use the above result under P_2 with the choice $W := X$ and

$$ F := \frac{\zeta}{E(\zeta \mid \mathcal{G})}, \quad \text{where} \quad \zeta = \frac{dP}{dP_2}. $$

Note that $1/\zeta = dP/dP_2$ is bounded and so is Y/ζ by the choice of P_1. Define

$$ Z_n := \frac{E_2(\zeta \wedge n \mid \mathcal{G})}{E_2(\zeta \wedge n)}, \quad \text{where} \quad \zeta = \frac{dP}{dP_2}. $$

Since $F_n, 1/\zeta, \zeta \wedge n, \text{and } Y/\zeta$ are all bounded, so are Z_n and $Z_n Y$. By (2),

$$ E_2(XF_n \mid \mathcal{G}) = 0, $$

and hence $Z_n Y$ is bounded as well.
consequently,

$$E(XZ_n | \mathcal{F}) = 0. \quad (4)$$

By construction,

$$EZ_n = E_2 \left(E_2(F_n | \mathcal{F}) \frac{E_2(\zeta \land n | \mathcal{F})}{E_2(\zeta \land n)} \right) = 1,$$

and

$$Z_n \to F \frac{E_2(\zeta | \mathcal{F})}{E_2(\zeta)} = 1 \quad \text{a.s.}$$

by (3) and by dominated convergence theorem, thus Scheffé’s theorem shows that choosing \(n \) large enough \(Z_n \) will satisfy all the statements (i), (ii), (iii) above. Lemma 2.1 is proved.

Remark 2.1. If \(h = 1 \), then there is an elementary proof of Lemma 2.1. Unfortunately, this does not provide a proof of Theorems 1.2 and 1.4 in the one-dimensional case. The reason is that our arguments (see the proof of Theorem 1.3 below) require Lemma 2.1 for \(d \) = \(d \) + 1-dimensional random variables. We also note that the rest of this section relies on elementary measure-theoretic techniques only. In particular, we use the following observation, which is a useful corollary of the monotone convergence theorem.

Proposition 2.2. Let \(X_n \) be a sequence of integrable random variables such that

$$\sum_n E|X_n - X_{n+1}| < \infty.$$

Then \(X_n \) is convergent both in \(L^1 \) and a.s.

Lemma 2.1 extends easily to finite sequences of generalized martingale differences. Under this we mean a sequence \(\{(X_k, \mathcal{G}_k): 0 \leq k \leq n\} \) such that

(i) \(X_k \) is a \(\mathcal{G}_k \)-measurable \(R^d \)-valued random variable for \(k = 0, \ldots, n \),

(ii) \(E(X_k | \mathcal{G}_{k-1}) \) exists and is a.s. zero, for \(k = 1, \ldots, n \).

Lemma 2.3. Let \(\{(X_k, \mathcal{G}_k): 0 \leq k \leq n\} \) be a finite sequence of generalized martingale differences, and let \(Y \) be a \(\mathcal{G}_n \)-measurable nonnegative random variable, and \(\varepsilon > 0 \). Then there is a \(\mathcal{G}_n \)-measurable positive random variable \(D \) such that

(i) \(EY = 1, E|D - 1| < \varepsilon \),

(ii) \(D \) and \(YD \) are bounded,

(iii) \(E(X_kD | \mathcal{G}_{k-1}) = 0 \) for \(k = 1, \ldots, n \).

Proof. Let \(\mathcal{G}_* = \{\emptyset, \Omega\} \). Fix \(\eta > 0 \). First we apply Lemma 2.1 with

$$X = X_n, \quad Y = Y, \quad \mathcal{G} = \mathcal{G}_{n-1}, \quad \varepsilon = \eta. \quad (5)$$

This gives a bounded \(Z_n \) such that \(Z_nY \) is also bounded and \(E|Z_n - 1| < \eta \).

If \(Z_n, \ldots, Z_{k+1} \) (0 \(\leq k < n \)) are defined, then we apply Lemma 2.1 with

$$X = \begin{cases} X_k & \text{if } k > 0, \\ 0 & \text{if } k = 0, \end{cases} \quad Y = \frac{1}{E(Z_{k+1} | \mathcal{G}_k)}, \quad \mathcal{G} = \mathcal{G}_{k-1}, \quad \varepsilon = \eta$$

to obtain a bounded \(Z_k \) such that \(Z_k/E(Z_{k+1} | \mathcal{G}_k) \) is also bounded and \(E|Z_k - 1| < \eta \).

With this choice the following variables are all bounded:

$$Z_n, \quad Z_{n-1}, \quad \ldots, \quad Z_1, \quad Z_0,$$

$$Y = \begin{cases} Z_{n-1} & \text{if } k > 0, \\ 0 & \text{if } k = 0, \end{cases} \quad \mathcal{G} = \mathcal{G}_{n-1}, \quad \varepsilon = \eta$$

Put

$$D = \frac{Z_n}{E(Z_n | \mathcal{G}_{n-1})} \ldots \frac{Z_1}{E(Z_1 | \mathcal{G}_0)} \frac{Z_0}{E(Z_0 | \mathcal{G}_0)}.$$
Then D, DY are bounded, and for $1 \leq k \leq n$,

$$E(X_k D | \mathcal{G}_{k-1}) = \frac{Z_{k-1}}{Z_0} E(Z_k | \mathcal{G}_k) \cdot \cdots \cdot Z_1 E(Z_1 | \mathcal{G}_1) \cdot E(Z_0) E(Z_k X_k | \mathcal{G}_{k-1}) = 0.$$

We can carry out the above construction for all $\eta > 0$ and in this way we get a sequence of random variables with the obvious notation

$$D_{\eta} = \frac{Z_n(\eta) \cdots Z_0(\eta)}{E(Z_n(\eta) | \mathcal{G}_{n-1}) \cdots E(Z_0(\eta))}.$$

Now let $\eta_m > 0$ be such that $\sum_{m=0}^{\infty} \eta_m < \infty$. Let us apply Proposition 2.2 to $X_n := Z_n$ noting that $E|Z_{n+1} - Z_n| \leq \eta_{n+1} + \eta_m$. We get that $\lim_{m \to \infty} Z_k(\eta_m) = 1$ and $\lim_{m \to \infty} E(Z_k(\eta_m) | \mathcal{G}_{k-1}) = 1$ both in L_1 and a.s. for $0 \leq k \leq n$. But this implies that $D_{\eta_m} \to 1$ a.s. as $m \to \infty$.

Since $E.D_{\eta_m} = 1$, Scheffé’s theorem gives that for large m, $D = D_{\eta_m}$ satisfies $E|D - 1| \leq \varepsilon$ also. Lemma 2.3 is proved.

We can finally prove Theorem 1.3.

Proof. Let $X_0 = S_0, X_n = S_n - S_{n-1}$ for $n > 0$. Take $\varepsilon_n > 0$ such that $\sum_{n=0}^{\infty} \varepsilon_n < \min(\varepsilon, 1)/3$. We may and will suppose that $Y_n \geq |X_n|$ for each n.

Using Lemma 2.3 (recall Proposition 2.1) we define a sequence (D_n) in a recursive way. Besides (D_n) a sequence of positive numbers (c_n) is to be defined. These sequences will satisfy the following properties for each n:

(i) $0 < D_n(1 + Y_n) \leq c_n$,

(ii) $E|D_n - 1| \leq \varepsilon_n/(1 + \prod_{k<n} c_k)$,

(iii) for $k \leq n$, $E(D_0 \cdots D_n X_k | \mathcal{G}_{k-1}) = 0$,

(iv) D_n is \mathcal{G}_n-measurable.

This will prove the statement by the following reasoning. Put $H_n = \prod_{k \leq n} D_k$. Then

$$E|H_{n+1} - H_n| = E|H_n(D_{n+1} - 1)| \leq \prod_{k \leq n} c_k E|D_{n+1} - 1| \leq \varepsilon_{n+1}.$$

Since ε_n is summable, we can use Proposition 2.2 to obtain that H_n is convergent in L_1 and a.s., the limit is denoted by H. It is also clear that

$$E|H - 1| \leq \sum_{n=0}^{\infty} \varepsilon_n < \frac{\min(\varepsilon, 1)}{3}.$$

This implies that $dQ = (H/E.H) dP$ defines a probability measure $Q \ll P$ on \mathcal{F}. Elementary calculation gives that

$$\|P - Q\| = E\left|\frac{H}{E.H} - 1\right| \leq \varepsilon.$$

To prove that Q is actually equivalent we need that $H > 0$ a.s. This easily follows from

$$\sum_{n=0}^{\infty} |D_n - 1| < \infty \quad \text{a.s.}$$

which is true, since by monotone convergence

$$E\left(\sum_{n=0}^{\infty} |D_n - 1|\right) = \sum_{n=0}^{\infty} E|D_n - 1| \leq \sum_{n=0}^{\infty} \varepsilon_n < \infty.$$

In a similar way we can prove that S is a Q-martingale and each Y_k is Q-integrable. To show this we need that for each $k, |X_k| \leq Y_k$ is in $L^1(Q)$ and $E_Q(X_k | \mathcal{G}_{k-1}) = 0$. In other words, we need that

$$E(HY_k) < \infty \quad \text{and} \quad E(HX_k | \mathcal{G}_{k-1}) = 0.$$
Both follows if we show that $H_n Y_n$, $n \geq 0$, is a Cauchy sequence in $L^1(\mathcal{P})$, since it implies that $H_n X_k \rightarrow H X_k$ not only a.s. but also in $L^1(\mathcal{P})$ and we can use property (iii).

Now for $n \geq k$

$$E |H_{n+1} Y_k - H_n Y_k| = E (|D_{n+1} - 1| D_n \cdots D_{k+1} (D_k Y_k) D_{k-1} \cdots D_0) \leq E (|D_{n+1} - 1|) \prod_{m \leq n} \varepsilon_m \leq \varepsilon_{n+1}.$$

So the theorem is proved provided that we can carry out the recursive definition of (D_n) and (c_n) with the properties listed above.

In the recursive definition of the sequence (D_n) we actually use the following equivalent form of property (iii):

$$E (E (H_n | \mathcal{G}_k) S_k | \mathcal{G}_{k-1}) = E (H_n | \mathcal{G}_{k-1}) S_{k-1}, \quad n \geq 0, \quad k > 0, \quad (6)$$

where $H_n = D_0 \cdots D_n$. It is obviously true for $k > n$ by the \mathcal{G}_n-measurability of H_n, while it follows from property (iii) for $k \leq n$. It is also clear that (6) implies property (iii) by the tower rule.

First we define D_0, c_0. Let $Z_n = 1/(1 + Y_0/n)$, and let n be so large that $D_0 = Z_n / E Z_n$ satisfies $E (D_0 - 1) \leq \varepsilon_0$. Clearly D_0 and $D_0 Y_0$ are bounded and we can define c_0 as the sum of their essential suprema.

Assume that $D_k, c_k, 0 \leq k < n$, are already defined, with the properties listed above. We can apply Lemma 2.3 to $Y = Y_n$, ε chosen according to (ii), and the differences of the generalized martingale $X_k := S'_k - S'_{k-1}, 1 \leq k < n, X_0 := S'_0$, where

$$S'_k = E (H_{n-1} | \mathcal{G}_k) \left(\frac{S_k}{1} \right), \quad k = 0, \ldots, n.$$

The fact that $S'_k, k = 0, \ldots, n$, is a generalized martingale is obvious for the last coordinate, while for the rest of the coordinates it follows from property (iii) of H_{n-1}, cf. (6). Note that S'_k has one extra coordinate $E (H_{n-1} | \mathcal{G}_k)$.

In this way we get $D_k; c_k$ is defined as in (i). We have to show property (iii). By the \mathcal{G}_{n-1}-measurability of H_{n-1} we get

$$E (H_n | \mathcal{G}_{n-1}) = E (D_n | \mathcal{G}_{n-1}) E (H_{n-1} | \mathcal{G}_{n-1}).$$

The last coordinate of $D_n S'$ satisfies, by the choice of D_n,

$$E \left(D_n (E (H_{n-1} | \mathcal{G}_k) - E (H_{n-1} | \mathcal{G}_{k-1})) | \mathcal{G}_{k-1} \right) = 0, \quad 1 < k \leq n.$$

This implies

$$E (D_n | \mathcal{G}_k) E (H_{n-1} | \mathcal{G}_k) | \mathcal{G}_{k-1}) = E (D_n | \mathcal{G}_{k-1}) E (H_{n-1} | \mathcal{G}_{k-1}),$$

for $1 \leq k \leq n$. Applying it for $k = n - 1$ gives that

$$E (H_n | \mathcal{G}_{n-2}) = E (E (H_n | \mathcal{G}_{n-1}) | \mathcal{G}_{n-2})$$

$$= E (E (D_n | \mathcal{G}_{n-1}) E (H_{n-1} | \mathcal{G}_{n-1}) | \mathcal{G}_{n-2})$$

$$= E (D_n | \mathcal{G}_{n-2}) E (H_{n-1} | \mathcal{G}_{n-2}).$$

Repeating this we get that

$$E (H_n | \mathcal{G}_k) = E (D_n | \mathcal{G}_k) E (H_{n-1} | \mathcal{G}_k), \quad 0 \leq k \leq n.$$

We can apply this and $E (D_n (S'_k - S'_{k-1}) | \mathcal{G}_{k-1}) = 0$ to calculate

$$E (H_n S_k | \mathcal{G}_{k-1}) = E (E (H_n | \mathcal{G}_k) S_k | \mathcal{G}_{k-1})$$

$$= E (E (D_n | \mathcal{G}_k) E (H_{n-1} | \mathcal{G}_k) S_k | \mathcal{G}_{k-1})$$

$$= E (D_n | \mathcal{G}_{k-1}) E (H_{n-1} | \mathcal{G}_{k-1}) S_k = E (H_n | \mathcal{G}_{k-1}) S_k,$$

which is just the equivalent form (6) of property (iii). So the recursion can be continued and Theorem 1.3 is proved.
3. Examples. The continuous-time counterpart of Theorem 1.1 is not true in general. For completeness we give here two simple counterexamples.

Example 3.1. Let X be the three-dimensional squared Bessel process starting from some positive value. Then X satisfies the following equation:

$$dX_t = 2\sqrt{X_t} \, dW_t + 3 \, dt, \quad X_0 > 0,$$

with a Wiener process W. It is well known (see, e.g., [5, Chap. XI]) that the solution of the above equation is strong, so for deterministic X_0, the process X_t is adapted to the filtration of W and $(Y_t = 1/\sqrt{X_t}, \mathcal{F}_t)$ is a local martingale, where $\mathcal{G}_t = \sigma(W_s, s \leq t)$. This is a well-known example of a local martingale not being a martingale.

Assume that there is $Q \ll P$ such that, under Q, Y is a martingale. Put

$$D = \frac{dQ}{dP} \bigg|_{\mathcal{G}_\infty}, \quad D_t = E(D \mid \mathcal{G}_t).$$

It is easy to see that the martingale property under Q would mean

$$E_Q(Y_t \mid \mathcal{G}_t) = E(D_t Y_t \mid \mathcal{G}_t) = Y_t,$$

in other words, (DY, \mathcal{G}) is a martingale under P. Since \mathcal{G} is a Brownian filtration, $D_t = D_0 + \int_0^t H_s \, dW_s$ with some predictable H. This gives that

$$d(DY)_t = D_t \, dY_t + Y_t \, dD_t + d(Y, D)_t.$$

Here the first two terms are local martingales, so if DY were a local martingale also, then (Y, D) would be identically zero. However

$$d(Y, D)_t = -H Y_t^2 \, dt,$$

since $dY_t = -Y_t^2 \, dW_t$. As $Y_t > 0$ a.s. for all t, $(Y, D) = 0$ would imply $H = 0$ and $D = D_0$. Since D is \mathcal{G}_0-measurable and \mathcal{G}_0 is trivial, $D = 1$ and $Q \big|_{\mathcal{G}_\infty} = P \big|_{\mathcal{G}_\infty}$ is a contradiction.

Example 3.2. This example is due to Christophe Stricker. Let $X_t := \exp \left(W_t - \frac{t}{2} \right)$, $t \geq 0$, where W is Brownian motion and $(\mathcal{F}_t)_{t \geq 0}$ is its natural filtration. Define the (a.s. finite) stopping time

$$\tau := \inf \left\{ t: X_t = \frac{1}{2} \right\},$$

and set

$$S_t := X_{t \wedge \tau}, \quad 0 \leq t < \frac{\pi}{2}, \quad S_t = \frac{1}{2}, \quad t \geq \frac{\pi}{2}.$$

We can unify the notation, by using the convention $\tau t = \infty$, for $t \geq \pi/2$ in this example, since τ is finite a.s. Then $S_t = X_{t \wedge \tau}$ and we can define $\mathcal{G}_t := \mathcal{F}_{t \wedge \tau}$. We find that (S_t) is a (\mathcal{G}_t)-adapted continuous process. It cannot be a martingale under any measure $P' \sim P$, since $S_{\pi/2} = 1/2$ and S_t is not constant for $t < \pi/2$.

It is, however, a $(\mathcal{G}_t)_{t \geq 0}$-local martingale. Take

$$\sigma_n := \inf \{ t: X_{t \wedge \tau} = n \},$$

then $\tau_n := (\arctg \sigma_n) I_{\{ \sigma_n < \infty \}} + \infty I_{\{ \sigma_n = \infty \}}$, $n \geq 0$, is a sequence of $(\mathcal{G}_t)_{t \geq 0}$-stopping times tending a.s. to infinity.

Since X_t is an $(\mathcal{F}_t)_{t \geq 0}$-martingale, the stopped process $X_{t \wedge \tau \wedge \sigma_n}$ is a (bounded) $(\mathcal{F}_t)_{t \geq 0}$-martingale. Then $X_{t \wedge \tau \wedge \sigma_n} = X_{t \wedge (t \wedge \tau) \wedge \tau} = S_{t \wedge \tau}$ is a $(\mathcal{G}_t)_{t \geq 0}$-martingale, showing that S is indeed a local martingale.
Acknowledgments. We are very grateful to Yuri Kabanov for drawing our attention to this problem by providing us with a preprint version of [3] and for his helpful comments on previous drafts of this paper, in particular, for spotting an error. We thank Christophe Stricker for suggesting Example 3.2. We also thank the anonymous referee for his/her careful reading and comments.

REFERENCES

Поступила в редакцию 24.VII.2008

© 2010 г.

ZUOXIANG P.*, NADARAJAH S.**

ALMOST SURE LIMIT THEOREMS FOR GAUSSIAN SEQUENCES

Пусть \{X_n, n \geq 1\} — гауссовые случайные величины с нулевым средним, единичной дисперсией и корреляциями \(r_{ij} = \mathbb{E} X_i X_j\). Предположим, что существует последовательность \(0 \leq \rho_n < 1\), \(n \geq 1\), такая, что \(|r_{ij}| \leq \rho_{|j-i|}\) для \(i \neq j\) и \(\rho_n \ln n(\ln \ln n)^{1+\varepsilon} = O(1)\) при \(n \to \infty\). Для последовательности уровней \(\{u_{nk}, 1 \leq k \leq n, n \geq 1\}\), положим \(\lambda_n = \min_{1 \leq k \leq n} u_{nk}\), и пусть последовательность \(n(1 - \Phi(\lambda_n))\) ограничена. Мы выводим центральные предельные теоремы типа "почти наверное" для \((\ln n)^{-1} \sum_{k=1}^n k^{-1} I(X_1 \leq u_{k1}, \ldots, X_k \leq u_{kk})\) и \((\ln n)^{-1} \times \sum_{k=1}^n k^{-1} I(\max_{1 \leq i \leq k} X_i \leq \lambda_k)\).

Ключевые слова и фразы: центральная предельная теорема типа "почти наверное", гауссовская последовательность, логарифмическое среднее.

* School of Mathematics and Statistics, Southwest University, Chongqing 400715, China.
** School of Mathematics, University of Manchester, manchester M13 9PL, UK.