М. А. Чеботарь, Функциональные тождества в первичных кольцах, УМН, 1998, том 53, выпуск 1(319), 207–208

DOI: https://doi.org/10.4213/rm23
В МОСКОВСКОМ МАТЕМАТИЧЕСКОМ ОБЩЕСТВЕ

СООБЩЕНИЯ МОСКОВСКОГО МАТЕМАТИЧЕСКОГО ОБЩЕСТВА

ФУНКЦИОНАЛЬНЫЕ ТОЖДЕСТВА В ПЕРВИЧНЫХ КОЛЬЦАХ

М. А. ЧЕБОТАРЬ

Мы будем использовать следующие обозначения: R — первичное кольцо, $Q_{a}(R)$ — симметрическое матричное кольцо частных для кольца R, C — расширенный централёр кольца R, $R_{c} = RC$ — центральное замыкание кольца R (см. [4]). Недавно Брешаром [3] было показано, что если в кольце R выполняется нетривиальное функциональное тождество степени 2, то R является кольцом с обобщенными полиномиальными тождествами, а для этого класса кольц применимы известный результат Матришаря [4, теорема 3]. В настоящей работе представлена результат о функциональных тождествах степени и с фиксированным антиавтоморфизмом.

Во всех верхних индексах функций будут давать информацию о существенных переменных этих функций, поэтому сами переменные переменные мы непосредственно не будем. Например, мы будем писать $F_{i, r}(x_1, \ldots, x_n)$ вместо $F_{i, r}(x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)$. Мы будем называть N-аддитивной функцией функции в переменных, а также непустое подмножество под 0-аддитивной функции в константу.

ТЕОРЕМА. Пусть R — первичное кольцо с антиавтоморфизмом τ и пусть $N > 1$ — натуральное число и $n_1, m_1, n_2, m_2 = \text{натуральное число, где } i = 1, \ldots, N$. Предположим, что

$$
\sum_{i=1}^{n_1} F_i^1(x_1, \ldots, x_N)x_1 a_i^1 + \sum_{i=1}^{m_1} b_i^1 x_1 G_1^1(x_1, \ldots, x_N)
$$

$$
+ \sum_{i=1}^{n_2} H_i^1(x_1, \ldots, x_N)x_1 d_i^1 + \sum_{i=1}^{m_2} c_i^1 x_1 K_1^1(x_1, \ldots, x_N) + \ldots
$$

$$
\ldots + \sum_{i=1}^{n_N} F_i^N(x_1, \ldots, x_N)x_N a_i^N + \sum_{i=1}^{m_N} b_i^N x_N G_1^N(x_1, \ldots, x_N)
$$

$$
+ \sum_{i=1}^{n_N} H_i^N(x_1, \ldots, x_N)x_N d_i^N + \sum_{i=1}^{m_N} c_i^N x_N K_1^N(x_1, \ldots, x_N) = 0
$$

для всех $x_1, \ldots, x_N \in R$, где $F_i^N, G_i^N, H_i^N, K_i^N : R^{N-1} \rightarrow R$ являются $(N-1)$-аддитивными функциями и

$$
\{a_1^1, \ldots, a_{n_1}^1\}, \ldots, \{a_1^N, \ldots, a_{n_N}^N\}, \{b_1^1, \ldots, b_{m_1}^1\}, \ldots, \{b_1^N, \ldots, b_{m_N}^N\},
$$

$$
\{d_1^1, \ldots, d_{m_1}^1\}, \ldots, \{d_1^N, \ldots, d_{m_N}^N\}, \{c_1^1, \ldots, c_{m_1}^1\}, \ldots, \{c_1^N, \ldots, c_{m_N}^N\}
$$
супа C-исчислимые подмножества R. Тогда выполняется одна из двух возможностей;

(i) R_c — примитивное колцо с ненулевым цоколем, cR_c — конечмерная алгебра с делением над C для каждого примитивного идеалоподалгебра c из R_c (т. е. R — колцо с обобщённым тождеством),

(ii) существуют $(N - 2)$-аддитивные функции $\beta_{j,k}^l, \gamma_{j,k}^l, \delta_{j,k}^l, \zeta_{j,k}^l : R^{N-2} \to Q_0(R_c)$,

и $(N - 1)$-аддитивные функции $\lambda_{j,k}^l, \omega_{j,k}^l : R^{N-1} \to C$ такие, что

$$ F_k(x_1, \ldots, x_N) = \sum_{i=1, i\neq l}^{N} \sum_{j=1}^{m_i} b_j^i x_j^{i,j} \{ x_1, \ldots, x_N \} $$

$$ + \sum_{j=1}^{m_i} b_j^i \lambda_{j,k}^l \{ x_1, \ldots, x_N \} + \sum_{i=1, i\neq l}^{N} \sum_{j=1}^{u_i} e_j^i \gamma_{j,k}^l \{ x_1, \ldots, x_N \}, $$

для всех $x_1, \ldots, x_N \in R$, $l = 1, \ldots, N$, $k = 1, \ldots, u_i$,

$$ G_k(x_1, \ldots, x_N) = - \sum_{i=1, i\neq l}^{N} \sum_{j=1}^{m_i} p_j^i \{ x_1, \ldots, x_N \} x a_j^i $$

$$ - \sum_{j=1}^{m_i} a_j^i \lambda_{j,k}^l \{ x_1, \ldots, x_N \} - \sum_{i=1, i\neq l}^{N} \sum_{j=1}^{v_i} d_j^i \{ x_1, \ldots, x_N \} x_j^i d_j^i, $$

для всех $x_1, \ldots, x_N \in R$, $l = 1, \ldots, N$, $k = 1, \ldots, u_i$.

$$ H_k(x_1, \ldots, x_N) = \sum_{i=1, i\neq l}^{N} \sum_{j=1}^{m_i} b_j^i x_j^{i,j} \{ x_1, \ldots, x_N \} $$

$$ + \sum_{j=1}^{m_i} \omega_{j,k}^l \{ x_1, \ldots, x_N \} e_j^i + \sum_{i=1, i\neq l}^{N} \sum_{j=1}^{u_i} e_j^i \gamma_{j,k}^l \{ x_1, \ldots, x_N \}, $$

для всех $x_1, \ldots, x_N \in R$, $l = 1, \ldots, N$, $k = 1, \ldots, u_i$.

$$ K_k(x_1, \ldots, x_N) = - \sum_{i=1, i\neq l}^{N} \sum_{j=1}^{m_i} \gamma_{j,k}^l \{ x_1, \ldots, x_N \} x a_j^i $$

$$ - \sum_{j=1}^{m_i} \omega_{j,k}^l \{ x_1, \ldots, x_N \} d_j^i - \sum_{i=1, i\neq l}^{N} \sum_{j=1}^{v_i} \zeta_{j,k}^l \{ x_1, \ldots, x_N \} x_j^i d_j^i, $$

для всех $x_1, \ldots, x_N \in R$, $l = 1, \ldots, N$, $k = 1, \ldots, u_i$.

При доказательстве существенно используются идеи и техника работ [4], [3] и главы 6 книги [2].

Аutors выражает благодарность К. И. Бейдару и А. В. Михалеву за постановку задачи и научное руководство работой, а также В. Т. Маркову за вниание и поддержку.

Список литературы

Московский государственный университет им. М. В. Ломоносова 05.02.1997