В. В. Бересневич, Э. И. Ковалевская, О диофантовых приближениях зависимых величин в p-адическом случае, Матем. заметки, 2003, том 73, выпуск 1, 22–37

DOI: https://doi.org/10.4213/mzm165

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
28 декабря 2018 г., 19:02:07
Математические заметки

Том 73 Выпуск 1 Январь 2003

УДК 511.36

О ДИОФАНТОВЫХ ПРИБЛИЖЕНИЯХ ЗАВИСИМЫХ ВЕЛИЧИН В p-АДИЧЕСКОМ СЛУЧАЕ

В. В. Бересневич, Э. И. Ковалевская

В настоящей работе мы доказываем аналог метрической теоремы Хинчина для случая линейных диофантовых приближений плоских кривых, заданных над кольцом целых p-адических чисел с помощью нормальных (по Малеру) функций. Также доказываем некоторые общие утверждения, которые необходимы для обобщения этого результата на случай пространств большей размерности.

Библиография: 18 названий.

1. Введение. В 1924 году Хинчин [1] доказал, что для почти всех действительных чисел \(x \) (в смысле меры Лебега в \(\mathbb{R} \)) неравенство
\[
|qx - p| < \psi(q)
\]
имеет конечное либо бесконечное число решений \(p, q \in \mathbb{Z} \), если соответственно сходится или расходится ряд
\[
\sum_{h=1}^{\infty} \psi(h), \quad \text{где} \quad \psi : \mathbb{R} \to \mathbb{R}^+ \text{ монотонно убывает.}
\]
Метрическая теория диофантовых приближений зависимых величин начала развиваться с работы К. Малера [2] 1932 года, в которой он, проводя классификацию действительных чисел, доказал, что при любом \(w > 4n \) для почти всех чисел \(x \in \mathbb{R} \) неравенство
\[
|P(x)| < H(P)^{-w}
\]
имеет конечное число решений \(P \in P_n \), где \(P_n \) — множество многочленов с целыми коэффициентами степени не выше \(n \), \(H(P) \) обозначает высоту многочлена \(P \). В той же работе Малер предположил, что ограничение на \(w \) может быть ослаблено до \(w > n \). Последовательные продвижения в решении проблемы Малера делала Дж. Коксма, В. Левек, Й. Кубилюс, Ф. Каш, Б. Фолькман и В. Шмидт. В 1964 году В.Г. Сприндцук дал полное решение проблемы Малера [3], а также рассмотрел комплексный случай и аналоги для p-адических чисел и формальных степенных рядов. В 1966 году А. Бейкер высказал гипотезу о том, что в теореме Сприндцuka в правой части неравенства можно ставить функцию \(\psi(H(P)) \), где \(\psi(h) \) — монотонно убывающая последовательность положительных чисел такая, что сходится ряд
\[
\sum_{h=1}^{\infty} h^{n-1}\psi(h).
\]
В последнее время было получено значительное продвижение в исследованиях диагфонтовых свойств дифференцируемых подмножеств эвклидова пространства. Со многими результатами можно ознакомиться по [3], [6]–[9].

В то время, как метрическая теория диагфонтовых приближений хорошо развита для поля действительных чисел, таких исследований в поле p-адических чисел проведено мало. В настоящей работе мы доказываем аналог теоремы Хинчины в случае линейных диагфонтовых приближений плоских кривых, заданных над кольцом целых p-адических чисел.

Всюду в дальнейшем мы используем следующие обозначения. Простое число \(p \geq 2 \) фиксирано, \(Q_p \) — поле p-адических чисел, \(Z_p \) — поле целых p-адических чисел, \(\|x\|_p \) — p-адическая норма \(x \in Q_p \), множество \(K(\alpha, r) = \{ x \in Z_p : \|x - \alpha\|_p < r \} \) называют кругом (диском или элементарным цилиндром) в \(Z_p \) радиуса \(r > 0 \) с центром в точке \(\alpha \in Z_p \).

Известно, что поле \(Q_p \) является локально компактным, и на нем можно ввести меру Хаара, обозначаемую через \(\mu \) и нормированную так, что \(\mu Z_p = p \). Конструкции и свойства этой меры описаны в [3, c. 69–76].

Согласно Малеру [10] функция \(f: Z_p \to Z_p \) называется нормальной, если она имеет вид

\[
f(x) = \sum_{n=0}^{\infty} \alpha_n (x - \alpha)^n,
\]

где \(\|\alpha\|_p \leq 1, |\alpha_n|_p \leq 1 \) для всех \(n \) и

\[
\lim_{n \to \infty} |\alpha_n|_p = 0.
\]

Производные \(f^{(k)}(x) \) \((k = 1, 2, \ldots) \) также являются нормальными функциями. Кроме того, для нормальной над \(Z_p \) функции имеет место разложение в ряд Тейлора [11], что не верно для произвольной p-адической функции [12, c. 223]. Отметим, что класс нормальных функций достаточно широк: если \(g(x) \) — произвольная голоморфная функция p-адической переменной, то существуют целые рациональные числа и \(s \) и \(t \) такие, что \(p^s g(p^t x) \) — нормальная функция.

Теорема 1. Пусть \(f: Z_p \to Z_p \) — нормальная функция такая, что \(f''(x) \neq 0 \) почти всюду (в смысле меры Хаара) в \(Z_p \), \(\psi: \mathbb{R} \to \mathbb{R}^+ \) монотонно убывает. Пусть \(L_f(\psi) \) — множество точек \(x \in Z_p \) таких, что неравенство

\[
|a_2 f(x) + a_1 x + a_0|_p < \psi(h),
\]

где \(h = \max\{|a_0|, |a_1|, |a_2|\} \), имеет бесконечное число решений \((a_0, a_1, a_2) \in Z^3 \).

Тогда

\[
\mu L_f(\psi) = \begin{cases}
0, & \text{если } \sum_{h=1}^{\infty} h^2 \psi(h) < \infty, \\
p, & \text{если } \sum_{h=1}^{\infty} h^2 \psi(h) = \infty.
\end{cases}
\]

Эта теорема усиливает результат Мельничука [13], у которого в правой части неравенства (2) стоит величина \(h^{-3-\varepsilon} \) с произвольным \(\varepsilon > 0 \). Отметим, что условие на \(f'' \).
равносило тому, что кривизна кривой \((x, f(x)) \) отлична от нуля почти всюду в \(\mathbb{Z}_p \).

Аналог теоремы 1 в действительном случае доказан в [14], [15]. Если в неравенстве (2) вместо линейной формы \(a_2 f(x) + a_1 x + a_0 \) стоит многочлен с целыми коэффициентами степени не выше \(n \), \(h \) обозначает его высоту, а \(\psi \) такова, что ряд (1) сходится, то соответствующая теорема доказана в [16]. Используя результаты данной работы, можно также рассмотреть случай расходности и в этой теореме.

Случай сходимости в теореме 1 впервые был доказан в [17] методом существенных и несущественных областей. В настоящей работе мы даем эффективную версию этого результата (теорема 2 и следствие из теоремы 3), используя значительно модифицированный метод. Это позволяет строить наилучшие регулярные системы нулей линейных форм вида \(a_2 f(x) + a_1 x + a_0 \) (теорема 4). Мы также доказываем общее утверждение о приближении целых \(p \)-адических чисел точками регулярных систем (теорема 5), что является основой для исследования подобных задач в пространствах больших размерностей.

2. **Вспомогательные утверждения.** Несложно показать, используя монотонность \(\psi \), что нет ограничения общности в том, чтобы предполагать, что \(\psi(h) < h^{-1} \).

По условию теоремы \(f''(x) \neq 0 \) почти всюду в \(\mathbb{Z}_p \). Удалим из \(\mathbb{Z}_p \) множество произвольно малой меры \(\theta \) так, чтобы в оставшейся части \(\mathbb{Z}_p(\theta) \) выполнялось неравенство \(|f''(x)|_p \geq C_1 \), где \(C_1 = C_1(\theta) \) и \(0 < C_1 < 1 \). Достаточно доказать теорему 1 на множестве \(\mathbb{Z}_p(\theta) \). Это множество можно представить в виде объединения конечного или счетного числа кругов \(K_8 \). Дальнейшие рассуждения применимы к любому кругу \(K_8 \). Рассмотрим один из них, который обозначим через \(K_0 \). Тогда для всех \(x \in K_0 \)

\[
|f''(x)|_p \geq C_1.
\] (3)

При этом без ограничения общности считаем, что радиус круга \(K_0 \) удовлетворяет неравенству

\[
\text{radius}(K_0) < C_1 p^{-3}.
\] (4)

Определим множество \(\mathcal{F} \), состоящее из всех ненулевых линейных форм с целыми рациональными коэффициентами вида \(F = a_2 f(x) + a_1 x + a_0 \). Очевидно, что каждая функция \(F \in \mathcal{F} \) является нормальной. Для \(F \in \mathcal{F} \) определим

\[
h_F = \max \{|a_i| : i = 0, 1, 2\}.
\]

Лемма 1. Пусть \(F \in \mathcal{F} \), \(\alpha_0, \alpha_1 > 0 \), \(\beta_1, \beta_2 \geq 0 \). Пусть \(\sigma_{\alpha, \beta}(F) \) обозначает множество тех \(x \in K_0 \), для которых выполнена система неравенств

\[
\left\{ \begin{array}{l}
|F(x)|_p < \alpha_0, \\
\beta_1 \leq |F'(x)|_p < \alpha_1, \\
\beta_2 \leq |F''(x)|_p.
\end{array} \right.
\] (5)

Тогда множество \(\sigma_{\alpha, \beta}(F) \) покрывает не более чем двумя кругами радиуса

\[
r_{\alpha, \beta} = \min \left\{ \frac{\alpha_0}{\beta_1}, \left(\frac{\alpha_0}{\beta_2} \right)^{1/2}, \frac{\alpha_1}{\beta_2} \right\}.
\]
ДОКАЗАТЕЛЬСТВО. Предположим, что $\sigma_{\alpha, \beta}(F)$ содержит по крайней мере две точки, поскольку в противном случае утверждение леммы очевидно. Тогда по свойству компактности \mathbb{Z}_p существуют две точки $x_1, x_2 \in \sigma_{\alpha, \beta}(F)$ такие, что

$$|x_1 - x_2|_p \geq |x - y|_p$$

для любых $x, y \in \sigma_{\alpha, \beta}(F)$. (6)

Для доказательства леммы покажем, что $\sigma_{\alpha, \beta}(F) \subset \bigcup_{i=1}^{2} K(x_i, r_{\alpha, \beta})$.

Пусть $x \in \sigma_{\alpha, \beta}(F)$ и $i \in \{1, 2\}$. По формуле Тейлора мы имеем

$$F'(x) - F'(x_i) = (x - x_i) \left(F''(x_i) + \sum_{n=0}^{\infty} (n!)^{-1} F^{(n+1)}(x_i)(x - x_i)^n \right).$$

(7)

Поскольку $F^{(n)}(x) = a_2 f^{(n)}(x)$ при $n > 1$, из (7) вытекает

$$F'(x) - F'(x_i) = a_2 (x - x_i) \left(f''(x_i) + \sum_{n=0}^{\infty} (n!)^{-1} f^{(n+1)}(x_i)(x - x_i)^n \right).$$

(8)

Используя (3), (4), неравенство $|f^{(n)}(x)|_p < 1$ и известную оценку $|1/n!|_p \leq p^n$, легко проверить, что

$$|(n!)^{-1} f^{(n+1)}(x_i)(x - x_i)^{n-1}|_p \leq C_1 \leq |f''(x_i)|_p.$$

Тогда p-адическая норма правой части (8) (p-адическая норма суммы не превосходит максимума p-адических норм слагаемых и в точности равна ему, если этот максимум достигается ровно на одном слагаемом) равна

$$|a_2 (x - x_i) f''(x_i)|_p = |F''(x_i)|_p |x - x_i|_p.$$

(9)

Сейчас, используя неравенства (5), получаем

$$\alpha_1 > |F'(x) - F'(x_i)|_p = |F''(x_i)|_p |x - x_i|_p \geq \beta_2 |x - x_i|_p,$$

откуда вытекает, что

$$|x - x_i|_p \leq \frac{\alpha_1}{\beta_2}. \quad (10)$$

Далее для $i = 1, 2$ рассмотрим разложение по формуле Тейлора для $F(x)$:

$$F(x) - F(x_i) = (x - x_i) \left(F'(x_i) + \sum_{n=2}^{\infty} (n!)^{-1} F^{(n)}(x_i)(x - x_i)^n \right).$$

(11)

Предположим, что для некоторого индекса $i \in \{1, 2\}$ выполнено неравенство

$$|F'(x_i)|_p > 2^{-1} F''(x_i)(x - x_i)|_p.$$

(12)

Тогда так же, как при доказательстве (9), несложно проверить, что p-адическая норма правой части (11) равна $|x - x_i|_p |F'(x_i)|_p$, и из (11) вытекает

$$|F(x) - F(x_i)|_p = |F'(x_i)|_p |x - x_i|_p.$$

(13)
Применяя к этому равенству условия (5), получаем

$$|x - x_i|_p \leq \frac{\alpha_0}{\beta_1}.$$

(14)

Кроме того, из (5), (12) и (13) следует, что

$$\alpha_0 \geq |F(x) - F(x_i)|_p = |F'(x_i)|_p |x - x_i|_p > |F''(x_i)(x - x_i)|_p |x - x_i|_p$$

$$\geq |F''(x_i)|_p |x - x_i|^2 \geq \beta_2 |x - x_i|^2.$$

Отсюда вытекает, что

$$|x - x_i|_p \leq \left(\frac{\alpha_0}{\beta_2} \right)^{1/2}.$$

(15)

Из неравенств (10), (14) и (15) получаем утверждение нашей леммы в случае (12).

Теперь пусть (12) не выполнено ни для какого $i \in \{1, 2\}$. Пусть $|x - x_1|_p \leq |x - x_2|_p$. Согласно (6) мы имеем

$$|x - x_1|_p \leq |x - x_2|_p \leq |x - x_2|_p.$$

(16)

Домножив разложение Тейлора

$$F(x_2) - F(x_1) = \sum_{n=1}^{\infty} (n!)^{-1} F^{(n)}(x_1)(x_2 - x_1)^n$$

на $x - x_1$ и разделив на $x_2 - x_1$, получаем

$$\frac{(F(x_2) - F(x_1))(x - x_1)}{x_2 - x_1} = \sum_{n=1}^{\infty} (n!)^{-1} F^{(n)}(x_1)(x_2 - x_1)^{n-1}(x - x_1).$$

Вычитая это равенство из разложения по формуле Тейлора

$$F(x) - F(x_1) = \sum_{n=1}^{\infty} (n!)^{-1} F^{(n)}(x_1)(x - x_1)^{n-1}(x - x_1)$$

и преобразовывая правую часть, получим

$$F(x) - F(x_1) - \frac{(F(x_2) - F(x_1))(x - x_1)}{x_2 - x_1}$$

$$= (x - x_1)(x - x_2) \left(2^{-1} F''(x_1) + \sum_{n=3}^{\infty} (n!)^{-1} F^{(n)}(x_1) \left(x - x_1 \right)^{n-2} \right).$$

(17)

Используя (5) и (16), мы находим, что p-адическая норма левой части (17) не превосходит α_0. Далее, рассуждая, как при доказательстве (9), легко проверить, что p-адическая норма правой части (17) равна

$$|(x - x_1)(x - x_2)|_p |2^{-1} F''(x_1)|_p \leq |x - x_1|^2 |2^{-1} F''(x_1)|_p.$$

Тогда

$$\alpha_0 \geq |2^{-1} F''(x_1)|_p |x - x_1|^2.$$

(18)

Применим неравенство (5), получаем (15) при $i = 1$. Из (5), (18) и неравенства, противоположного к (12), мы также имеем

$$\alpha_0 \geq |x - x_1|_p |2^{-1} F''(x_1)(x - x_1)|_p \geq |x - x_1|_p |F'(x_1)|_p \geq |x - x_1|_p \beta_1,$$

откуда следует (14) при $i = 1$. Итак, мы получили неравенства (10), (14) и (15) при $i = 1$. В предположении $|x - x_1| \geq |x - x_2|$ мы бы получили эти неравенства при $i = 2$. Из (10), (14) и (15) мы снова получаем требуемое.
Лемма 2. Для каждой функции $F \in \mathcal{F}$ определим множество $\mathcal{X}_F = \{x \in K_0 : F(x) = 0\}$. Пусть $\mathcal{X} = \bigcup_{F \in \mathcal{F}} \mathcal{X}_F$. Тогда $\mu \mathcal{X} = 0$.

Доказательство. В силу счетности множества \mathcal{F} достаточно доказать, что $\mu \mathcal{X}_F = 0$ для фиксированной $F \in \mathcal{F}$. Несложно проверить, что если \mathcal{X}_F состоит из по крайней мере двух точек (поскольку в противном случае утверждение тривиально), то $a_2(F) \neq 0$ и, следовательно, $|F''(x)|_p \geq |a_2|_p C_1 > 0$ для всех $x \in K_0$. Множество \mathcal{X}_F содержит в множестве $\{x \in K_0 : |F(x)|_p < \varepsilon\}$ для любого $\varepsilon > 0$, мера которого по лемме 1 не превосходит $\sqrt{\varepsilon / (|a_2|_p C_1)}$, т.е. сколь угодно мала. Тем самым, лемма 2 доказана.

Лемма 3. Пусть $E \subset K_0$ - измеримое множество, $0 < C_4 < 1$ - постоянная. Если для любого круга $K \subset K_0$ выполнено $\mu(E \cap K) \geq C_4 \mu K$, то множество E имеет полную меру Хаара в K_0.

Доказательство. Пусть $\overline{E} = K_0 \setminus E$. Тогда, поскольку $K \setminus \overline{E} = K \cap E$, для любого круга $K \subset K_0$ верно $\mu(K \setminus \overline{E}) \geq C_4 \mu K$. Далее, для любого $\varepsilon > 0$ существует покрытие множества \overline{E} кругами K_i такое, что

$$\sum_{i=1}^{\infty} \mu K_i - \varepsilon \leq \mu \overline{E} \leq \sum_{i=1}^{\infty} \mu K_i.$$

Тогда мы имеем

$$\mu \overline{E} \geq \sum_{i=1}^{\infty} \mu K_i - \varepsilon = \sum_{i=1}^{\infty} \mu(K_i \setminus E) + \sum_{i=1}^{\infty} \mu(K_i \cap E) - \varepsilon \geq C_4 \sum_{i=1}^{\infty} \mu K_i + \mu \overline{E} - \varepsilon \geq (C_4 + 1) \mu \overline{E} - \varepsilon.$$

Отсюда следует, что $\mu \overline{E} \leq \varepsilon / C_4 \to 0$ при $\varepsilon \to 0$. Следовательно, \overline{E} имеет нулевую, а E полную меру в K_0.

Следующие две леммы доказаны соответственно в [7, с. 23] и [5].

Лемма 4. Пусть E_i, $i \in \mathbb{N}$, - измеримые подмножества \mathbb{Z}_p, $\sum_{i=1}^{\infty} \mu E_i = \infty$ и $E = \bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} E_i$. Тогда

$$\mu E \geq \lim_{N \to \infty} \frac{\left(\sum_{i=1}^{N} \mu E_i\right)^2}{\sum_{i,j=1}^{\infty} \mu(E_i \cap E_j)}.$$

Лемма 5. Пусть $\tilde{\psi} : \mathbb{R}^+ \to \mathbb{R}^+$ монотонно убывает. Тогда ряды $\sum_{h=1}^{\infty} \tilde{\psi}(h)$ и $\sum_{k=0}^{\infty} 2^k \tilde{\psi}(2^k)$ сходятся или расходятся одновременно.

Два следующих пункта посвящены получению верхних оценок меры множества $x \in K_0$, для которых разрешимо неравенство (2) с несколькими видоизмененной правой частью. Получение этих оценок распадается на два случая.
3. Случай большой первой производной. Для \(Q \in \mathbb{N} \) определим множество \(\mathcal{F}(Q) = \{ F \in \mathcal{F} : h_F \leq Q \} \) (\(\mathcal{F} \) определено перед леммой 1). Пусть K обозначает круг в \(K_0 \) и \(\gamma > 0 \). Определим также множество \(\Omega(K, \gamma, Q, F) \), состоящее из всех \(x \in K \) таких, что

\[
|F(x)|_p < \gamma Q^{-3}, \quad |F'(x)|_p \geq h_F^{-1/2},
\]

и множество

\[
\Omega(K, \gamma, Q) = \bigcup_{F \in \mathcal{F}(Q)} \Omega(K, \gamma, Q, F).
\]

Теорема 2. Существует постоянная \(C_2 > 0 \) такая, что для любого круга \(K \subset K_0 \), любого \(\gamma \) (\(0 < \gamma < 1 \)) и всех \(Q > Q_0(K, f) \) верно неравенство

\[
\mu \Omega(K, \gamma, Q) \leq C_2 \gamma \mu K.
\]

Доказательство. Будем рассматривать только те функции \(F \in \mathcal{F}(Q) \), для которых \(\Omega(K, \gamma, Q, F) \neq \emptyset \). Для \(F \in \mathcal{F}(Q) \), используя свойство компактности \(\mathcal{Z}_p \), определим точку \(\alpha_F \in \Omega(K, \gamma, Q, F) \) такую, что

\[
|F'(\alpha_F)|_p = \min_{x \in \Omega(K, \gamma, Q, F)} |F'(x)|_p.
\]

Тогда согласно лемме 1

\[
\mu \Omega(K, \gamma, Q, F) \ll \gamma Q^{-3}|F'(\alpha_F)|_p^{-1},
\]

где "\(\ll \)" — символ Виноградова (\(A \ll B \) означает неравенство \(A \leq CB \) с некоторой положительной постоянной \(C \), зависящей только от \(K_0 \) и \(f \)). Для каждой функции \(F \in \mathcal{F}(Q) \) определим круг

\[
\overline{\Omega}(K, \gamma, Q, F) = \{ x \in \mathcal{Z}_p : |x - \alpha_F|_p \leq (2pQ|F'(\alpha_F)|_p)^{-1} \}.
\]

Если число \(Q \) достаточно велико, то радиус круга \(\overline{\Omega}(K, \gamma, Q, F) \) меньше радиуса К и, следовательно, \(\overline{\Omega}(K, \gamma, Q, F) \subset K \). Далее, используя (20), легко видеть, что

\[
\mu \Omega(K, \gamma, Q, F) \ll \gamma Q^{-2} \mu \overline{\Omega}(K, \gamma, Q, F).
\]

Зафиксируем любую функцию \(F \in \mathcal{F}(Q) \), для которой \(\Omega(K, \gamma, Q, F) \neq \emptyset \). Пусть \(x \in \overline{\Omega}(K, \gamma, Q, F) \). Записав разложение \(F(x) \) в окрестности точки \(\alpha_F \) по формуле Тейлора и оценив каждое слагаемое, получаем

\[
|F(x)|_p < (2Q)^{-1}, \quad x \in \overline{\Omega}(K, \gamma, Q, F).
\]

При этом используются неравенства (19), (21), \(|n!^{-1}|_p \leq p^n \) и \(|F^{(n)}(\alpha_F)|_p \leq 1 \).

Пусть \(F_1, F_2 \in \mathcal{F}(Q) \) и отличаются только коэффициентом \(a_0 \), т.е. \(F_1 - F_2 = a_0 \). Если предположить, что существует \(x \in \overline{\Omega}(K, \gamma, Q, F_1) \cap \overline{\Omega}(K, \gamma, Q, F_2) \), то из (23) следует, что \(|F_1(x) - F_2(x)|_p < (2Q)^{-1} \). С другой стороны, \(F_1(x) - F_2(x) \) есть целое число, по абсолютной величине не превосходящее 2Q. Следовательно, его норма не может быть
меньше $(2Q)^{-1}$. Полученное противоречие показывает, что \(\Omega(K, \gamma, Q, F_1) \cap \Omega(K, \gamma, Q, F_2) = \emptyset \). Следовательно,

\[
\sum_{F \in \mathcal{F}(Q,a_2,a_1)} \mu \Omega(K, \gamma, Q, F) \leq \mu K,
\]

где \(\mathcal{F}(Q,a_2,a_1) \) — подмножество \(\mathcal{F}(Q) \), состоящее из функций \(F \) с фиксированными коэффициентами \(a_2 \) и \(a_1 \). Из последней оценки и (22) следует, что

\[
\sum_{F \in \mathcal{F}(Q,a_2,a_1)} \mu \Omega(K, \gamma, Q, F) \ll \gamma Q^{-2} \mu K.
\]

Суммирование этого неравенства по всевозможным \(a_2, a_1 \) (их число равно \((2Q + 1)^2\)) дает требуемую оценку.

4. Случай малой первой производной. Для каждой функции \(F(x) = a_2 f(x) + a_1 x + a_0 \in \mathcal{F} \) определим следующую величину: \(a_F = \text{НОД}(a_2, a_1, a_0) \). Далее пусть \(\mathcal{F}^* = \{ F \in \mathcal{F} : a_F = 1 \} \).

Теорема 3. Пусть \(\varepsilon > 0 \). Тогда для почти всех \(x \in K_0 \) система неравенств

\[
|F(x)|_p < h_F^{-3}, \quad |F'(x)|_p < h_F^{-\varepsilon}
\]

имеет только конечное число решений \(F \in \mathcal{F} \).

Доказательство. Пусть \(x \in K_0 \) и (25) выполнено бесконечно часто. На первом шаге доказательства мы покажем, что нет ограничения общности в том, чтобы предполагать, что решения \(F \) системы (25) принадлежат \(\mathcal{F}^* \). Действительно, если дано решение \(F \) системы (25), то функция \(\Phi = F/a_F \) принадлежит \(\mathcal{F}^* \) и удовлетворяет неравенствам

\[
|a_F|_p |\Phi(x)|_p = |F(x)|_p < h_F^{-3}, \quad |a_F|_p |\Phi'(x)|_p = |F'(x)|_p < h_F^{-\varepsilon}.
\]

Поскольку \(|a_F|_p^{-1} \leq a_F \) и, как легко проверить, \(h_F = h_F a_F \), из этих неравенств мы получаем

\[
|\Phi(x)|_p < h_F^{-3} a_F^{-2}, \quad |\Phi'(x)|_p < h_F^{-\varepsilon} a_F^{-1-\varepsilon}.
\]

Если (26) выполнено только для конечного числа различных функций \(\Phi \), то найдется одна из этих функций такая, что (26) выполнено для бесконечного числа функций \(F \) с одной и той же \(\Phi \), что необходимо приводит к тому, что \(\Phi(x) = 0 \). По лемме 2 \(x \) принадлежит множеству нулевой меры. Поэтому в дальнейшем мы предполагаем, что (26) выполнено для бесконечного числа \(\Phi \). Если \(\varepsilon \geq 1 \), то из (26) мы опять приходим к системе (25) для функции \(\Phi \), что доказывает наше предположение и в этом случае. Поэтому далее считаем, что \(\varepsilon < 1 \).

Тогда если система (25) выполнена для бесконечного числа функций \(F \in \mathcal{F} \), для которых \(a_F \geq h_F^{\varepsilon/(2-2\varepsilon)} \), то, используя первое неравенство (26), мы получаем, что неравенство \(|\Phi(x)|_p < h_F^{-3-\varepsilon/(1-\varepsilon)} \) выполнено для бесконечного числа \(\Phi \in \mathcal{F}^* \). Согласно результату работы [13] множество таких \(x \) имеет нулевую меру.
Если система (25) выполнена для бесконечного числа функций $F \in \mathcal{F}$, для которых $a_F < h_F^{\varepsilon/(2-2\varepsilon)}$, то из (26) мы получаем, что неравенства

$$|\Phi(x)|_p < h_F^{-3}, \quad |\Phi'(x)|_p < h_F^{-\varepsilon/2}$$

выполнены для бесконечного числа $\Phi \in \mathcal{F}^*$. Это также обосновывает наше предположение.

Второй шаг доказательства теоремы включает в себя введение дополнительных условий на производные. Прежде всего покажем, что для каждой функции $F \in \mathcal{F}^*$ такой, что существует решение $x \in K_0$ системы (25), выполнено

$$|F''(x)|_p \geq C_1, \quad x \in K_0. \quad (27)$$

Пусть $|a_2|_p < 1$. Тогда $h_F > 1$. Далее из неравенств (25) легко получить, что $|a_i|_p < 1$ для $i = 0, 1$. Следовательно, $p \mid a_F$, что противоречит тому, что F принадлежит \mathcal{F}^*. Используя (3), получаем (27).

Далее, используя лемму Бореля–Кантелли, лемму 1 и неравенство (27), легко проверить, что множество тех $x \in K_0$, для которых бесконечно часто выполнено неравенство $|F''(x)|_p < h_F^{-3}$, имеет меру нуль. Поэтому в дальнейшем мы будем рассматривать только те точки $x \in K_0$, для которых неравенство $|F''(x)|_p \geq h_F^{-3}$ выполняется для всех $F \in \mathcal{F}^*$, кроме возможно конечного числа.

Пусть T – достаточно большое натуральное число. Положим $\delta = \varepsilon/T$. Согласно сказанному выше для каждой точки x из рассматриваемого множества существует целое число l, удовлетворяющее условию $-3 - \delta \leq l\delta \leq -\varepsilon$, такое, что для бесконечного числа $F \in \mathcal{F}^*$ выполнена система неравенств

$$|F(x)|_p < h_F^{-3}, \quad h_F^{(l-1)\delta} \leq |F''(x)|_p < h_F^{l\delta}. \quad (28)$$

С настоящего момента мы фиксируем l. Для каждой функции $F \in \mathcal{F}^*$ определим множество

$$\sigma(F) = \{x \in K_0 : \text{выполнены неравенства (28)}\}.$$

Нас интересует множество тех $x \in K_0$, которые попадают в бесконечное число множеств $\sigma(F)$, где $F \in \mathcal{F}^*$.

Применим лемму 1 к неравенствам (27) и (28), получаем

$$\mu \sigma(F) \leq h_F^{-\xi},$$

где

$$\xi = \max\left(3 + (l - 1)\delta, \frac{3}{2}, -l\delta\right).$$

Третий шаг доказательства содержит выделение двух типов множеств $\sigma(F)$ и доказательство теоремы для каждого из них. Для целых неотрицательных t определим классы

$$\mathcal{F}^*(t) = \{F \in \mathcal{F}^* : 2^t \leq h_F < 2^{t+1}\}.$$

Далее при каждом таком t круг K_0 можно разбить на подкруги радиуса $2^{t(-\xi+\delta)}$. Круги такого разбиения обозначим через $K_i(t)$, где $1 \leq i \leq s_t$. Легко видеть, что число
кругов разбиения s_t удовлетворяет соотношению $s_t \geq 2^{\xi(t)}$, где $A \sim B$ означает одновременное выполнение $A \ll B$ и $B \ll A$.

Будем говорить, что функция $F \in \mathcal{F}^*(t)$ ассоциирована с кругом $K_i^{(t)}$, если $\sigma(F) \cap K_i^{(t)} \neq \emptyset$. Две функции, ассоциированные с одним и тем же кругом, назовем ассоциированными. Заметим, что $\sigma(F) \neq \emptyset$ тогда и только тогда, когда F и $-F$ ассоциированы.

Теперь мы можем определить упомянутые классы. Функцию $F \in \mathcal{F}^*$ отнесем к первому типу, если эта функция ассоциирована не более чем с $\pm F$. В противном случае отнесем эту функцию ко второму типу.

Первый случай тривиален, поскольку при фиксированном t число функций первого типа во множестве $\mathcal{F}^*(t)$ не превосходит $2s_t$, и, следовательно, сумма мер $\sigma(F)$ по функциям первого типа не превосходит

$$2 \sum_{t=0}^{\infty} 2^{-\xi(t)} s_t \ll \sum_{t=0}^{\infty} 2^{-\xi} 2^{(\xi-\delta) t} = \sum_{t=0}^{\infty} 2^{(-\delta) t} t < \infty.$$

Применение леммы Бореля–Кантелли завершает рассмотрение этого случая.

Перейдем к случаю функций второго типа. Легко проверить, что если точка $x \in K_0$ не попадает в бесконечное число множеств $\sigma(F)$ первого типа, то эта точка попадает в бесконечное число кругов $K_i^{(t)}$ второго типа, т.е. таких кругов, с которыми ассоциированы функции второго типа. Зафиксируем t и круг $K_i^{(t)}$ второго типа и покажем, что точки этого круга допускают более сильную аппроксимацию.

Согласно определению существуют функции F_1, F_2, ассоциированные с $K_i^{(t)}$, причем $F_1 \neq \pm F_2$. Эти функции имеют следующий вид: $F_j(x) = a_j^{(j)} f(x) + a_j^{(a)} x + a_0^{(j)}$. Из определения множества \mathcal{F}^* следует, что $a_{F_j} = 1$. Тогда, используя условие $F_1 \neq \pm F_2$, легко показать, что векторы $a^{(j)} = (a_0^{(j)}, a_1^{(j)}, a_2^{(j)})$ линейно независимы ($j = 1, 2$).

Далее мы оцениваем p-адическую норму F_j и F'_j в произвольной точке $x \in K_i^{(t)}$. Для этого записывая разложение $F_j(x)$ и $F_j'(x)$ в окрестности некоторой точки $x_j \in \sigma(F_j) \cap K_i^{(t)}$ по формуле Тейлора и используя неравенства

$$|x - x_j| \ll 2^{(-\xi+\delta)}, \quad |n^{-1}|_p \leq p^n, \quad |F^{(n)}(x_j)|_p \leq 1,$$

(4) и (28), получаем

$$|F_j(x)|_p \ll 2^{t(-3+\delta)}, \quad |F_j'(x)|_p \ll 2^{t(-t\delta+\delta)}.$$

(29)

Рассмотрим все возможные числа вида

$$\lambda_1 a_2^{(1)} + \lambda_2 a_2^{(2)},$$

когда $0 \leq \lambda_1, \lambda_2 \leq 2^{3\delta t}, \lambda_1, \lambda_2 \in \mathbb{Z}$. Число различных выражений вида (30) равно

$$([2^{3\delta t}] + 1)^2 > 2^{6\delta t} \geq p^{6\delta t \log_2 p}.$$

Поэтому существует два различных выражения вида (30), значения которых имеют одинаковые остатки по модулю $p^{6\delta t \log_2 p}$. Обозначим эти выражения через $\lambda_1, k a_2^{(1)} + \lambda_2, k a_2^{(2)}, k = 1, 2$. Тогда

$$r_2 = \lambda_1, a_2^{(1)} + \lambda_2, a_2^{(2)} \equiv 0 \mod p^{6\delta t \log_2 p},$$

(31)
где $\lambda_{j,0} = \lambda_{j,1} - \lambda_{j,2}$ ($j = 1, 2$). При этом выполнено
\[0 < |\lambda_{1,0} + |\lambda_{2,0}| \quad \text{и} \quad \max \{|\lambda_{1,0}|, |\lambda_{2,0}|\} \leq 2 \cdot 2^{3\delta t}. \quad (32) \]
Функция $R(x) = r_2 f(x) + r_1 x + r_0 = \lambda_{1,0} F_1(x) + \lambda_{2,0} F_2(x)$ не равна тождественно нулю, поскольку $a^{(1)}$ и $a^{(2)}$ линейно независимы. Кроме того, несложно проверить, что
\[h_R \ll 2^{t(1+3\delta)}. \quad (33) \]
Используя (29) и (32), получаем
\[|R(x)|_p \leq \max(|\lambda_{1,0}|_p F_1(x)|_p, |\lambda_{2,0}|_p F_2(x)|_p) \ll 2^{t(-3+2\delta)}, \quad (34) \]
\[|R'(x)|_p \leq \max(|\lambda_{1,0}|_p F_1'(x)|_p, |\lambda_{2,0}|_p F_2'(x)|_p) \ll 2^{t(-t\delta+\delta)} \ll 2^{t(-t\delta+\delta)}. \quad (35) \]
Далее, используя (31), (34) и (35), получаем неравенства
\[|r_1|_p \leq p^{-[6\delta t \log p] 2}, \quad |r_0|_p \leq p^{-[6\delta t \log p] 2}. \]
Следовательно, мы можем определить функцию $Q(x) = p^{-[6\delta t \log p] 2} R(x) \in \mathcal{F}$. Согласно (33) мы находим $h_Q \ll 2^{t(1-3\delta)}$. Из оценки (34) получаем
\[|Q(x)|_p = |p^{-[6\delta t \log p] 2} R(x)|_p \ll 2^{t(3-3\delta)} \ll h_Q^{(3-8\delta)/(1-3\delta)} = h_Q^{3-\delta/(1-3\delta)}. \quad (36) \]
Если точка x попадает в бесконечное число кругов второго типа, то неравенства (36) выполнены для бесконечного числа номеров t.

Если (36) выполнено только для конечного числа различных функций Q, то найдется одна из этих функций такая, что (36) выполнено для бесконечного числа t с одной и той же функцией Q, что необходимо приводит к тому, что $Q(x) = 0$. По лемме 2 такая точка x принадлежит множеству нулевой меры. Если (36) выполнено для бесконечного числа Q, то по теореме Мельничука [13] x опять принадлежит множеству нулевой меры.

Теорема 3 доказана.

Используя теоремы 2 и 3, несложно получить

СЛЕДСТВИЕ 1. Пусть $\Delta(K, Q, \gamma) = \{x \in K : \exists F \in \mathcal{F}(Q), |F(x)|_p < \gamma Q^{-3}\}$, где $K \subset K_0$ - некоторый круг, $Q, \gamma > 0$. Тогда существует абсолютно постоянная $C_3 > 0$ такая, что $\mu \Delta(K, Q, \gamma) \leq C_3 \gamma$ для всех $Q > Q_0(K, \gamma, f)$.

5. Доказательство случая сходимости в теореме 1. Этот случай разбивается на два подслучая. Первый состоит в рассмотрении множества тех $x \in K_0$, для которых существует бесконечно много $F \in \mathcal{F}$ таких, что $|F(x)|_p < \psi(h_F), |F'(x)|_p < h_F^{-1/2}$. Поскольку $\psi(h) < h^{-3}$ для всех достаточно больших h, то согласно теореме 3 это множество имеет нулевую меру Haара.

Второй случай — это рассмотрение множества тех $x \in K_0$, для которых существует бесконечно много $F \in \mathcal{F}$ таких, что $|F(x)|_p < \psi(h_F), |F'(x)|_p \geq h_F^{-1/2}$. Для $t \in N$ пусть $\Lambda(t)$ обозначает множество $x \in K_0$ таких, что существует решение $F \in \mathcal{F}(2^t)$ этой системы. Исследуемое множество состоит из тех x, которые попадают в бесконечное число $\Lambda(t)$. В силу монотонности ψ мы имеем включение $\Lambda(t) \subset \Omega(K_0, \psi(2^t), h)$. Согласно теореме 2 $\mu \Lambda(t) \ll 2^{3\psi(2^t)}$. Тогда если $\sum_{h=1}^{\infty} h^2 \psi(h) < \infty$, то, используя эту оценку и лемму 5, находим
\[\sum_{t=0}^{\infty} \mu \Lambda(t) \ll \sum_{t=0}^{\infty} 2^{3\psi(2^t)} < \infty. \]

По лемме Бореля–Кантелли рассматриваемое множество имеет нулевую меру Haара. Таким образом, случай сходимости в теореме 1 доказан.

ОПРЕДЕЛЕНИЕ 1. Пусть Γ — множество p-адических чисел и $N: \Gamma \to \mathbb{R}^+$ — функция, называемая нормировочной. Пара (Γ, N) называется регулярной системой точек в кружке K_0, если существует постоянная $C > 0$ такая, что для любого кружка $K \subset K_0$ и для любого достаточно большого числа T найдется набор $\gamma_1, \ldots, \gamma_t \in \Gamma \cap K$, удовлетворяющий условиям $N(\gamma_i) \leq T$ ($1 \leq i \leq t$), $|\gamma_i - \gamma_j|_p \geq T^{-1}$ ($1 \leq i < j \leq t$), $t \geq C T \mu K$.

ТЕОРЕМА 4. Пара $\Gamma = \{\gamma \in \mathbb{Z}_p: \exists F \in \mathcal{F}, F(\gamma) = 0\}$ и $N(\gamma) = \min_{F \in \mathcal{F}}:F(\gamma) = 0 h_F^2$ является регулярной системой точек в K_0.

ДОКАЗАТЕЛЬСТВО. Зафиксируем произвольный кружок $K \subset K_0$ и $Q > 0$ — достаточно большое число. Пусть $\Delta(K, Q, \gamma) = K \setminus \Delta(K, Q, \gamma)$. По следствию 1 для всех достаточно больших Q верно неравенство

$$\mu \Delta \left(K, Q, \frac{1}{2C_3} \right) \geq \frac{\mu K}{2}. \quad (37)$$

Определим натуральное число l такое, что $p^l > C_3 \geq p^{l-1}$. Рассмотрим систему

$$\begin{cases} |F(x)|_p \leq 2^{-1} p^{-2l}Q^{-3}, \\ |a_i| \leq p^l Q, \quad i = 0, 1, 2, \\ |a_2|_p \leq p^{-l}, \end{cases} \quad (38)$$

где $F(x) = a_2 f(x) + a_1 x + a_0$. Используя принцип ищущих Лярихле, несложно показать, что для любого $x \in \mathbb{Z}_p$ эта система имеет решение $F \in \mathcal{F}$. Если предположить, что $|F'(x)|_p \leq p^{-l}$, то из (38) можно получить, что $|a_i|_p \leq p^l$, откуда вытекает, что $\tilde{F} = p^{-l} F \in \mathcal{F}$. Более того, используя (38), несложно показать, что $h_{\tilde{F}} \leq \tilde{Q}$ и $|\tilde{F}(x)|_p \leq 2^{-1} p^{-l} Q^{-3} < (2C_3)^{-1} Q^{-3}$. В этом случае мы имеем $x \in \Delta(K, Q, 1/(2C_3))$. Следовательно, если $x \in \Delta(K, Q, 1/(2C_3))$, то $|F'(x)|_p \geq p^{-l} \geq 1/(pC_3)$ для любого решения $F \in \mathcal{F}$ системы (38). Далее, для каждого такого решения F существует корень $\gamma_F \in K$ функции F такой, что $|x - \gamma|_p \leq p^{-2l} Q^{-3}$. Этот корень легко найти как предел следующей последовательности: $x_{n+1} = x_n - F(x_n)/F'(x_n)$, $x_0 = x$, сходимость которой легко доказать, используя условия на $F(x_0)$ и $F'(x_0)$.

Пусть Γ^*_Q — множество всевозможных таких $\gamma_F \in K$. Тогда

$$\Delta \left(K, Q, \frac{1}{2C_3} \right) \subset \bigcup_{\gamma \in \Gamma^*_Q} K(\gamma, p^{-2l} Q^{-3}). \quad (39)$$

Выберем максимальный набор чисел $\gamma_1, \ldots, \gamma_t \in \Gamma^*_Q$ такой, что $|\gamma_i - \gamma_j|_p \geq p^{-2l} Q^{-3}$ при $i \neq j$. Согласно выбору всякое $\gamma \in \Gamma^*_Q$ удовлетворяет неравенству $|\gamma - \gamma_i|_p \leq
$p^{-2l}Q^{-3}$ для некоторого i. Следовательно, $K(\gamma, p^{-2l}Q^{-3}) \subset K(\gamma_i, p^{-2l}Q^{-3})$, и из (37) и (39) вытекает, что

$$\frac{\mu K}{2} \leq \mu \Delta \left(K, Q, \frac{1}{2C_3} \right) \leq tp^{-2l}Q^{-3}.$$

Значит, $t \geq 2^{-1}p^{2l}Q^3 \mu K$. Кроме того, из (38) следует, что $N(\gamma_i) \leq (p^l Q)^3$. Полагая $T = p^{3l}Q^3$, получаем требуемый набор точек в определении регулярной системы. Теорема 4 доказана.

7. Приближение точками регулярных систем.

Теорема 5. Пусть (Γ, N) – регулярная система точек в круге $K_0 \subset \mathbb{Z}_p$, $\tilde{\psi}: \mathbb{R}^+ \to \mathbb{R}^+$ – монотонно убывающая функция такая, что $\sum_{h=1}^{\infty} \tilde{\psi}(h) = \infty$. Тогда $\mu \Gamma \tilde{\psi} = \mu K_0$, где множество $\Gamma \tilde{\psi}$ состоит из $x \in K_0$ таких, что неравенство

$$|x - y|_p < \tilde{\psi}(N(\gamma))$$

имеет бесконечное число решений в $\gamma \in \Gamma$.

Доказательство. В силу монотонности $\tilde{\psi}$ и сходимости ряда $\sum_{h=1}^{\infty} \tilde{\psi}(h)$ без ограничения общности можно считать, что для всех h выполнено неравенство

$$\tilde{\psi}(h) \leq \frac{h^{-1}}{2}.\quad (41)$$

Зафиксируем произвольный круг $K \subset K_0$. Определим последовательность $\varphi_k = 2^k \tilde{\psi}(2^k)$. Согласно лемме 3 имеем

$$\sum_{k=0}^{\infty} \varphi_k = \infty.\quad (42)$$

По определению регулярной системы существуют постоянные $C = C(\Gamma, N, K_0)$ и $k_0 = k_0(\Gamma, N, K)$ такие, что для любого целого $k \geq k_0$ существует набор $\Gamma_k(K) = \{\gamma_1, \ldots, \gamma_{t_k}\} \subset \Gamma \cap K$ такой, что

$$N(\gamma) \leq 2^k \text{ для всех } \gamma \in \Gamma_k(K),\quad (43)$$

$$|\gamma_1 - \gamma_2|_p \geq 2^{-k} \text{ для всех различных } \gamma_1, \gamma_2 \in \Gamma_k(K),\quad (44)$$

$$C2^k \mu K \leq t_k \leq 2^k \mu K.\quad (45)$$

Для $\gamma \in \Gamma_k(K)$ определим множество $E_k(\gamma) = \{x \in \mathbb{Z}_p : |x - y|_p < \tilde{\psi}(2^k)\}$. Пусть $E_k = \bigcup_{\gamma \in \Gamma_k} E_k(\gamma)$. В силу монотонности $\tilde{\psi}$ и условия (43) для любого $x \in E_k(\gamma)$ выполнено (40). Тогда легко видеть, что

$$E(K) = \bigcap_{N=k_0}^{\infty} \bigcup_{k=N}^{\infty} E_k \subset \Gamma \tilde{\psi} \cap K.$$

Следовательно,

$$\mu(\Gamma \tilde{\psi} \cap K) \geq \mu E(K).\quad (46)$$
Далее легко проверить, что
\[\mu E_k(\gamma) \asymp \tilde{\psi}(2^k). \] (47)

В силу неравенств (41) и (44) для различных \(\gamma, \beta \in \Gamma_k(K) \) выполнено \(E_k(\gamma) \cap E_k(\beta) = \emptyset \). Тогда, используя (45), получаем \(\mu E_k \asymp 2^k \mu K \tilde{\psi}(2^k) = \varphi_k \mu K \) и

\[\left(\sum_{k=k_0}^N \mu E_k \right)^2 \asymp (\mu K)^2 \left(\sum_{k=k_0}^N \varphi_k \right)^2. \] (48)

Согласно (42) имеем \(\sum_{k=k_0}^\infty \mu E_k = \infty \).

Перейдем к оценке суммы мер пересечений множеств \(E_k \). Пусть \(k_0 \leq k < l \leq N \), где \(N \) — достаточно большое натуральное число. Для любого \(\gamma \in \Gamma_k(K) \) верно равенство

\[E_l \cap E_k(\gamma) = \bigcup_{\beta \in \Gamma_l(K)} E_l(\beta) \cap E_k(\gamma). \]

Используя (47), мы получаем

\[\mu (E_l \cap E_k(\gamma)) \leq \max_{\beta \in \Gamma_l(K)} \{ \mu E_l(\beta) \} n(l, k, \gamma) \ll n(l, k, \gamma) \tilde{\psi}(2^l), \] (49)

где \(n(l, k, \gamma) \) — число различных \(\beta \in \Gamma_l(K) \) таких, что \(E_l(\beta) \cap E_k(\gamma) \neq \emptyset \) (для краткости множество таких \(\beta \) обозначим через \(\Gamma_l(K) \)). Чтобы оценить число \(n(l, k, \gamma) \), заметим, что \(K(\beta_1, 2^{-l-1}) \cap K(\beta_2, 2^{-l-1}) = \emptyset \) для любых различных \(\beta_1, \beta_2 \in \Gamma_l(K) \), что легко проверить, используя (44) для \(\Gamma_l(K) \). Следовательно,

\[\mu \left(\bigcup_{\beta \in \Gamma_l(K)} K(\beta, 2^{-l-1}) \right) = n(l, k, \gamma) \mu K(\beta, 2^{-l-1}) \ll n(l, k, \gamma) 2^{-l}. \] (50)

Далее покажем, что

\[K(\beta, 2^{-l-1}) \subset K(\gamma, \tilde{\psi}(2^k) + 2^{-l}) \] (51)

для каждого \(\beta \in \Gamma_l(K) \). Действительно, пусть \(x \in K(\beta, 2^{-l-1}) \) и \(y \in E_k(\gamma) \cap E_l(\beta) \). Тогда, используя определение множеств \(E_k(\gamma), E_k(\beta) \) и неравенство (42), мы находим

\[|x - \gamma|_p = |x - \beta - y + y - \gamma|_p \leq \max \{|x - \beta|_p, |\beta - y|_p, |y - \gamma|_p\} \leq \max \{\tilde{\psi}(2^k), 2^{-l}\}, \]

что доказывает (51). Из (51) вытекает, что мера объединения в (50) не превосходит \(\mu K(\gamma, \tilde{\psi}(2^k) + 2^{-l}) \). Тогда мы получаем \(n(l, k, \gamma) 2^{-l} \ll \tilde{\psi}(2^k) + 2^{-l} \), откуда \(n(l, k, \gamma) \ll 2^l \tilde{\psi}(2^k) + 1 \). Подставляя эту оценку в (49), получаем

\[\mu (E_l \cap E_k(\gamma)) \ll \tilde{\psi}(2^l) \cdot (2^l \tilde{\psi}(2^k) + 1). \]

Наконец, используя (45), при \(l > k \) оцениваем меру пересечения \(E_l \cap E_k \):

\[\mu (E_l \cap E_k) \ll t_k \mu (E_l \cap E_k(\gamma)) \ll \mu K(2^{-(l-k)} \varphi_l + \varphi_k \varphi_l). \]
Итоговая оценка для $\mu(E_l \cap E_k)$ при любых $k_0 \leq k, l \leq N$ может быть записана в виде

$$\mu(E_l \cap E_k) \ll \mu K(2^{-|l-k|} \varphi_l + \varphi_k \varphi_l).$$

Применя эту оценку и (42), при достаточно большом N, получаем

$$\sum_{l=k_0}^{N-1} \sum_{k=k_0}^{N-1} \mu(E_l \cap E_k) \ll \mu K \sum_{l=k_0}^{N-1} \sum_{k=k_0}^{N-1} \varphi_k \varphi_l + \mu K \sum_{l=k_0}^{N-1} \sum_{k=k_0}^{N-1} 2^{-|l-k|} \varphi_l$$

$$\ll \mu K \sum_{k=k_0}^{N-1} \sum_{l=k_0}^{N-1} \varphi_k \varphi_l + \mu K \sum_{l=k_0}^{N-1} \varphi_l \ll \mu K \left(\sum_{k=k_0}^{N-1} \varphi_k \right)^2,$$

gде непостоянная постоянная в этом неравенстве не зависит ни от K, ни от N. Комбинируя эту оценку вместе с (48), находим, что

$$\frac{\left(\sum_{k=k_0}^{N-1} \mu E_k \right)^2}{\sum_{k,l=k_0}^{N-1} \mu(E_k \cap E_l)} \geq C_5 \mu K,$$

gде постоянная C_5 не зависит ни от K, ни от N. По лемме 4 получаем $\mu E(K) \geq C_5 \mu K$. Согласно (46) имеем $\mu(\Gamma(\psi) \cap K) \geq C_5 \mu K$ для любого шара $K \subset K_0$. Лемма 3 завершает доказательство теоремы 5.

8. Доказательство случая расходимости в теореме 1. Пусть (Γ, N) – регулярная система, определённая в теореме 4, и ψ – монотонная функция такая, что $\sum_{h=1}^{\infty} h^2 \psi(h) = \infty$. Определим также функцию $\widehat{\psi}(n) = \psi(n^{1/3})$. Используя монотонность ψ, получаем

$$\sum_{n=1}^{\infty} \widehat{\psi}(n) = \sum_{h=1}^{\infty} \sum_{(h-1)^3 < n < h^3} \widehat{\psi}(n) \gg \sum_{h=1}^{\infty} h^2 \psi(h) = \infty.$$

Очевидно также, что $\widehat{\psi}$ монотонна. Тогда по теореме 5 для почти всех $x \in K_0$ неравенство

$$|x - \gamma|^p < \widehat{\psi}(N(\gamma))$$

имеет бесконечное число решений $\gamma \in \Gamma$.

Для каждого числа $\gamma \in \Gamma$ существует функция $F \in \mathcal{F}$ такая, что $F(\gamma) = 0$ и $N(\gamma) = h_F^p$. Используя формулу Тейлора и свойства p-адической нормы, несложно проверить, что $|F(x)|_p \leq |x - \gamma|^p$. Кроме того, $\widehat{\psi}(N(\gamma)) = \psi(N^{1/3}(\gamma)) = \psi(h_F)$. Поэтому из неравенства (52) следует, что $|F(x)|_p < \psi(h_F)$. Тогда последнее неравенство выполнено бесконечно часто для почти всех $x \in K_0$. Тем самым, доказательство теоремы 1 завершено.
СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

[4] Берник В. И. О точном порядке приближения кула значениями целочисленных многочле-
[8] Спринджук В. Г. Достижения и проблемы теории диофантовых приближений // УМН.
№ 2. P. 279–308.
bridge: Cambridge Univ. Press, 1981.
[13] Мельчичук Ю. В. О метрической теории совместных диофантовых приближений p-адиче-
[16] Ковалявская Э. И. Метрическая теорема о точном порядке приближения кула значениями
целочисленных многочленов в Qp // Докл. НАН Беларуси. 1999. Т. 43. № 5. С. 34–36.
[17] Ковалявская Э. И. p-адический вариант теоремы Хинчина для плоских кривых в случае
[18] Бересневич В. З. Применение понятия регулярных систем точек в метрической теории

Институт математики НАН Беларуси, г. Минск
E-mail: beresnevich@im.bas-net.by, kovalyevsk@im.bas-net.by
Поступило 20.10.2000