
DOI: https://doi.org/10.4213/tmf704
О ФАКТОРИЗАЦИИ АНАЛИТИЧЕСКИХ МАТРИЦ-ФУНКЦИЙ

1. ВВЕДЕНИЕ

Краевая задача Римана для вектора, детально изученная в связи с исследованием систем сингулярных интегральных уравнений, в последние годы стала привычным аппаратом математической физики. Введение ее в обход этой теории связано, в основном, с двумя важными работами: статьей [1], где существенно использовалась краевая задача Римана при интегрировании нелинейных эволюционных уравнений методом обратной задачи рассеяния, и статьей [2], в которой краевая задача Римана была положена в основу решения обратной задачи рассеяния для матричного дифференциального оператора.

Исследование задачи Римана в настоящее время принято проводить с помощью решения следующей факторизационной задачи.

Пусть Γ — простой гладкий замкнутый контур в комплексной плоскости \mathbb{C}, ограниченный областью D_\pm. Дополнение $D_+ \setminus \Gamma$ в расширенной комплексной плоскости $\mathbb{C} \cup \{\infty\}$ обозначим через D_-. Можно считать, что $0 \in D_+, \infty \in D_-$. Пусть $a(t)$ — непрерывная и обратимая на контуре Γ матрица-функция порядка p.

Правая факторизацией Винера Хопфа матрицы-функции $a(t)$ называется ее представление в виде

$$a(t) = r_-(t) d_+(t) r_+(t), \quad t \in \Gamma,$$

где $r_\pm(t)$ — непрерывные на Γ матрицы-функции, аналитически продолжимые в область D_\pm и обратимые там, $d_+(t) = \text{diag}[t^{p_1}, \ldots, t^{p_p}]$. Здесь p_1, \ldots, p_p — целые числа.

© 1999 г. В. М. Адуков

*Южно-Уральский государственный университет, Челябинск, Россия.
E-mail: adukov@math.tu-chel.ac.ru

324
называемые правыми частными индексами $a(t)$, причем их можно упорядочить по возрастанию: $\rho_1 \leq \cdots \leq \rho_p$.

Аналогично определяется левая факторизация $a(t)$:

$$a(t) = l_+(t)d_+(t)l_-(t), \quad t \in \Gamma,$$

$$d_1(t) = \text{diag}[\lambda_1, \ldots, \lambda_p], \quad \lambda_1 \geq \cdots \geq \lambda_p,$$

где $\lambda_j = \sum_{j=1}^p \rho_j = \sum_{j=1}^p \lambda_j = \kappa$.

Известно, что факторизация Винера Хопфа существует для матриц-функций с гельдеровскими на контуре Γ элементами, либо с элементами из алгебры Винера. Однако явных формул для факторизационных множителей и частных индексов в общем случае нет, что существенно сдерживает дальнейшие применения краевой задачи Римана.

Поэтому основной задачей в этой области является поиск случаев явного решения задачи факторизации. Одним из таких случаев (мероморфной в области D_+ матрицы-функции) был установлен в работе [3]. Если ограничиться для простоты аналитическими матрицами-функциями, то оказывается, что явное решение задачи факторизации требует использования $2\kappa + 1$ моментов функции $a^{-1}(t)$ относительно контура Γ.

В этой работе предлагается метод, основанный на тех же идеях, что и в работе [3], но более простой с вычислительной точки зрения, поскольку он использует $2\kappa + 1$ моментов более простой матрицы-функции $\Delta_{-1}(t)a(t)$. Здесь $\Delta_{-1}(t)$ скалярный многочлен от t^{-1}, являющийся множителем в факторизации Винера Хопфа $\Delta(t) = \Delta_{-1}(t) t^{-\kappa} \Delta_+(t)$ определителя $\Delta(t) = \det a(t)$.

2. ИНДЕКСЫ И СЪЕМБЕННЫЕ МНОГОЧЛЕНЫ КОНЕЧНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ МАТРИЦ

В этом разделе развивается техника, необходимая для получения в явном виде факторизации Винера Хопфа. Все построения носят чисто алгебраический характер. Доказательства утверждений этого раздела опущены, их можно найти в статьях [3, 4].

Прежде всего введем понятия индексов и существенных многочленов конечной последовательности матриц.

Обозначим через $\mathbb{C}^{p \times q}$ множество всех комплексных матриц размера $p \times q$. Для матрицы A мы будем обозначать через $\ker R A$ ее правое ядро и $\ker L A$ левое ядро:

$$\ker R A = \{ x \mid Ax = 0 \}, \quad \ker L A = \{ y \mid yA = 0 \}.$$

Пусть A блочная матрица с блоками из $\mathbb{C}^{p \times p}$, имеющая блочные размеры $(n+1) \times (m+1)$. Разобьем строку $L \in \ker L A$ на $n+1$ блоков:

$$L = (l_0, l_{-1}, \ldots, l_{-n}).$$
и определим для L производящий векторный многочлен от переменной t^{-1}:

$$L(t) = l_0 + l_1 t^{-1} + \cdots + l_n t^{-n}.$$

Аналогично для столбца из правого ядра $\ker R$ определим производящий векторный многочлен от переменной t.

Пусть $c_{-m}, \ldots, c_0, \ldots, c_n$ — конечная последовательность комплексных матриц порядка p. Образуем семейство блочных тетраэдрических матриц

$$T_k = \begin{bmatrix} c_{j-k} & \cdots & c_{j-k+1} & \cdots & c_n \end{bmatrix},$$

$(-m \leq k \leq n)$. Для того чтобы ввести понятия индексов и существенных многочленов последовательности, изучим структуру правого и левого ядер матрицы T_k.

Поскольку удобнее иметь дело с векторами, а с производящими векторными многочленами, перейдем от пространств $\ker R \cdot T_k$ и $\ker L \cdot T_k$ к изоморфным пространствам N_k^R и N_k^L производящих векторных многочленов. Чтобы сделать это, введем операторы σ_R и σ_L. Для $p = 1$ оператор $\sigma_R = \sigma_L$ является функционалом Стиллиса, используемым в теории ортогональных многочленов.

На пространстве рациональных матриц-функций вида

$$R(t) = \sum_{j=-n}^{m} r_j t^j, \quad r_j \in \mathbb{C}^{p \times l},$$

определим оператор

$$\sigma_R (R(t)) = \sum_{j=-n}^{m} c_{-j} r_j.$$

Мы используем обозначение σ_R для всех $l \geq 1$, поскольку это не вызывает недоразумений.

Через N_k^R ($-m \leq k \leq n$) обозначим пространство векторных многочленов вида

$$R(t) = \sum_{j=0}^{m+k} r_j t^j, \quad r_j \in \mathbb{C}^{p \times 1},$$

таких, что

$$\sigma_R (t^{-1}R(t)) = 0, \quad i = k, k+1, \ldots, n.$$

Легко видеть, что N_k^R пространство производящих многочленов векторов из $\ker R \cdot T_k$. Для удобства полезно $N_{-m-1}^R = 0$ и обозначим $(n+m+2)p$-мерное пространство всех столбцевых многочленов формальной степени $n + m + 1$ через N_{n+1}^R.
Аналогично на пространстве матриц-функций вида

\[L(t) = \sum_{j=-n}^{m} l_j t^j, \quad l_j \in \mathbb{C}^{l \times p}, \]

определим оператор \(\sigma_L \) в пространстве \(\mathbb{C}^{l \times p} \):

\[\sigma_L \{ L(t) \} = \sum_{j=-n}^{m} l_j e^{-j}. \]

Пространство \(\ker L T_k \) естественно изоморфно пространству \(\mathcal{N}_k^L \) векторных многочленов от \(t^{-1} \) вида

\[L(t) = \sum_{j=0}^{n-k} l_j t^{-j}, \quad l_j \in \mathbb{C}^{l \times p}, \]

таких, что

\[\sigma_L \{ t^{-i} L(t) \} = 0, \quad i = k, k - 1, \ldots, -m. \]

Положим \(\mathcal{N}_{n+1}^L = 0 \) и обозначим \((n + m + 2)p \)-мерное пространство всех строчных многочленов от \(t^{-1} \) формальной степени \(n + m + 1 \) через \(\mathcal{N}_{m-1}^L \).

ОПРЕДЕЛЕНИЕ 2.1. Если \(\dim \mathcal{N}_{-m}^R = \dim \mathcal{N}_n^L = 0 \), то последовательность \(c_{-m}, c_0, \ldots, c_n \) будем называть регулярной.

Через \(d_k^R \) \((d_k^L) \) обозначим размерность пространства \(\mathcal{N}_k^R \) \((\mathcal{N}_k^L) \). Пусть \(\Delta_k^R = d_k^R - d_{k-1}^R \) \((-m \leq k \leq n + 1) \) и \(\Delta_k^L = d_k^L - d_{k+1}^L \) \((-m - 1 \leq k \leq n) \). Используя формулу Грама, легко доказать, что для любой регулярной последовательности матриц справедливы неравенства

\[
0 = \Delta_{-m}^R \leq \Delta_{-m+1}^R \leq \cdots \leq \Delta_n^R \leq \Delta_{n+1}^R = 2p, \quad (3)
\]

\[
2p = \Delta_{m-1}^L \geq \Delta_m^L \geq \cdots \geq \Delta_{n-1}^L \geq \Delta_n^L = 0. \quad (4)
\]

Из неравенства (3) следует, что существуют \(2p \) целых чисел \(\mu_1 \leq \cdots \leq \mu_{2p} \) таких, что

\[
\Delta_{-m}^R = \cdots = \Delta_{\mu_1}^R = 0,
\]

\[\vdots \]

\[
\Delta_{\mu_1}^R = \cdots = \Delta_{\mu_{i+1}}^R = i,
\]

\[\vdots \]

\[
\Delta_{\mu_{2p}}^R = \cdots = \Delta_{\mu_{n+1}}^R = 2p.
\]

Если \(i \)-я строка в этих соотношениях отсутствует, считаем, что \(\mu_i = \mu_{i+1} \).
Определение 2.2. Целые числа \(\mu_1, \ldots, \mu_{2p} \), определенные соотношениями (5), будем называть индексами последовательности \(c_{-m}, \ldots, c_0, \ldots, c_n \).

Нетрудно показать, что

\[
\sum_{j=1}^{2p} \mu_j = - \text{ind } T_0 = (n - m)p.
\]

Из определения пространств \(N^R_k \) легко видеть, что \(N^R_k \) и \(tN^R_k \) подпространства \(N^R_{k+1} \), причем размерность \(h^R_{k+1} \), дополнения \(H^R_{k+1} \) суммы \(N^R_k + tN^R_k \) до всего пространства \(N^R_{k+1} \) равна \(\Delta^R_{k+1} - \Delta^R_k \). Отсюда и из соотношений (5) следует, что \(h^R_{k+1} \neq 0 \), только если \(k = \mu_i \) (\(i = 1, \ldots, 2p \)). В этом случае \(h^R_{k+1} \) совпадает с кратностью \(\nu_i \) индекса \(\mu_i \). Поэтому для \(k \neq \mu_i \) имеем

\[
N^R_{k+1} = N^R_k + tN^R_k,
\]

а для \(k = \mu_i \)

\[
N^R_{k+1} = N^R_k + tN^R_k + H^R_{k+1}.
\]

Определение 2.3. Любые многочлены \(R_i(t), \ldots, R_{i+\nu_i-1}(t) \), образующие базис какого-либо дополнения \(H^R_{\mu_i+1} \), будем называть правыми существенными многочленами последовательности, соответствующими индексу \(\mu_i \).

Таким образом, для любой регулярной последовательности мы определили \(2p \) правых сущесственных многочленов \(R_1(t), \ldots, R_{2p}(t) \).

Аналогично для \(k \neq \mu_i \) имеем

\[
N^L_{k-1} = N^L_k + t^{-1}N^L_k,
\]

а для \(k = \mu_i \)

\[
N^L_{k-1} = N^L_k + t^{-1}N^L_k + H^L_{k-1}.
\]

Выбирая базисы для пространств \(H^L_{\mu_i-1} \) (\(1 \leq i \leq 2p \)), мы получаем последовательность векторных многочленов \(L_1(t), \ldots, L_{2p}(t) \), которые будем называть левыми существенными многочленами последовательности \(c_{-m}, \ldots, c_0, \ldots, c_n \).

Оказывается, что векторные многочлены

\[
\{ R_j(t), tR_j(t), \ldots, t^{k-\mu_j-1}R_j(t) \}_{j=1,2,\ldots, i}
\]

являются производящими многочленами элементов базиса пространства \(\ker R T_k \) для \(k \in (\mu_i; \mu_{i+1}) \), \(1 \leq i \leq 2p \). Здесь мы положили \(\mu_{2p+1} = n \).

Аналогично векторные многочлены

\[
\{ L_j(t), t^{-1}L_j(t), \ldots, t^{-(\mu_j-k-1)}L_j(t) \}_{j=i,i+1,\ldots,2p}
\]
являются производными многочленами элементов базиса пространства \(\ker L T_k \) для \(k \in [\mu_{i-1}, \mu_i] \), \(1 \leq i \leq 2p \), \(\mu_0 = -m \).

В дальнейшем нам потребуется критерий, который позволял бы проверять, что заданные числа являются индексами, а заданные векторные многочлены суть существенные многочлены данной последовательности матриц. Такой критерий основан на проверке обратимости некоторых тестовых матриц.

Пусть \(c_{-m}, \ldots, c_0, \ldots, c_n \) — регулярная последовательность. Пусть \(k_1, \ldots, k_{2p} \) целые числа такие, что \(-m - 1 \leq k_1 \leq \cdots \leq k_{2p} \leq n + 1 \) и

\[
\sum_{j=1}^{2p} k_j = -\text{ind} T_0.
\]

Пусть \(U_1(t), \ldots, U_{2p}(t); V_1(t), \ldots, V_{2p}(t) \) такие векторные многочлены, что \(U_j(t) \in N_{k_j}^R \) и \(V_j(t) \in N_{k_j}^L \), \(1 \leq j \leq 2p \).

Числа \(k_1, \ldots, k_{2p} \) являются индексами, а многочлены \(U_1(t), \ldots, U_{2p}(t) \) правыми существенными многочленами последовательности \(c_{-m}, \ldots, c_0, \ldots, c_n \) тогда и только тогда, когда обратима матрица

\[
\Lambda_R = \begin{pmatrix}
\tilde{\sigma}_R \{ t^{-n-1} U_1(t) \} & \cdots & \tilde{\sigma}_R \{ t^{-n-1} U_{2p}(t) \}
\end{pmatrix}.
\]

Аналогично \(k_1, \ldots, k_{2p} \) индексы, а \(V_1(t), \ldots, V_{2p}(t) \) левые существенные многочлены последовательности тогда и только тогда, когда обратима матрица

\[
\Lambda_L = \begin{pmatrix}
V_{1,n-\kappa_1+1} & \tilde{\sigma}_L \{ t^{-\kappa_1} V_1(t) \} \\
\vdots & \vdots \\
V_{2p,n-\kappa_{2p}+1} & \tilde{\sigma}_L \{ t^{-\kappa_{2p}} V_{2p}(t) \}
\end{pmatrix}.
\]

Здесь \(\tilde{\sigma}_R, \tilde{\sigma}_L \) операторы Стилтьеаса для последовательности \(c_{-m}, \ldots, c_0, \ldots, c_n \), продолженной вправо произвольной матрицей \(c_{n+1} \); \(U_{j,0} \) старший коэффициент многочлена \(U_j(t) \) и \(V_{j,n-\kappa_j+1} \) свободный член многочлена \(V_j(t) \).

3. ФАКТОРИЗАЦИЯ АНАЛИТИЧЕСКИХ МАТРИЦ-ФУНКЦИЙ

Пусть \(a(t) \) — матрица-функция, непрерывная и обратимая на контуре \(\Gamma \) и аналитическая в области \(D_+ \). Обозначим \(\Delta(t) = \text{det} a(t) \), и пусть

\[
\Delta(t) = \Delta_-(t) t^\alpha \Delta_+(t)
\]

факторизация Винера-Хольфа \(\Delta(t) \). Поскольку \(b(t) = t^\alpha \Delta_- (t) a^{-1}(t) \) — аналитическая в \(D_+ \) матрица-функция, то, применив к ней лемму 1.1 статьи [3], легко получить следующие утверждения:
1) левые $\lambda_1, \ldots, \lambda_p$ и правые ρ_1, \ldots, ρ_p частные индексы аналитической матрицы-функции $a(t)$ неотрицательны;
2) строка $\Delta_+(t) \left[r^{-1}_-(t) \right]_j$ есть векторный многочлен от t^{-1} степени не выше $\kappa - \rho_j$;
3) столбец $\Delta_-(t) \left[l^{-1}_-(t) \right]^j$ есть векторный многочлен от t^{-1} степени не выше $\kappa - \lambda_j$.

Здесь и далее для матрицы A мы обозначаем через $[A]_{j}$ ее j-ю строку, а через $[A]^j$ j-й столбец.

Рассмотрим симметричную последовательность $c_{-\kappa}, \ldots, c_0, \ldots, c_\kappa$, составленную из моментов матрицы-функции $\Delta^{-1}_-(t) a(t)$ относительно контура Γ:

$$c_j = \frac{1}{2\pi i} \int_G t^{-\kappa-1} \Delta^{-1}_-(t) a(t) \, dt, \quad j = -\kappa, \ldots, 0, \ldots, \kappa.$$

При продолжении этой последовательности вправо условимся брать в качестве $c_{\kappa+1}$ соответствующий момент указанной матрицы-функции.

Легко видеть, что операторы σ_R и σ_L в этом случае действуют по формулам

$$\sigma_R \{ R(t) \} = \frac{1}{2\pi i} \int_G t^{-1} \Delta^{-1}_-(t) a(t) R(t) \, dt,$$
$$\sigma_L \{ L(t) \} = \frac{1}{2\pi i} \int_G t^{-1} \Delta^{-1}_-(t) L(t) a(t) \, dt.$$

Введем следующие обозначения:

$$L_{p+j}(t) = \Delta_-(t) \left[r^{-1}_-(t) \right]_j, \quad R_j(t) = t^{\kappa - \lambda_j + 1} \Delta_-(t) \left[l^{-1}_-(t) \right]^j, \quad j = 1, \ldots, p.$$

Предложение 3.1. Имеют место соотношения

$$L_{p+j}(t) \in N^L_{p+j-1}, \quad \sigma_L \{ t^{-\rho_j} L_{p+j}(t) \} = \left[t^{\rho_j} \right]_j, \quad L_{p+j, \kappa - \lambda_j + 1} = 0, \quad j = 1, \ldots, p;$$

$$R_j(t) \in N^R_{\lambda_j + 1}, \quad \sigma_R \{ t^{-\kappa-1} R_j(t) \} = \left[t^{\kappa-1} \right]^j, \quad R_{j,0} = 0, \quad j = 1, \ldots, p.$$

Доказательство. Из левой факторизации матрицы $a(t)$ следует, что

$$L_{p+j}(t) \Delta^{-1}_-(t) a(t) = t^{\rho_j} \left[r^{\rho_j}_+(t) \right]_j.$$

Поэтому

$$\sigma_L \{ t^{-1} L_{p+j}(t) \} = \frac{1}{2\pi i} \int_G t^{\rho_j - \kappa - 1} \left[r^{\rho_j}_+(t) \right]_j \, dt = 0.$$
для $l = \rho_j - 1, \rho_j - 2, \ldots, -\kappa$, а при $l = \rho_j$ получаем $\sigma_L \{t^{-\rho_j} L_{p+j}(t) \} = [r_+^{(0)}]_j$. Поскольку степень векторного многочлена не больше $\kappa - \rho_j$, то $L_{p+j}(t) \in N_{\rho_j}^{-1}$ и старший коэффициент $L_{p+j, \kappa - \rho_j + 1}$ этого многочлена равен нулю. Подобным же образом доказывается и вторая часть предложения.

Аналогичное утверждение имеет место и для подходящим образом исправленных многочленов Тейлора для векторных функций $[r_{-1}^{(1)}(t)]^j$, $[r_{+1}^{(-1)}(t)]^j$. Это исправление происходит следующим образом. Радиусом аналитической в D_+^+ векторную функцию $[r_{+1}^{(-1)}(t)]^j$ в ряд Тейлора в окрестности $t = 0$ и представим ее в виде

$$[r_{+1}^{(-1)}(t)]^j = [(r_{+1}^{(-1)}(t))_{\kappa+\rho_j+1}]^j + t^{\kappa+\rho_j+2} \phi_{+1}(t).$$

Здесь $[(r_{+1}^{(-1)}(t))_{\kappa+\rho_j+1}]^j$ многочлен Тейлора степени $\kappa + \rho_j + 1$ для $[r_{+1}^{(-1)}(t)]^j$, а $\phi_{+1}(t)$ векторная функция, аналитическая в D_+^+ и непрерывная в $D_+^+ \cup \Gamma$. Введем векторную функцию

$$\Phi^j(t) = \frac{1}{2\pi i} \int_{\Gamma} t^{\kappa+\rho_j+2} \frac{\Delta_-(\tau) l_{-1}^{-1}(\tau) - \Delta_-(t) l_{-1}^{-1}(t)}{(t - \tau) \Delta_-(\tau)} l_{-1, \rho_j+1}(\tau) \phi_{+1}(\tau) d\tau.$$

Легко видеть, что $\Phi^j(t)$ является векторным многочленом от t степени не больше $\kappa + \rho_j + 1$, у которого отличны от нуля разве лишь последние κ коэффициентов. Исправление $[(r_{+1}^{(-1)}(t))_{\kappa+\rho_j+1}]^j$ произведем с помощью $\Phi^j(t)$, определив векторный многочлен

$$R_{p+j}(t) = [(r_{+1}^{(-1)}(t))_{\kappa+\rho_j+1}]^j + \Phi^j(t), \quad j = 1, \ldots, p,$$

формальной степени $\kappa + \rho_j + 1$.

Представим подобным образом $[l_{+1}^{-1}(t)]^j$

$$[l_{+1}^{-1}(t)]^j = [(l_{+1}^{-1}(t))_{\kappa+\lambda_j+1}]^j + t^{\kappa+\lambda_j+2} \psi_{+1}(t),$$

и определим векторный многочлен от t:

$$\Psi^j(t) = \frac{1}{2\pi i} \int_{\Gamma} t^{\kappa+\lambda_j+2} \psi_{+1}(\tau) r_{-1}(\tau) \Delta_-(\tau) r_{-1}^{-1}(\tau) - \Delta_-(t) r_{-1}^{-1}(t) \frac{d\tau}{(t - \tau) \Delta_-(\tau)},$$

исправим многочлен Тейлора $[(l_{+1}^{-1}(t))_{\kappa+\lambda_j+1}]^j$ и определим векторный многочлен от t^{-1}

$$L_j(t) = t^{-(\kappa+\lambda_j+1)} [(l_{+1}^{-1}(t))_{\kappa+\lambda_j+1}]^j + \Phi^j(t), \quad j = 1, \ldots, p,$$

степени не выше $\kappa + \lambda_j + 1$.

О ФАКТОРИЗАЦИИ АНАЛИТИЧЕСКИХ МАТРИЦ-ФУНКЦИЙ
Предложение 3.2. Имеют место соотношения

\[R_{p+j}(t) \in N_{p+1}^R, \]

\[\sigma_R \{ t^{-\lambda_j - 1} R_{p+j}(t) \} = 0, \quad R_{p+j,0} = \left[t^{-1} R_{p+j,0}(t) \right]^j, \quad j = 1, \ldots, p; \]

\[L_j(t) \in N_{-\lambda_j}^R, \]

\[\sigma_L \{ t^{\lambda_j} L_j(t) \} = 0, \quad L_{j+\lambda_j + 1} = \left[\frac{1}{t} L_j(t) \right]^j, \quad j = 1, \ldots, p. \]

Теперь можно свести частные индексы \(\lambda_1, \ldots, \lambda_p, \rho_1, \ldots, \rho_p \) и факторизацию множителей \(1(t), \) \(r(t) \) аналитической матрицы-функции \(a(t) \) к индексам и существенными многочленами последовательности \(c_{-\kappa}, \ldots, c_0, \ldots, c_\kappa. \) Отметим, что одновременно используются и правая, и левая факторизация Виера-Хопфа функции \(a(t). \)

Теорема 3.1. Последовательность \(c_{-\kappa}, \ldots, c_0, \ldots, c_\kappa \) является регулярной последовательностью, индексы которой совпадают с числами \(-\lambda_1, \ldots, -\lambda_p, \rho_1, \ldots, \rho_p, \) а многочлены \(L_1(t), \ldots, L_p(t), \) \(R_1(t), \ldots, R_{p-1}(t) \) соответственно с её левыми и правыми существенными многочленами.

Доказательство. Докажем прежде всего регулярность последовательности \(c_{-\kappa}, \ldots, c_0, \ldots, c_\kappa. \) Легко видеть, что \(\Delta_{-\kappa} = \frac{1}{t-1} \left(\frac{1}{t} d^{-1}_{-\kappa}(t) \right) = \alpha_{-\kappa} t^{-\kappa}, \quad \Delta_{-\kappa} \left(\frac{1}{t} d^{-1}_{-\kappa}(t) \right) = \alpha_{-\kappa} t^{-\kappa}, \)

тогда

\[\sigma_R \{ \Delta_{-\kappa} \left(\frac{1}{t} d^{-1}_{-\kappa}(t) \right) \} = c_0 \alpha_{-\kappa} + c_1 \alpha_{-\kappa} + \cdots + c_\kappa \alpha_{-\kappa}. \]

С другой стороны, учитывая левую факторизацию \(a(t), \) имеем

\[\sigma_R \{ \Delta_{-\kappa} \left(\frac{1}{t} d^{-1}_{-\kappa}(t) \right) \} = \frac{1}{2\pi i} \int_{\Gamma} t^{-1} l(t) \omega = l(t) \omega = 0, \]

поэтому

\[\alpha_{-\kappa} + \alpha_{-\kappa} t^{-\kappa} + \cdots + \alpha_{-\kappa} t^{-\kappa} = l(t) \omega = 0. \] (6)

Пусть \(x \in \ker T \), т.е. \(xc_{-\kappa} = \cdots = xc_{\kappa} = 0. \) Умножая уравнение (6) слева на \(x, \) получаем \(xl(t) \omega = 0, \) т.е. \(x = 0. \) И так, \(\ker T = 0 \) и \(\omega = 0. \) Аналогично доказывается регулярность последовательности слева.

Обозначим \(k_j = -\lambda_j, \) \(k_{p+j} = \rho_j, \) \(j = 1, \ldots, p. \) В силу выбранной упорядоченности частных индексов имеем \(k_1 \leq \cdots \leq k_2p. \) Кроме того,

\[\sum_{j=1}^{2p} k_j = 0 = \text{ind } T_0. \]
Так как последовательность регуляризов, то мы можем применить критерий существенности. Составив тестовые матрицы

\[
\Lambda_L = \begin{pmatrix}
 l_+^{-1}(0) & 0 \\
 0 & r_+(0)
\end{pmatrix}, \quad \Lambda_R = \begin{pmatrix}
 l_+(0) & 0 \\
 0 & r_+^{-1}(0)
\end{pmatrix}
\]

и убедившись в их обратимости, получаем утверждение теоремы.

Существенные многочлены, построенные в предыдущей теореме, обладают дополнительным свойством, важным для дальнейшего.

ОПРЕДЕЛЕНИЕ 3.1. Существенные многочлены \(R_1(t), \ldots, R_p(t), L_{p+1}(t), \ldots, L_{2p}(t) \) такие, что: 1) свободные члены многочленов \(R_1(t), \ldots, R_p(t) \) равны нулю; 2) старшие коэффициенты многочленов \(L_{p+1}(t), \ldots, L_{2p}(t) \) равны нулю, будем называть факторизационными существенными многочленами.

Существование факторизационных существенных многочленов у последовательности \(c_{-\kappa}, \ldots, c_0, \ldots, c_\kappa \) доказано в теореме 3.1. Оказывается, что с помощью любых факторизационных существенных многочленов можно восстановить факторизационные множители \(l_+(t), r_+(t) \) и тем самым построить факторизацию (1), (2). Окаймляющий результат выглядит следующим образом.

ТЕОРЕМА 3.2. Пусть \(a(t) \) матрица-функция, аналитическая в области \(D_+ \), непрерывная в области \(D_+ \cup \Gamma \) и обратимая на контуре \(\Gamma \). Пусть \(\Delta(t) = \Delta_-(t)t^\kappa \Delta_+(t) \) факторизация Винера Хопфа определяется \(\det a(t) \). Составим из моментов матрицы-функции \(\Delta_-(t)a(t) \) относительно контура \(\Gamma \) последовательность \(c_{-\kappa}, \ldots, c_0, \ldots, c_\kappa \). Тогда эта последовательность регуляриз и обладает факторизационными существенными многочленами. Пусть \(\mu_1, \ldots, \mu_p \) индекс последовательности, \(a R_1(t), \ldots, R_p(t), L_{p+1}(t), \ldots, L_{2p}(t) \) любые ее факторизационные существенные многочлены. Тогда левые \(\lambda_1, \ldots, \lambda_p \) и правые \(\rho_1, \ldots, \rho_p \) частные индексы и факторизационные множители \(l_\pm(t), r_\pm(t) \) матричного многочлена \(a(t) \) определяются по формулам

\[
\lambda_j = -\mu_j, \quad \rho_j = \mu_{p+j}, \quad j = 1, \ldots, p,
\]

\[
l_-(t) = t^{\kappa+1} \Delta_-(t) d_1^{-1}(t) R_1^{-1}(t), \quad l_+(t) = t^{-\kappa-1} \Delta_-(t)a(t) R,
\]

\[
r_-(t) = \Delta_-(t) L_1^{-1}(t), \quad r_+(t) = \Delta_-(t)L(t)a(t),
\]

где

\[
R(t) = (R_1(t), \ldots, R_p(t)), \quad L(t) = \begin{pmatrix}
 L_{p+1}(t) \\
 \vdots \\
 L_{2p}(t)
\end{pmatrix}.
\]
Доказательство. Требует доказательства лишь утверждение, что факторы \(l_+ (t) \), \(r_+ (t) \) можно восстанавливать по любым факторизационным существенными многочленам.

Прежде всего похожим, что если \(R_1 (t), \ldots, R_p (t) \) факторизационные существенные многочлены и \(R_1 (t), \ldots, \hat{R}_p (t) \) любые другие факторизационные существенные многочлены, то

\[
\hat{R}_j (t) = \sum_{i=1}^{p} g_{ij} (t) R_i (t), \quad j = 1, 2, \ldots, p,
\]

где \(g_{ij} (t) \) скалярный многочлен от \(t \) степени не выше \(\mu_j - \mu_i \). Если \(\mu_j - \mu_i \geq 0 \), и \(g_{ij} (t) \equiv 0 \), если \(\mu_j - \mu_i < 0 \). При \(\mu_j < \mu_{p+1} \) это сразу следует из структуры ядра матрицы \(T_i + 1 \). Пусть \(\mu_j = \mu_p = \mu_{p+1} \). В этом случае \(\mu_p = \mu_{p+1} = 0 \). Пусть \(\mu_p = \ldots = \mu_{p+s} = 0 < \mu_{p+s+1} \). Если \(\hat{R}_j (t) \in N^R \), любая другой правый факторизационный существенный многочлен, соответствующий индексу \(\mu_j = 0 \), то, разложив его по базису \(N^R \), имеем

\[
\hat{R}_j (t) = \sum_{i=1}^{p} q_{ij} (t) R_j (t) + q_{p+1,j} R_{p+1} (t) + \cdots + q_{p+s,j} R_{p+s} (t).
\]

Здесь \(q_{ij} (t) \) многочлен степени не выше \(\mu_j - \mu_i \) для \(i = 1, \ldots, p \) и \(q_{ij} \) константы для \(i = p + 1, \ldots, p + s \). Учитывая, что для факторизационных существенных многочленов свободные члены равны нулю, получаем

\[
q_{p+1,j} R_{p+1,0} + \cdots + q_{p+s,j} R_{p+s,0} = 0.
\]

Однако для факторизационных существенных многочленов обратимая матрица \(\Lambda_R \) из критерия существенности является блочно-треугольной. Поэтому свободные члены существенных многочленов \(R_{p+1} (t), \ldots, R_{2p} (t) \) должны быть линейно зависимы. Значит, равенство (8) возможно, только если \(q_{p+1,j} = \cdots = q_{p+s, j} = 0 \). Таким образом, разложение (7) полностью доказано.

Однако для факторизационных существенных многочленов обратимая матрица \(\Lambda_R \) из критерия существенности является блочно-треугольной. Поэтому свободные члены существенных многочленов \(R_{p+1} (t), \ldots, R_{2p} (t) \) должны быть линейно зависимы. Значит, равенство (8) возможно, только если \(q_{p+1,j} = \cdots = q_{p+s, j} = 0 \). Таким образом, разложение (7) полностью доказано.

Образуем из новых факторизационных существенных многочленов матрицу-функцию \(\hat{R}(t) = (R_1 (t), \ldots, \hat{R}_p (t)) \). Из разложения (7) следует, что

\[
\hat{R}(t) = R(t) Q(t),
\]

где \(Q(t) \) матричный многочлен, элементы которого удовлетворяют условию \(q_{ij} (t) \equiv 0 \), если \(\mu_j - \mu_i < 0 \), и \(q_{ij} (t) \) многочлен от \(t \) формальной степени \(\mu_j - \mu_i \), если \(\mu_j - \mu_i \geq 0 \). Точно так же можно получить представление

\[
R(t) = \hat{R}(t) \hat{Q}(t),
\]

где \(\hat{Q}(t) \) имеет такую же структуру, что и \(Q(t) \).
О ФАКТОРИЗАЦИИ АНАЛИТИЧЕСКИХ МАТРИЦ-ФУНКЦИЙ

В теореме 3.1 было доказано существование обратимой матрицы-функции $\mathcal{R}(t)$. Поэтому

$$Q(t)\tilde{Q}(t) = I_p,$$

t.e. матричный многочлен $Q(t)$ обратим. Обозначим

$$\tilde{l}_-(t) = t^{n+1} \Delta_-(t)d_i^{-1}(t)\tilde{R}^{-1}(t).$$

Тогда матрица

$$l_-(t) = d_i^{-1}(t)Q^{-1}(t)d_i(t)l_-(t)$$

удовлетворяет условиям теоремы об общем виде факторизационных множителей левой факторизации [5]. Это означает, что $l_-(t)$ также является факторизационным множителем. Вторая часть теоремы доказывается аналогично.

Задача факторизации Винера Хопфа тесно связана со спектральной факторизацией аналитических матричных функций $a(t)$ (в частности, матричных многочленов), т.е. с задачей выделения делителя $a(t)$, отвечающего за часть спектра $a(t)$ [6, 7]. Эта задача также весьма актуальна в теории дискретных аналогов интегрируемых систем, где важную роль играет факторизация матричных многочленов [8]. Для простоты мы ограничимся выделением делителей $a(t)$, отвечающих только за одну точку спектра $a(t)$. В этом случае последовательность есть из коэффициентов Тейлора матрицы-функции $a(t)$, а существенные многочлены последовательности тесно связаны с состоянием цепочками $a(t)$.

Пусть $a(t)$ — матрица-функция, аналитическая в некоторой области $D \subset \mathbb{C}$, и $\det a(t)$ не равен нулю топологически. Точки, в которых $\det a(t) = 0$, назовем собственными значениями $a(t)$, а все остальные точки регулярными. Пусть t_0 собственное значение $a(t)$ алгебраической кратности k. Составим последовательность $0, \ldots, 0, c_0, \ldots, c_k$ из коэффициентов Тейлора $c_j = 1/j!a^{(j)}(t_0)$ в точке t_0. Здесь $a^{(j)}(t_0)$ — значение j-ой производной $a(t)$ в точке t_0. Индексы этой последовательности назовем индексами аналитической матрицы-функции $a(t)$ в точке t_0. Очевидно, что для регулярных точек и только для них все индексы равны нулю.

Пусть $\mathcal{R}(t)$, $\mathcal{L}(t)$ — матрицы, составленные из факторизационных существенных многочленов последовательности. Пусть Γ любой простой замкнутый контур, окружающий точку t_0, такой, что внутри него нет других собственных значений $a(t)$. Легко видеть, что для этого контура $\Delta_-(t) = 1$ и, следовательно, моменты $\Delta^{-1}_-(t)a(t)$ совпадают с коэффициентами Тейлора $a(t)$ в точке t_0. Применение теоремы 3.2 дает следующее следствие.

Следствие 3.1. Пусть t_0 — собственное значение аналитической матрицы-функции $a(t)$ алгебраической кратности k. Тогда $r(t) = (t - t_0)^{n+1}\mathcal{R}^{-1}(t)$ является матричным многочленом от t таком, что $a(t) = b(t)r(t)$. Здесь
\[b(t) = (t - t_0)^{-\sigma - 1} a(t) R(t) \] аналитическая в \(D \) матрица-функция, причем \(t_0 \) ее регулярная точка.

Аналогично \(a(t) = l(t)c(t), \) где \(l(t) = L^{-1}(t)d_r(t) \) матричный многочлен от \(t \) и \(c(t) = d_r^{-1}(t)L(t)a(t) \) аналитическая матрица-функция, для которой \(t_0 \) регулярная точка.

С помощью предложенного в данной статье метода можно также указать необходимые и достаточные условия существования линейного делителя матрицы-функции \(a(t) \), ответственного за нуль ее определителя. При этом не предполагается, что делитель является регулярным, т.е. имеет обратимый старший коэффициент.

Следствие 3.2. Пусть аналитическая в \(D \) матрица-функция \(a(t) \) имеет в точке \(t_0 \in D \) нуль определителя кратности \(k > 0 \). Тогда, для того чтобы существовал линейный правый (левый) делитель \(r(t) \) \((l(t)) \) матрицы-функции \(a(t) \) такой, что \(\det r(t) = (t - t_0)^{\kappa} \ (\det l(t) = (t - t_0)^{\kappa}), \) необходимо и достаточно, чтобы индексы \(\mu_1, \ldots, \mu_p \ (\mu_{p+1}, \ldots, \mu_{2p}) \) матрицы-функции \(a(t) \) в точке \(t_0 \) были равны \(-1\) или \(0 \) \((1 \text{ или } 0)\). При этом делитель является регулярным тогда и только тогда, когда \(k = p \).

Эти результаты легко переносятся и на общий случай делителя, ответственного за часть спектра \(a(t) \).

Список литературы