Д. Н. Азаров, О нильпотентной априксимируемости свободных произведений свободных групп с циклическим объединением, *Матем. заметки*, 1998, том 64, выпуск 1, 3–8

DOI: https://doi.org/10.4213/mzm1366
Математические заметки

Том 64 Выпуск 1 Июль 1998

УДК 512.543

О НИЛЬПОТЕНТНОЙ АПРОКСИМИРУЕМОСТИ СВОБОДНЫХ ПРОИЗВЕДЕНИЙ СВОБОДНЫХ ГРУПП С ЦИКЛИЧЕСКИМ ОБЪЕДИНЕНИЕМ

Д. Н. Азаров

Пусть G — свободное произведение свободных групп с циклическим объединением. В этой заметке доказывается критерий аппроксимируемости группы G конечными p-группами. Устанавливаются также другие аппроксимационные свойства группы G.

Библиография: 9 названий.

Теорема 1. Пусть A и B — свободные группы, h и k — неединичные элементы группы A и B соответственно и $G = (A \ast B; h = k)$. Пусть m и n — наибольшие положительные числа такие, что уравнение $x^m = h$ и $y^n = k$ разрешены в группах A и B соответственно. Если одно из чисел m или n равно 1, т.д для любого произвольно число p группа G аппроксимируется конечными p-группами. Если же $m > 1$ и $n > 1$, то группа G аппроксимируется конечными p-группами тогда и только тогда, когда числа m и n являются степенями числа p.

Заметим, что достаточное условие аппроксимируемости группы G конечными p-группами было получено Гильденхюзом [4]. Используя обозначения из теоремы 1, результат Гильденхюза можно сформулировать следующим образом: если числа m и n являются степенями простого числа p, то группа G аппроксимируется конечными p-группами.

Пусть π — множество простых чисел. Напомним, что конечная группа называется π-$группой$, если множество всех простых делителей ее порядка содержится в множестве π.

Следующая теорема дополняет отмеченный выше результат Баумслага.
ТЕОРЕМА 2. Пусть A, B, h, k, m, n такие же, как и в теореме 1. Если множество простых чисел π непусто и содержит все простые делители чисел m и n, то группа G аппроксимируется конечными разрешимыми π-группами.

Поскольку конечная ρ-группа является нильпотентной, из аппроксимируемости данной группы конечными ρ-группами следует ее нильпотентная аппроксимируемость. Для рассматриваемой нами группы G имеет место и обратное утверждение.

ТЕОРЕМА 3. Пусть A, B, h, k такие же, как и в теореме 1. Группа G аппроксимируется нильпотентными группами тогда и только тогда, когда она аппроксимируется конечными ρ-группами для подходящего простого числа ρ.

Доказательства теорем 1, 2 и 3 приведены в п. 3. В п. 2 изложены некоторые предварительные утверждения.

2. Превысвигательные сведения. В работе Стіба [5, лемма 1] доказывается, что для любого неединичного элемента c свободной группы F и для любого положительного целого числа l существует гомоморфизм группы F на конечную группу, переводящий элемент c в элемент порядка l. Почти дословное повторение доказательства этой леммы позволяет получить следующее более обще утверждение.

ПРЕДЛОЖЕНИЕ 1. Пусть группа F аппроксимируется конечноделёнными нильпосредними группами без кручения, c — неединичный элемент группы F.

Тогда для каждого положительного целого числа l существует гомоморфизм ϕ, группы F на конечную нильпосредную группу V таковой, что $|c\phi| = l$. Более того, если некоторое непустое множество простых чисел π содержит все простые делители числа l, то можно считать, что группа V является конечной нильпосредной π-группой.

Пусть F — произвольная группа, π — непустое множество простых чисел. Подгруппа H группы F называется π-отделенной (отделной), если для любого элемента $x \in F \setminus H$ найдутся число $p \in \pi$ и гомоморфизм ϕ группы F на конечную p-группу, отдающий x от H, т.е. такой, что $x\phi \notin H\phi$.

ПРЕДЛОЖЕНИЕ 2. Пусть F — свободная группа, H — неединичная циклическая подгруппа группы F с порождающим элементом h, m — наибольшее положительное число такое, что уравнение $x^m = h$ разрешимо в группе F. Пусть π — непустое множество простых чисел. Подгруппа H является π-отделенной тогда и только тогда, когда множество π содержит все простые делители числа m.

ДОКАЗАТЕЛЬСТВО. Необходимо доказать только достаточность. Пусть множество простых чисел π содержит все простые делители числа m. Покажем, что для произвольного элемента $x \in F \setminus H$ существует простое число $p \in \pi$ и гомоморфизм группы F на конечную p-группу, отдающий x от H.

Пусть $G_F(H)$ — централлизатор подгруппы H группы F. Возможны следующие случаи:

1) $x \notin G_F(H)$;
2) $x \in G_F(H) \setminus H$.

В случае 1) коммутатор $[x, h]$ отличен от 1. Зафиксировано число $p \in \pi$. Поскольку свободная группа F аппроксимируется конечными p-группами, существует гомомор-
физм группы \(F \) на конечную \(p \)-группу, ядро которого не содержит \([x, h]\). Очевидно, что этот гомоморфизм отображает \(x \) от \(H \).

В случае 2), очевидно, подгруппа \(G_F(H) \) является циклической. Пусть \(c \) — ее порождающий элемент. Тогда \(h = c^m, x = c^k \), где \(k \) — целое число. Поскольку \(x \notin H \), то \(k \) не делится на \(m \). Поэтому число \(k \) не делится на некоторый делитель числа \(m \) вида \(p^n \), где \(p \) — простое число, \(s \) — целое положительное число. По предложению 1 существует гомоморфизм \(\varphi \) группы \(F \) на конечную \(p \)-группу такой, что \(|\varphi| = p^s \). Так как \(m \) делится на \(p^n \) и \(k \) не делится на \(p^n \), то \(h\varphi = 1 \) и \(x\varphi \neq 1 \). Таким образом, \(x\varphi \notin H\varphi \), т.е. элемент \(x \) отображается в подгруппу \(H \) некоторым гомоморфизмом группы \(F \) на конечную \(p \)-группу. Причем, поскольку \(p \) делит \(m \) и множество \(\pi \) содержит все простые делители числа \(m \), то \(p \in \pi \). Предложение доказано.

Предложение 3. Пусть \(\pi \) — непустое множество простых чисел, \(\mathcal{P} \) — класс конечных разрешимых \(\pi \)-групп. Пусть группа \(F \) апроксимируется \(\mathcal{P} \)-группами и \(\bar{F} \) — расширение группы \(F \) с помощью \(\mathcal{P} \)-группы. Тогда группа \(\bar{F} \) апроксимируется \(\mathcal{P} \)-группами.

Доказательство. Легко проверить, что если \(1 \leq K \leq H \leq G \) — произвольный субнормальный ряд и \(G/H, H/K \in \mathcal{P} \), то существует нормальная подгруппа \(L \) группы \(G \) такая, что \(L \leq K \) и \(G/L \in \mathcal{P} \). (В качестве подгруппы \(L \) можно взять пересечение всех подгрупп группы \(G \), сопряженных с \(K \).) По лемме 1.5 из [6] группа \(\bar{F} \) апроксимируется \(\mathcal{P} \)-группами.

Пусть \(A \) и \(B \) — произвольные группы, \(h \) и \(k \) — элементы групп \(A \) и \(B \) соответственно, причем порядки этих элементов равны. Пусть, далее, \(G = (A \ast B; h = k) \) — свободное произведение этих групп с циклическим объединением. Для дальнейшего изложения нам потребуется следующая конструкция, восходящая к Баумслагу. Пусть \(M \) и \(N \) — нормальные подгруппы групп \(A \) и \(B \) соответственно, причем порядки элементов \(h \) и \(k \) по модулю этих подгрупп совпадают. Тогда можно рассмотреть свободное произведение с объединением \(G_{M,N} = (A/M \ast B/N; hM = kN) \) и гомоморфизм \(\rho_{M,N} : G \to G_{M,N} \), продолжающий естественные гомоморфизмы \(A \to A/M \) и \(B \to B/N \).

Предложение 4. Пусть группы \(A \) и \(B \) апроксимируются конечно порожденными нильпотентными группами без кручения, \(H = (h) \) и \(K = (k) \) — бесконечные циклические подгруппы групп \(A \) и \(B \) соответственно. Пусть, далее, \(\pi \) — непустое множество простых чисел. Если подгруппы \(H \) и \(K \) \(\pi \)-отделимы в группах \(A \) и \(B \) соответственно, то группа \(G = (A \ast B; h = k) \) апроксимируется конечными разрешимыми \(\pi \)-группами.

Доказательство. Заметим, что сомножители \(A \) и \(B \) апроксимируются конечными \(p \)-группами для любого простого числа \(p \), поскольку эти группы по условию апроксимируются конечно порожденными нильпотентными группами без кручения.

Пусть \(g \) — неединичный элемент группы \(G \). Покажем, что существует гомоморфизм \(\varphi \) группы \(G \) на конечную разрешимую \(\pi \)-группу такой, что \(g\varphi \neq 1 \). Рассмотрим неокрашенную запись элемента \(g \):

\[
g = x_1x_2 \cdots x_r.
\]

Предположим сначала, что \(r = 1 \). Тогда без потери общности можно считать, что \(g \in A \). Зафиксируем число \(p \in \pi \). Так как группа \(A \) апроксимируется конечными
p-группами, существует нормальная подгруппа M конечного p-индекса группы A, не содержащая элемент g. Поскольку группа B аппроксимируется конечными порожденными нильпотентными группами без кручения и порядок элемента hM группы A/M является степенью числа p, то по предложению 1 существует нормальная подгруппа N конечного p-индекса группы B такой, что $|kN| = |hM|$. Группа G_{MN} является свободным произведением конечных p-групп с циклическим объединением и, следовательно, аппроксимируется конечными p-группами в силу теоремы Хигмена [7]. Поскольку $g\rho_{MN} \neq 1$, существует гомоморфизм ρ группы G_{MN} на конечную p-группу такой, что $g\rho_{MN} \neq 1$.

Предположим теперь, что $r > 1$. Пусть для определенности

$$x_1, x_3, \ldots \in A \setminus H, \quad x_2, x_4, \ldots \in B \setminus K.$$

Поскольку подгруппы H и K π-отделены в сомножителях A и B соответственно, то существуют нормальные подгруппы A_1 и B_1 групп A и B такие, что A/A_1 и B/B_1 – конечные нильпотентные π-группы и

$$x_1, x_3, \ldots \notin \pi A_1, \quad x_2, x_4, \ldots \notin \pi B_1. \quad (1)$$

Пусть l – наименьшее общее кратное число $|hA_1|$ и $|kB_1|$. Так как все простые делители числа l принадлежат множеству π, то по предложению 1 существуют нормальные подгруппы A_2 и B_2 групп A и B соответственно такие, что A/A_2 и B/B_2 – конечные нильпотентные π-группы и $|hA_2| = l = |kB_2|$. Пусть $M = A_1 \cap A_2, N = B_1 \cap B_2$. Тогда $|hM| = l = |kn|$. Теперь можно рассмотреть свободное произведение с объединением

$$\overline{G} = (A \ast \overline{B}; \overline{h} = \overline{k}),$$

где $\overline{A} = A/M, \overline{B} = B/N, \overline{h} = hM, \overline{k} = kN, \overline{G} = G_{MN}$.

Из (1) следует, что

$$x_1, x_3, \ldots \notin \pi HM, \quad x_2, x_4, \ldots \notin \pi KN.$$

Поэтому элемент $g\rho_{MN}$ имеет в группе \overline{G} несократимую запись длины $r > 1$ и, следовательно, отличен от 1.

Покажем, что группа \overline{G} аппроксимируется конечными разрешимыми π-группами. Заметим, что \overline{A} и \overline{B} – конечные нильпотентные π-группы. Пусть p_1, \ldots, p_s – множество всех простых делителей их порядков. Обозначим через U_i и V_i подгруппы групп \overline{A} и \overline{B} соответственно, порожденные теми сильными подгруппами этих групп, порядки которых не делятся на $p_i, i = 1, \ldots, s$. Поскольку порядки \overline{h} и \overline{k} по модулю подгруппы U_i и V_i совпадают, можно рассмотреть свободное произведение с объединением $\overline{G}_i = \overline{G}_{U_iV_i}$ и гомоморфизм $\rho_i = \rho_{U_iV_i}: \overline{G} \rightarrow \overline{G}_i$. По теореме Хигмена [7] группа \overline{G}_i аппроксимируется конечными p_i-группами, поэтому существует гомоморфизм σ_i группы \overline{G}_i на конечную p_i-группу, инъективный на сомножителях \overline{A}/U_i и \overline{B}/V_i. Пусть

$$F = \bigcap_{i=1}^{s} \operatorname{Ker} \rho_i \sigma_i.$$

Тогда

$$\overline{A} \cap F = \bigcap_{i=1}^{s} (\overline{A} \cap \operatorname{Ker} \rho_i \sigma_i) = \bigcap_{i=1}^{s} U_i = 1, \quad \overline{B} \cap F = \bigcap_{i=1}^{s} (\overline{B} \cap \operatorname{Ker} \rho_i \sigma_i) = \bigcap_{i=1}^{s} V_i = 1.$$
По теореме Х. Нейман (см., например, [8, с. 122]) подгруппа F группы G является свободной. Легко заметить, что G/F — конечная нильпотентная π-группа. Так как свободная группа F аппроксимируется конечными разрешимыми π-группами, то по предложению 3 группа G также обладает этим свойством.

Поскольку элемент $g \rho_{MN}$ группы G отличен от 1, существует гомоморфизм ρ группы G на конечную разрешимую π-группу такой, что $g \rho_{MN} \rho \neq 1$.

3. Доказательства теорем. Теорема 2 непосредственно вытекает из предложений 2 и 4.

ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ 1. Пусть A и B — свободные группы, h и k — неединичные элементы групп A и B соответственно, $G = (A \ast B; h = k)$. Пусть m и n — наибольшие положительные числа такие, что уравнения $x^m = h$ и $y^n = k$ разрешимы в группах A и B соответственно.

Рассмотрим сначала случай, когда одно из чисел m или n равно 1. Пусть для определенности $m = 1$. Обозначим через b элемент группы B такой, что $b^n = k$. Тогда группу G можно разложить в свободное произведение вида

$$G = (C \ast B; t = b),$$

где $C = (A; t; h = t^n)$.

Баумслаг [9] доказал, что если элемент f свободной группы F порождает свой центратор в этой группе, то группа $L = (F, r; f = r^k)$ аппроксимируется конечными нильпотентными группами без кручения.

Поскольку $m = 1$, элемент h порождает свой центратор в группе A. Поэтому в силу отмеченного выше результата Баумслага группа C аппроксимируется конечными нильпотентными группами без кручения. Свободная группа B также обладает этим свойством.

Пусть p — простое число. Хорошо известно, что конечно порожденная нильпотентная группа без кручения аппроксимируется конечными p-группами. Поэтому группы C и B аппроксимируются конечными p-группами.

Заметим, что подгруппа (t) группы C совпадает со своим центратором. Поэтому если $x \in C \setminus (t)$, то $[x, t] \neq 1$. Поскольку группа C аппроксимируется конечными p-группами, существует гомоморфизм группы C на конечную p-группу, ядро которого не содержит коммутатор $[x, t]$. Этот гомоморфизм отделяет x от (t). Следовательно, подгруппа (t) группы C p-отделена.

Очевидно, что подгруппа (b) группы B совпадает со своим центратором. Как и выше, легко убедиться, что подгруппа (b) p-отделена.

Таким образом, свободные множители C и B группы G аппроксимируются конечными порожденными нильпотентными группами без кручения и объединяемые подгруппы (t) и (b) p-отделены в соответствующих сомножителях. По предложению 4 группа G аппроксимируется конечными p-группами.

Рассмотрим теперь случай, когда числа m и n отличны от 1. Если числа m и n являются степенями простого числа p, то по теореме 2 группа G аппроксимируется конечными p-группами. Пусть теперь одно из этих чисел, скажем m, не является степенью простого числа p. Обозначим через q простой делитель числа m, отличный от p. Тогда существует элемент a группы A такой, что $a^q = h$. Обозначим через b элемент группы B, для которого $b^m = k$. При любом гомоморфизме группы G на конечную p-группу коммутатор $[a, b]$ переходит в 1. Поскольку этот коммутатор отличен от 1, группа G не аппроксимируется конечными p-группами. Теорема 1 доказана.
Доказательство теоремы 3. Сохраним обозначения из теоремы 1. Очевидно, что группу G можно разложить в свободное произведение вида $G = (A_1 * B_1; h = k) * F$, где A_1, B_1, F — свободные группы, причем A_1 и B_1 конечно порождены.

Предположим, что группа G аппроксимируется nilpotентными группами. Тогда группа $D = (A_1 * B_1; h = k)$ аппроксимируется конечно порождёнными nilpotентными группами, которые, в свою очередь, finitely аппроксимируемы. Поэтому группа D аппроксимируется конечными nilpotentными группами.

Опользуем через m и n наибольшие положительные числа такие, что уравнения $x^m = h$ и $y^n = k$ разрешимы в группах A_1 и B_1 соответственно.

Покажем, что группа D аппроксимируется конечными p-группами для подходящего простого числа p. Допустим противное. Тогда по теореме 1 числа m и n отличны от 1 и не являются степенями одного и того же простого числа. Инными словами, найдутся различные простые числа p и q, делящие числа m и n соответственно. Пусть a и b — элементы группы A_1 и B_1 такие, что $a^p = h, b^q = k$. Тогда при любом гомоморфизме группы D на конечную nilpotentную группу отличный от 1 коммутатор $[a, b]$ переходит в 1. Это противоречит доказанной выше аппроксимируемости группы D конечными nilpotentными группами.

Автор выражает благодарность профессору Д. И. Молдаванскому за ряд ценных замечаний и советов при написании этой статьи.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

Ивановский государственный университет Поступило 12.07.96