Анализ хаотической синхронизации динамических систем с помощью вейвлетного преобразования

А. А. Короновский, А. Е. Хрямов

Саратовский государственный университет им. Н. Г. Чернышевского,
Государственный Уральский научный центр "Колледж", 410012 Саратов, Россия

Поступила в редакцию 10 декабря 2003 г.
После переработки 11 февраля 2004 г.

Предложен новый метод рассмотрения хаотической синхронизации, основанный на введении семейства фаз хаотического сигнала с помощью непрерывного вейвлетного преобразования. С помощью данного метода изучается синхронизация двух хаотических динамических систем с плохо определенной фазой.

PACS: 05.45.–а

Фазовая синхронизация [1, 2] систем, находящихся в режиме динамического хаоса, является одним из важнейших явлений современной теории нелинейных колебаний. Явление фазовой хаотической синхронизации экспериментально наблюдалось для радиотехнических генераторов [3], лазеров [4], электрохимических осцилляторов [5], сердечного ритма [6], газового разряда [7] и т.д. (см. также обзоры [2, 8, 9]). Изучение явления хаотической синхронизации является важным применительно к передаче информации с помощью детерминированных хаотических колебаний [10].

Для описания и анализа фазовой синхронизации, как правило, вводится фаза \(\phi(t) \) хаотического сигнала [1, 2, 8, 9]. Фазовая синхронизация означает, что происходит захват фаз хаотических сигналов, в том числе амплитуды этих сигналов остаются не связанными друг с другом и выглядят хаотическими. Захват фаз влечет за собой совпадение частот сигналов. Частота хаотического сигнала определяется как средняя скорость изменения фазы \(\dot{\phi}(t) \).

В настоящее время не существует универсального способа введения фазы хаотического сигнала, который мог бы быть применен для любых динамических систем. Существует несколько способов введения фазы, подходящих для "хороших" систем с простой топологией хаотического аттрактора. Во-первых, фаза \(\phi(t) \) хаотического сигнала вводится как угол в полярной системе координат на плоскости \((x, y) \) [11]:

\[
\phi(t) = \arctan \frac{y(t)}{x(t)},
\]

но при этом все траектории проекции хаотического аттрактора на плоскости \((x, y) \) должны вращаться вокруг начала координат.

Во-вторых, для определения фазы для хаотической динамической системы вводится в рассмотрение аналитический сигнал [1, 8]

\[
\zeta(t) = x(t) + j\hat{x}(t) = A(t)e^{j\phi(t)},
\]

где функция \(\hat{x}(t) \) является преобразованием Гильберта временной реализации \(x(t) \):

\[
\hat{x}(t) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{x(\tau)}{t - \tau} d\tau.
\]

Соответственно, фаза \(\phi(t) \) хаотического сигнала \(x(t) \) определяется из соотношений (2) и (3).

В-третьих, для определения фазы хаотического сигнала используется поверхность сечения Пуанкаре [1, 2, 8], так что фаза определяется как

\[
\phi(t) = 2\pi \frac{t - t_n}{t_{n+1} - t_n} + 2\pi n, \quad t_n \leq t \leq t_{n+1},
\]

где \(t_n \) — момент времени, соответствующий \(n \)-у сечению поверхности сечения Пуанкаре фазовой траектории.

Все вышеописанные подходы дают сходные результаты для "хороших" систем [1, 2, 8, 9]. В то же время, эти методы приводят к противоречивым результатам для систем с плохо определенной фазой (см., например, [2, 12, 13]). Использование традиционных методов, как правило, в принципе не позволяет установить факт наличия фазовой синхронизации. Вследствие этого, фазовая синхронизация подобных систем, как правило, может быть выявлена с помощью косвенных измерений [12], в частности, расчета липуновских экспонент [2, 8, 14].

\footnote{e-mail: ae@cas.ru}
В настоящей работе рассматривается новый метод выявления режима фазовой синхронизации динамических систем с плохо определенной фазой. Поведение таких систем может быть охарактеризовано с помощью непрерывного множества фаз, которое определяется на основе непрерывного вейвлетного преобразования [15] хаотического сигнала \(x(t) \):

\[
W(s, t_0) = \int_{-\infty}^{+\infty} x(t) \psi^*_s(t) \, dt,
\]

где \(\psi_s(t) \) — вейвлетная функция, получающаяся из материнского вейвлета \(\psi_0(t) \):

\[
\psi_s(t) = \frac{1}{\sqrt{s}} \psi_0 \left(\frac{t - t_0}{s} \right).
\]

Временной масштаб \(s \) определяет ширину вейвлета \(\psi_s(t_0), t_0 \) — временной сдвиг вейвлетной функции вдоль оси времени ("\(s \)" означает комплексное сужение). Следует отметить, что при проведении вейвлетного анализа понятие "временной масштаб", как правило, используется вместо понятия "частота", традиционного для фурье-преобразования.

В качестве материнского вейвлета был использован морлет-вейвлет [15, 16]

\[
\psi_0(\eta) = \frac{1}{\sqrt{\pi}} \exp(j \omega_0 \eta) \exp(-\eta^2/2).
\]

Выбор значения параметра вейвлета \(\omega_0 = 2\pi \) обеспечивает соотношение \(s \approx 1/f \) между временным масштабом \(s \) вейвлетного преобразования и частотой \(f \) преобразования Фурье.

Вейвлетная поверхность

\[
W(s, t_0) = |W(s, t_0)| e^{i\phi_s(t_0)}
\]

характеризует поведение системы на каждом временном масштабе \(s \) в любой момент времени \(t_0 \). Величина \(|W(s, t_0)| \) характеризует наличие и интенсивность соответствующего временного масштаба \(s \) в момент времени \(t_0 \). Удобно также ввести интегральное распределение энергии вейвлетного спектра по временным масштабам:

\[
E(s) = \int |W(s, t_0)|^2 \, dt_0.
\]

В то же время, естественным образом оказываетя определенной фазы \(\phi_s(t) = \arg W(s, t) \) для каждого временного масштаба \(s \). Иными словами, оказывается возможным характеризовать поведение любого временного масштаба \(s \) с помощью ассоцированной с ним фазы \(\phi_s(t) \).

Рассмотрим поведение двух взаимно связанных неидентичных хаотических осцилляторов. Если рассматриваемые осцилляторы не находятся в режиме фазовой синхронизации, то их поведение является несинхронизованным на всех временных масштабах \(s \). Как только какие-либо из временных масштабов рассматриваемых динамических систем синхронизуются (например, при увеличении параметра связи между системами), возникает режим фазовой синхронизации. Очевидно, что в первую очередь оказываются синхронизованными те временные масштабы, на которые приходится наибольшая доля энергии вейвлетного спектра \(E(s) \). Остальные временные масштабы по-прежнему остаются рассинхронизованными. При этом фазовая синхронизация ведет к появлению запаздывания фаз на синхронизованных временных масштабах:

\[
|\phi_{s1}(t) - \phi_{s2}(t)| < \text{const}.
\]

В этом соотношении \(\phi_{s1,2}(t) \) — непрерывные фазы первого и второго осцилляторов, соответствующие синхронизованным временным масштабам \(s \).

Предложенный подход, основанный на непрерывном вейвлетном преобразовании, может быть с успехом применен к любым динамическим системам, в том числе и к системам с плохо определенной фазой. В качестве примера рассмотрим поведение двух взаимно связанных неидентичных систем Ресслера [17], находящихся в режиме винтового хаоса:

\[
\begin{align*}
\dot{x}_{1,2} &= -\omega_1 y_{1,2} + x_{1,2} + \varepsilon (x_{2,1} - x_{1,2}), \\
\dot{y}_{1,2} &= \omega_1 x_{1,2} + ay_{1,2} + \varepsilon (y_{2,1} - y_{1,2}), \\
\dot{z}_{1,2} &= p + x_{1,2}(x_{1,2} - c),
\end{align*}
\]

где \(\varepsilon \) — параметр связи, \(\omega_1 = 0.98, \omega_2 = 1.03, a = 0.22, p = 0.1, c = 8.5 \).

Рис.1 иллюстрирует поведение двух связанных систем Ресслера в том случае, когда параметр связи мал (\(\varepsilon = 0.025 \)). Спектры мощности вейвлетного преобразования \(E(s) \) отличаются друг от друга для первой и второй систем (см. рис.1), однако максимальное значение энергии в обоих случаях приходится примерно на один и тот же временной масштаб \(s \). Из рис.1 следует, что разность фаз \(\phi_{s1}(t) - \phi_{s2}(t) \) растет неограниченно на всех временных масштабах. Это означает, что в рассматриваемых системах не существует таких временных масштабов, которые бы были синхронизованы друг с другом, а, соответственно, и сами системы являются несинхронизованными.

С увеличением значения параметра связи системы переходят в режим фазовой синхронизации (см.,
например, [11]). Так, в [12] с помощью косвенных измерений было показано, что при величине параметра связи $\varepsilon = 0.05$ две связанные системы Ресслера находятся в режиме фазовой синхронизации. Поведение разности частот $\phi_{s1}(t) - \phi_{s2}(t)$ для данного случая представлено на рис.2. Видно, что на временном масштабе $s = 5.25$, который характеризует наименьшем значением энергии в вейвлетном спектре $E(s)$ (см. рис.2), наблюдается захват фаз. Таким образом, можно сказать, что временные масштабы $s = 5.25$ двух систем Ресслера оказывают синхронизованной друг с другом. Одновременно все близлежащие к $s = 5.25$ временные масштабы также синхронизованы. Важно также отметить, что сильно отличающиеся временные масштабы (например, такие, как $s = 4.5, 6.0$ и др.) оставляются несинхронизованными, и для этих масштабов явления захвата фаз не наблюдается (см. рис.2 и сравнит с рис.1).

С дальнейшим увеличением параметра связи временные масштабы, бывшие ранее несинхронизованными, синхронизуются. Количество временных масштабов, на которых наблюдается захват фаз, увеличивается, но в то же самое время, некоторые временные масштабы оставляются несинхронизованными, как и ранее. Если продолжать увеличивать параметр связи ε, то все большее число временных масштабов становится синхронизованным, и в тот момент, когда синхронизируются все временные масштабы, в системе возникает режим lag-синхронизации [18].
Вышеописанную качественную картину синхронизации временных масштабов количественно иллюстрирует рис.3а, на котором показаны зависимости верхней, s_b, и нижней, s_m, границ областей синхронизированных масштабов (a) и зависимости величины относительной энергии, приходящейся на синхронные масштабы, γ (b) для системы Рессера от величины параметра связи ε.

На рис. 3 б показана зависимость нижней, s_m, и верхней, s_b, границ области синхронизированных масштабов (a) и зависимость величины относительной энергии, приходящейся на синхронные масштабы, γ (b) для системы Рессера от величины параметра связи ε.

Где $E(s)$ – интегральное распределение энергии вейвлетного спектра по масштабам, определяемое формулой (9).

Соответствующая зависимость $\gamma(\varepsilon)$ представлена на рис.3в. Видно, что с ростом параметра связи имеется место увеличение доли энергии хаотического колебательного процесса, приходящейся на синхронизированные масштабы. Для значения параметра связи $\varepsilon = 0.039$, соответствующего возникновению режима фазовой синхронизации, относительная энергия, приходящаяся на синхронизируемые масштабы, равна $\gamma = 0.21$. При больших параметрах связи ($\varepsilon > 0.2$) величина γ стремится к единице. Последнее означает, что вся энергия хаотических колебаний приходит ся на синхронизированные масштабы, и в системе, как уже отмечалось выше, устанавливается режим lag-синхронизации.

Подводя итог, отметим несколько важных аспектов. Прежде всего, традиционные подходы (1)–(4) по выявлению режима фазовой синхронизации, основанные на введении фазы хаотического сигнала, могут быть использованы для анализа таких временных рядов, которые характеризуются фурье-спектром с ярко выраженной основной частотой f_0. В этом случае фаза ϕ_{s_0}, введенная для временного масштаба $s_0 \approx 1/f_0$, приближенно совпадает с фазой $\phi(t)$ хаотического сигнала, введенной традиционным способом (1)–(4). Действительно, поскольку остальные частоты (или, можно сказать, остальные временные масштабы) не играют значительной роли в фурье-спектре, фазы $\phi(t)$ хаотического сигнала близки к фазе $\phi_{s_0}(t)$ основной частотной компоненты f_0 (и, соответственно, основному временному масштабу s_0). Очевидно, что в этом случае средние частоты $\bar{f} = \langle \phi(t) \rangle$ и $\bar{f}_{s_0} = \langle \phi_{s_0}(t) \rangle$ должны совпадать друг с другом, и с основной частотой f_0 фурье-спектра (см. также [13])

$$\bar{f} = \bar{f}_{s_0} = f_0.$$ (13)

Если же хаотическая временная реализация характеризуется фурье-спектром, в котором отсутствует ярко выраженная основная спектральная компонента, то традиционный подход (1)–(4) уже не работает. Очевидно, что в этом случае необходимо рассматривать поведение системы на различных временных масштабах, что в принципе невозможно сделать, используя понятие мгновенной фазы $\phi(t)$ хаотического сигнала, введенной с помощью соотношений (1)–(4). Предложенный в настоящей работе подход,
основанный на непрерывном вейвлетном преобразовании и введении непрерывного множества фаз, на
против, может быть успешно использован для любого типа хаотического сигнала.

Кроме того, предложенный подход может быть использован для анализа экспериментальных данных, поскольку он не требует каких-либо априорных знаний об изучаемой системе. Более того, в ряде случаев применение вейвлетного преобразования может уменьшить влияние шума [15, 19]. Представляется вполне вероятным, что описанная методика может быть полезной и эффективной для анализа временных рядов, порождаемых физическими, биологическими, физиологическими и другими системами.

Итак, в настоящей работе предложен новый подход для описания явления хаотической синхронизации, основанный на непрерывном вейвлетном преобразовании и рассмотрении динамики систем на различных временных масштабах. Данный подход может быть применен к любым хаотическим системам и экспериментальным временным рядам.

Работа поддержана Российским фондом фундаментальных исследований (грант #02-02-16351) и грантом # CRDF REC-006 (U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union).