О. И. Мохов, Согласованные и почти согласованные метрики, УМН, 2000, том 55, выпуск 4(334), 217–218

DOI: https://doi.org/10.4213/rm318

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением
http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
15 февраля 2019 г., 22:05:02
СОГЛАСОВАННЫЕ И ПОЧТИ СОГЛАСОВАННЫЕ МЕТРИКИ

О. И. Мохов

ОПРЕДЕЛЕНИЕ 1. Две псевдограмматические метрики \(g^{ij}_1(u) \) и \(g^{ij}_2(u) \) называются согласованными, если для любой линейной комбинации этих метрик

\[
 g^{ij}(u) = \lambda_1 g^{ij}_1(u) + \lambda_2 g^{ij}_2(u),
\]

где \(\lambda_1 \) и \(\lambda_2 \) — произвольные константы, для которых \(\det(g^{ij}(u)) \neq 0 \), коэффициенты соответствующих систем Леви-Чивита и компоненты соответствующих тензоров римановой кривизны связаны тем же самым линейным соотношением:

\[
 \Gamma^{ij}_k(u) = \lambda_1 \Gamma^{ij}_1(u) + \lambda_2 \Gamma^{ij}_2(u),
\]

(2)

\[
 R^{ij}_{kl}(u) = \lambda_1 R^{ij}_{1 kl}(u) + \lambda_2 R^{ij}_{2 kl}(u).
\]

Мы также будем говорить в этом случае, что метрики \(g^{ij}_1(u) \) и \(g^{ij}_2(u) \) образуют пучок метрик.

ОПРЕДЕЛЕНИЕ 2. Две псевдограмматические метрики \(g^{ij}_1(u) \) и \(g^{ij}_2(u) \) называются почти согласованными, если для любой линейной комбинации таких метрик (1) выполняется условие (2).

ОПРЕДЕЛЕНИЕ 3. Две псевдограмматические метрики \(g^{ij}_1(u) \) и \(g^{ij}_2(u) \) называются неспособной парой метрик, если собственные значения этой пары метрик, то есть корни уравнения

\[
 \det(g^{ij}(u) - \lambda g^{ij}_2(u)) = 0,
\]

(4)

различны.

В случае, когда метрики \(g^{ij}_1(u) \) и \(g^{ij}_2(u) \) — плоские, то есть \(R^{ij}_{1, jkl}(u) = R^{ij}_{2, jkl}(u) = 0 \), соотношение (3) превращается в условие, что произвольная линейная комбинация плоских метрик \(g^{ij}_1(u) \) и \(g^{ij}_2(u) \) тоже всегда является плоской метрикой, и определение 1 эквивалентно известному определению плоского пучка метрик или, другими словами, согласованной пары локальных непрерывных пуассоновых структур гидродинамического типа [1] (см. также [2]-[4]).

В 1996 году в [3] Феррвонтов предложил подход к задаче о плоских пучках метрик, мотивированный теорией операторов резонанса, и сформулировал критерий согласованности локальных непрерывных пуассоновских структур гидродинамического типа: тензор Фейнмана аффинора, задаваемого метриками, тензорно равен нулю. К сожалению, в общем случае этот критерий носит лишь общий характер. Из обсуждения соответствующего тензора Фейнменова, вообще говоря, не следует согласованность плоских метрик. Мы приходим к большей согласованности коммераферм. В общем случае, как будет показано ниже, равенство нулю соответствующего тензора Фейнменовского является в действительности критерием согласованности плоских метрик, что не гарантирует согласованность соответствующих локальных непрерывных структур гидродинамического типа.

Критерий сформулированный Феррвонтовским в [3], верен для любой неспособной пары плоских метрик, и, более того, он дает существенное обобщение на случай любой неспособной пары псевдограмматических метрик, в частности, на особо важные в теории систем гидродинамического типа случаи метрик постоянной римановой кривизны или метрик, порождающих общий нелокальный пуассоновы структуры гидродинамического типа.

Работа выполнена при финансовой поддержке Фонда Александра фон Гумбольдта (Германия), а также РФФИ (гранты №№ 09-01-00010 и 96-15-96027) и INTAS (грант № 96-0770).
ТЕОРЕМА 1. Если для произвольной линейной комбинации (1) двух метрик $g_{1}^{ij}(u)$ и $g_{2}^{ij}(u)$ выполняется условие (2), то тензор Неймана $v_{ij}^{(u)} = g_{1}^{ij}(u)g_{2,j}(u)$ топологически равен нулю. Если пара метрик $g_{1}^{ij}(u)$ и $g_{2}^{ij}(u)$ является несогласованной, то из обнуления тензора Неймана аффинов $v_{ij}^{(u)} = g_{1}^{ij}(u)g_{2,j}(u)$ следует согласованность метрик $g_{1}^{ij}(u)$ и $g_{2}^{ij}(u)$.

Введем тензор

$$M_{i,k}^{j}(u) = g_{1}^{i,j}(u)\Gamma_{,k}^{j}(u) - g_{2}^{i,j}(u)\Gamma_{,k}^{j}(u) - g_{1}^{i,j}(u)\Gamma_{,k}^{j}(u) + g_{2}^{i,j}(u)\Gamma_{,k}^{j}(u).$$

Лемма 1. Тензор $M_{i,k}^{j}(u)$ топологически равен нулю тогда и только тогда, когда метрики $g_{1}^{ij}(u)$ и $g_{2}^{ij}(u)$ являются почти согласованными.

Введем аффин $v_{ij}^{(u)} = g_{1}^{ij}(u)g_{2,j}(u)$ и рассмотрим тензор Неймана этого аффина

$$N_{i,j}^{k}(u) = v_{i}^{(u)}\partial_{i,j}^{k} - v_{j}^{(u)}\partial_{i,j}^{k} + v_{j}^{(u)}\partial_{i,j}^{k} - v_{i}^{(u)}\partial_{i,j}^{k},$$

следуя [3], где аналогично рассматривался аффин $v_{ij}^{(u)}$ и этот тензор Неймана для двух плоских метрик.

ТЕОРЕМА 2. Метрики $g_{1}^{ij}(u)$ и $g_{2}^{ij}(u)$ являются почти согласованной и площадь топо, когда соответствующий тензор Неймана $N_{i,j}^{k}(u)$ топологически равен нулю.

Лемма 2. Всегда имеет место следующие тождества:

$$g_{,i} = g_{i}^{ij}(u)\Gamma_{,i}^{j}(u) - g_{i}^{ij}(u)\Gamma_{,i}^{j}(u) - g_{i}^{ij}(u)\Gamma_{,i}^{j}(u) + g_{i}^{ij}(u)\Gamma_{,i}^{j}(u),$$

(8) $$2M_{i,k}^{j}(u) = g_{,i}^{ij}(u)N_{i,j}^{k}(u)g_{2}^{ij}(u)g_{2}^{ij}(u) = M_{i,j}^{ij}(u) + M_{i,k}^{ij}(u).$$

ТЕОРЕМА 3. Проявляя несогласованная пара метрик является согласованной в плоскости, когда существует локальная координата $u = (u_{1}, \ldots, u_{N})$, такая что $g_{2}^{ij}(u) = g_{1}^{ij}(u)\delta^{ij}$ и $g_{2}^{ij}(u) = f^{(u)1}g_{1}^{ij}(u)\delta^{ij}$, где $f(u)_{i} = i, 1, \ldots, N$, - произвольные функции одиной переменной.

Плоские метрики $g_{2}^{ij}(u) = \exp(u^{1}u^{2}\delta^{ij})$, $1 \leq i, j \leq 2$, и $g_{2}^{ij}(u) = \delta^{ij}$, $1 \leq i, j \leq 2$, являются почти согласованными, тензор Неймана (6) для них топологически равен нулю. При этом согласованными эти метрики не являются, и их сумма не является плоской метрикой.

ПРЕДЛОЖЕНИЕ. Любая несовместная вещественная гармоническая функция $a(u)$ определяет пару плоских метрик $g_{2}^{ij}(u) = \exp(a(u))\delta^{ij}$, $1 \leq i, j \leq 2$, которые не являются согласованными.

СПИСОК ЛИТЕРАТУРЫ

Центре научных исследований

Приложение Годований

при Институте теоретической физики им. Л. Д. Ландау РАН,

Department of Mathematics, University of Paderborn, Germany

E-mail: mokhov@genesis.mi.ras.ru, mokhov@lanau.ac.ru; mokhov@uni-paderborn.de