Ю. Нееман, Геометризация спонтанно нарушенных калибровочных симметрий,
ТМФ, 2004, том 139, номер 3, 355–362

DOI: https://doi.org/10.4213/tmf69

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением
http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
18 марта 2019 г., 01:15:59
ТЕОРЕТИЧЕСКАЯ
И МАТЕМАТИЧЕСКАЯ
ФИЗИКА
Том 139, № 3
июнь, 2004

© 2004 г.
Ю. Нееман*

ГЕОМЕТРИЗАЦИЯ СПОНТАННО НАРУШЕННЫХ
КАЛИБРОВОЧНЫХ СИММЕТРИЙ

Дается обзор геометрического подхода к спонтанно нарушенным калибровочным
симметриям.

Ключевые слова: спонтанное нарушение симметрии, суперсимметрия.

1. ВВЕДЕНИЕ. ПО ПУТИ ГЕОМЕТРИЗАЦИИ:
С 1908 г. ПО 1925 г. И ПОСЛЕ 1974 г.

Отрывок из Плутона о вере Платона в то, что Бог интересуется Геометрией [1], цитируется всякий раз, как речь заходит о рождении современной физики, даже если настоящая реализация существенно отличается от мечты Платона. Это не говорит о важности идеи Платона, спрашивается он экспериментальную физику за 400 лет до н. э., он о других гипотетических идеях в тот же период, как догадка Пифагора о квантованной
физической реальности, основанной на его прорыве в физике музыки (эта “музыка
сфер” в конце концов была усвоена в первый раз Бальзаком примерно в 1900 г.).
Еще одна заслуживающая уважения, хотя и чисто умозрительная идея атомов Демокрита была вторым важным шагом, когда Дальтон предложил свою версию 200 лет назад. Может быть, она сработает снова, уже в наше время, вместе с догадкой Пифагора [2]
учителя его учителя, если теория строи однажды “представит” по-настоящему и ста
нет основой всей физики (не просто нумерология Пифагора, но истинные вибрирующие
струны . . .). Эта ожидаемая вторая победа образования Демокрита связывается с рол
ью, которую отводится в “M-теории” (на сегодняшний день наиболее предпочтительной
версией теории строи (см., например, [3]) с одной дополнительной разностью, т.е. 11-мерной реальности) “d-бранным”, базовым \((d + 1)\)-мерным системам, вложенным
или плывающим в пространство-времени и включающим в себя строи \((d = 1)\), "мембраны
\((d = 2)\), "мешки" \((d = 3)\), “гипермешки” \((d = 4)\) и расширения Даффа Стронмингера
\((d = 5)\). Концептуальное сходство с пятью принципами полиэдрами Демокрита и Пла
tона в некотором смысле претендует на структурное объяснение разнообразия природы.

*School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
Платоновская геометрия физики движений реализовывалась в XX веке: в 1908–1925 гг. и снова после 1954 г., сопровождая вначале скорым ростом активности, а затем, после 1974 г., необычайным взлетом. Геометрия как дисциплина, кстати говоря, первая научная дисциплина и модель того, из чего наука должна состоять и как должна быть организована (аксиомы, логический вывод и доказательства и т.д.), развивалась более всего посредством обычного сознания. Пробуждение произошло благодаря Декарту в XVII веке посредством брачного союза геометрии и анализа, что привлекло приток талантов (например, Гаусса и его школы), от чего геометрия необычайно много выиграла. В конце XIX столетия она получила дополнительный толчок к развитию от Клейна и Софуса Ли с их Эрлангенской программой. На сайт раз это была садьба геометрии с алгеброй (двоеженство?). Минковский (профессор геометрии, ученик Эйнштейна в ETI, Йорих) и Эмхи Нётер обучались в этой среде.

Общеизвестно, что когда Эйнштейн предложил специальную теорию относительности (СТО), он и понятия не имел, что делает что-то геометрическое: он просто изучал симметрии уравнений Максвелла. Минковский первым осознал геометрическую сущность и выводы СТО [4], что хорошо усвоил и использовал Эйнштейн при переходе от кинематики СТО к динамике общей теории относительности (ОТО), который он осуществил с помощью своего школьного товарища Гроссмана, будучи почти незнакоемым и незнакомым Гильбертом... После ОТО геометрический путь сконцентрировался на унификации (в то время только с электромагнетизмом), используя три направления, все еще развивающиеся, а именно калибровочные теории, дополнительные размерности и суперсимметрию.

1. Два варианта калибровочной теории Г. Вейля [5] (R^2 в 1918 г. и $U(1)$ в 1928 г.) были впервые и расширены на наблюдаемы группы в 1954 г. Янгом и Милльсоном [6] и независимо от них Шоу. Во вторую (теперьшнюю) геометрическую эру эти результаты были обобщены нашими [7] $SU(3)$-применениями (гипотезы), которые ведут нас далее к моделям кварков [8] и кварковой хромодинамики (КХД) [9], с одной стороны, и к электрослабому объединению [10], с другой стороны, т.е. к стандартной модели и к калиброванию соответствующего полуплярного произведения $SU(3)^{\text{color}} \times SU(2)^{\text{weak isospin}} \times U(1)^{\text{weak hypercharge}}$ [11].

3. Эйнштейн и Кауфман добавили кручение, включив в метрику антисимметричную часть [17]. После 1925 г. мы работаем с ОТО как с РКП, а для введения антисимметричной части в метрику нам нужны спинорные компоненты, т.е. суперграни́ция [18]. Прямое решение эйнштейновской программы частичного объединения было действительно найдено в $N = 2$ суперграни́ция [19] на начальном этапе. В то же время мы указали на возможность того, что $N = 8$ [20] могут быть "исключительным случаem". Теория была построена [21], но появились сложности с перечеркиваниями перечер-
ГЕОМЕТРИЗАЦИЯ СПОНТАННО-НАРУШЕННЫХ КАЛИБРОВЧАТЫХ СИММЕТРИЙ

кнули этот путь; данная проблема схема превратилась внутри "M-теории", однако решение не получено до сих пор.

Первая эра геометризации закончилась прорывами в квантовой механике в 1925 г. ОТО представлялась статной, несмотря на все свои достоинства. Казалось, что только гравитация связана с геометрией, а все остальные взаимодействия настолько негеометризованы, насколько это возможно. После статьи Янга и Миллса в 1954 г. планы разгорелись снова, хотя все еще мало, разжигаемые попытками описать силовые взаимодействия набором калибровочных теорий. Примерами могут служить неказистая теория силовых взаимодействий Сакураи, инициированная экспериментальными наблюдениями для векторных мезонов, подтверждёнными электромагнитными форм-факторами, а также теория слабых взаимодействий после 1957 г. Последняя снабдила нас пониманием того, что эти взаимодействия не сохраняют четность, и включают в себя "V-A", т.е. векторные и аксиално-векторные токи, сохраняющиеся для V-части и только частично сохраняющиеся для A-части. В конце 60-х гг. мы уже поняли, что $SU(3)$-симметрия [7] ("ароматы") - это ключ к адронному спектру с барионами в определяющем октет. Нахождение симметрии стал геометрическим, и обе следующих об $SU(3)$-симметрии ("космический путь") с самого начала проявляли в виде калибровочной симметрии Янга Миллса. Однако шестидесятые увидели и широкое распространенный "обвал" (предполагаемый) РКТП, и ее замену на физику "на массовой поверхности", и некоторые связанные с ней методы. Экспериментально подтвержденное признание универсальных свойств взаимодействий адронов касается $J = 1^-$ (калибровочные поля) и "высокий путь" (для барионного числа) было также справедливо как динамическое приближение, индуцированное слабыми и электромагнитными сохраняющими (или частично сохраняющими) токами.

В то же время мы были успехи классификации и симметрии для понимания еще и другого непривычного уровня (кварки) [8]. В результате, хотя РКТП была реализована в 70-х, экспериментальная подтверждённость квазарной модели сохранила статус "эффективной" калибровочной теории для адронных силовых взаимодействий в физике, в которой различена между "фундаментальным" и "составным" стала свойством, зависящим от энергии.

Возвращение РКТП было осуществлено Фейнманом посредством разрешения базовой проблемы о потерях упаковки вне массовой поверхности, возникшей из-за конфликта двух инвариантов. С одной стороны, существует $SL(4, R)$-локальная тензорная природа (виртуальных) полей, требующая для удовлетворения принципа ковариантности Эйнштейна, (абстракция) симметрия относительно группы локальных диффоморфизмов Diff$(4, R)$, неприведенно представленных над своей линейной подгруппой $SL(4, R)$. С другой стороны, мы имеем группу Пуанкаре, действующую на гильбертовом пространстве состояний частиц, построенные на локально-плоском касательном многообразии. Например, $A_\mu(x)$ имеет 4 компоненты, в то время как, если $A_\mu(x)$ рассматривать как безмассовую частицу со спином $J = 1$, то она имеет только 2 состояния сионые колебания, а в инертно-каскадная статистика дает лишь знак минус в любой диаграмме; унитарность
В настоящее восстановление является посредством наложения связей на духи так, чтобы они имели те же самые диаграммы, что и нежелательные компоненты (этот метод был разработан далее Девинтом и Фадеевым с Поповым). Это решение в результате дало нам действие, называемое Z(2)-квантовой статистикой на мультиплетах с любым спином, которые, таким образом, стали называться "супермультплетами" соответствующего сорта. Бекки, Руэ, Стора [23] и независимо от них Тютин нашли алгебраический метод извлечения этого решения из набора уравнений связей, наложенных на духи и поля, перемешанные в квантовом лагранжевом и, образующих конечную супергруппу. Она взяла на гарантированную таким образом унитарность, стало возможным справиться с другими аспектами ренормирования, и усилив Слависа, Тейлора, Вельтмана и Хюфера наконец достигли счастливого завершения в репергруппу программные для полей Янга-Миллса и их взаимодействий. За этим сразу последовало открытие асимметрической свободы, и как продолжение появилась КХД.

2. ВТОРАЯ ГЕОМЕТРИЧЕСКАЯ ЭРА, p-ФОРМЫ И СУПЕРСИММЕТРИЯ

Понятие градуированной "суперсимволи" Ли вошло в физику посредством наблюдения за поведением дифференцированных при интегрировании на многообразиях. Таким образом, она рассматривалась как геометрическая с самого начала, полученной с помощью алгебра и ее геометрия били использованы в теориях представитель симметрии в гильбертовом пространстве. Эти супералгебра были de facto супералгебры и никак не взаимодействовали с еще одной алгебраической системой. Несупералгебры супералгебры Ли исследовались далее, открывая два направления: бесконечные супералгебры типа Фиросори "свободный" теории суперструн (Неве, Шварц и Рамон), а с другой стороны, а с другой стороны, суперсимметрии Пуанкаре по Гольдфанду и Лихтенцу. Суперсимметрия с того момента стала Большой Белой Надеждой (The Great White Hope) физики частиц, от которой ожидали излечения нашего парадокса неравенств и которому (на сегодняшний день) является решающей для всякого строгого доказательства свойств чистого конфайнмента и т.д., но на момент весны 2003 г. все еще без экспериментального подтверждения.

Исчисление форм входило в эту часть физики в 1977 г., когда в нашем понимании объединения мы с Реджали пытались использовать метод факторизации. При этом гравитацию и супергравитацию изучали, стартуя с жесткими (rigid) групповидных многообразий Пуанкаре и супер-Пуанкаре, а затем факторизацией по параметрам группы Лоренца, что можно рассматривать как членение (softening) в смысле "мягкого автосикврата" Сальвадора Дали ("Soft Self Portrait"), переоценил к расслоению. Получающиеся базо-
вые многообразия этих расслоений есть соответственно равновер пространство-время и суперпространство. Лено- и правосинхронные 1-формы Мурана Кардана играют важную роль [27]. Определение расслоения (каллибровочной теории) включает в себя "вертикальное" направление, на котором действует структурная группа расслоения. Тьерри-Мье затем показывал, что если отождествлять поля духов со (сверхзвуками) "вертикальными" частями 1-формы связности, уравнения связей БРСТ, существенные для унитарности, совпадают со "структурными уравнениями" Мурана Кардана для расслоения, определяющего калибровочную теорию. Эти уравнения налагают связь на 2-форму кринизы так, что она оказывается чисто "горизонтальной", и в этом нет ничего сверхъестественного, так как духи с самого начала были отождествлены с вертикальными компонентами [28].

3. ВНУТРЕННЯЯ СУПЕРСИММЕТРИЯ

Сочиняя эти различные элементы, я построил модель [29], предполагая, что некоторые из 15 20 свободных параметров в существующей на данный момент теории электролаза его объединения могут быть фиксированы наложением супергрупи SU (2) как ограничивающей симметрии схемы лоренцских скалярных, сделанных из четырех духов, соответствующих $SU(2) \times U(1)$ калибровочных фионов (т.е. скалярных ангиокоммутирующих 1-форм, построенных из сверток с дифференциалами в данном случае, или по полному рангу размерности расслоения, или только в вертикальном направлении), а также четырех вещественных компонент комплексного скалярного мезоспинового поля Хитса и его эрмитово сопряженного.

Почти одновременно та же самая симметрия была предложена Фейрье, рассматривавшим ее под другим углом, а именно в точке зрения размерной редукции [30].

Пусть g обозначает $Z(2)$-четность элемента гласманской алгебры, a h и $Z(2)$-четность соответствующего суперматричного элемента относительно $Z(2)$-суперобъя. Сверхнутые 4-потенциалы четырех калибровочных фионов являются g-неотчетными и h-четными и, таким образом, нечетными в прямом произведении "полного" $Z(2)$. Четюре компоненты поля Хитса, будучи лоренцскими скалярами, являются 0-формами, т.е. g-четными; как состояния мезоспина $\Phi(x)$ и его сопряженного $\Phi^1(x)$ они занимают положения, являющиеся эквивалентами изменяющихся строинностей положений в движении мультипле архонов $SU(3)$ и являются h-неотчетными. Полное $Z(2)$-значение здесь является нечетным, как и положено для геометрической симметрии, "суперсимметрии", если следовать Кивалену, который пришел к тем же общим конструкциям из математических соображений в 1975 г. [31].

Действительно, разделение определяющей суперматрицы на четную и нечетную части по б-градиурке в (3×3)-случае приводит к разделению несущего супервектора на $(2| 1)$-компоненты, что замечательным образом отвечает киральностью, например, $(\nu^0_L, e^{- L} e^{- R})$, с четырехмерным представлением для кварков, столь же замечательным образом соответствует киральностям. Причина, по которой существует такое четырехмерное представление, есть результат наличия гомоморфизма $SU(2) \sim OSP(2|2)$ в силу $U(1) \sim SO(2)$ и $SU(2) \sim Sp(2)$ (OSp ортосимплектический). Таким
образом, модель дает нам полуфундаментальный электрон, являющийся лоренцовским скалярным и построенный из дэвов потенциалов-посредников $W^+/−, Z, A$ (или четырех $J = 1$ частиц, свернутых с дифференциалами), а также из линейного поля Хитса и его сопряженного. Я использовал термин "полуфундаментальные", потому что семь полей из восьми не являются полностью "фундаментальными" в позитивистском смысле, но и не просто души. Действительно, мы должны понимать, что три из четырех хитсовских компонент в итоге являются вкладами в продольные компоненты $W^+/−$ и Z, таким образом, делают их массивными.

4. СУПЕРСВЯЗНОСТЬ КВИЛЛЕНА И НЕКОММУТАТИВНАЯ ГЕОМЕТРИЯ КОНА

Математическая конструкция, изобретенная Квиленком [31], очень близка к нашей $SU(2)[1]$. Вместе со Стерибергом [32] мы переформулировали модель 1979 г. в терминах Квинна, математически хорошо определенных и позволяющих избегать одной концептуальной сложности, которую возникала при использовании определений образца 1979 г., а именно необходимости вводить новые духовные состояния для того, чтобы сделать смешанные мультиплеты из духов и частиц во всех представлениях, а не только в представлении. Чтобы разместить N частиц, необходимо $2N$ состояний, половина из которых были бы новыми (безрезультатными) духовными состояниями.

Динамически супералгебра содержит антикоммутаторы h-четных элементов, так что h-четная компонента кривизны содержит квадратичные члены вида $d_j^\alpha \Phi^j(x) \Phi^j(x)$. Возводя в квадрат, мы получаем четверной степеневой хитсовский потенциал с константами связи, масштаб которой определяется углом между часами константы связи $SU(2) \times U(1)$-изоморфизма. Если принять единичную норму для h-четной части, то в системе масштабированных констант связи углом Вайнберга, для которого $\sin^2 \theta = 0.25$. Тогда общий член, квадратичный по Φ, который инициирует ненулевое среднее вакуумное значение нейтральной компоненты хитсовского поля, должен быть введен "руками". Масса хитсовской частицы предсказана [33] такой, что $M(\Phi) = 2 M(W)$, где приближенная линеаризованная оценка электростатических порывок [34] повышает значение до $M(\Phi) = 130 \pm 6$ ГэВ.

В это же самое время родилась еще одна ветвь математики, актуальная для нас, а именно некоммутативная геометрия Кона [35]. Кон и Лотерт применили идею некоммутативной геометрии для выведения электростатичной теории Вайнберга Салама в чисто геометрической постановке [36]. Основное предположение состоит в том, что базовое пространство является краевым изохроматического рассеяния есть произведение двухстепенного "пространства" $Z(2)$ и пространства Можковского. "Точками" являются L и R, проектирующие соответствующую часть группы Лоренца. В результате произведение сводится к сумме $M_L \oplus M_R$.

Также было показано, что вышеуказанная $SU(2)[1]$-модель может быть выведена таким же способом и вдобавок имеет еще две дополнительные преимущества, кроме оправданных супералгеброй ограничений на константы связи.
ГЕОМЕТРИЗАЦИЯ СПОНТАННО-НАРУШЕННЫХ КАЛИБРОВЧНЫХ СИММЕТРИЙ

1. Проблема, связанная с квантовой статистикой, полностью разрешена, и нет никакой необходимости в новых дурах и т.п. Группа $Z(2)$ для несущего пространства может быть киральная $Z(2)^{ch}$ действительно и быть коррелированной с $Z(2)^{superbracket}$.

2. Несущее пространство есть результат соединения двух слоев, находящихся над двумя многообразиями $M^L(+)M^R$. Рассмотрение параллельного переноса фиксирует композицию различных ковариантных производных. Движение внутри слоя (скажем, от точки $ν^0 L(x)$ в другую точку на том же слое $e L(y)$) осуществляется посредством обычной ковариантной производной, построенной для незаряженной калибровочной симметрии. Однако перенос от $ν^0 L(x)$ в точку $e^{-} R(y)$ достигается движением внутри вначале в точке $e^{-} (y')$ с обычными калибровочными боссами, после чего необходимо совершить дискретный скачок между двуми пространствами, со слоя над M_L в слой над M_R. Это должно соответствовать макроспазому оператору, который нарушают киральные барьеры.

Матрица $μ^δ$ связывает e_L и e_R. В ковариантной производной, следовательно, должен быть новый элемент $Δ\Phi$, где $Δ$ "матричная производная", которая в данном случае является постоянной матрицей в направлении $μ^δ$; с нее начинается антиматроны ведущих производных. В рамках квантовой $R ^{\lambda} \wedge ^{\nu} R$ эти члены генерируют квадратичный по матрицам потенциал к срачительным знакам. Другие примеры такого решения, включающие матричные производные, продемонстрированы в работе [37].

Список литературы

[1] Plutarch, Quaestiones Platonicae.
Калебровная инвариантность в теории поля и в статистической физике в операторной формулировке. Препринт № 39. М.: ФИАН, 1975.